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History-Adjusted Marginal Structural Models
to Estimate Time-Varying Effect Modification

Maya L. Petersen, Steven G. Deeks, Jeffrey N. Martin, and Mark J. van der Laan

Abstract

Much of epidemiology and clinical medicine is focused on the estimation of
treatments or interventions administered over time. In such settings of longitu-
dinal treatment, time-dependent confounding is often an important source of bias.
Marginal structural models are a powerful tool for estimating the causal effect of
a treatment using observational data, particularly when time-dependent confound-
ing is present. Recent statistical work presented a generalization of marginal struc-
tural models, called history-adjusted marginal structural models. Unlike standard
marginal structural models, history-adjusted marginal structural models can be
used to estimate modification of treatment effects by time-varying covariates. Es-
timation of time-dependent causal effect modification is frequently of great prac-
tical relevance. For example, clinical researchers are often interested in how the
prognostic significance of a biomarker for treatment response can change over
time. This article provides a practical introduction to the implementation and
interpretation of history-adjusted marginal structural models. The method is illus-
trated using a clinical question drawn from the treatment of HIV infection. Obser-
vational cohort data from San Francisco, California, collected between 2000 and
2004, are used to estimate the effect of time until switching antiretroviral therapy
regimen among patients receiving a non-suppressive regimen, and how this effect
differs depending on CD4 T cell count.



INTRODUCTION 

Dynamic treatment regimens are decision rules for altering treatment in response 

to changes in patient or pathogen characteristics. Such dynamic decision-making is 

central to the practice of medicine; clinicians select a future treatment plan that is 

expected to optimize a patient's long-term outcome, then modify this treatment plan over 

time in response to changes in disease progression. For example, patient risk factors and 

sequential measurements of blood pressure inform when antihypertensive medication is 

initiated. Similarly, the dose of antidepressant medication is often modified in response to 

changes in patient symptoms and side effects. And, as will be described here, the decision 

to switch antiretroviral therapy regimen for an Human Immunodeficiency Virus (HIV)-

infected patient is based on the virologic and immunologic response to treatment, as well 

as side effects and other factors. 

Despite the crucial and ubiquitous role of dynamic decision making in medicine, 

rigorous identification of candidate dynamic treatment regimens and evaluation of their 

effectiveness remains relatively rare.  Randomized controlled trials can be used to 

compare candidate dynamic treatment regimens; however these trials do not themselves 

identify the decision rules to be compared. We suggest that observational data provide a 

rich source for identifying dynamic treatment regimens expected to optimize patient 

outcome. We introduce a new methodology, history-adjusted marginal structural models 

(HA-MSM) (1), which directly identifies a specific type of optimal dynamic treatment 

regimen using observational data.  

HA-MSM generalize marginal structural models (MSM), introduced by Robins, 

(2-4). MSM are a powerful statistical tool for causal inference. Epidemiological and 

clinical research often relies on longitudinal treatment status and covariate data. When 

treatment status changes over time, conventional analytic approaches (such as standard 

multivariable regression methods) often fail to provide valid causal inference about the 

effect of treatment.  Marginal structural models address this well-recognized problem of 

time-dependent confounding.  

While MSM address confounding by time-dependent covariates, to date they have 

been restricted to the estimation of effect modification by baseline covariates only. Thus 

it has been possible to use this methodology to address questions such as "What is the 
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effect of a treatment and how does it differ between study members with different 

covariate values at entry to the study?", but not "How does the effect of a treatment differ 

as a result of changing values of a covariate over the course of the study?". As a result, 

MSM have not been applied to identify optimal dynamic treatment regimens. 

As will be outlined here, HA-MSM use the identical causal framework as 

standard MSM, but unlike MSM, can be used to identify a rule for making treatment 

decisions over time, based on time-varying covariates, that represents a specific type of 

optimal dynamic treatment regimen. This dynamic treatment regimen corresponds closely 

to the needs of clinical practitioners, in that it allows a practitioner to use a patient's most 

recent measured covariates to update, at each patient visit, the future treatment plan that 

will maximize the patient's expected long-term outcome.  

This paper provides a practical introduction to HA-MSM; the formal statistical 

theory and assumptions are presented in (1). We illustrate our methodology with an 

example drawn from the treatment of HIV using antiretroviral therapy (ART). 

 

ANTIRETOVIRAL THERAPY FOR THE TREQTMENT OF HIV INFECTION: 

WHEN TO SWITCH? 

HIV evolves rapidly in the presence of a selective pressure.  This leads to the 

accumulation of mutations that confer "resistance" to antiretroviral drugs.  The optimal 

manner to avoid the rapid emergence of resistance-associated mutations is therefore to 

completely suppress viral replication. This can be achieved in many patients with  

standard three-drug combination regimens (5).  However, a substantial proportion of 

treated patients fail to achieve complete viral suppression.   Such patients are often 

switched to a new regimen, but this can lead to the use of all available therapeutic 

options.   Since many patients with incomplete viral suppression continue to do well 

immunologically (and therefore clinically) (6-8), many clinicians choose not to switch to 

a new regimen as long as CD4 T cell counts remain elevated.   Hence, clinicians are often 

faced with a dilemma in patients with detectable viremia on therapy:  should they switch 

therapy as soon as possible, thereby risking using up all drugs quickly and exposing 

patients to increasingly complicated and potentially toxic regimens?  Or should they 

maintain patients on a partially suppressive regimen as long as they are doing well 
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immunologically and clinically, even though this approach will allow the ongoing 

accumulation of drug-resistance mutations that can limit future therapeutic options? (For 

a review of this issue, see Deeks (9).) 

In this paper, we estimate the effect of non-suppressive therapy on future CD4 T 

cell count, and estimate how this outcome differs depending on a patient's current CD4 T 

cell count, and time spent on non-suppressive therapy. Based on these estimates, we 

identify a rule for deciding when to switch to a new antiretroviral therapy that will 

maximize the patient's expected CD4 T cell count in the future. Data for these analyses 

are drawn from the Study on the Consequences of the Protease Inhibitor Era (SCOPE), an 

observational cohort of HIV-infected patients in San Francisco. Participants are seen at 4-

month intervals.  At each visit, they complete interviewer- and self-administered 

questionnaires examining domains including socioeconomic status (housing, income, 

employment), antiretroviral medication use and adherence, occurrence of opportunistic 

infection or malignancy, and recreational drug use. Plasma HIV RNA levels and 

CD4/CD8 T cell counts are measured at each visit, as well as between visits according to 

physician discretion.   Importantly, decisions as to when and how to modify therapy are 

made by primary care providers based on standard of care. 

For our current analysis, we retrospectively identified subjects from SCOPE who 

experienced virologic failure while being observed in this study.    Subjects became 

eligible for our analyses (t=0) if they failed to achieve an undetectable HIV RNA levels 

(< 75 copies RNA/mL) by week 24 on a new regimen, or if they rebounded from an 

undetectable level.  The exposure of interest was time until switching to a new therapy. 

This can be summarized as a binary variable at each time point, indicating whether or not 

a subject has switched off of his or her original non-suppressive ART regimen.  We only 

allowed subjects to switch once in our analyses. The method can be easily extended, 

however, to encompass more complex treatment patterns. 

In the sections which follow, we rely on this data structure to illustrate our 

methodology. In the final section, we present the results of our analyses. 
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THE COUNTERFACTUAL FRAMEWORK 

The causal effect of a treatment on an individual can be defined as the difference 

in the individual's outcome with and without the treatment. Such outcomes are termed 

counterfactual because only one is observed for each individual. MSM are models of how 

the population distribution of these counterfactual outcomes changes as a result of 

changes in treatment. 

We begin by introducing some standard notation. Treatment over the course of 

the study (t=0,...,K) is denoted ))(),...,0(()( KAAKA = , and covariates  are denoted 

)1( +KL , where treatment occurs after covariates at a given time point, and K+1 is the 

end of follow-up. In our HIV example, )(KA  is a vector of binary variables, consisting 

of one for each time point until a subject switches therapy, and zero thereafter. For each 

possible time until switching, )1( +KLa  denotes the counterfactual CD4 T cell counts 

and other covariates over time that would have been observed if the subject had switched 

therapy at the time implied by aA = .  The outcome for a given time point t is the 

counterfactual CD4 T cell count measured 8 months in the future under the switching 

time indicated by a , denoted )8( +t
a

Y . 

If we observed the counterfactual CD4 T cell counts for each individual under 

each possible switch time, we could estimate the causal effect of waiting to switch 

therapy by simply comparing the counterfactual outcomes under different switch times. 

However, we only observe the CD4 T cell counts for each individual under a single (non-

random) switch time. As a result, in order to estimate the effect of time until switching 

therapy on CD4 T cell count using the observed data, we must assume that the covariates 

we measured are sufficient to control for confounding. For example, within strata defined 

by our measured confounders, there must be no unmeasured variables that predict, at any 

time point, both probability of switching treatment and also CD4 T cell count 8 months in 

the future. 

Under this assumption, we could use standard MSM to ask:  "At baseline (when 

virologic failure occurs), how does time until switching to a new regimen affect CD4 T 

cell count 8 months later? How does this effect differ depending on a patient's CD4 T cell 

count at baseline?" However, an MSM assumed at a single time point does not allow us 
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to estimate how the effect of future non-suppressive therapy may change as a result of 

changes in a patient's CD4 T cell count, or how this information should be used to decide 

when to switch a patient to a new ART regimen. HA-MSM directly address these 

questions. 

 

HISTORY-ADJUSTED MARGINAL STRUCTURAL MODELS 

HA-MSM rely on the identical causal framework as standard MSM, but estimate 

a different parameter of interest. HA-MSM assume a standard MSM at each time point 

during the study, which models counterfactual outcomes indexed by treatment that occurs 

after that time point, conditional on some subset of the observed history up till that time 

point. In addition, HA-MSM allow us to assume a common model across time points. In 

other words, HA-MSM model some parameter of the counterfactual outcome if the study 

population were to follow their observed treatment history up till time j, followed by a 

specified counterfactual future treatment history until outcome is measured, conditional 

on  a subset of (possibly time-varying) covariates and/or treatment history measured 

before time j. In this article, we will focus on HA-MSM concerned with the mean of 

these counterfactual outcomes; however, the same framework can be readily adopted to 

model any other parameter.  

We denote a future longitudinal treatment regimen, beginning at time j and 

continuing until the outcome is measured m time points later, as 

))1(),...1(),(()1,( −++≡−+ mjajajamjja , for mKj −+= 1,...,0 . The effect 

modifiers of interest are denoted ))1−j(),(()( ⊂ AjLjV , a subset of a subject's treatment 

and covariate history up till time j. For each time point in the study for which the 

outcome m time points later is defined, HA-MSM model the expectation of the 

counterfactual outcome )(
)1,(),1(

mjY
mjjajA

+
−+−

, conditional on V(j), under each possible 

future treatment regimen. Thus, HA-MSM are concerned with estimation of the 

following parameter: ))j(| VE )((
)1,(),1(

mjY
mjjajA

+
−+−

, where j=0,…,K+1-m. 

Applied to our example, future antiretroviral treatment from time j until the 

outcome is measured, denoted )1,( −+ mjja , consists of a vector of counterfactual 

treatment decisions a(j),…a(j+m-1) , where a(t)=0 if a subject has switched treatment at 
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or before time t, and otherwise a(t)=1. This vector of future treatment decisions exists for 

each subject beginning at each time point j=0,…,K+1-m.  We summarize )1,( −+ mjja  

as c , which represents the future time (beginning at time point j) that the 

subject will spend on his/her original failing therapy before either switching or the 

outcome is measured.  The current CD4 T cell count at time j is denoted CD4(j)=S(j), a 

subset of the full covariate history measured over time, 

∑ −+

=
≡

1 )()( mj

jl
laj

)( jL . For each time point j, we 

are interested in the mean counterfactual CD4 T cell count m=8 months later among 

individuals who have not yet switched therapy, if they were to switch therapy at a 

specified counterfactual time after j.  

To address this question, we might assume the following model: 

))()(4)()(4)((

)1)1(())(4),1(|)8((

543210

)(),1(

jjcjCDjcjjCDjc

jAIjCDjAjYE
jcjA

×+×++++

×=−=−+
−

ββββββ
 (1)  

81,...,0 −+= Kj . 

In other words, we might assume that, among individuals who have not yet 

switched treatment (A(j-1)=1), counterfactual CD4 T cell count 8 months later depends  

on additional time until switching (c(j)), but the magnitude of this effect differs 

depending on the duration a patient has already spent on non-suppressive therapy (j) and 

current CD4 T cell count (CD4(j)).  

This model allows us to estimate the effect of each additional month until 

switching to a new therapy on CD4 T cell count 8 months later, among patients who have 

been on their current non-suppressive therapy for different durations and have different 

current CD4 T cell counts. For example, by testing whether 04 =β  we are testing the 

hypothesis that a subject's current CD4 T cell count modifies the effect of future time 

until switching. 

 

INVERSE PROBABILTIY OF TREATMENT WEIGHTED ESTIMATION 

Several HA-MSM estimators are available; here, we focus on the inverse 

probability of treatment weighted (IPTW) estimator, which can be implemented using 

standard software. The IPTW estimator can be understood as simply a weighted least 

squares estimator. For each time point j in the study, each subject receives a weight 
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which is informally the inverse of the subject's probability of receiving the treatment that 

he or she actually received, from time point j until the outcome is measured. If a subject 

has a longitudinal treatment regimen beginning at time point j that occurs frequently in 

the data among subjects with his covariate and treatment history, he receives a small j-

specific weight. In contrast, if the subject has an unusual longitudinal treatment regimen 

given his covariates, the subject will receive a large weight. In our HIV example, patients 

whose CD4 T cell counts have recently declined are more likely to switch therapy. A 

subject that did not switch therapy despite a recent decline in CD4 T cell count would 

thus have a small predicted probability of receiving her observed treatment, and receive a 

large weight.  

The first step in implementing the IPTW estimator is to model the treatment 

mechanism, or  fit a predictive model of treatment at each time point t,  given the 

observed past up till that time point: ))(),1(|)(( tLtAtAg − ,  t K,...,0= .  For example, 

we model the treatment decision (switch therapy or not) made at every time point t using 

logistic regression. A simple model of the treatment mechanism might be: 

KttCDtCDtAtA ,...,0  ),(4))(4,11(|)(logit( 10 =+==− θθ ,  (2)  

where CD4(t) is CD4 T cell count at time t. Recall that once a subject switches, he/she is 

no longer at risk of switching in the future. Thus, when fitting our model of the 

probability of staying on therapy at a given time point (A(t)=1), we fit the model only 

among subjects who have not  already switched before that time point (A(t-1)=1). 

For the IPTW estimator to be consistent, the estimate of the treatment mechanism 

must be consistent and enough covariates must be included in the treatment model so that 

outcome is independent of treatment assignment conditional on the variables in the model 

(or in other words, there must not be additional confounders that do not appear in the 

model of the treatment mechanism). 

For each time point j=0,...,K+1-m, the model of the treatment mechanism 

(equation 2) is used to estimate the denominator of the j-specific weight:  

∏
−+

=

−
1

))(),1(|)((
mj

jl

lLlAlAg  

For subjects who do not switch therapy before the outcome is measured m months later, 

the denominator of the j-specific weight is 
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  ∏
−+

=

=−=
1

))(4,1)1(|1)((
mj

jl

lCDlAlAP

For subjects who have not switched therapy by time j, but who switch at some point 

T=j+C(j)  before the outcome is measured (C(j)< m), the denominator of the j-specific 

weight is  

  ∏
−

=

=−==−=−
1

))(4,1)1(|1)(()))(4,1)1(|1)((1(
T

jl

lCDlAlAPTCDTATAP

Recall that subjects who have already switched therapy by time j do not contribute to our 

counterfactuals of interest.  

The weight is then calculated as the inverse of the denominator. Note that the 

same subject will have a separate weight for each time point j in the study, with 

denominators corresponding to the probability that the subject received his/her observed 

treatment from that time point j until the outcome is measured. Once each subject has 

been assigned a set of K+1-m weights, a weighted least squares regression is run using 

standard software, with each subject contributing K+1-m weighted lines of data.  

 

THE HA-MSM DYNAMIC TREATMENT REGIMEN 

For each time point during the study, HA-MSM identify the future static 

treatment regimen that will maximize the expectation of the outcome, given treatment 

history and covariates of interest up till that time point. Recall that a static treatment 

regimen allows treatment to change over time, but not in response to changing patient 

covariates.  In our example, model 1 allows us to estimate how much longer subjects 

should remain on their current non-suppressive therapy in order to maximize their 

expected CD4 T cell count 8 months later, given how long they have already been on 

non-suppressive therapy and their current CD4 T cell count. Among individuals who 

have not already switched, the effect of each additional month waiting to switch therapy 

is jjCD 541 )(4 βββ ++ . 

At any given time point, this expression provides an optimal static future 

treatment regimen. When this expression is negative, each additional month waiting to 

switch will lead to depletion of CD4 T cells, suggesting that an individual should be 

switched immediately. When the expression is positive, waiting to switch will result in a 
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gain in CD4 T-cells, suggesting that the patient should be maintained on his current 

regimen.  

The optimal future static treatment regimen estimated by HA-MSM in turn 

suggests an interesting dynamic treatment regimen. Recall that a dynamic treatment 

regimen is a rule or function that gives a recommended treatment decision at each time 

point, based on patient characteristics measured up till the time point. The dynamic 

treatment regimen identified by HA-MSM consists of following, at each time point, the 

first action of an individual's optimal static future treatment regimen at that time point. At 

subsequent time points, the optimal static future treatment regimen can then be updated in 

response to changes in covariates and treatment history.  

 

RESULTS: WHEN TO SWITCH ANTIRETROVIRAL THERAPY 

In our example, we identified from SCOPE a total of 100 patients who 

experienced loss of viral suppression on antiretroviral therapy and who had a  CD4 T cell 

count measured 8 months later. Since a patient could contribute more than one episode of 

loss of suppression, we evaluated a total of 116 unique treatment episodes. Most patients 

had been on multiple treatment regimens prior to inclusion in our analysis.   

The median time to switch after onset of failure was 6 months. Tables 1 and 2 describe 

the sample at time of confirmed virologic failure. 

Cross-validated data-adaptive logistic regression (using the Deletion/ 

Substitution/ Addition algorithm (10)) was used to model the probability of switching 

therapy at each time point (the treatment mechanism) based on 40 candidate covariates 

(this included all covariates in tables 1 and 2, the time elapsed since loss of suppression, 

and plasma HIV RNA levels, defined as below of above the assay limit). The resulting fit 

of the treatment mechanism is shown in table 3. 

The following standard MSM were used to estimate: 

1.  The marginal effect of time until switching therapy (c) on CD4 T cell count 8 

months after loss of suppression (Y(8)): cYE c 10))8(( ββ +=  

2. The effect of time until switching therapy on CD4 T cell count 8 months after loss 

of suppression (baseline), conditional on CD4 T cell count at baseline (CD4(0)): 

)0(4)0(4))0(4|)8(( 3210 CDcCDcCDYE c ×+++= ββββ  
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Table 4 shows the estimates of causal effects based on these models, as well as 

the corresponding non-causal associations (unadjusted for confounding). The MSM 

results suggest that, while waiting to switch therapy is generally associated with a loss of 

CD4 T cells (9.9 cells/month), waiting to switch is not detrimental among patients with 

high CD4 T cell counts (> 218 cells) at the time of virologic failure. The discrepancy 

between the causal coefficients, as estimated using MSM, and the non-causal associations 

(-9.9 vs. 4.9, -13.1 vs. -9.5) suggests the presence of significant time-dependent 

confounding. 

At each time point, HA-MSM were used to estimate the effect of additional time 

until switching therapy among patients who remained on their original therapy, 

conditional on current CD4 T cell count. Nineteen individuals achieved re-suppression of 

the virus during follow-up despite remaining on the same therapy (an indicator that 

virologic failure was not due to resistance). As we aimed to estimate the effect of waiting 

to switch therapy among individuals with loss of viral suppression due to the presence of 

resistant virus, HA-MSM were fit only among those individuals with no history of re-

suppression (I(Supp=0)). Our HA-MSM aimed to replicate the results of a randomized 

trial in which individuals currently on a non-suppressive therapy regimen and with no 

history of re-suppression on this regimen were assigned to switch to a new therapy at a 

random time in the future. 

Two sets of HA-MSM analyses were conducted. In the first, the following model 

was assumed, and separate coefficients were estimated for each time point j. 

))(4)()(4)(()0(1)1((

))(4,1)1(|)8((

3210

)()1(

jCDjcjCDjcSuppIjAI

jCDjAjYE
jcjA

×+++×=×=−=

=−+
−

ββββ
 

Based on the resulting coefficient estimates for the first nine months (j=0,..,8), figure 1 

plots the estimated effect of each additional month waiting to switch therapy for three 

current CD4 T cell counts.  

Figure 1 suggests that the effect of additional time until switching differs 

depending on the amount of time an individual has already spent on non-suppressive 

therapy, as well as on the individual's current CD4 T cell count. Specifically, in the 

months immediately subsequent to loss of virologic suppression, waiting to switch 

therapy appears beneficial among individuals with high current CD4 T cell counts, but 
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detrimental in those with low CD4 T cell counts. In contrast, among the population that 

have already spent at least five months on their current non-suppressive therapy, 

additional time waiting to switch has a negligible effect on future CD4 T cell count, 

regardless of an individual's current CD4 T cell count. This effect modification may be 

due in part to the fact that the population remaining on non-suppressive therapy for at 

least five months is a different population than the original group failing therapy; they are 

likely to have remained on non-suppressive therapy precisely because they were better 

able to tolerate it. 

In the second set of analyses, a single model was fit for the first nine time points 

(j=0,..,8), now assuming common parameters across time and including time spent on 

non-suppressive therapy as a covariate in the model: 

))(4)()()(4)()(4)((

)0()1)1(())(4,1)1((|)8((

654210

)(),1(

jjCDjcjjcjCDjcjCDjc

SuppIjAIjCDjAjYE
jcjA

××+×+×+++

×=×=−==−+
−

ββββββ
 

Using this common model, the estimated effect of each additional month until switching 

therapy is  

jjCDjjCD
jjCDjjCD

××−×+×+−=
×+++

)(401.09.1)(405.04.10
)(4)(4 6541 ββββ

 

Table 5 shows the estimates of causal effect of switching based on this model 

(plotted for three CD4 T cell values in figure 2). This fit provides us with a decision rule 

for when to switch therapy; when this expression is negative, switch therapy 

immediately. When this expression is positive, wait until the next month, then re-evaluate 

the expression based on current CD4 T cell count and elapsed time.  

 

DISCUSSION 

The HA-MSM presented in this paper represent an important generalization of 

MSM methodology. MSM are well-established as powerful tools for causal inference, 

particularly in the setting of longitudinal data. In this article we have introduced an 

extension of MSM to identify and estimate time-dependent causal effect modification.  

We have further illustrated how HA-MSM make possible the identification of a specific 

type of dynamic treatment regimen. The dynamic treatment regimens identified by HA-
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MSM will be most appropriate as candidates for future clinical trials when they include 

all major effect modifiers of the exposure of interest (1). 

Alternative statistical methods currently available for identifying and evaluating 

dynamic treatment regimens, such as Structural Nested Mean Models (SNMM) and G-

computation (11-13), require substantial programming effort to implement, perhaps 

explaining the paucity of epidemiologic research aimed at estimating dynamic treatment 

regimens. In contrast, as illustrated in this paper, HA-MSM can be implemented using 

standard software. In addition, SNMM and G-computation both identify dynamic 

treatment regimens aimed at optimizing an outcome at a fixed time-point. In contrast, in 

the example presented, HA-MSM were used to identify a dynamic treatment regimen 

aimed at optimizing a continuously changing outcome (CD4 T cell count 8 months in the 

future). In many applications, optimizing such a "moving" outcome, rather than an 

outcome at a fixed time point, may indeed be the researchers’ goal.  

In conclusion, HA-MSM identify treatment decision rules based on time-

dependent covariates that are expected to optimize patient outcome. Identification of such 

dynamic treatment regimens is a crucial application in the medical sciences, in addition to 

other fields that rely on dynamic decision-making. We anticipate that these models will 

prove a useful tool in multiple fields of applied research. 
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TABLE 1.  Characteristics of sample at time of failure (continuous variables).1 
 
Characteristic 1st Quartile Median Mean 3rd Quartile Missing 
Plasma HIV RNA level  365.5 4317 34190 24940 0
CD4 T cell count 175.5 261.5 321 428.8 0
CD8 T cell count 726.8 1022 1168 1497 0
Percent Average Adherence (self report) 100 100 92.36 100 0
Year Diagnosed with HIV 1986 1989 1989 1993 2
Age 44.2 50.5 49.9 55.5 0
Year of first antiretroviral treatment 1991 1996 1995 1997 0
Peak HIV RNA level (lab records) 46020 177500 242300 381200 0
Nadir CD4 T cell count (lab records) 36.25 72.5 118.3 165 0
Number of PI2 drugs experienced 2 3 3.241 4 0
Number of NRTI3 drugs experienced 4 5 4.819 6 0
Number of NNRTI4 drugs experienced 0 1 0.9138 1 0

 
   

 

                                                 
1Among 100 individuals (116 episodes) with a know time of viral failure, and follow-up for at least 8 
months following time of failure.  
2 Protease inhibitor 
3 Nucleoside reverse transcriptase inhibitor 
4 Non-nucleoside reverse transcriptase inhibitor 
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TABLE 2.  Characteristics of sample at time of failure (Categorical Variables).5 
 
Characteristc N (%) Missing
Treatment history  0
Enfuvurtide 8 (7%)  
Tenofovir 41 (35%)  
Lamivudine 115 (99%)  
Mono/dual ART6 57 (49%)  
Current Treatment  0
Protease inhibitor 87 (75%)  
Nucleoside reverse transcriptase inhibitor 113 (97%)  
Non-nucleoside reverse transcriptase inhibitor 22 (19%)  
Lab Frequency  0
Most Recent HIV RNA level > than one month prior 49 (42%)  
Most Recent CD4  T cell count > than one month prior 42 (36%  
Subject Characteristics   
History of intravenous drug use 43 (37%) 0
Male 100 (86%) 0
Sexual orientation "Man who has sex with men" 79 (69%) 1
Homeless within past year 6 (5%) 0
Current diagnosis with an opportunistic disease 25 (22%) 0
Self-identified HIV risk group  0
Man having sex with men 79 (68%)  
Intravenous drug use ever 22 (19%)  
Heterosexual Intercourse 8 (7%)  
Other 7 (6%)  
Race/ethnicity  0
White 51 (44%)  
African-American/Black 35 (30%)  
Latino/Hispanic/ Mexican-American 17 (15%)  
Other 13 (11%)  
Crack use (past 4 months)   1
Every day 3 (3%)  
Once a week 6 (5%)  
Once a month 3 (3%)  
Less than once a month 7 (6%)  
Never 96 (83%)  
Methamphetamine use (past 4 months)  1
Once a week 2 (2%)  
Once a month 4 (3%)  
Less than once a month 3 (3%)  
Never 106 (92%)  

                                                 
5 Among 100 individuals (116 episodes) with a know time of viral failure, and follow-up for at least 8 
months following time of failure 
6 ART=Antiretroviral treatment 
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Alcohol Use (past 4 months)  1
At least once a day 10 (9%)  
Nearly every Day 6 (5%)  
3-4 times a week 7 (6%)  
1-2 times a week 26 (23%)  
2 or 3 times total 14 (12%)  
Once 12 (10%)  
Never 40 (35%)  
Education (highest year of school completed)  0
Grades 7-11 16 (14%)  
High School/GED 24 (21%)  
Some College 46 (40%)  
4 Years College/BS/BA 19 (16%)  
Some/Completed Graduate School 11 (9%)  
Income (yearly household)  0
<=$6000 5 (4%)  
$6001-$12,000 50 (43%)  
$12,001-$18,000 20 (17%)  
$18,001-$24,000 14 (12%)  
$24,001-$30,000 2 (2%)  
$30,001-$36,000 4 (3%)  
$36,001-$75,000 13 (11%)  
>$75,000 8 (7%)  
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TABLE 3. Odds ratios for switching treatment based on data-adaptive fit of 
treatment mechanism.7 8 
 
Covariate Odds Ratio 
Current diagnosis with an opportunistic disease 1.22 
Number of protease inhibitor drugs experienced 1.11 
Most recent HIV RNA level undetectable  0.44 
Percent average adherence (per 10%) 0.92 
Most recent CD4 T cell count (per 100 CD4 T cells) 0.92 
Nadir CD4 T cell count (per 100 CD4 T cells) 1.05 
Most recent HIV RNA level more than one month prior 0.90 
Age (per 5 years) 0.90 

 

                                                 
7 Note: Variables for treatment mechanism selected among larger sample of non-suppressed in SCOPE 
cohort: 255 people, 368 episodes, including people with unknown loss of suppression time and missing 
outcome. The coefficients on the selected model (corresponding to the Odds Ratios reported here) were 
then refit on the population with known loss of suppression time. 
8 Note: Standard errors and P-values not shown, to emphasize that role of the treatment mechanism in 
construction of weights, rather than for the purposes of causal interpretation. 
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TABLE 4. Non-causal associations and estimated causal effects of time until switching 
therapy on CD4 T Cell Count 8 months after loss of suppression.9 10 
 
  Coefficient 95% CI11 12

Associations for Each Additional Month Until Switching Therapy 
Unadjusted Association: 
E(Y(8)|C=c)  

 4.9 -6.3, 16.8

Multivariable Regression: 
E(Y(8)|CD4(t=0),C=c)   

-9.5 
0.05 * CD4(t=0)

-17.7, -1.3
0.03,  0.08

Causal Effects of Each Additional Month Until Switching Therapy 
Standard MSM:   
E(Yc

 (8))  
- 9.9 -21.1, 2.9 

Conditional Standard MSM: 
E(Yc (8)|CD4(t=0))  

-13.1 c
0.06 * CD4(t=0)

-22.5, -4.8
0.03, 0.09

 
 
 
 

                                                 
9 “C” and “c” denote, respectively, the observed and counterfactual number of months after baseline (viral 
failure)  of exposure to original non-suppressive therapy 
10  CD4 (t=0)  denotes observed CD4 T cell count at baseline (time of viral failure). 
11 Based on 100 Bootstrap samples 
12 CI=Confidence interval 
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TABLE 5. Coefficients from HA-MSM model for first 9 time points (j=0,..,8).13 
Estimated effect of each additional month until switching therapy, given current CD4 T 
cell count (CD4(j)) and  elapsed time since failure occurred (j). 
 
Coefficient  95% CI14 15

-10.4  
 0.05 x CD4(j)  
 1.9  x j  
- 0.01 x  CD4(j) x j 

-18.5, -4.0
0.03, 0.08
-0.03, 3.4

-0.02, -0.003
  
 
 

                                                 
13 Estimated among people who have not yet switched therapy and have not re-suppressed the virus. 
14 Based on 100 Bootstrap samples 
15 CI = Confidence Interval 
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FIGURE 1. Separate HA-MSM fit at each of first 9 time points.16 
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16 Estimated among people who have not yet switched therapy and have not re-suppressed the virus. 
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FIGURE 2: Single HA-MSM fit for first 9 time points.17 
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17 Estimated among people who have not yet switched therapy and have not re-suppressed the virus. 
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