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Targeted Minimum Loss Based Estimation of
an Intervention Specific Mean Outcome

Mark J. van der Laan and Susan Gruber

Abstract

Targeted minimum loss based estimation (TMLE) provides a template for the
construction of semiparametric locally efficient double robust substitution esti-
mators of the target parameter of the data generating distribution in a semipara-
metric censored data or causal inference model based on a sample of independent
and identically distributed copies from this data generating distribution (van der
Laan and Rubin (2006), van der Laan (2008), van der Laan and Rose (2011)).
TMLE requires 1) writing the target parameter as a particular mapping from a typ-
ically infinite dimensional parameter of the probability distribution of the unit data
structure into the parameter space, 2) computing the canonical gradient/efficient
influence curve of the pathwise derivative of the target parameter mapping, 3)
specifying a loss function for this parameter that is possibly indexed by unknown
“nuisance” parameters, 4) a least favorable parametric submodel/path through an
initial/current estimator of the parameter chosen so that the linear span of the gen-
eralized loss-based score at zero fluctuation includes the efficient influence curve,
and 5) an updating algorithm involving the iterative minimization of the loss-
specific empirical risk over the fluctuation parameters of the least favorable para-
metric submodel/path. By the generalized loss-based score condition 4) on the
submodel and loss function, it follows that the resulting estimator of the infinite
dimensional parameter solves the efficient influence curve (i.e., efficient score)
equation, providing the basis for the double robustness and asymptotic efficiency
of the corresponding substitution estimator of the target parameter obtained by
plugging in the updated estimator of the infinite dimensional parameter in the tar-
get parameter mapping.

To enhance the finite sample performance of the TMLE of the target parame-
ter, it is of interest to choose the parameter and the nuisance parameter of the



loss function as low dimensional as possible. Inspired by this goal, we present a
particular closed form TMLE of an intervention specific mean outcome based on
general longitudinal data structures. %We also present its generalization of this
type of TMLE to other causal parameters. This TMLE provides an alternative to
the closed form TMLE presented in van der Laan and Gruber (2010) and Stitelman
and vanderLaan (2011) based on the log-likelihood loss function. The theoretical
properties of the TMLE are also practically demonstrated with a small scale sim-
ulation study. The proposed TMLE builds upon a previously proposed estimator
by Bang and Robins (2005) by integrating some of its key and innovative ideas
into the TMLE framework.



1 Introduction.

Many studies generate data sets that can be represented as n independent and
identically distributed observations on a specified longitudinal data structure.
By specifying a causal graph (Pearl (1995), Pearl (2000)), or equivalently, a
system of structural equations specifying the observed variables as a function of
a set of observed parent variables and an unmeasured exogenous error term,
one codes the assumptions needed to be able to define a post-intervention
distribution of this longitudinal structure that represents the distribution the
data would have had under a specified intervention on a subset of the nodes
defining the observed longitudinal data structure. Causal effects are defined
as parameters of a collection of post intervention distributions.

A current and important topic is the estimation of causal effects of setting
the value of multiple time point intervention-nodes on some final outcome of
interest based on observing n independent and identically distributed copies
of a longitudinal data structure. In particular, one might be concerned with
estimation of the mean of the outcome under the post-intervention distribu-
tion for a specified multiple time point intervention. Under a causal graph
and a so called sequential randomization and positivity assumption, one can
identify the latter by the so called G-computation formula which maps the
distribution of the observed longitudinal data structure on the experimental
unit into the post-intervention distribution of the outcome. In this article we
consider estimation of this intervention specific mean outcome in a semipara-
metric model that only makes statistical assumptions about the intervention
mechanism, where the latter is defined by the conditional distribution of the
intervention node, given the parent nodes of the intervention node, across the
intervention nodes.

Different type of estimators of the intervention specific mean outcome in
such a semiparametric model have been proposed. These estimators can be
categorized as inverse probability of treatment/censoring weighted (IPTW) es-
timators, estimating equation based estimators based on solving an estimating
equation such as the augmented IPTW estimating equation, maximum like-
lihood based G-computation estimators based on parametric models or data
adaptive loss-based learning algorithms, and targeted maximum likelihood (or
more general, minimum loss-based) estimators defined in terms of an initial
estimator, loss function and least favorable fluctuation submodel through an
initial or current estimator that is used to iteratively update the initial es-
timator till convergence. The IPTW estimator relies on an estimator of the
intervention mechanism, the maximum likelihood estimator relies on an es-
timator of the relevant factor of the likelihood, while the augmented IPTW
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estimator and TMLE utilize both estimators. The augmented IPTW and the
TMLE are so called double robust, and locally asymptotically efficient. The
TMLE is also a substitution estimator and is therefore guaranteed to respect
the global constraints of the statistical model and target parameter mapping.

IPTW estimation is presented and discussed in detail in (Robins, 1999;
Hernan et al., 2000). Augmented IPTW is originally developed in Robins
and Rotnitzky (1992). Further development on estimating equation method-
ology and double robustness is presented in (Robins et al., 2000; Robins, 2000;
Robins and Rotnitzky, 2001) and van der Laan and Robins (2003). For a
detailed bibliography on locally efficient estimating equation methodology we
refer to Chap. 1 in van der Laan and Robins (2003).

For the original paper on TMLE we refer to van der Laan and Rubin (2006).
Subsequent papers on TMLE in observational and experimental studies include
Bembom and van der Laan (2007), van der Laan (2008), Rose and van der
Laan (2008, 2009, 2011), Moore and van der Laan (2009a,b,c), Bembom et al.
(2009), Polley and van der Laan (2009), Rosenblum et al. (2009), van der Laan
and Gruber (2010), Stitelman and van der Laan (2010), Gruber and van der
Laan (2010b), Rosenblum and van der Laan (2010), Wang et al. (2010), and
Stitelman and van der Laan (2011b). For a general comprehensive book on this
topic, which includes most of these applications on TMLE and many more, we
refer to van der Laan and Rose (2011). An original example of a particular
type of TMLE (based on a double robust parametric regression model) for
estimation of a causal effect of a point-treatment intervention was presented
in Scharfstein et al. (1999) and we refer to Rosenblum and van der Laan (2010)
for a detailed review of this earlier literature and its relation to TMLE. van der
Laan (2010) and Stitelman and van der Laan (2011a) (see also van der Laan
and Rose (2011)) present a closed form TMLE, based on the log-likelihood loss
function, for estimation of a causal effect of a multiple time point intervention
on an outcome of interest (including survival outcomes that are subject to
right-censoring) based on general longitudinal data structures.

In this article we integrate some key ideas from the double robust estimat-
ing equation method proposed in Bang and Robins (2005) into the framework
of targeted minimum loss based estimation. The resulting estimator 1) in-
corporates data adaptive estimation in place of parametric models, 2) can
be applied to parameters for which there exists no mapping of the efficient
influence curve into an estimating equation, thus also avoiding the potential
problem of estimating equations having no or multiple solutions, and 3) has
flexibility to incorporate robust choices of loss functions and hardest paramet-
ric submodels so that the resulting TMLE is a robust substitution estimator
(e.g., the squared error loss and linear fluctuation for conditional means is
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replaced by a robust loss and logistic fluctuation function). This results in a
new TMLE based on a loss function that may have advantages relative to the
TMLE based on the log-likelihood loss function as developed in van der Laan
(2010) and Stitelman and van der Laan (2011a): see our discussion for more
details on this. We generalize this new TMLE to causal parameters defined
by projections on working marginal structural models.

This article is organized as follows. In Section 2 we define the estimation
problem in terms of the longitudinal unit data structure, the statistical model
for the probability distribution of this unit data structure, the G-computation
formula for the distribution of the data under a multiple time point interven-
tion, and the corresponding target parameter being the intervention specific
mean outcome. We show that the target parameter can be defined as a func-
tion of an iteratively defined sequence of conditional means of the outcome
under the distribution specified by the G-computation formula, one for each
intervention node. In Section 2 we also derive a particular orthogonal decom-
position of the canonical gradient/efficient influence curve of the target pa-
rameter mapping, where each component corresponds with a ”score” of these
conditional means. In Section 3 we present the TMLE of this target parameter
in terms of an iteratively defined sequence of loss functions for the iteratively
defined sequence of conditional means, an initial estimator using iterative loss-
based learning to estimate each of the subsequently defined conditional means,
an iteratively defined sequence of least favorable parametric submodels that
are used for fluctuating each conditional mean subsequently, and finally the
TMLE-algorithm that updates the initial estimator by iteratively minimizing
the loss-based empirical risk along the least favorable parametric submodel
through the current estimator. The TMLE solves the efficient influence curve
estimating equation, which provides a basis for establishing the double robust-
ness of TMLE and statistical inference. In Section 4 we review the statistical
properties of this TMLE and statistical inference. In Section 5 we carry out
a small scale simulation study comparing this TMLE with an IPTW and a
parametric MLE based estimator. We conclude with some remarks in Section
5. A generalization of the TMLE for causal parameters defined by working
marginal structural models is presented in the Appendix. The Appendix also
provides R-code implementing the newly proposed TMLE.
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2 Longitudinal data structure, model, target

parameter, efficient influence curve.

We observe n i.i.d. copies of a longitudinal data structure

O = (L(0), A(0), . . . , L(K), A(K), Y = L(K + 1)),

where A(j) denotes a discrete valued intervention node, L(j) is an intermediate
covariate realized after A(j − 1) and before A(j), j = 0, . . . , K, and Y is a
final outcome of interest.

The probability distribution P0 of O can be factorized according to the
time-ordering as

P0(O) =
K+1∏
k=0

P0(L(k) | Pa(L(k)))
K∏
k=0

P0(A(k) | Pa(A(k)))

≡
K+1∏
k=0

Q0,L(k)(O)
K∏
k=0

g0,A(k)(O)

≡ Q0g0,

where Pa(L(k)) ≡ (L̄(k−1), Ā(k−1)) and Pa(A(k)) ≡ (L̄(k), Ā(k−1)) denote
the parents of L(k) and A(k) in the time-ordered sequence, respectively. Here
we used the notation L̄(k) = (L(0), . . . , L(k)). Note also that Q0,L(k) denotes
the conditional distribution of L(k), given Pa(L(k)), and, g0,A(k) denotes the
conditional distribution of A(k), given Pa(A(k)). We will also use the notation
g0:k ≡

∏k
j=0 gA(j). We consider a statistical model M for P0 that possibly

assumes knowledge on g0. If Q is the set of all values for Q0 and G the
set of possible values of g0, then this statistical model can be represented
as M = {P = Qg : Q ∈ Q, g ∈ G}. In this statistical model Q puts no
restrictions on the conditional distributions Q0,L(k) k = 0, . . . , K + 1.

Let

P a(l) =
K+1∏
k=0

Qa
L(k)(l̄(k)), (1)

where Qa
L(k)(l̄(k)) = QL(k)(l(k) | l̄(k − 1), Ā(k − 1) = ā(k − 1)). This is

the so called G-computation formula for the post-intervention distribution
corresponding with the intervention that set all intervention nodes Ā(K) equal
to ā(K). Let La = (L(0), La(1), . . . , Y a = La(K + 1)) denote the random
variable with probability distribution P a, and let Y a be its final component.
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Our statistical target parameter is the mean of Y a: Ψ(P ) = EPaY
a, where

Ψ : M→ IR. This target parameter only depends on P through Q = Q(P ).
Therefore, we will also denote the target parameter mapping with Ψ : Q =
{Q(P ) : P ∈M} → IR, acknowledging the abuse of notation.

Consider the NPSEM L(k)= fL(k)(Pa(L(k)), UL(k)), A(k)=fA(k)(Pa(A(k)),
UA(k)) in terms of a set of functions (fL(k) : k = 0, . . . , K + 1), (fA(k) : k =
0, . . . , K), and an exogenous vector of errors U = (UL(0), . . . , UL(K+1), UA(0), . . . ,
UA(K)) (Pearl (1995), Pearl (2000)). This allows one to define the counterfac-
tual Lā by deterministically setting all the A(k) equal to a(k) in this system
of structural equations. The probability distribution of this counterfactual is
called the post-intervention distribution of L. Under the sequential randomiza-
tion assumption stating that A(k) is independent of Lā, given Pa(A(k)), and
the positivity assumption, P (A(k) = a(k) | L̄(k), Ā(k−1) = ā(k−1)) > 0 a.e.,
the probability distribution of Lā is identified and given by the G-computation
formula P a

0 defined by the true distribution P0 of O under this system. In
particular, for any underlying distribution defined by the distribution of the
exogenous errors U and the collection of functions (i.e., fL(k) and fA(k)), we
have that EYā = EPaY

a = Ψ(P ) for the distribution P of O implied by this
underlying distribution. Thus the causal model and causal parameter EYā
implies a statistical model M defined as the set of possible probability distri-
bution P of O, and a statistical target parameter Ψ :M→ IR. For the sake of
estimation of EYā in this causal model, only the statistical model M and the
statistical target parameter are relevant. As a consequence, the estimation of
Ψ(P0) based on the statistical knowledge P0 ∈ M as developed in this article
also applies to estimation of the intervention specific mean EYā in this causal
model.

2.1 Representation of target parameter as function of
an iteratively defined sequence of conditional means.

By the iterative conditional expectation rule (tower rule), we can represent
EPaY

a as an iterative conditional expectation, first conditioning on L̄a(K),
then conditioning on L̄a(K − 1), and so on, until the conditional expectation
given L(0), and finally taking the mean over L(0). Formally, this defines a
mapping from Q into the real line defined as follows. Compute Q̄a

Y = EQaY Y ≡
E(Y | Ā(K) = ā(K), L̄(K)) by computing the integral of Y with respect to
(w.r.t.) conditional distribution Qa

Y of Y , given L̄(K), Ā(K) = ā(K). Given
Q̄a
Y , we compute Q̄a

L(K) = EQa
L(K)

Q̄a
Y , obtained by integrating out L(K) in Q̄a

Y

w.r.t. the conditional distribution Qa
L(K) of L(K), given L̄(K − 1), Ā(K −
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1) = ā(K − 1). This process is iterated: Given Q̄a
L(k), we compute Q̄a

L(k−1) =

EQa
L(k−1)

Q̄a
L(k), starting at k = K + 2 and moving backwards till the final step

Q̄a
L(0) = EQL(0)

Q̄a
L(1) at k = 1. For notational convenience, here we define

Q̄a
L(K+2) ≡ Y . Note that Q̄a

L(k) = Q̄a
L(k)(L̄(k − 1)) is a function of O through

L̄(k− 1), and, in particular, Q̄a
L(0) is a constant. We also note that in terms of

counterfactuals or the distribution of P a we have Q̄a
L(k) = EQ(Y a | L̄a(k− 1)).

Of course, if this process is applied to the true distribution Q0, then we indeed
obtain the desired intervention specific mean: Q̄a

0,L(0) = E0Y
a = Ψ(Q0).

Instead of representing our target parameter as a function of Q = (QY ,
QL(K), . . . , QL(0)), we will view it as a function of an iteratively defined se-
quence of conditional means Q̄a ≡ (Q̄a

Y , Q̄
a
L(K), . . . , Q̄

a
L(0)), where Q̄a

L(k) is

viewed as a parameter (i.e., EQa
L(k)

Q̄a
L(k+1)) of Qa

L(k), given the previous Q̄a
L(k+1).

We will write Ψ(Q̄a) if we want to stress that our target parameter only de-
pends on Q through this iteratively defined Q̄a. Note that indeed Q̄a is a
function of Q.

2.2 Representation of efficient influence curve of target
parameter as sum of iteratively defined scores of
iteratively defined conditional means.

Given the statistical model M, and target parameter Ψ : M → IR, ef-
ficiency theory teaches us that an estimator Ψ̂ (viewed as mapping from
empirical distribution into IR) is asymptotically efficient at P0 among the
class of regular estimators of Ψ(P0) if and only if the estimator is asymptoti-
cally linear at P0 with influence curve equal to the canonical gradient D∗(P0)
of the pathwise derivative of Ψ : M → IR at P0: i.e., Ψ̂(Pn) − Ψ(P0) =
1/n

∑n
i=1 D

∗(P0)(Oi) + oP (1/
√
n). We remind the reader that a pathwise

derivative for a path {P (ε) : ε} ⊂ M through P at ε = 0 is defined by
d
dε

Ψ(P (ε))
∣∣
ε=0

. If for all paths through P , this derivative can be represented
as PD∗(P )S ≡

∫
D∗(P )(o)S(o)dP (o), where S is the score of the path at

ε = 0, and D∗(P ) is an element of the tangent space at P , then the target
parameter mapping is pathwise differentiable at P and its canonical gradient
is D∗(P ). The canonical gradient forms a crucial ingredient for the construc-
tion of double robust semiparametric efficient estimators, and, in particular,
for the construction of a TMLE. We note that, due to the factorization of
P = Qg and that the target parameter only depends on P through Q, the
canonical gradient does not depend on the model choice for g. In particular,
the canonical gradient in the model in which g0 is known equals the canonical
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gradient in our model M, which assumes some model G, possibly a nonpara-
metric model (?). The following theorem provides the canonical gradient and
presents a particular representation of the canonical gradient that will be uti-
lized in the definition of our TMLE presented in the next section. This form
of the efficient influence curve was established in Bang and Robins (2005).

Theorem 1 Let D(Q, g)(O) = Y I(Ā(K)=ā(K))
g0:K

− Ψ(Q). This is a gradient of
the pathwise derivative of Ψ in the model in which g is known. For nota-
tional convenience, in this theorem we often use a notation that suppresses
the dependence of functions on Q, g. The efficient influence curve is given
by D∗ =

∑K+1
k=0 D

∗
k, where D∗k = Π(D | Tk) is the projection of D onto

the tangent space Tk = {h(L(k), Pa(L(k)) : EQ(h | Pa(L(k))) = 0} of
QL(k) in the Hilbert space L2

0(P ) with inner-product 〈h1, h2〉P = Ph1h2. Re-
call the definition Q̄a

L(k) = E(Y a | L̄a(k − 1)), and the recursive relation

Q̄a
L(k) = EQa

L(k)
Q̄a
L(k+1).

We have

D∗K+1 =
I(Ā(K) = ā(K))

g0:K

(Y − Q̄a
K+1),

and

D∗k =
I(Ā(k − 1) = ā(k − 1))

g0:k−1

{
Q̄a
L(k+1) − EQaL(k)

Q̄a
L(k+1)

}
,

=
I(Ā(k − 1) = ā(k − 1))

g0:k−1

{
Q̄a
L(k+1) − Q̄a

L(k)

}
, k = K, . . . , 0.

In particular,

D∗0 = Q̄a
L(1) − EL(0)Q̄

a
L(1) = Q̄a

L(1) −Ψ(Q̄a).

We note that for each k = K + 1, . . . , 0,

D∗k(Q, g) = D∗k(Q̄
a
L(k), Q̄

a
L(k+1), g0:k−1)

depends on Q, g only through Q̄a
L(k+1), its mean Q̄a

L(k) under Qa
L(k), and g0:k−1.

Proof. The formula for D∗K+1 is obvious. Note,

D∗K = E(D | L(K), Ā(K − 1), L̄(K − 1))− E(D | Ā(K − 1), L̄(K − 1))

= I(Ā(K−1)=ā(K−1)
g0:K−1

{
E
(
Y I(A(K)=a(K))

gK
| L(K), Ā(K − 1) = ā(K − 1), L̄(K − 1)

)
−E

(
Y I(A(K)=a(K))

gK
| Ā(K − 1) = ā(K − 1), L̄(K − 1)

)}
.
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Note also that

E(Y I(A(K) = a(K))/gK | L(K), Ā(K − 1) = ā(K − 1), L̄(K − 1))

= E(E(Y | L̄(K), A(K), Ā(K − 1)) I(A(K)=a(K))
gK

| L̄(K), Ā(K − 1) = ā(K − 1))

= E(Q̄a
Y (L̄(K))I(A(K) = a(K))/gK | L(K), Ā(K − 1) = ā(K − 1), L̄(K − 1))

= E(Q̄a
Y (L̄(K)) | L(K), Ā(K − 1) = ā(K − 1), L̄(K − 1))

= Q̄a
Y (L̄(K)).

Thus,

E(Y I(A(K) = a(K))/gK | Ā(K − 1) = ā(K − 1), L̄(K − 1)) = EQa
L(K)

Q̄a
Y .

Thus, we found the following representation of DK :

DK =
I(Ā(K − 1) = ā(K − 1))

g0:K−1

{
Q̄a
Y − EQaL(K)

Q̄a
Y

}
.

Consider now

DK−1 = E(D | L(K − 1), Ā(K − 2), L̄(K − 2))− E(D | Ā(K − 2), L̄(K − 2))

= I(Ā(K−2)=ā(K−2))
g0:K−2

{
E(Y I(A(K)=a(K),A(K−1)=a(K−1))

gK−1:K
| L(K − 1), Ā(K − 2), L̄(K − 2))

−E(Y I(A(K) = a(K), A(K − 1) = a(K − 1))/gK−1:K | Ā(K − 2), L̄(K − 2))
}
.

Note that

E(Y I(A(K)=a(K),A(K−1)=a(K−1))
gK−1:K

| L(K − 1), Ā(K − 2) = ā(K − 2), L̄(K − 2))

= E(Y a | L(K − 1), Ā(K − 1) = ā(K − 1), L̄(K − 2))
= E(Y a | L̄a(K − 1))
= Q̄a

L(K).

This shows

DK−1 =
I(Ā(K − 2) = ā(K − 2))

g0:K−2

{
Q̄a
L(K) − EQaL(K−1)

Q̄a
L(K)

}
.

In general, for k = 1, . . . , K + 1, we have

Dk = E(D | L(k), Ā(k − 1), L̄(k − 1))− E(D | Ā(k − 1), L̄(k − 1))

= I(Ā(k−1)=ā(k−1))
g0:k−1

{
E(Y a | L(k), Ā(k − 1), L̄(k − 1))

−E(Y a | Ā(k − 1), L̄(k − 1))
}

= I(Ā(k−1)=ā(k−1))
g0:k−1

{
Q̄a
L(k+1) − EQaL(k)

Q̄a
L(k+1)

}
= I(Ā(k−1)=ā(k−1))

g0:k−1

{
Q̄a
L(k+1) − Q̄a

L(k)

}
.
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Finally,

D0 = E(D | L(0)) = E(Y a | L(0))−Ψ(Q̄a) = Q̄a
L(1) − EQL(0)

Q̄a
L(1)

= Q̄a
L(1) − Q̄a

L(0).

2

The following theorem states the double robustness of the efficient influence
curve as established previously (e.g, van der Laan and Robins (2003)).

Theorem 2 Consider the representation D∗(Q̄a, g,Ψ(Q̄a)) of the efficient in-
fluence curve as provided in Theorem 1 above. We have for any g for which
gK(Ā(K) = ā(K), L̄(K)) > 0 a.e.,

P0D
∗(Q̄a, g,Ψ(Q̄a

0)) = 0 if Q̄a = Q̄a
0 or g = g0.

3 TMLE of intervention specific mean.

The first step of the TMLE involves writing our target parameter as Ψ(Q̄a),
as done above. Secondly, we construct an initial estimator Q̄a

n of Q̄a
0 and gn

of g0. In addition, we need to present a loss function Lη(Q̄a) for Q̄a
0, possibly

indexed by a nuisance parameter η, satisfying Q̄a
0 = arg minQ̄a P0Lη0(Q̄a), and

a parametric submodel {Q̄a(ε, g) : ε} in the parameter space of Q̄a, so that the
linear span of the loss-based score d

dε
Lη0(Q̄a(ε, g)) at ε = 0 includes the effi-

cient influence curve D∗(Q, g) of the target parameter mapping at P = Q ∗ g.
Specifically, for each component Q̄a

0,L(k) of Q̄a = (Q̄a
L(0), . . . , Q̄

a
L(K+1)) we pro-

pose a loss function Lk,Q̄a
L(k+1)

(Q̄a
L(k)) indexed by “nuisance” parameter Q̄a

L(k+1),

and a corresponding submodel Q̄a
L(k)(ε, g) through Q̄a

L(k) at ε = 0 so that
d
dε
LQ̄a

L(k+1)
(Q̄a

L(k)(ε, g)) at ε = 0 equals the k-th componentD∗k(Q̄
a
L(k), Q̄

a
L(k+1), g)

of the efficient influence curve D∗ as defined in Theorem 1, k = 0, . . . , K +
1. The sum loss function

∑K+1
k=0 Lk,Q̄aL(k+1)

(Q̄a
L(k)) is now a loss function for

(Q̄a
L(0), . . . , Q̄

a
L(K+1)) and the corresponding ”score” of the submodel through

Q̄a defined by all these k-specific submodels spans the complete efficient influ-
ence curve.

Finally, we will present a particular closed form targeted minimum loss-
based estimation algorithm that iteratively minimizes the empirical mean of
the loss function over this parametric submodel through the current estima-
tor of Q̄a

0 (starting with initial estimator), updating one component at the
time. This algorithm starts with updating the initial estimator Q̄a

L(K+1),n of

Q̄a
L(K+1) based on the K+1-th loss function LK+1(Q̄a

L(K+1)) resulting in update

9
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Q̄a,∗
L(K+1),n = Q̄a

L(K+1),n(εK,n, gn) with εK,n = arg minε PnL(Q̄a
L(K+1),n(ε, gn)).

It iterates this updating process going backwards till obtaining the update
Q̄a,∗
L(0),n = Q̄a

L(0),n(ε0,n, gn) of the initial estimator Q̄a
L(0),n of Q̄a

L(0), where ε0,n =

arg minε PnLQ̄a,∗
L(1),n

(Q̄a
L(0),n(ε, gn)) using the most recent updated estimator Q̄a,∗

L(1),n

of Q̄a
0,L(1). This yields the TMLE Q̄a,∗

n of the vector of conditional means Q̄a
0.

In particular, its first component Q̄a,∗
L(0),n is the TMLE of Ψ(Q̄a

0) = Q̄a
0,L(0).

By the fact that the MLE of εk solves the score equation, it follows that
the TMLE solves PnD

∗
k(Q̄

a,∗
L(k),n, Q̄

a,∗
L(k+1),n, g0:k−1,n) for each k = K + 1, . . . , 0.

In particular, this implies that (Q̄a,∗
n , gn) solves the efficient influence curve

equation: PnD
∗(Q̄a,∗

n , gn,Ψ(Q̄a,∗
n )) = 0. Before we proceed with describing the

template for construction of the TMLE, we first present the summary of the
practical implementation of the proposed TMLE.

3.1 Summary of practical implementation of TMLE.

We will assume that Y is bounded (i.e, P0(Y ∈ (a, b)) = 1 for some a < b <
∞), and thereby, without loss of generality, we can assume that Y ∈ [0, 1]. A
special case would be that Y is binary valued with values in {0, 1}. Firstly,
we carry out a logistic regression regressing Y onto Ā(K) = ā(K), L̄(K). For
example, we might fit a multivariate linear logistic regression of Yi onto a
set of main terms that are univariate summary measures Zi extracted from
L̄i(K) among the observations with Āi(K) = ā(K). Alternatively, we use
data adaptive machine learning algorithms to fit this underlying regression.
Let gn be an estimator of g0. Subsequently, we use this initial estimator of
Q̄a
Y,0 = E0(Y | Ā(K) = ā(K), L̄(K)) as an off-set in a univariate logistic regres-

sion with clever covariate I(Ā(K) = ā(K))/g0:K,n, and fit the corresponding
univariate logistic regression of Y among the observations with Ā(K) = ā(K).
This yields the TMLE Q̄a,∗

Y,n of the last component Q̄a
Y,0 of Q̄a

0.

We now run a logistic regression of Q̄a,∗
Y,n onto Ā(K−1) = ā(K−1), L̄(K−1).

This initial estimator of Q̄a
L(K) = E(Y a | L̄a(K − 1)) is used as an off-set in

a univariate logistic regression of Q̄a,∗
Y,n with clever covariate I(Ā(K − 1) =

ā(K − 1))/g0:K−1,n. Let Q̄a,∗
L(K),n be the resulting fit of Q̄a

L(K). This is the

TMLE of Q̄a
L(K),0 (second from last component of Q̄a

0).
This process of subsequent estimation of the next conditional mean, given

the TMLE-fit of the previous conditional mean, is iterated. Thus, for any k ∈
{K+1, . . . , 1}, run a logistic regression of the previous TMLE fit Q̄a,∗

L(k+1),n onto

Ā(k−1) = ā(k−1), L̄(k−1), and use this fit as an off-set in a univariate logistic
regression of Q̄a,∗

L(k+1),n with clever covariate I(Ā(k − 1) = ā(k − 1))/g0:k−1,n.
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Let Q̄a,∗
L(k),n be the resulting logistic regression fit of Q̄a

L(k). This is the TMLE

of Q̄a
L(k),0, k = K + 1, . . . , 1.

Consider now the fit Q̄a,∗
L(1),n at the k = 1-step. This is a function of

L(0). We estimate Q̄a
L(0) with the empirical mean 1

n

∑n
i=1 Q̄

a,∗
L(1),n(Li(0)). Let

Q̄a,∗
n = (Q̄a,∗

L(k),n, k = 0, . . . , K + 1) be the TMLE of Q̄a
0. The last estimate

1
n

∑n
i=1 Q̄

a,∗
L(1),n(Li(0)) is the TMLE Q̄∗L(0),n = Ψ(Q̄a,∗

n ) of our target parameter

Q̄a
L(0) = Ψ(Q̄a

0).

3.2 Loss function for Q̄a
0.

We will assume that Y is bounded (i.e, P0(Y ∈ (a, b)) = 1 for some a < b <
∞), and thereby, without loss of generality, we can assume that Y ∈ [0, 1].
A special case would be that Y is binary valued with values in {0, 1}. As a
consequence, for each k, Q̄a

L(k) is a function that maps L̄(k−1) into (0, 1). For

each k = K + 1, . . . , 0, we define the following loss function for Q̄a
L(k), indexed

by “nuisance” parameter Q̄a
L(k+1):

Lk,Q̄a
L(k+1)

(Q̄a
L(k)) = −I(Ā(k − 1) = ā(k − 1))×{

Q̄a
L(k+1) log Q̄a

L(k) + (1− Q̄a
L(k+1)) log(1− Q̄a

L(k))
}
.

For notational convenience, here we define Q̄a
L(K+2) ≡ Y , so that the loss

function for Q̄a
Y is given by

LK+1(Q̄a
Y ) = −I(Ā(K) = ā(K))

{
Y log Q̄a

Y + (1− Y ) log(1− Q̄a
Y )
}
.

Indeed, we have that

E0(Q̄a
L(k+1)(L(k), L̄(k−1)) | Ā(k−1) = ā(k−1), L̄(k−1)) = arg min

Q̄a
L(k)

EP0Lk,Q̄aL(k+1)
(Q̄a

L(k)).

In other words, given any function Q̄a
L(k+1) of L(k), L̄(k− 1), the minimizer of

the expectation of the loss function Lk,Q̄a
L(k+1)

over all candidates Q̄a
L(k), is the

actual conditional mean under Qa
0,L(k) of Q̄a

L(k+1) (see e.g., Gruber and van der

Laan (2010a)). In particular, if the “nuisance” parameter Q̄a
L(k+1) of this loss

function is correctly specified, then this minimizer equals the desired Q̄a
0,L(k).

An alternative choice of loss function is a (possibly weighted) squared error
loss function:

Lk,Q̄a
L(k+1)

(Q̄a
L(k)) = I(Ā(k − 1) = ā(k − 1))

(
Q̄a
L(k+1) − Q̄a

L(k)

)2
.
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However, this choice combined with linear fluctuation submodels (as in Bang
and Robins (2005)) will yield a non-robust TMLE not respecting the global
constraints of the model and target parameter, for the same reason as presented
in Gruber and van der Laan (2010a).

These loss functions for Q̄a
L(k) across k can be combined into a single

loss function Lη(Q̄a) =
∑K+1

k=0 Lk,ηk(Q̄a
L(k))

∣∣∣
ηk=Q̄a

L(k+1)

indexed by a nuisance

parameter η = (ηk : k = 0, . . . , K + 1). This can be viewed as a sum
loss function indexed by nuisance parameters ηk, and, at correctly specified
nuisance parameters, it is indeed minimized by Q̄a

0. However, the nuisance
parameters are themselves minimizers of of the risk of these loss functions,
so that it is sensible to define Q̄a

0 as the solution of the iterative minimiza-
tion of the risks of the loss functions: Y = Q̄a

0,L(K+2), for k = K + 2, . . . , 1,

Q̄a
0,L(k−1) = arg minQ̄a

L(k−1)
E0LQ̄a

0,L(k)
(Q̄a

L(k−1)). This is indeed the way we uti-

lize this loss function for Q̄a in both the definition of the TMLE, as well as in
the definition of a cross-validation selector below for the sake of construction
of an initial estimator of Q̄a

0.

3.3 Least favorable parametric submodel.

In order to compute a TMLE we wish to determine a submodel {Q̄a
L(k)(εk, g) :

εk} through Q̄a
L(k) at εk = 0 so that

d

dεk
Lk,Q̄a

L(k+1)
(Q̄a

L(k)(εk, g))

∣∣∣∣
εk=0

= D∗k(Q, g). (2)

Recall the definition of D∗k(Q, g) in Theorem 1. We can select the following
submodel

LogitQ̄a
L(k)(g, εk) = LogitQ̄a

L(k) + εk
1

g0:k−1

, k = K + 1, . . . , 0,

where we define g0:−1 = 1. This submodel does indeed satisfy the generalized
score-condition (2). In particular, the submodel Q̄a(ε0, . . . , εK+1, g) defined by
these k-specific submodels through Q̄a

L(k), k = 0, . . . , K + 1, and the above

sum loss function LQ̄a(Q̄a) =
∑K+1

k=0 Lk,Q̄aL(k+1)
(Q̄a

L(k)) satisfies the condition

that the generalized score spans the efficient influence curve:

D∗(Q, g) ∈
〈
d

dε
LQ̄a(Q̄a(ε, g))

∣∣∣∣
ε=0

〉
. (3)

Here we used the notation 〈(h0, . . . , hK+1)〉 = {
∑

k ckhk : ck} for all linear
combinations spanned by the components of h.
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3.4 Initial estimator.

For notational convenience, in the remainder of the paper we will interchange-
ably use the notation Q̄a

L(k) and Q̄a
k. Firstly, we fit Q̄a

K+1 based on a loss-based

learning algorithm with loss function LK+1(Q̄a
K+1), or the squared error loss

function. Note that this loss function is not indexed by an unknown nuisance
parameter. For example, one could fit Q̄a

K+1 by fitting a parametric logistic
regression model for this conditional mean using one of the standard software
implementations of logistic regression, ignoring that the outcome Y might not
be binary. However, in general, we recommend the utilization of machine learn-
ing algorithms based on this same loss function. Given an estimator Q̄a

K+1,n of
Q̄a
K+1, we can fit Q̄a

K based on a loss-based learning algorithm with loss func-
tion LK,Q̄aK+1,n

(Q̄a
K). For example, a fit could be obtained by fitting a logistic

regression model for the conditional mean of Q̄a
K+1,n as a linear function of a

set of main terms extracted from L̄(K − 1), ignoring that the outcome is not
binary. This process can be iterated. So for k = K + 1 to k = 1, we fit Q̄a

k

with a loss-based learning algorithm based on loss function Lk,Q̄ak+1
(Q̄a

k), given

the previously selected estimator of the nuisance parameter Q̄a
k+1 in this loss

function. Finally, Q̄a
L(0),n = 1/n

∑n
i=1 Q̄

a
a,n(Li(0)). In this manner, we obtain a

fit Q̄a
n of Q̄a

0 = (Q̄a
L(0), . . . , Q̄

a
L(K+1)). We can estimate g0 with a log-likelihood

based learning algorithm, which results in an estimator gn of g0.
For each of these loss-based learning algorithms we could employ a super

learning algorithm (van der Laan et al. (2007) and Chapter 3 in van der Laan
and Rose (2011) based on Polley and van der Laan (2010)), which is defined in
terms of a library of candidate estimators and it uses cross-validation to select
among these candidate estimators. For that purpose it is appropriate to review
the cross-validation selector among candidate estimators based on a loss func-
tion with a nuisance parameter, as originally presented and studied in van der
Laan and Dudoit (2003). Consider the loss function LQ̄ak+1

(Q̄a
k) for Q̄a

k,0 with

nuisance parameter Q̄a
k+1. Given an estimator ˆ̄Qa

k+1 of the nuisance parameter,

given a candidate estimator ˆ̄Qa
k of Q̄a

k,0 (or, more precisely, EQL(k),0
Q̄a
k+1,n), the

cross-validated risk of this candidate estimator is evaluated as

EBnP
1
n,BnLk, ˆ̄Qak+1(P 0

n,Bn
)
( ˆ̄Qa

k(P
0
n,Bn)).

Here Bn ∈ {0, 1}n is a cross-validation scheme splitting the sample of n
observations in a training sample {i : Bn(i) = 0} and validation sample
{i : Bn(i) = 1}, and P 1

n,Bn
, P 0

n,Bn
are the corresponding empirical distribu-

tions. Typically, we select Bn to correspond with V -fold cross-validation by
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giving it a uniform distribution on V vectors with np 1’s and n(1 − p) 0’s.
Thus, in this cross-validated risk the nuisance parameter is estimated with the
previously selected estimator, but applied to the training sample within each

sample split. In particular, given a set of candidate estimators ˆ̄Qa
k,j of Q̄a

k,0

indexed by j = 1, . . . , J , the cross-validation selector is given by

Jn ≡ arg min
j
EBnP

1
n,BnLk, ˆ̄Qak+1(P 0

n,Bn
)
( ˆ̄Qa

k,j(P
0
n,Bn)).

Given the cross-validation selector Jn, one would estimate Q̄a
k,0 with ˆ̄Qa

k,Jn
(Pn).

(Note that the latter represents now an estimator ˆ̄Qa
k of the nuisance pa-

rameter Q̄a
k in the loss function of the next parameter Q̄a

k−1, and the same
cross-validation selector can now be employed.) The oracle inequality for the
cross-validation selector in van der Laan and Dudoit (2003) applies to this
cross-validation selector Jn. However, specific theoretical study of the result-
ing estimator of (e.g.) Q̄a

L(0) based on the sequential cross-validation procedure

(given collections of candidate estimators ˆ̄Qa
k,j, j = 1, . . . , Jk, k = K+1, . . . , 1)

described above is warranted and is an area for future research.
To save computer time, one could decide to estimate the nuisance param-

eters in these loss functions with the selected estimator based on the whole
sample. We suggest that this may not harm the practical performance of the
cross-validation selector, but this remains to be investigated.

3.5 TMLE algorithm.

We already obtained an initial estimator Q̄a
k,n, k = 0, . . . , K + 1 and gn. Let

Q̄a,∗
K+2,n ≡ Y . For k = K + 1 to k = 1, we compute

εk,n ≡ arg min
εk

PnLk,Q̄a,∗k+1,n
(Q̄a

k,n(εk, gn)),

and the corresponding update Q̄a,∗
k,n = Q̄a

k,n(εk,n, gn). Finally, Q̄a,∗
L(0),n =

1/n
∑n

i=1 Q̄
a,∗
1,n(Li(0)). This defines the TMLE Q̄a,∗

n = (Q̄a,∗
k,n, k = 0, . . . , K + 1)

of Q̄a
0 = (Q̄a

L(0), . . . , Q̄
a
L(K+1)).

Finally, we compute the TMLE of ψ0 as the plug-in estimator corresponding
with Q̄a,∗

n :

Ψ(Q̄a,∗
n ) = Q̄a,∗

L(0),n =
1

n

n∑
i=1

Q̄a,∗
1,n(Li(0)).

We note that this single step recursive TMLE is an analogue to the recursive
algorithm in Bang and Robins (2005) (operating on estimating functions), and
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the single step recursive TMLE in van der Laan (2010) and Stitelman and
van der Laan (2011a).

Remark: Iterative TMLE based on common fluctuation parameter.
One could have used a hardest parametric submodel Q̄a(ε, g) = (Q̄a

k(ε, g) :
k = 0, . . . , K + 1) with a common εk = ε for all k = 0, . . . , K + 1, and use
the sum-loss function LQ̄a(Q̄a) so that the generalized score d

dε
LQ̄a(Q̄a(ε, g))

at zero fluctuation equals the efficient influence curve. An iterative TMLE is
now defined as follows: Set j = 0, compute εjn = arg minε PnLQ̄a,jn (Q̄a,j

n (ε, gn)),

compute the update Q̄a,j+1
n = Q̄a,j

n (εjn, gn), and iterate this updating step till
convergence (i.e., εjn ≈ 0). Notice that the common εjn now provides an up-
date of all K + 1-components of Q̄a,j

n , and that the nuisance parameter in the
loss function is also updated at each step. The final Q̄a,∗

n solves the efficient
influence curve equation PnD

∗(Q̄∗n, gn) again. However, the above TMLE al-
gorithm with the multivariate ε-fluctuation parameter using the backwards
(recursive) updating algorithm, converges in one single step and thus exists
in closed form. Therefore, we prefer this single step TMLE (analogue to the
expressed preference of the single step (backwards updating) TMLE above the
common-ε iterative TMLE in van der Laan (2010)).

Remark: TMLE using Inverse probability of treatment weighted loss
function. Alternatively, we can select the submodels

LogitQ̄a
L(k)(εk) = LogitQ̄a

L(k) + εk1, k = K + 1, . . . , 0,

and, for each k = K+1, . . . , 0, given Q̄a
L(k+1) and g, the following loss function

for Q̄a
L(k):

Lk,Q̄a
L(k+1)

,g(Q̄
a
L(k)) = −I(Ā(k) = ā(k))

g0:k−1

{
Q̄a
L(k+1) log Q̄a

L(k) + (1− Q̄a
L(k+1)) log{1− Q̄a

L(k)}
}
.

This choice of loss function and submodel also satisfies the generalized score
condition (2). The same single step recursive (backwards) TMLE applies.

4 Statistical properties and inference for TMLE.

The TMLE Q̄a,∗
n solves PnD

∗(Q̄a,∗
n , gn,Ψ(Q̄a,∗

n )) = 0, where the efficient in-
fluence curve D∗(Q̄a, g,Ψ(Q̄a)) is presented in Theorem 1. Due to the dou-
ble robustness stated in Theorem 2, the estimator Ψ(Q̄a,∗

n ) will be consistent
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for ψ0 if either Q̄a,∗
n or gn is consistent. In addition, under regularity con-

ditions, if gn = g0, Ψ(Q̄a,∗
n ) will also be asymptotically linear with influence

curve D∗(Q̄a,∗, g0, ψ0), where Q̄a,∗ is the possibly misspecified limit of Q̄a,∗
n . As

shown in van der Laan and Robins (2003), if gn is a maximum likelihood based
consistent estimator of g0 according to a model G with tangent space Tg(P0),
then under similar regularity conditions, the TMLE Ψ(Q̄a,∗

n ) is asymptoti-
cally linear with influence curve D∗(Q̄a,∗, g0, ψ0)−Π(D∗(Q̄a,∗, g0, ψ0) | Tg(P0)),
where Π(· | Tg(P0)) is the projection operator onto Tg(P0) ⊂ L2

0(P0) within
the Hilbert space L2

0(P0) with inner product 〈h1, h2〉P0 = P0h1h2. Note that
if Q̄a,∗ = Q̄a

0, then the latter influence curve is the efficient influence curve
D∗(Q̄a

0, g0, ψ0), so that, in this case, the TMLE is asymptotically efficient.
Therefore, under the assumption that G contains the true g0, we can conser-
vatively estimate the asymptotic covariance matrix of

√
n(Ψ(Q̄a,∗

n ) − Ψ(Q̄a
0))

with
Σn = PnD

∗(Q̄a,∗
n , gn, ψ

∗
n)D∗(Q̄a,∗

n , gn, ψ
∗
n)>.

If one is only willing to assume that either Q̄a,∗
n or gn is consistent, then the

influence curve is more complex (see van der Laan and Robins (2003), van der
Laan and Rose (2011)), and we recommend the bootstrap, although one can
still use Σn as a first approximation, and confirm findings of interest with the
bootstrap.

Formal asymptotic linearity theorems with precise conditions can be estab-
lished by imitating the proof in Zheng and van der Laan (2011) for the natural
direct effect parameter, and Zheng and van der Laan (2010) and van der Laan
and Rose (2011) for the additive causal effect parameter. In fact, the asymp-
totic linearity theorem for the TMLE presented in this article will have very
similar structure and conditions to the asymptotic linearity theorem stated in
the above referenced articles. General templates for establishing asymptotic
linearity are provided in van der Laan and Robins (2003) and van der Laan
and Rose (2011) as well.

5 Simulation studies.

The TMLE presented in this paper provides a streamlined approach to the
analysis of longitudinal data that reduces bias introduced by informative cen-
soring and/or time-dependent confounders. Simulation studies presented in
this section illustrate its application in two important areas, the estimation
of the effect of treatment in an RCT with informative drop-out and time-
dependent treatment modification, and estimation of the effect of treatment
on survival in an observational study setting. TMLE performance is compared
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with the inverse-probability-of-treatment-weighting (IPTW) estimator, and a
parametric maximum likelihood estimator (MLEp) obtained by plugging un-
targeted estimates of Q̄a

L(k) into the G-computation formula given in Eq. 1.
Influence curve-based estimates of the variance of the TMLE are reported,
and compared with the empirical variance of the Monte Carlo estimates.

5.1 Simulation 1: Additive effect of treatment in RCT
with non-compliance and informative drop-out.

Treatment decisions made over time can make it difficult to assess the effect of
a particular drug regimen on a subsequent outcome. Consider a randomized
controlled trial (RCT) to assess drug effectiveness on a continuous-valued out-
come, for example, the effect of an asthma medication on airway constriction
after one year of adherence to treatment. Suppose a subset of subjects in the
treatment group discontinue the treatment drug in response to results of an
intermediate biomarker assay or clinical test midway through the trial (e.g.
forced expiratory volume). The diagram in Figure 1 shows the time order-
ing of intervention nodes (A) and covariate/event nodes (L). A(0) and A(2)
represent treatment nodes, and A(1), A(3) represent censoring nodes.

L0 A0 A1 L1 A2 A3 Y

Figure 1: Simulation 1: Time ordering of intervention and non-intervention nodes,
baseline covariates L0= (W1,W2,W3), treatment nodes (A0, A2), censoring nodes
(A1, A3), time-dependent covariate L1, outcome Y.

Our target parameter is the mean outcome under treatment A(0) = A(2) =
1 and no censoring A(1) = A(3) = 1 minus the mean outcome under control
A(0) = A(2) = 0 and no censoring: ψ0 = E0{Y (1, 1, 1, 1)−Y (0, 1, 0, 1)}. With
this scenario in mind, data were generated as follows:

W1,W2 ∼ Bernouli(0.5)

W3 ∼ N(4, 1)

g0(1 | Pa(A0)) = P (A0 = 1 | L0) = expit(0) = 0.5

g1(1 | Pa(A1)) = P (A1 = 1 | A0, L0)

= expit(0.1 + 0.5W1 +W2 − 0.1W3 + A0)

L1 = 3 + A0 − 2W1W2 − 0.5W3 + ε1
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g2(1 | Pa(A2), A1 = 1) = P (A2 = 1 | A0, A1 = 1, L̄(1))

= expit(−1.2− 0.2W1 − 0.2W2 + 0.1W3 + 0.4L1)

g3(1 | Pa(A3), A1 = 1) = P (A3 = 1 | A0, A1 = 1, A2, L̄(1))

= expit(1.8 + 0.1W2 − 0.05W3 − 0.4L1 − 1.5A2)

Y = expit(3− 0.3A0 + 0.1W2 − 0.4L1 − 0.5A2 + ε2)

with ε1, ε2 ∼i.i.d. N(0, 1). Results were obtained for 500 samples of size n1 =
100, and n2 = 1000.

Because the study mimics an RCT, the initial treatment assignment prob-
abilities are known by design, however censoring and intermediate treatment
assignment probabilities are unknown and must be estimated from the data.
In one simulation setting, correctly specified regression models were used to es-
timate each of the four factors of g: initial treatment assignment probabilities
(estimated as the empirical proportion assigned to treatment and control), cen-
soring (loss to follow-up) at baseline, intermediate switching from treatment
to control, and subsequent loss to follow-up before measuring the outcome at
one year. Two approaches were used to estimate the g-factors. The first relied
on correctly specified logistic regression models to regress Ak on the parents
of Ak. The second used main terms logistic regression models that included
all covariates measured prior to Ak in the time ordering shown in Figure 1.
This alternate formulation contains the truth, but in finite samples can lead
to violations of the positivity assumption, and poor fits of the true regression
coefficients: gn,k was not bounded away from (0, 1) in this simulation. For con-
venience, in Table 1 these are referred to as correct and misspecified models
for g, respectively.

Three separate sets of logistic regression models were used to estimate
conditional means Q̄a

L(k): 1) including all terms used to generate the data at

each node that gives practically unbiased estimation of ψ0 (Qc), 2) including
main term baseline covariates only (Qm1), and 3) an intercept-only model
(Qm2).

The IPTW estimator is consistent when gn is a consistent estimator of
g0. Thus, IPTW results are expected to be unbiased only when g is correctly
specified. Consistency of MLEp relies on consistent estimation of Q̄a

L(k). TMLE
estimates were also obtained based on each of these three initial parametric
model specifications, in conjunction with the correct and mis-specified models
for g. The TMLE of the targeted causal effect was defined as the difference of
the two TMLEs for the two treatment specific means.
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Results: Results in Table 1 confirm that all estimators are unbiased under
correct parametric model specification, although sparsity in the data inflates
IPTW variance at the smaller sample size. When g0 is consistently estimated,
misspecification bias in MLEp estimates that rely on specification Qm1 or Qm2

is greatly reduced by the TMLE procedure. However, relative to the correctly
specified MLE and IPTW estimator, some bias remains at the larger sample
size. When g0 is misspecified the bias of the IPTW estimator is extreme
relative to the true parameter value (ψ0 = −0.1779), and variance is three to
four times that of MLEp and TML estimators, even when n = 1000. TMLE’s
ability to reduce the bias is impaired by misspecification of g0, but because
the submodel and quasi-log-likelihood loss function used in the estimation
procedure respect the bounds on the statistical model M, the variance does
not suffer(Gruber and van der Laan, 2010a).

Table 1: Simulation 1 results, ψ0 = −0.1779.

n = 100 n = 1000
Rel bias Bias Var MSE Rel bias Bias Var MSE

g correctly specified

IPTW 5.93 −0.011 0.010 0.010 0.62 −0.0011 0.0003 0.0003

Qc MLEp 1.25 −0.002 0.003 0.003 0.66 −0.0012 0.0002 0.0002
TMLE 0.49 −0.001 0.004 0.004 0.66 −0.0012 0.0002 0.0002

Qm1 MLEp 12.15 −0.022 0.004 0.005 12.13 −0.0216 0.0003 0.0008
TMLE 5.21 −0.009 0.004 0.005 4.96 −0.0088 0.0003 0.0003

Qm2 MLEp 20.27 −0.036 0.003 0.005 20.20 −0.0359 0.0003 0.0016
TMLE 6.11 −0.011 0.004 0.004 6.49 −0.0115 0.0003 0.0004

g misspecified

IPTW −84.50 0.150 0.013 0.036 −87.56 0.1557 0.0010 0.0252

Qc MLEp 1.25 −0.002 0.003 0.003 0.66 −0.0012 0.0002 0.0002
TMLE 0.92 −0.002 0.003 0.003 0.62 −0.0011 0.0002 0.0002

Qm1 MLEp 12.15 −0.022 0.004 0.005 12.13 −0.0216 0.0003 0.0008
TMLE 8.96 −0.016 0.004 0.004 7.25 −0.0129 0.0003 0.0004

Qm2 MLEp 20.27 −0.036 0.003 0.005 20.20 −0.0359 0.0003 0.0016
TMLE 12.07 −0.021 0.003 0.004 10.01 −0.0178 0.0003 0.0006
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5.2 Simulation 2: Causal effect of treatment on sur-
vival with right-censoring and time-dependent co-
variates.

Consider an observational study in which we wish to estimate the treatment-
specific survival probability at time tk, ψ0 = P (Tā > tk), where treatment
is assigned at baseline, time-dependent covariates and mortality are assessed
periodically during follow-up and at the end of study. During the trial some
subjects experience the event, and others drop out due to reasons related to
treatment or covariate information, thereby confounding a naive effect esti-
mate. The time-ordering of the intervention nodes (A), and time-dependent
covariate/event nodes (L) for one such study design is shown in Figure 2.

L0 A0 A1 L1 L2 L3 A2 L4 L5 L6 A3 Y

Figure 2: Simulation 2: Time ordering of intervention and non-intervention nodes,
baseline covariates L0= (W1,W2,W3,W4,W5)), treatment node A0, censoring nodes
(A1, A2, A3), time-dependent covariates (L2, L3, L5, L6), intermediate and final
outcome (L1, L4, Y).

IPTW, MLEp, and TMLE were applied to 500 samples of size n1 = 100,
n2 = 1000, to estimate mean survival under treatment at time tk = 3. Data
were generated as follows:

W1, W2,W3,W4,W5 ∼ N(0, 1)

P (A0 = 1 | Pa(A0)) = expit(0.1W1 + 0.2W2 + 0.1W3 + 0.2W4 + 0.1W5)

P (A1 = 1 | Pa(A1)) = expit(0.1 + 0.2W1 + 0.4W4 + 0.2W5 + 0.1A0)

L1 = expit(−2 + 0.4W1W2 + 0.3W3 + 0.4W4 − 0.3W5 −A0)

L2 = 1 + 0.2W2 + 0.7W4 + 0.1W5 + 0.5A0 + ε1

L3 = 1 + 0.1W1 + 0.2W3 + 0.5W5 + 0.2A0 + 0.2L2 + ε2

P (A2 = 1 | Pa(A2)) = expit(−0.6 + 0.3W2 +A0 + 0.1L2 + 0.5L3)

L4 = expit(−0.5 + 0.1W2 −A0 + 0.3L2 − 0.7L3)

L5 = 1− 1.5W2 + 0.4A0 + 0.5L2 + 0.1L3 + ε3

L6 = 1 + 0.1W3 + 2A0 + 0.6L3 + 0.2L5 + ε4

P (A3 = 1 | Pa(A3)) = expit(1.2− 0.4A0 − 0.2L2 + 0.3L50.2L6)

P (Y = 1 | Pa(Y ))) = expit(−3− 0.2W1W2 − 0.2A0 + 0.3L3 + 0.6L5 + 0.2L6),

with ε1, ε2, ε3, ε4 ∼i.i.d. N(0, 1). The values of censoring nodes A(t) for subjects
for whom an event was observed at previous time t′ < t were deterministically
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set to 1 to reflect the fact that the outcome at tk is known even in the absence
of additional follow-up time. The values at all nodes following censoring or an
observed outcome event at time t were set to 0. As in Simulation 1, results
were obtained for correct and misspecified regression models for Q̄a

L(k) and gk.

The conditional means Q̄q
L(k) were estimated with logistic regression models

including all terms used to generate the actual data (Qc), including main term
baseline covariates only (Qm1), and an intercept-only model (Qm2). The g
factors were estimated by using correctly specified logistic regression models
to regress Ak on the parents of Ak, and a second time, using main terms logistic
regression models that included all covariates measured prior to Ak in the time
ordering shown in Figure 2. Again, the censoring and treatment probabilities
were not truncated from below.

Table 2: Simulation 2, ψ0 = 0.386.

n = 100 n = 1000
Rel bias Bias Var MSE Rel bias Bias Var MSE

g correctly specified

IPTW −4.58 −0.018 0.044 0.045 0.07 3e− 4 0.003 0.003

Qc MLEp 12.25 0.047 0.024 0.026 −2.70 −0.010 0.002 0.002
TMLE 7.64 0.030 0.030 0.030 −0.29 −0.001 0.002 0.002

Qm1 MLEp 13.17 0.051 0.025 0.028 −0.30 −0.001 0.002 0.002
TMLE 7.63 0.029 0.031 0.032 −0.18 −0.001 0.002 0.002

Qm2 MLEp 2.79 0.011 0.020 0.020 1.98 0.008 0.002 0.002
TMLE 0.63 0.002 0.030 0.030 0.19 0.001 0.002 0.002

g misspecified

IPTW −27.15 −0.105 0.021 0.032 −18.80 −0.073 0.002 0.007

Qc MLEp 12.25 0.047 0.024 0.026 −2.70 −0.010 0.002 0.002
TMLE 9.98 0.039 0.030 0.032 −0.22 −0.001 0.002 0.002

Qm1 MLEp 13.17 0.051 0.025 0.028 −0.30 −0.001 0.002 0.002
TMLE 10.52 0.041 0.033 0.035 1.19 0.005 0.002 0.002

Qm2 MLEp 2.79 0.011 0.020 0.020 1.98 0.008 0.002 0.002
TMLE 4.64 0.018 0.030 0.031 5.94 0.023 0.002 0.003

Results: Sparsity in the data at small sample size increases bias in all es-
timators, with the exception of TMLE under dual misspecification Qm2 , gmis,
in comparison with performance at the larger sample size, where the positiv-
ity assumption is met (Table 2). The G-computation estimators using the
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specification Qm2 (intercept-only model) are least impacted by this violation.
Sparsity again inflates IPTW variance relative to the other estimators. When
g0 is correctly specified all estimators have comparable MSE at n = 1000. At
that sample size, if g0 is misspecified the variance dominates the MSE for all
estimators, except for the IPTW.

5.3 Inference.

Table 3 allows us to compare the empirical variance of the Monte Carlo
TMLE estimates obtained above, with influence curve-based variance esti-
mates, v̂ar(ψn) = σ̂2

IC/n, and lists coverage of 95% IC-based confidence in-
tervals. As an estimate of the influence curve we use the estimated efficient
influence curve, which is known to be asymptotically correct if both Q0 and g0

Table 3: Empirical variance of Monte Carlo TMLE estimates, mean IC-based
variance estimates, and coverage of nominal 95% confidence intervals.

n = 100 n = 1000

Emp var σ̂2
IC/n Coverage Emp var σ̂2

IC/n Coverage

g correct
Simulation 1
Qc 0.0037 0.0024 0.87 0.00024 0.00028 0.96
Qm1 0.0044 0.0025 0.85 0.00026 0.00032 0.95
Qm2 0.0037 0.0037 0.93 0.00027 0.00037 0.93

Simulation 2
Qc 0.0296 0.0115 0.77 0.00189 0.00193 0.96
Qm1 0.0312 0.0065 0.77 0.00188 0.00189 0.96
Qm2 0.0300 0.0180 0.75 0.00190 0.00216 0.96

g misspecified
Simulation 1
Qc 0.0034 0.0018 0.83 0.00024 0.00019 0.93
Qm1 0.0040 0.0017 0.78 0.00026 0.00021 0.83
Qm2 0.0034 0.0024 0.87 0.00027 0.00024 0.79

Simulation 2
Qc 0.0304 0.0106 0.66 0.00190 0.00122 0.87
Qm1 0.0331 0.0055 0.67 0.00192 0.00108 0.88
Qm2 0.0304 0.0098 0.67 0.00212 0.00116 0.80
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are consistently estimated, and it results in asymptotically conservative vari-
ance estimates if g0 is consistently estimated. When g0 is correctly specified
sparsity in the data leads to anti-conservative confidence intervals. However
when sample size is increased to 1000, observed coverage is quite close to the
nominal rate. As predicted by theory, when both Q0 and g0 are misspecified,
(efficient-)influence curve-based inference is not reliable. However, if g0 is mis-
specified but Q0 is correctly estimated, coverage is close to the nominal rate
for Simulation 1.

6 Concluding remarks.

TMLE is a general template for construction of semiparametric efficient sub-
stitution estimators requiring writing the target parameter as a function of
an infinite dimensional parameter (e.g., Ψ(Q̄a)) for an infinite dimensional pa-
rameter (e.g., Q̄a), a loss function for this parameter possibly indexed by a
nuisance parameter (e.g., Lη(Q̄a)), a parametric submodel with loss function-
specific score spanning the efficient influence curve (and/or any other desired
estimating function), and a specification of a resulting iterative targeted mini-
mum loss-based estimation algorithm that minimizes the loss function-specific
empirical risk along the parametric submodel until no further update improves
the empirical risk. Since the nuisance parameters in the loss function are a
function of Q̄a itself, the estimator of the nuisance parameters in the loss func-
tion are also updated at each step to reflect their last fitted value. The TMLE
is a two stage procedure, where the first stage involves loss-based learning
of the infinite dimensional parameter, and the subsequent stage is a targeted
iterative update of this initial estimator that is only concerned with fitting
the target parameter, and which guarantees that the TMLE of the infinite
dimensional parameter solves the efficient influence curve equation. The in-
fluence curve of the TMLE is defined by the fact that it solves this estimating
equation.

As apparent from a formal analysis of the TMLE, whether the conditions
for asymptotic linearity are met depends on how well (e.g., at what rate) the
TMLE estimates these nuisance parameters of the efficient influence curve.
The latter also affects the finite sample performance of the TMLE. Therefore,
if the initial estimator of the infinite dimensional parameter in the TMLE in-
volves trading off bias and variance w.r.t. an infinite dimensional parameter
that is much richer than needed for evaluation of the target parameter, then
finite sample performance is degraded relative to a TMLE that uses an initial
estimator that involves trading off bias and variance for a smaller infinite di-
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mensional parameter that is more relevant for the target parameter. From this
perspective, the TMLE proposed in this article, inspired by the double robust
estimator of Bang and Robins (2005), appears to be based on an excellent
choice of loss function and parametric submodel.

By the same token, a substitution estimator obtained by plugging in a
log-likelihood based super learner will be less targeted than a substitution
estimator obtained by plugging in a loss-based super learner based on a more
targeted loss function. Therefore, loss-based learning provides fundamental
improvements on log-likelihood based learning by allowing the selection of a
targeted loss function, and targeted minimum loss-based estimation (TMLE)
provides the additional bias reduction so that the resulting estimators allow
for statistical inference in terms of a central limit theorem, under appropriate
regularity conditions.

It will be of interest to further evaluate the practical performance of this
TMLE in future studies, in particular, in comparison with other TMLEs such
as the one proposed in van der Laan (2010) and Stitelman and van der Laan
(2011a) based on the log-likelihood loss function. A practical advantage of the
TMLE presented in this article is that it is easier to implement since it only
involves fitting K (iteratively defined) regressions, while the TMLE in van der
Laan (2010) based on the log-likelihood involves fitting K conditional densities
of L(K). It should be noted that by using a more targeted loss function for
the initial estimator such as the one in this article, the TMLE based on fitting
conditional densities can still be as good as a TMLE based on only fitting
the required conditional means (see also the Appendix in van der Laan and
Rose (2011) and van der Laan and Gruber (2010) for efficient influence curve
based targeted loss functions that can be used to build the initial estimator).
In other words, it is not a mistake to use a plug-in estimator based on an
estimate of the whole density of the data, but one wants to fit this density
based on a criterion for a candidate estimator that reflects the performance of
the resulting plug-in estimator of the target parameter.

In this paper we made use of sequential loss-based learning defined as
follows: Let Qk0 = arg minQk P0Lk,Qk+1,0

(Qk) be defined as the minimizer of
the risk of a loss function that is indexed by Qk+1,0, k = K + 1, . . . , 0. Let
Q = (Q0, . . . , QK+1). The parameter of interest is a parameter Ψ(Q). For
k = K + 1, . . . , 0, given an estimator of Qk+1,0, one applies loss-based learning
of Qk,0 based on the loss function Lk,Qk+1,0

(Qk). The statistical properties
of such estimators of Q(P0) based on sequential cross-validation estimator
selection remain to be studied.

If Ψ(Q) is a pathwise differentiable parameter with efficient influence curve
D∗(Q, g), we demonstrated how to augment this sequential learning proce-
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dure into a targeted minimum loss-based (sequential) learning algorithm: start
with initial estimator Qn = (Qk,n : k = 0, . . . , K + 1) and gn, construct sub-
models {Qk(ε, g) : ε} through Qk at ε = 0 so that d

dε
Lk,Qk+1

(Qk(ε, g))
∣∣
ε=0

=
D∗k(Q, g) and D∗(Q, g) =

∑
kD

∗
k(Q, g), and for k = K + 1, . . . , 0, εk,n =

arg minεk PnLk,Q∗k+1,n
(Qk,n(ε, gn)), where Q∗k,n = Qk,n(εk,n). The final TMLE is

the plug-in estimator Ψ(Q∗n), and we have PnD
∗(Q∗n, gn) = 0. In particular,

the TMLE we presented in this article can be generalized to any pathwise dif-
ferentiable parameter of the distribution of Y a, possibly conditional on L(0)
or La(k) at a particular k (as in history adjusted marginal structural models),
by applying the conditional iterative expectation rule to (P (Y a = y) : a, y) as
in this article for EY a, and applying the above TMLE framework with the de-
composition of the efficient influence curve, the loss functions and submodels.
Precise demonstrations for causal parameter defined by marginal structural
models are presented in the Appendices below.

For future research it will also be of interest to develop a collaborative
TMLE based on the TMLE presented here, thereby also allowing the targeted
estimation of the intervention mechanism based on the collaborative double
robustness of the efficient influence curve as presented in van der Laan and
Gruber (2010) and van der Laan and Rose (2011).

APPENDIX: TMLE for causal parameters de-

fined by working MSM without baseline covari-

ates.

Consider the same longitudinal data structureO = (L(0), A(0), . . . , L(K), A(K),
Y = L(K+ 1)), and statistical modelM. Let La be the random variable with
distribution equal to the G-computation formula P a =

∏K+1
k=0 Q

a
L(k), where

Qa
L(k) is the conditional distribution of L(k), given L̄(k−1), Ā(k−1) = ā(k−1).

In this article we presented a TMLE for EY a. Suppose now that our target
parameter is Ψ(Q) = f(EY a : a ∈ A) for some multivariate Euclidean valued
function f , and a collection of static regimens A. For example, given a working
model {mβ : β} for EY a, and function h, we could define

Ψ(Q0) = arg min
β
E0

∑
a∈A

h(a)(Y a −mβ(a))2,

or if Y ∈ [0, 1],

Ψ(Q0) = arg min
β
−E0

∑
a∈A

h(a) {Y a logmβ(a) + (1− Y a) log(1−mβ(a))} .
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In this article we presented the efficient influence curve Da,∗ =
∑

kD
a,∗
k of the

target parameter EY a with an orthogonal decomposition given in Theorem
1, where Da,∗

k is a score of the conditional distribution QL(k) of L(k), given
L̄(k − 1), Ā(k − 1). The efficient influence curve of the target parameter Ψ is
thus given by D∗ =

∑
a∈A f

′
aD
∗
a, where f ′a′ = d

dEY a′
f(EY a : a ∈ A). We note

that this can be decomposed as

D∗ =
∑
a

f ′a

{∑
k

Da,∗
k

}
≡
∑
k

D∗k,

where
D∗k =

∑
a

f ′aD
a,∗
k .

This represents an orthogonal decomposition of the efficient influence curve
D∗ of Ψ in terms of scores of QL(k). Specifically,

DK+1 =
∑
a∈A

f ′a
I(Ā(K) = a)

g0:K

(Y − Q̄a
K+1),

and

D∗k =
∑
a∈A

f ′a
I(Ā(k − 1) = ā(k − 1))

g0:k−1

{
Q̄a
L(k) − EQaL(k−1)

Q̄a
L(k)

}
,

=
∑
a∈A

f ′a
I(Ā(k − 1) = ā(k − 1))

g0:k−1

{
Q̄a
L(k) − Q̄a

L(k−1)

}
, k = K, . . . , 0.

We note that Ψ(Q) depends on Q through Q̄ ≡ (Q̄a : a ∈ A), where
Q̄a = (Q̄a

k = E(Y a | L̄a(k− 1)) : k = 0, . . . , K+ 1). In this article we proposed
a sum loss function La,Q̄a(Q̄a) =

∑K+1
k=0 La,k,Q̄ak+1

(Q̄a
k) for Q̄a

0, where

−La,k,Q̄ak+1
(Q̄a

k) = I(Ā(k−1) = ā(k−1))
{
Q̄a
k+1 log Q̄a

k + (1− Q̄a
k+1) log{1− Q̄a

k}
}
.

As a consequence, LQ̄(Q̄) ≡
∑

a∈A f
′
aLa,Q̄a(Q̄a) is a valid loss function for

Q̄0 = (Q̄a
0 : a ∈ A). Note

LQ̄(Q̄) =
∑
a∈A

f ′a

K+1∑
k=0

La,k,Q̄ak+1
(Q̄a

k)

=
K+1∑
k=0

{∑
a∈A

f ′aLa,k,Q̄ak+1
(Q̄a

k)

}

≡
K+1∑
k=0

Lk,Q̄k+1
(Q̄k),
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where Q̄k = (Q̄a
k : a ∈ A) and Lk,Q̄k+1

(Q̄k) =
∑

a∈A f
′
aLa,k,Q̄ak+1

(Q̄a
k) is a loss

function for Q̄k.
Consider the submodel Q̄k(εk, g) = (Q̄a

k(εk, g) : a ∈ A) defined by

LogitQ̄a
L(k)(εk, g) = LogitQ̄a

L(k) + εk
1

g0:k−1

, k = K + 1, . . . , 0,

where we define g0:−1 = 1. This submodel does indeed satisfy the generalized
score-condition

d

dεk
Lk,Q̄k+1

(Q̄k(εk, g))

∣∣∣∣
εk=0

= D∗k, k = 0, . . . , K + 1.

In particular, the submodel Q̄(ε0, . . . , εK+1, g) defined by these k-specific sub-
models through Q̄k, k = 0, . . . , K + 1, and the above sum loss function LQ̄(Q̄)
satisfies the condition that the generalized score spans the efficient influence
curve:

D∗(Q, g) ∈
〈
d

dε
LQ̄(Q̄(ε, g))

∣∣∣∣
ε=0

〉
. (4)

Finally, we present the TMLE-algorithm. Suppose we already obtained an
initial estimator Q̄k,n, k = 0, . . . , K + 1 and gn. Let Q̄a,∗

K+2,n ≡ Y for each
a ∈ A.

For k = K + 1 to k = 1, we compute

εk,n ≡ arg min
εk

PnLk,Q̄∗k+1,n
(Q̄k,n(εk, gn)),

and the corresponding update Q̄∗k,n = Q̄k,n(εk,n, gn). Finally, for each a ∈ A,
define Q̄a,∗

L(0),n = 1/n
∑n

i=1 Q̄
a,∗
1,n(Li(0)), providing the TMLE Q̄∗L(0),n of Q̄L(0),0 =

(Q̄a
L(0),0 : a). This defines the TMLE Q̄∗n = (Q̄∗k,n, k = 0, . . . , K + 1) of Q̄0.
Finally, we compute the TMLE of ψ0 as the plug-in estimator corresponding

with Q̄∗n:

Ψ(Q̄∗n) = f(Q̄∗L(0),n) = f

(
1

n

n∑
i=1

Q̄a,∗
1,n(Li(0)) : a ∈ A

)
.

The TMLE solves the efficient influence curve equation 0 = PnD
∗(Q̄∗n, gn,Ψ(Q̄∗n)),

thereby making it a double robust locally efficient substitution estimator, un-
der regularity conditions.
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APPENDIX: TMLE for causal parameters de-

fined by working MSM with baseline covariates.

Consider the same longitudinal data structureO = (L(0), A(0), . . . , L(K), A(K),
Y = L(K+ 1)), and statistical modelM. Let La be the random variable with
distribution equal to the G-computation formula P a =

∏K+1
k=0 Q

a
L(k), where

Qa
L(k) is the conditional distribution of L(k), given L̄(k−1), Ā(k−1) = ā(k−1).

Let V ⊂ L(0) be a user supplied vector of baseline covariates. Suppose now
that our target parameter is Ψ(Q) = f(QV , (E(Y a|V = v) : a ∈ A, v ∈ V))
for some multivariate real valued function f , a collection of static regimens A,
and a collection V of possible values for V . Here QV denotes the distribution
of V . For example, given a working model {mβ : β} for E(Y a | V ), we could
define

Ψ(Q0) = arg minβ E0

∑
a∈A h(a, V )(Y a −mβ(a, V ))2

= arg minβ
∑

a∈A
∑

v h(a, v)(E(Y a | V = v)−mβ(a, v))2QV (v).

Such a ψ0 = β0 solves the equation 0 = E0

∑
a∈A h(a, V ) d

dβ0
mβ0(a, V )(E0(Y a |

V )−mβ0(a, V )). Alternatively, if Y ∈ [0, 1],

Ψ(Q0) = arg min
β
−E0

∑
a∈A

h(a, V ) {Y a logmβ(a, V ) + (1− Y a) log(1−mβ(a, V ))} .

This ψ0 = β0 solves the equation 0 = E0

∑
a∈A h(a, V )

d
dβ0

mβ0 (a,V )

mβ0 (1−mβ0 )
(E0(Y a |

V )−mβ0(a, V )).
Recall the definitions of Q̄a

L(k) = E(Y a | L̄a(k−1)) = EL(k)(Q̄
a
L(k+1) | L̄(k−

1), Ā(k− 1) = ā(k− 1)) as an iteratively defined conditional mean. Note that
E(Y a | V ) = E(Q̄a

L(1)(L(0)) | V ) is obtained by integrating Q̄a
L(1) over L(0)

w.r.t the distribution of L(0), given V . Define Q̄a
L(0)|V = EL(0)|V (Q̄a

L(1) | V ) as

this conditional mean. Thus, E(Y a | V ) is a function of the following vector
of iteratively defined conditional means Q̄a ≡ (Q̄a

L(K+1), . . . , Q̄
a
L(1), Q̄

a
L(0)|V ). In

particular, Q̄a
L(0)|V,0(v) = EQ0(Y

a | V = v). In the two examples above ψ0 = β0

is a function of Q̄L(0)|V,0 ≡ (Q̄a
L(0)|V,0 : a ∈ A) and the marginal distribution

QV,0 of V . To conclude, Ψ(Q0) can also be represented as Ψ(Q̄L(0)|V , QV ) or
Ψ(Q̄, QV ), where Q̄ = (Q̄a : a ∈ A).

The next theorem is the analogue of Theorem 1 and provides the desired
orthogonal composition of the efficient influence curve of Ψ :M→ IRd.

Theorem 3 Let D(Q, g)(O) =
∑

a∈A I(A = a)h1(a,V )
g0:K

(Y−mΨ(Q)(a, V )), where

h1 is such that P0D(Q0, g0) = 0. This is a gradient of Ψ : M → IRd in the
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model with g0 known. The efficient influence curve of Ψ is given by (up till
a constant normalizing matrix) D∗ =

∑K+1
k=1 D

∗
k + D∗L(0)|V + D∗V , where for

k = 1, . . . , K + 1, D∗k = Π(D | Tk) is the projection of D onto the tangent
space Tk = {h(L(k), Pa(L(k)) : EQ(h | Pa(L(k))) = 0} of QL(k), D

∗
L(0)|V is the

projection of D onto the tangent space TL(0)|V = {h(L(0), V ) : E(h | V ) = 0}
of the conditional distribution of L(0), given V , and D∗V is the projection of D
onto TV = {h(V ) : Eh(V ) = 0}. These projections are defined in the Hilbert
space L2

0(P ) with inner-product 〈h1, h2〉P = Ph1h2.
Recall the definition Q̄a

L(k) = E(Y a | L̄a(k − 1)), and the recursive relation

Q̄a
L(k) = EQa

L(k)
Q̄a
L(k+1) defined by integrating w.r.t. the distribution of L(k)

given L̄(k − 1), Ā(k − 1) = ā(k − 1), k = K + 1, . . . , 1. For notational conve-
nience, we also use the notation Q̄a

L(0) = E(Y a | V ) = EQL(0)|V (Q̄a
L(1) | V )

instead of Q̄a
L(0)|V . Let Q̄ = (Q̄a

L(k) : k = K + 1, . . . , 0 : a ∈ A), and

let QV be the marginal distribution of V . Recall that Ψ(Q) = Ψ(Q̄, QV ) or
Ψ(Q) = Ψ(Q̄L(0), QV ).

We have

D∗K+1 =
∑
a∈A

I(A = a)
h1(a, V )

g0:K

(Y − Q̄a
L(K+1)(L̄(K)),

and for k = K, . . . , 1,

D∗k =
∑
a∈A

I(Ā(k − 1) = ā(k − 1))
h1(a, V )

g0:k−1

{
Q̄a
L(k+1) − EQaL(k)

Q̄a
L(k+1)

}
,

=
∑
a∈A

I(Ā(k − 1) = ā(k − 1))
h1(a, V )

g0:k−1

{
Q̄a
L(k+1) − Q̄a

L(k)

}
.

In addition, we have (recall Q̄a
L(0)(V ) = EQ(Y a | V ))

D∗L(0)|V =
∑
a∈A

h1(a, V )
{
Q̄a
L(1) − EQL(0)|V (Q̄a

L(1) | V )
}

=
∑
a∈A

h1(a, V )
{
Q̄a
L(1) − Q̄a

L(0)

}
,

and
D∗V =

∑
a∈A

h1(a, V )
{
Q̄a
L(0) −mΨ(Q)(a, V )

}
.

We note that for k = 1, . . . , K + 1,

D∗k(Q, g) = D∗k(Q̄L(k), Q̄L(k+1), g0:k−1)
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depends on Q, g only through Q̄a
L(k+1), its mean Q̄a

L(k) under Qa
L(k), across

all a ∈ A, and g0:k−1. Similarly, D∗L(0)|V (Q, g) = D∗L(0)|V (Q̄L(0), Q̄L(1)), and

D∗V (Q, g) = D∗V (Q̄L(0),Ψ(Q̄)).

Loss function for (Q̄, QV ): We will alternate notation Q̄a
k and Q̄a

L(k). Recall

that Ψ(Q) depends on Q through QV , and Q̄ ≡ (Q̄a : a ∈ A), where Q̄a =
(Q̄a

L(0)|V ), (Q̄
a
k = E(Y a | L̄a(k − 1)) : k = 1, . . . , K + 1)).

Note Q̄a
k is a function of l̄(k − 1), k = 1, . . . , K + 1. We use

−La,k,Q̄ak+1
(Q̄a

k) =

I(Ā(k − 1) = ā(k − 1))
{
Q̄a
k+1 log Q̄a

k + (1− Q̄a
k+1) log(1− Q̄a

k)
}

as loss function for Q̄a
k, indexed by “nuisance” parameter Q̄a

k+1. Note that as
a function of O we have

−La,k,Q̄ak+1
(Q̄a

k)(O) = I(Ā(k − 1) = ā(k − 1))
{
Q̄a
k+1(L̄(k)) log Q̄a

k(L̄(k − 1))

+(1− Q̄a
k+1(L̄(k))) log(1− Q̄a

k(L̄(k − 1)))
}
.

Indeed, this is a valid loss function since

E0(Q̄a
k+1 | Ā(k − 1) = ā(k − 1), L̄(k − 1)) = arg min

Q̄ak

E0La,k,Q̄ak+1
(Q̄a

k)(O).

In particular,

La,0,Q̄a1 (Q̄a
0) = −

{
Q̄a

1(L(0)) log Q̄a
0(V ) + (1− Q̄a

1(L(0))) log(1− Q̄a
0(V ))

}
is the loss function for Q̄a

0(V ) = EL(0)|V (Q̄a
1(L(0)) | V ). We use

Lk,Q̄k+1
(Q̄k) ≡

∑
a∈A

h1(a, V )La,k,Q̄ak+1
(Q̄a

k), k = 0, . . . , K + 1

as loss function for Q̄k = (Q̄a
k : a ∈ A). One can view

∑K+1
k=0 Lk,Q̄k+1

(Q̄k) as

loss function for Q̄ = (Q̄k : k = 0, . . . , K + 1), which is indeed a valid loss
function for Q̄0: i..e, the expectation of this loss function as a function of O
at the correct “nuisance parameters” is minimized by Q̄0. We will use the log-
likelihood loss L(QV ) = − logQV as loss function for the distribution QV,0 of
V , but this loss will play no role since we will estimate QV,0 with the empirical
distribution function QV,n. This finalizes the loss function for all components
of (Q̄, QV ), and the sum loss function LQ̄(QV , Q̄) ≡ LQ̄(Q̄)− logQV is a valid
loss function for (Q̄, QV ) as a whole.
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Least favorable submodel: Consider the submodel Q̄k(εk, g) = (Q̄a
k(εk, g) :

a ∈ A) with parameter εk defined by

LogitQ̄a
L(k)(εk, g) = LogitQ̄a

L(k) + εk
1

g0:k−1

, k = K + 1, . . . , 0,

where we define g0:−1 = 1. This defines a submodel Q̄(ε, g) with parameter
ε = (εk : k = 0, . . . , K + 1). Note that

d

dεk
h1(a, V )La,k,Q̄ak+1

(Q̄a
k(g, εk))

∣∣∣∣
εk=0

= h1(a, V )
I(Ā(k − 1) = ā(k − 1))

g0:k−1

(Q̄a
k+1−Q̄a

k).

This shows that

d

dεk
Lk,Q̄k+1

(Q̄k(εk, g))

∣∣∣∣
εk=0

= D∗k, k = 1, . . . , K + 1,

and similarly this holds for k = 0 with D∗L(0)|V . Consider also a submodel

QV (εV ) of QV with score D∗V , but this one will play no role in the TMLE-
algorithm. This defines our submodel (QV (εV ), Q̄(ε, g) : εV , ε). The sum loss
function LQ̄(QV , Q̄) and this submodel satisfy the condition that the general-
ized score spans the efficient influence curve:

D∗(Q, g) ∈
〈
d

dε
LQ̄(QV (εV ), Q̄(ε, g)

∣∣∣∣
ε=0

〉
. (5)

TMLE algorithm: Finally, we present the TMLE algorithm. Suppose we
already obtained an initial estimator Q̄k,n, k = 0, . . . , K + 1 and gn, and
we estimate the marginal distribution of V with the empirical distribution
function. Let Q̄a,∗

K+2,n ≡ Y for each a ∈ A, and let QV,n be the empirical
distribution of Vi, i = 1, . . . , n.

For k = K + 1 to k = 0, we compute

εk,n ≡ arg min
εk

PnLk,Q̄∗k+1,n
(Q̄k,n(εk, gn)),

and the corresponding update Q̄∗k,n = Q̄k,n(εk,n, gn). This defines the TMLE
Q̄∗n = (Q̄∗k,n : k = 0, . . . , K + 1). In particular, Q̄∗0,n = Q̄∗L(0),n is the TMLE of

Q̄L(0) = (E(Y a | V ) : a ∈ A).
Finally, we compute the TMLE of ψ0 as the plug-in estimator corresponding

with Q̄∗L(0),n and QV,n:

ψ∗n = Ψ(QV,n, Q̄
∗
L(0),n).
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The TMLE solves the efficient influence curve equation 0 = PnD
∗(Q̄∗n, gn,

Ψ(QV,n, Q̄
∗
n)), thereby making it a double robust locally efficient substitution

estimator, under regularity conditions.
This demonstrates that our TMLE as presented in this article for a single

intervention specific mean outcome can be generalized to general causal param-
eters. In particular, the TMLE presented in this article is easily generalized
to the TMLE for the causal effect EY a(0)=1,0−EY a(0)=0,0 of a point treatment
A(0) on a survival outcome Y = I(T > t0) with T subject to right-censoring,
by defining A(k), k = 1, . . . , K + 1, as a right-censoring indicator at the k-th
time point, which is intervened upon by setting it uncensored (i.e, a(k) = 0)).
The above TMLE for working marginal structural models can also applied to
working marginal structural models for dynamic treatment regimens.

Appendix: R code

The functions below implement TMLE, IPTW, and MLEp estimators of the
treatment-specific mean outcome for the R statistical programming environ-
ment (R Development Core Team, 2010). These functions plus additional soft-
ware to run the simulations presented above are available online at www.stat.
berkeley.edu/∼laan/ Software.

#---------------------------------------------------------------------------

# function: getEstimates

# purpose: IPTW, Parametric MLE, TMLE estimates of tmt-specific mean outcome

# arguments:

# d: dataset, wide format, following the time-ordering of the nodes

# Anodes: tmt and censoring node columns in d

# Lnodes: time-dependent covariate and outcome columns in d

# Ynodes: intermediate and final event node columns (subset of Lnodes)

# Qform: regression formulas for Q_1 through Q_K+1

# gform: regression formulas for each treatment and censoring event

# gbds: lower and upper bounds on estimated probabilities for g-factors

#----------------------------------------------------------------------------

getEstimates <- function(d, Anodes, Lnodes, Ynodes, Qform, gform, gbds=c(0,1))

{

n <- nrow(d)

n.Q <- length(Lnodes)

n.g <- length(Anodes)

g1W <- estg(d, gform, Anodes, Ynodes)

cum.g1W <- bound(t(apply(g1W, 1, cumprod)), gbds)

cum.g1W[is.na(cum.g1W)] <- Inf
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iptw <- mean(d[,Lnodes[n.Q]] * d[,Anodes[n.g]]/cum.g1W[,n.g])

# Gcomp and TMLE

Qstar <- Qinit <- d[, Lnodes[n.Q]]

IC <- rep(0, n)

for (i in n.Q:1){

Anode.cur <- which.max(Anodes[Anodes < Lnodes[i]])

uncensored <- d[,Anodes[Anode.cur]] == 1

if(any(Ynodes < Lnodes[i])){

Ynode.prev <- max(Ynodes[Ynodes < Lnodes[i]])

deterministic <- d[,Ynode.prev]==1

} else {

deterministic <- rep(FALSE, n)

}

Qinit <- estQ(Qinit, d, Qform[i], uncensored, deterministic)

Qstar.kplus1 <- Qstar

Qstar <- estQ(Qstar.kplus1, d, Qform[i], uncensored, deterministic,

h = 1/cum.g1W[,Anode.cur])

IC[uncensored] <- (IC + (Qstar.kplus1 - Qstar)/

cum.g1W[,Anode.cur])[uncensored]

}

return(c(iptw=iptw, Gcomp=mean(Qinit), tmle=mean(Qstar),

var.tmle=var(IC)/n))

}

# Utility functions

#-----------------------------------------------------------------------------

# function: estQ

# purpose: parametric estimation of Q_k, targeted when h is supplied

#-----------------------------------------------------------------------------

estQ <- function(Q.kplus1, d, Qform, uncensored, deterministic, h=NULL){

Qform <- update.formula(Q.kplus1 ~ .)

m <- glm(as.formula(Qform),

data=data.frame(Q.kplus1, d)[uncensored & !deterministic,],

family="quasibinomial")

Q1W <- predict(m, newdata=d, type="response")

if(!is.null(h)){

off <- qlogis(bound(Q1W, c(.0001, .9999)))

m <- glm(Q.kplus1 ~ -1 + h + offset(off), data=data.frame(Q.kplus1, h, off),

subset=uncensored & !deterministic, family="quasibinomial")

Q1W <- plogis(off + coef(m)*h)

}

Q1W[deterministic] <- 1

return(Q1W)

}
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#-----------------------------------------------------------------------------

# function: estg

# purpose: parametric estimation of each g-factor

#-----------------------------------------------------------------------------

estg <- function(d, form, Anodes, Ynodes){

n <- nrow(d)

n.g <- length(form)

gmat <- matrix(NA, nrow=n, ncol=n.g)

uncensored <- rep(TRUE, n)

deterministic <- rep(FALSE, n)

for (i in 1:n.g) {

if(any(Ynodes < Anodes[i])){

Ynode.prev <- max(Ynodes[Ynodes < Anodes[i]])

deterministic <- d[,Ynode.prev]==1

}

m <- glm(as.formula(form[i]), data=d,subset= uncensored & !deterministic,

family="binomial")

gmat[uncensored,i] <- predict(m, newdata=d[uncensored,], type="response")

gmat[deterministic,i] <- 1

uncensored <- d[,Anodes[i]] == 1

}

return(gmat)

}

#-----------------------------------------------------------------------------

# function: bound

# purpose: truncate values within supplied bounds

#-----------------------------------------------------------------------------

bound <- function(x, bounds){

x[x<min(bounds)] <- min(bounds)

x[x>max(bounds)] <- max(bounds)

return(x)

}
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