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Estimating Function Based Cross-Validation
and Learning

Mark J. van der Laan and Daniel Rubin

Abstract

Suppose that we observe a sample of independent and identically distributed re-
alizations of a random variable. Given a model for the data generating distribu-
tion, assume that the parameter of interest can be characterized as the parameter
value which makes the population mean of a possibly infinite dimensional esti-
mating function equal to zero. Given a collection of candidate estimators of this
parameter, and specification of the vector estimating function, we propose cross-
validation criteria for selecting among these estimators. This cross-validation cri-
teria is defined as the Euclidean norm of the empirical mean over the validation
sample of the estimating function at the candidate estimator based on the training
sample. We establish a finite sample inequality of this method relative to an oracle
selector, and illustrate it with some examples. This finite sample inequality pro-
vides us with asymptotic equivalence of the selector with the oracle selector under
general conditions. We also study the performance of this method in the case that
the parameter of interest itself is path-wise differentiable (and thus, in principle,
root-$n$ estimable), and show that the cross-validated selected estimator is typ-
ically efficient, and, at certain data generating distributions, superefficient (and
thus non-regular). Finally, we combine 1) the selection of sequence of subspaces
of the parameter space (i.e., a sieve), 2) the estimating equation as empirical crite-
ria to generate a candidate estimator for each subspace, and 3) estimating function
based cross-validation selector to select among the candidate estimators, in order
to provide a new unified estimating function based methodology. In particular, we
formally establish a finite sample inequality for this general estimator in the case
that one uses epsilon-nets as sieve, and point out that this finite sample inequal-
ity corresponds with minimax adaptive rates of convergence w.r.t. to the norm
implied by the estimating function.
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1. Introduction

Suppose that one observes n independent and identically distributed copies
of a random variable (referred to as the experimental unit), and that one
wishes to learn from this data set a parameter of the distribution of this
random variable. It is often possible to generate a (potentially large) set
of estimators of this parameter of interest indexed by one or more fine
tuning parameters such as quantaties measuring the degree in which the
estimator is informed by the actual data (instead of by priors or modelling
assumptions). These estimators differ in variance and bias. An important
problem in statistics is the construction of a selector based on the data,
which selects among these candidate estimators, so that the corresponding
data adaptively selected estimator behaves asymptotically well relative to
an optimally selected estimator based on actually knowing the truth. The
latter type of selector is often referred to as an oracle selector.

Cross-validation is a particular selector which has been extensively stud-
ied in the past in the context of density estimation (for example, band-
width selection for kernel density estimators, and model selection for model-
specific maximum likelihood estimators), and regression. As discussed by
4 in the context of dimensionality selection in regression, criteria such as
Mallow’s Cp, Akaike information’s criterion (AIC), and the Bayesian infor-
mation criterion (BIC), do not account for the data-driven selection of the
sequence of models and thus provide biased assessment of prediction error
in finite sample situations. Instead, risk estimation methods based on sam-
ple reuse have been favored. The main procedures include: leave-one-out
cross-validation, V -fold cross-validation, Monte Carlo cross-validation, and
the bootstrap (Chapter 3 in 7, 8, 5,6, Chapter 17 in 11, Chapters 7 and 8
in 12, Chapter 7 in 17, Chapter 3 in 21, 23, 24). Thus, a variety of cross-
validation procedures are available for estimating the risk of a predictor. A
natural question then concerns the distributional properties of the resulting
risk estimators, i.e., their performance as estimators of generalization error,
their performance in terms of identifying a good predictor (model selection),
and also the impact of the particular cross-validation procedure (e.g., the
choice of V in V -fold cross-validation, the use of V -fold vs. Monte Carlo
cross-validation). Aside from empirical assessment of different estimation
procedures, most of the previous theoretical work has focused primarily on
the distributional properties of leave-one-out cross-validation 23,24.

There is a rich literature on leave-one-out cross-validation in nonpara-
metric univariate regression. For example, 22 proposes a fast approximation
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of the leave-one out cross-validation method in spline regression. We refer
to 14 for an overview on the leave-one-out cross-validation method in ker-
nel regression. In particular, 15,16 establish an asymptotic optimality result
for leave-one-out cross-validation for choosing the smoothing parameter in
nonparametric kernel regression (see page 158, 14).

12 established a finite sample result for the single-split cross-validation
selector for the squared error loss function. Their theorem was generalized in
10 to general cross-validation schemes and a general class of loss functions.
10 examine the distributional properties of cross-validated risk estimators
in the context of both predictor selection and predictor performance assess-
ment for a general class of loss functions.

Finite sample inequalities and asymptotic optimality results for
likelihood-based V-fold cross-validation, or equivalently, cross-validation for
the purpose of selection among density estimators of the density of the ob-
served data, are established in 29, in which we also provide an overview
of the literature on likelihood based cross-validation (see also 22), which is
omitted here for the sake of space.

These cross-validation methods are focussed on regression or density es-
timation. In 28 we generalized cross-validation to a selector among candidate
estimators of any parameter which is represented as the minimizer over the
parameter space of an expectation of a loss function of the experimental unit
and a candidate parameter value, where the loss function is possibly indexed
by an unknown nuisance parameter of the true data generating distribu-
tion. It is illustrated that this unified loss-based cross-validation approach
solves a wide range of estimator selection problems, including estimator
selection based on censored data, and, in particular, estimator selection in
causal inference problems (in causal inference the observed data structure
is modelled as a missing data structure on potential counterfactual random
variables). The appropriate loss function for censored data structures is de-
fined as the Inverse Probability of Censoring Weighted (IPCW) or double
robust IPCW full data loss function, where these mappings from full data
functions to functions of the censored data are defined in 32. Various appli-
cations of this unified cross-validation methodology for estimator selection
are selection among regression estimators 10, estimator selection with right
censored data 18, likelihood-based cross-validation 29, and tree-based esti-
mation and model selection with censored data 20.

In general, for any parameter of interest, we proposed a methodology
to construct an appropriate loss function. Our proposed construction of
the loss function involves first building a risk function of candidate para-
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meter values which is minimized at the true parameter value, where this
risk function is defined as a norm of the expectation (under the true data
generating distribution) of an estimation function: that is, a function of the
experimental unit, parameter of interest, and possibly a nuisance parame-
ter, with expectation zero at the true parameter values. Subsequently, one
determines a loss function such that its expectation equals the risk func-
tion, and preferably among such loss function we prefer the loss function for
which the empirical mean of the loss function actually corresponds with an
efficient estimator of the risk function. However, our definition of this risk
function in terms of a vector-valued estimating function suggests a direct
application of cross-validation to this risk function, instead of constructing
a loss function whose expectation equals this risk function. This inspired
us to a so called estimating function based cross-validation methodology,
presented in this article. For many problems it is easy to generate esti-
mating functions identifying the parameter of interest, while it requires an
additional possibly involved step to compute a corresponding loss function.
Therefore, this new estimating function based cross-validation methodology
provides an important new general method for estimator selection.

The organization of this article is as follows. Firstly, in Section 2 we
present our proposed estimating function based cross-validation selector. In
Section 3 we establish the asymptotic performance of this cross-validation
selector in the case that the parameter of interest is finite dimensional
and path-wise differentiable (and thus root-n estimable, in principle). We
illustrate the method with a set of examples, and, in particular, show that
the cross-validation selector data adaptively under-smooths appropriately
so that the resulting estimator is still asymptotically efficient, or at some
data generating distributions, is asymptotically superefficient. In Section
4 we derive a general finite sample inequality for its performance relative
to the oracle selector, where we note that this result is most relevant for
parameters which cannot be estimated at the root-n rate. In Section 5
we provide a variety of corollaries of this finite sample inequality, and in
Section 6 we illustrate our method in the classical regression and density
estimation example. In Section 7 we provide a general estimating function
based estimator based on 1) a sieve on the parameter space, 2) the norm
of the estimating equation as empirical criteria to generate a candidate
estimator for each element of the sieve, and 3) estimating function based
cross-validation to select the element of the sieve. In Section 8 we prove a
finite sample inequality for this type of estimator in the case that the sieve is
a collection of subspace-specific epsilon-nets corresponding with a sequence
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of subspaces, indexed by the subspace and the epsilon. This finite sample
inequality shows that our estimator does achieve wished mini-max adaptive
rates of convergence w.r.t to an estimating function based dissimilarity
measure. We conclude with a discussion. Some fundamental lemmas are
presented in the appendix.

2. Estimating function based cross-validation.

Suppose we observe n i.i.d. random variables O1, . . . , On with common dis-
tribution P0. Let M be the statistical model: that is, it is known that
P0 ∈ M. Suppose that Ψ : M→ D(S) is the parameter of interest, where
D(S) denotes a space of real valued functions on a set S. For example, if
S = {1, . . . , d}, then D(S) = IRd is simply the Euclidean space, but if S is
a Euclidean set in IRd, then D(S) denotes the class of real valued d-variate
functions. Let Ψ ≡ {Ψ(P ) : P ∈M} ⊂ D(S) denote the parameter space.

Let (O,ψ, γ) → Db(O | ψ, γ) be an estimating function indexed by a
b ranging over a countable set B. We note that an estimating function is
simply a well defined real valued function on the tensor product of a support
of the observed data structure O, the parameter space Ψ, and a nuisance
parameter space. Suppose that this set of estimating functions are unbiased
in the sense that

E0Db(O | Ψ(P0),Γ(P0)) = 0 for all b ∈ B,

where Γ : M → {Γ(P ) : P ∈ M} is the nuisance parameter, and Γ(P0)
denotes its true value. Let D(O | ψ, γ) ≡ (Db(O | ψ, γ) : b ∈ B) denote
the vector-valued (possibly infinite dimensional) estimating function. The
heuristic of our method requires that the estimating functions Db are ap-
propriately standardized so that for each b ∈ B

P0Db(O | ψ,Γ(P0)) = −(ψb − ψb0) + o(| ψb − ψb0 |), (1)

for real valued parameters ψb of ψ, where ψb0 denotes the true parameter
value. That is, formally, ψb = Φb(ψ, P0), and ψb0 = Φb(ψ0, P0) for some real
valued mapping Φb. In the next subsection, we present a general method
for construction of such a vector-valued estimating function D(O | ψ, γ)
in which the estimating function Db is directly derived from the b-specific
efficient influence curve for a pathwise differentiable parameter ψb0, b ∈ B.
In particular, we will point out that (1) can be arranged to hold exactly
(no remainder) in a large class of problems in which (e.g.) Ψb is a linear pa-
rameter on a convex model M, thereby covering many models for censored
data structures.

http://biostats.bepress.com/ucbbiostat/paper180
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Let ‖ · ‖ denote a particular norm on vectors (x(b) : b ∈ B) with
real valued components x(b) of the dimension | B |. If B is infinite (but
countable), then ‖ · ‖ denotes a norm on the infinite dimensional Euclidean
space R∞. For example, we could use the weighted euclidean norm

‖ x ‖=
√∑

b

w(b)x(b)2

for a known weight function b → w(b) ≥ 0 such that
∑
b w(b) < ∞. We

define a risk function at P0 as a norm of the expectation (under P0) of the
vector estimating function D(O | ψ,Γ(P0)) = (Db(O | ψ,Γ(P0)) : b):

Θ(ψ | P0) ≡‖ P0D(O | ψ,Γ(P0)) ‖ .

Here we used the notation P0f =
∫
f(o)dP0(o), and if f = (f1, . . . , fd) is a

vector function, then P0f = (P0f1, . . . , P0fd). For example, we can define
a risk function at P0 as the weighted Euclidean norm of the expectation
(under P0) of the estimating function at candidate ψ ∈ Ψ:

Θ(ψ | P0) ≡
√∑
b∈B

w(b)P 2
0Db(O | ψ,Γ(P0)),

where b → w(b) ≥ 0 is a known weight function. We note that, if B is
infinite, then Θ(ψ | P0) needs to be defined as an infinite sum, and thereby
as a limit.

Note that Θ(ψ0 | P0) = 0 so that the corresponding measure of dissimi-
larity d(ψ,ψ0) ≡ Θ(ψ | P0)−Θ(ψ0 | P0) between ψ and ψ0 is indeed always
non-negative and minimized at ψ0:

d(ψ,ψ0) ≥ 0, and d(ψ,ψ0) = 0 if ψ = ψ0.

In addition, because of property (1), we have for ψ = Ψ(P ) close to ψ0,

Θ(ψ | P0) =‖ (ψb : b)− (ψb0 : b) + (o(| ψb − ψb0 |) : b) ‖, (2)

where ψb = Φb(ψ, P ) and ψb0 = Φb(ψ0, P0). For example, if we use the
Euclidean norm, then locally one expects to have

Θ(ψ | P0) ≈
√∑
b∈B

w(b)(ψb − ψb0)2.

In particular, if (1) holds exactly, then we have equality:

Θ(ψ | P0) =‖ (ψb : b)− (ψb0 : b) ‖ .

Hosted by The Berkeley Electronic Press
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This first order expansion of this risk function ψ → Θ(ψ | P0) at ψ0 suggests
that Θ(ψ | P0) is a sensible risk function for the purpose of estimation of
ψ0 = Ψ(P0), and, in particular, for selecting among candidate estimators
of ψ0.

Specifically, let Bn ∈ {0, 1}n be the random variable defining the cross-
validation scheme, where Bn(i) = 1 indicates that observation i is a member
of the validation sample, and Bn(i) = 0 indicates that observation i is a
member of the training sample. Let p ≡ P (Bn(i) = 1) denote the propor-
tion of the learning sample which constitutes the validation sample. It is
assumed that Bn is independent of the learning sample (O1, . . . , On). Given
a realization bn of Bn, let P 0

n,bn
and P 1

n,bn
denote the empirical distribution

of the training sample and validation sample, respectively.
Given candidate estimators Pn → Ψ̂k(Pn), k = 1, . . . ,K(n), the cross-

validated risk function is now defined as

Θ̂n(1−p)(k) ≡ EBn ‖ P 1
n,Bn

D(· | Ψ̂k(P 0
n,Bn

), Γ̂(P 0
n,Bn

)) ‖ .

For example, in case we use the Euclidean norm, then we have

Θ̂n(1−p)(k) ≡ EBn

√√√√√∑
b∈B

 ∑
i:Bn(i)=1

Db(Oi | Ψ̂k(P 0
n,Bn

), Γ̂(P 0
n,Bn

))/np

2

w(b).

This cross-validated risk function defines our proposed cross-validation se-
lector

kn = K(Pn) ≡ arg min
k

Θ̂n(1−p)(k).

This finishes the description of our proposed cross-validation selector among
candidate estimators of a parameter ψ0 = Ψ(P0).

Benchmark selector.

A natural way to benchmark the selector kn is to define the following true
conditional risk function

Θ̃n(1−p)(k) = EBn
‖ P0D(· | Ψ̂k(P 0

n,Bn
), γ0) ‖ . (3)

If we use the Euclidean norm, then this equals

Θ̃n(1−p)(k) = EBn

√∑
b∈B

(
P0Db(· | Ψ̂k(P 0

n,Bn
), γ0)

)2

w(b). (4)

http://biostats.bepress.com/ucbbiostat/paper180
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We can now define the corresponding oracle selector

k̃ = k̃n(1−p) = K̃n(1−p)(Pn) ≡ arg min
k

Θ̃n(1−p)(k)

for selecting among estimators based on a sample of size n(1 − p). In par-
ticular, if (1) holds exactly, then

k̃ = arg min
k
EBn

‖ (Φb(Ψ̂k(P 0
n,Bn

), P0) : b)− (Φb(ψ0, P0) : b) ‖ .

Finally, we also define the wished oracle selector

k̃n = K̃(Pn) ≡ arg min
k

Θ̃n(k),

where

Θ̃n(k) ≡‖ P0Db(· | Ψ̂k(Pn), γ0) ‖,

which compares estimators based on the whole learning sample Pn. In the
case of the Euclidean norm this equals

Θ̃n(k) ≡
√∑
b∈B

(
P0Db(· | Ψ̂k(Pn), γ0)

)2

w(b).

2.1. Method for construction of vector-estimating function.

In this subsection we present a general method for constructing such a vec-
tor estimating function D(O | ψ, γ). Firstly, one specifies a collection of
real valued pathwise differentiable parameters Ψb : M → IR indexed by
b ∈ B, so that for all P ∈ M, (Ψb(P ) : b ∈ B) identifies Ψ(P ) uniquely.
For example, if Ψ(P ) = (Ψ1(P ), . . . ,Ψd(P )) is itself already a Euclidean
pathwise differentiable parameter, then we would simply define Ψb(P ) as
the b-th component of Ψ(P ), b = 1, . . . , d. On the other hand, if Ψ(P ) is
an infinite dimensional function, then one could, for example, define Ψb(P )
as the inner product of Ψ(P ) with a b-specific basis function. It is assumed
that for each b ∈ B Ψb(P ) = Φb(Ψ(P ), P ) for all P ∈M for some mapping
Φb. The definition of pathwise differentiability states that Ψb is pathwise
differentiable at P , relative to a specified set of one-dimensional differen-
tiable submodels {Pε,s : ε ∈ (−δ, δ)} ⊂ M, satisfying P0,s = P , with score
at ε = 0 equal to s, s ∈ S ⊂ L2

0(P ), if for all these submodels

d

dε
Ψb(Pε,s)

∣∣∣∣
ε=0

= 〈`b, s〉P ≡ EP `b(O)s(O)

for some `b ∈ L2
0(P ). We recall that L2

0(P ) is the Hilbert space of
real valued functions of O with mean zero endowed with inner product

Hosted by The Berkeley Electronic Press
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〈h1, h2〉P ≡ EPh1(O)h2(O) being the covariance operator. Here `b is called
a gradient of the pathwise derivative, whose projection onto the tangent
space, that is, the closure of the linear span of S within the Hilbert space
(L2

0(P ), 〈·, ·〉P ), is unique, and this projection is called the canonical gra-
dient. The canonical gradient is also called the efficient influence curve
since a regular asymptotically linear estimator with influence curve equal
to Db(O | P0) is asymptotically efficient, by efficiency theory 3. We refer to
3 for a comprehensive treatment of efficiency theory and illustration with
many semiparametric models, and, in the context of censored data, we refer
to 32 who provide general representations of the class of all gradients, and,
of the canonical gradient/efficient influence curve. Let Db(O | P0) be a par-
ticular gradient, such as this unique canonical gradient. This gives us now a
class of functionsDb(O | P0), b ∈ B, and it is known that EP0Db(O | P0) = 0
for all b ∈ B, and all P0 ∈M.

Given a gradient representation Db(O,P ) for all P ∈M, it is often not
hard to define an actual estimating function (O,ψb, ρb) → Db(O | ψb, ρb)
for the parameter ψb, possibly depending on a nuisance parameter ρb such
that Db(O | Ψb(P0), ρb0) = Db(O | P0) for all P0 ∈ M, where ρb0 denotes
the true value of the nuisance parameter. Since a gradient is, by definition,
orthogonal to all nuisance scores, that is, scores of one-dimensional submod-
els for which d

dεΨb(Pε,s)
∣∣
ε=0

= 0, this estimating function Db(O | ψb, ρb)
for Ψb is minimally dependent on nuisance parameters: we refer to chap-
ter 1, sections 1.4, Lemma 1.2 and 1.3 in 32 for formal results establishing
that the directional derivatives w.r.t. ρb are zero, given that ψb and ρb are
variation independent parameters.

In addition, as a consequence of the fact that Db(O | P0) is a gradient
of the pathwise derivative of the parameter Ψb : M → IR, the estimating
function will have the property

E0Db(O | ψb, ρb0) = −(ψb − ψb0) + o(| ψb − ψb0 |). (5)

This is a general property for gradients (also called influence curves) of
a pathwise derivative, and, in particular, for the canononical gradient (see
Lemmas 1.2 and 1.3 in 32). In particular, for linear parameters Ψb on convex
models, one obtains an exact equality (see 19, Chapter 2 25, 26, and 27):

E0Db(O | ψb, ρb0) = −(ψb − ψb0). (6)

The fact that the derivative at ψb0 equals minus the identity provides us
with the motivation for our proposed risk function.

http://biostats.bepress.com/ucbbiostat/paper180
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Finally let (O,ψ, γ) → Db(O | ψ, γ) be an estimating function satisfying

Db(O | Ψ(P0),Γ(P0)) = Db(O | P0), for all b ∈ B, P0 ∈M.

At this step, one will use that Ψb(P ) = Φb(Ψ(P ), P ) in order to represent
an estimating function in ψb (as implied by Db(O | P0)) in terms of an
estimating function in terms of ψ.

By now, we have succeeded in deriving a class of unbiased estimating
functions (O,ψ, γ) → Db(O | ψ, γ), with nuisance parameter γ, indexed by
b ∈ B, satisfying the wished property (2).

3. Euclidean pathwise differentiable parameters.

Consider candidate estimators Ψ̂h(Pn) of a pathwise differentiable d-
dimensional parameter ψ0 of P0 indexed by a continuous univariate index h.
Let ψ0 be identified as the parameter which results in a population mean of
an estimating function D(O | ψ, γ0) = (Db(O | ψ, γ0) : b = 1, . . . , d) equal
to zero, where γ0 = Γ(P0) is the true nuisance parameter value. For exam-
ple, Ψ̂h(Pn) could be an integrated kernel density estimator with bandwidth
h of a cumulative distribution function ψ0, which is an example we discuss
in detail below. Our results can be generalized to multivariate continuous
index h.

Let Γ̂(Pn) be an estimator of the nuisance parameter Γ(P0). Since ψ0 is
a nice smooth parameter, under regularity conditions, the solution Ψ̂0(Pn)
of

PnD(· | ψ, Γ̂(Pn)) =
1
n

n∑
i=1

D(Oi | ψ, Γ̂(Pn)) = 0 or (oP (1/
√
n)), (7)

will already be asymptotically linear

with influence curve − d
dψE0D(O | ψ, γ0)

∣∣∣−1

ψ=ψ0

D(O | ψ0, γ0). In particu-

lar, if D(O | ψ0, γ0) equals the efficient influence curve, then Ψ̂0(Pn) is an
efficient estimator. It is assumed that Ψ̂0(Pn) is asymptotically unbiased in
the sense that

EPD(O | Ψ̂0(P ),Γ(P )) = 0 for all P ∈M. (8)

That is, Ψ̂0 is an estimator which does not use any smoothing, or more
precisely, does not use asymptotically relevant smoothing. The purpose of
smoothing (that is, selecting a h > 0) is to obtain a finite sample improve-
ment relative to Ψ̂0. For example, if it is known that the true cumulative
distribution function is very smooth, then it makes sense to use a smooth
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estimator, even though the discrete empirical cumulative distribution func-
tion is already asymptotically efficient in a nonparametric model.

Suppose that the parametrization Ψ̂h in terms of h is such that

d

dh
P0D(· | Ψ̂h(P0), γ0)

∣∣∣∣
h=0

6= 0. (9)

Typically this requires selecting a parametrization such that h =
O(Ψ̂h(P0) − ψ0), and Ψ̂h(P0) − ψ0 = O(h) for h → 0. That is, h repre-
sents the order of the asymptotic bias of the estimator Ψ̂h(Pn).

Consider the square of our proposed cross-validated risk function based
on the euclidean norm of the estimating function:

Θ̂n(1−p)(h)2 ≡ EBn

d∑
b=1

(
P 1
n,Bn

Db(· | Ψ̂h(P 0
n,Bn

), Γ̂(P 0
n,Bn

))
)2

.

Note that this represents a slight modification of our general proposal in
the sense that we put the EBn

inside the square root (but still outside
the squares). This modification does not interfere with the heuristic be-
hind our method in the sense that the corresponding true risk function
is still the same, and it just simplifies the algebraic manipulations. Let
hn = arg minh Θ̂n(1−p)(h) be its minimizer.

Our goal is to show that under general conditions hn = oP (1/
√
n),

and thereby that Ψ̂hn
(Pn) will be asymptotically equivalent with Ψ̂0(Pn).

That is, our data adaptive procedure for choosing h guarantees enough
undersmoothing so that root-n times the bias of the selected estimator
converges to zero when sample size converges to infinity. In particular, if
Ψ̂0(Pn) is an asymptotically efficient estimator, the smoothed estimator
Ψ̂hn

(Pn) will also be asymptotically efficient. In the next subsection 3.1 we
provide the formal theorem and its proof. Subsequently, we show that one
of the main conditions of the theorem is indeed a condition one expects to
hold under regularity conditions. In the last three subsections we provide
two specific and a general class of examples.

3.1. Theorem.

The analysis of hn is based on the derivative U(h, Pn) = d/dhΘ̂n(1−p)(h)2,
which is given by

2
d∑
b=1

EBn
EP 1

n,Bn
Db(O | Ψ̂h(P 0

n,Bn
), Γ̂(P 0

n,Bn
))
d

dh
EP 1

n,Bn
Db(O | Ψ̂h(P 0

n,Bn
), Γ̂(P 0

n,Bn
)).

(10)
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Under weak regularity conditions, by definition of hn, we have that
U(hn, Pn) = 0.

Consider now the equation U(h, P0) = 0, where we represent P0 as the
empirical Pn with n = ∞, which is thus given by

U(h, P0) = 2
d∑
b=1

EP0Db(O | Ψ̂h(P0), γ0)
d

dh
EP0Db(O | Ψ̂h(P0), γ0).

Here it is assumed that Γ̂ is a consistent estimator so that Γ̂(Pn=∞) = γ0.
We note that h0 = 0 is a solution of U(h, P0) = 0. The equations U(0, P0) =
0 and U(hn, Pn) = 0 provides us with a basis for establishing the asymptotic
rate of convergence of hn to h0 = 0.

Firstly, we observe that, by (8), for any P (treated as the empirical
distribution from P for n = ∞), we have

U(0, P ) = 2
d∑
b=1

EPDb(O | Ψ̂0(P ),Γ(P ))
d

dh
EPDb(O | Ψ̂h(P ),Γ(P ))

∣∣∣∣
h=0

= 0,

uniformly in P ∈M. Secondly, again by (8), we also have

d

dh
U(h, P0)

∣∣∣∣
h=0

= 2
d∑
b=1

d

dh
EP0Db(O | Ψ̂h(P0), γ0)

∣∣∣∣2
h=0

.

By (9), this derivative is strictly positive. A standard M -estimator analy-
sis for hn, following the approach outlined in ?, now suggests that hn =
oP (1/

√
n) under regularity conditions.

Specifically, such an analysis proceeds as follows:
Step 1: Firstly, we note that

U(hn, P0)− U(0, P0) = −{U(hn, Pn)− U(hn, P0)}.

Step 2: Assume that we already have established that hn converges to zero
in probability. Now, by differentiability of h→ U(h, P ) at h0 = 0, and the
fact that this derivative is positive, it follows

hn =
(
d

dh
U(h, P0)

∣∣∣∣
h=0

)−1

{U(hn, Pn)− U(hn, P0)}+ o(hn).

Step 3: Assume that {U(hn, Pn) − U(hn, P0)} − {U(0, Pn) − U(0, P0)} =
oP (1/

√
n) + oP (hn). Then, it follows that

hn =
(
d

dh
U(h, P0)

∣∣∣∣
h=0

)−1

{U(0, Pn)− U(0, P0)}+ oP (hn) + oP (1/
√
n).
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Step 4: By condition (7), on Ψ̂0(Pn), under regularity conditions, one will
have U(0, Pn) = U(0, Pn) − U(0, P0) = oP (1/

√
n): below we provide a

template for showing that U(0, Pn) = oP (1/
√
n), which illustrates that this

condition can indeed be expected to hold.
Now, it follows that

hn = oP (hn) + oP (1/
√
n),

which implies the wished result hn = oP (1/
√
n).

This proves the following general theorem.

Theorem 1: Consider candidate estimators Ψ̂h(Pn) of a pathwise differ-
entiable d-dimensional parameter ψ0 of P0. Suppose that Ψ̂0(Pn) is based
on an unbiased representation Ψ̂0 in the sense that

EPDb(O | Ψ̂0(P ),Γ(P )) = 0 for all P ∈M, (11)

and that

U(0, Pn)− U(0, P0) = oP (1/
√
n), (12)

where U(h, Pn) is defined as

2
d∑
b=1

EBn
P 1
n,Bn

Db(· | Ψ̂h(P 0
n,Bn

), Γ̂(P 0
n,Bn

))
d

dh
P 1
n,Bn

Db(· | Ψ̂h(P 0
n,Bn

), Γ̂(P 0
n,Bn

)),

and U(h, P0) is given by

2
d∑
b=1

P0Db(· | Ψ̂h(P0),Γ(P0))
d

dh
P0Db(· | Ψ̂h(P0),Γ(P0)),

Assume

d

dh
P0Db(O | Ψ̂h(P0),Γ(P0))

∣∣∣∣
h=0

6= 0 b = 1, . . . , d. (13)

Define the cross-validated risk function as

Θ̂n(1−p)(h) ≡

√√√√EBn

d∑
b=1

(
P 1
n,Bn

Db(· | Ψ̂h(P 0
n,Bn

))
)2

.

Let hn = arg minh Θ̂n(1−p)(h) be its minimizer. Consider the derivative
U(h, Pn) of Θ̂n(1−p)(h)2. Suppose that hn satisfies U(hn, Pn) = 0, and that
hn = oP (1).

http://biostats.bepress.com/ucbbiostat/paper180
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Assume the derivative of h → U(h, P ) at h0 = 0 exists and (is thus)
given by

d

dh
U(h, P0)

∣∣∣∣
h=0

= 2
d∑
b=1

d

dh
P0Db(· | Ψ̂h(P0), γ0)

∣∣∣∣2
h=0

.

Assume that

{U(hn, Pn)− U(hn, P0)} − {U(0, Pn)− U(0, P0)} = oP (1/
√
n) + op(hn).

(14)
Then hn = oP (1/

√
n).

3.2. Why is (12) a reasonable condition?

Firstly, we note that

U(0, Pn) = 2
d∑
b=1

EBnP
1
n,Bn

Db(O | Ψ̂0(P 0
n,Bn

), Γ̂(P 0
n,Bn

))Db(P0)

+2
d∑
b=1

EBn
P 1
n,Bn

Db(O | Ψ̂h(P 0
n,Bn

), Γ̂(P 0
n,Bn

)){Db(Bn, Pn)−Db(P0)},

where

Db(Bn, Pn) =
d

dh
P 1
n,Bn

Db(O | Ψ̂h(P 0
n,Bn

), Γ̂(P 0
n,Bn

))
∣∣∣∣
h=0

Db(P0) =
d

dh
P0Db(O | Ψ̂h(P0), γ0))

∣∣∣∣
h=0

.

Regarding the second term, under regularity conditions, Db(Bn, Pn) −
Db(P0) can be shown to be OP (1/

√
n), while, for n converging to infin-

ity, P 1
n,Bn

Db(O | Ψ̂0(P 0
n,Bn

), Γ̂(P 0
n,Bn

)) should converge to zero in proba-
bility (typically, at rate 1/

√
n), since Ψ̂0 and Γ̂ are consistent estimators.

As a consequence, the second term can be expected to be oP (1/
√
n). Since

Db(P0) does not depend on Bn, the first term would be oP (1/
√
n) as well,

if one can show that

EBn
P 1
n,Bn

Db(O | Ψ̂0(P 0
n,Bn

), Γ̂(P 0
n,Bn

)) = oP (1/
√
n). (15)

We will now show that the latter condition (15) can indeed be expected to
hold if Ψ̂0(Pn) solves PnD(· | ψ, Γ̂(Pn)) = 0, and Ψ̂0(Pn) is (as a conse-
quence) asymptotically linear with influence curve c−1D(O | ψ0, γ0), where
c ≡ −d/dψ0P0D(O | ψ0, γ0).
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Consider the one-step estimator based on initial estimator Ψ̂0(Pn), using
sample splitting, defined as

Ψ̂1(Pn) ≡ EBn
Ψ̂0(P 0

n,Bn
) + EBn

P 1
n,Bn

c−1
n D(· | Ψ̂0(P 0

n,Bn
), Γ̂(P 0

n,Bn
)),

where cn denotes the empirical counterpart of the derivative matrix c.
This estimator is also asymptotically linear with influence curve c−1D(O |
ψ0, γ0), under even weaker regularity conditions than needed to establish
this asymptotic linearity result for Ψ̂0(Pn) (see e.g. 19, 25, page 44). As a
consequence,

√
n(Ψ̂1(Pn) − ψ0) −

√
n(Ψ̂0(Pn) − ψ0) converges to zero in

probability: that is, Ψ̂1(Pn)− Ψ̂0(Pn) = oP (1/
√
n).

However, by definition,

Ψ̂1(Pn)− EBn
Ψ̂0(P 0

n,Bn
) = EBn

P 1
n,Bn

c−1
n D(· | Ψ̂0(P 0

n,Bn
), Γ̂(P 0

n,Bn
)).

Thus, condition (15) follows if we can show that Ψ̂0(Pn)−EBnΨ̂0(P 0
n,Bn

) =
oP (1/

√
n). The latter is a simple consequence of the asymptotic linearity

of Ψ̂0(Pn), as we will show now.
By the asymptotic linearity of Ψ̂0(Pn) with influence curve IC(O) ap-

plied to the sample P 0
n,Bn

for a fixed Bn, we have

Ψ̂0(P 0
n,Bn

)− ψ0 = (P 0
n,Bn

− P0)IC + oP (1/
√
n),

which implies that (assuming Bn has finite number of realizations, for con-
venience)

EBn
Ψ̂0(P 0

n,Bn
)− ψ0 = (Pn − P0)IC + oP (1/

√
n).

Here we use that EBn
(P 0
n,Bn

−P0)IC = (Pn−P0)IC. Similarly, by asymp-
totic linearity of Ψ̂0(Pn), we also have

Ψ̂0(Pn)− ψ0 = (Pn − P0)IC + oP (1/
√
n).

The last two asymptotic linearity results yield the wished condition (15)
EBn

Ψ̂0(P 0
n,Bn

)− Ψ̂0(Pn) = oP (1/
√
n).

3.3. Example: Estimation of the mean with shrinkage

estimators.

Let X ∼ f0, the model is nonparametric, the parameter of interest is ψ0 =
E0r(X) for some function r, and suppose we observe n i.i.d. observations
X1, . . . , Xn of X. The estimating function for ψ0, derived from the efficient
influence curve D(X | P0) = r(X) − ψ0 at P0, is given by D(X | ψ) =

http://biostats.bepress.com/ucbbiostat/paper180
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r(X) − ψ. Suppose that our candidate estimators are Ψ̂ρ(Pn) = ρPnr for
ρ ∈ [0, 1]. Our cross-validated estimating function criteria is given by:

Θ̂n(1−p)(ρ) = EBn

(
P 1
n,Bn

r − ρP 0
n,Bn

r
)2
.

This is a convex function in ρ (i.e., second derivative is positive). Consider
the solution of setting the derivative of Θ̂n(1−p)(ρ) equal to zero:

ρn =
EBn

P 1
n,Bn

rP 0
n,Bn

r

EBn(P 0
n,Bn

r)2
.

If ρn ∈ (0, 1), then this is the minimum. If ρn > 1, then 1 is the minimum,
and if ρn < 0, then 0 is the minimum. Let ρ∗n ∈ [0, 1] be this minimizer of
Θ̂n(1−p)(ρ). If P0r 6= 0, then it follows:

ρn − 1 =
EBn

(P 0
n,Bn

− P0)r(P 1
n,Bn

− P0)r)
EBn(P 0

n,Bn
r)2

= OP (1/n),

where we assume that E0r
2 < ∞ and, for simpicity, that Bn has finite

support uniformly in n (as in V -fold cross-validation). This shows that
ρ∗n − 1 = OP (1/n), and thereby that Ψ̂ρ∗n(Pn) is asymptotically equivalent
with the efficient sample mean. If E0r = 0, then ρn converges in distribution
to a random variable with mean zero and large variance. As a consequence,
in this case we would obtain an estimator which equals a random factor
between [0, 1] times the sample mean, and is therefore a superefficient esti-
mator at a P0 with P0r = 0.

3.4. Example: Shrinkage of linear regression estimators.

Let O = (Y,W ) ∼ P0, and assume the linear regression model E0(Y |W ) =
β>0 W ,W ∈ IRd. Let β0 be the parameter of interest, and suppose we observe
n i.i.d. observations O1, . . . , On. Let Ψ̂0(Pn) = arg minβ

∑
i(Yi − β>Wi)2

be the standard least squares estimator. Let Ψ̂h(Pn) = (1 − h)Ψ̂0(Pn),
h ∈ [0, 1]. These estimators shrink the least squares estimator to zero.
Consider the estimating function

D(O | β, c0) = c−1
0 D(O | β) = c−1

0 W (Y − βW ),

where c0 = − d
dβE0D(O | β)

∣∣∣
β=β0

. We note that c0 = E0WW>. Let

Ĉ(Pn) = 1/n
∑
iWiW

>
i be the estimator of c0. Our proposed estimating
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function based cross-validation criteria is given by

Θ̂n(1−p)(h)2 = EBn

d∑
j=1

{
P 1
n,Bn

Dj(· | Ψ̂h(P 0
n,Bn

), Ĉ(P 0
n,Bn

))
}2

.

Indeed, we now have d/dβE0D(O | β, c0)|β=β0
= −I equals minus the iden-

tity matrix so that E0D(O | β, c0) ≈ −(β−β0) in first order. Consequently,
the corresponding target criterian Θ̃n(1−p)(h) approximates the squared
euclidean norm of the difference Ψ̂h(P 0

n,Bn
)−ψ0. Let hn be the minimizer of

Θ̂n(1−p)(h). Taking the derivative w.r.t. h yields the equation U(h, Pn) = 0
with U(h, Pn) given by

EBn

d∑
j=1

(
P 1
n,Bn

Dj(· | Ψ̂h(P 0
n,Bn

), Ĉ(P 0
n,Bn

))
)
P 1
n,Bn

D∗j (· | Ψ̂0(P 0
n,Bn

), Ĉ(P 0
n,Bn

)),

where D∗j (O | ψ, c) ≡ [c−1Wψ(W )]j . The solution h∗n of U(h, Pn) = 0 is
given by the following closed form expression

EBn

∑d
j=1 P

1
n,Bn

D∗j (· | Ψ̂0(P 0
n,Bn

), Ĉ(P 0
n,Bn

))
(
P 1
n,Bn

Dj(· | Ψ̂0(P 0
n,Bn

), Ĉ(P 0
n,Bn

))
)

EBn

∑d
j=1

(
P 1
n,Bn

D∗j (· | Ψ̂0(P 0
n,Bn

), Ĉ(P 0
n,Bn

))
)2 .

If h∗n ∈ [0, 1], then hn = h∗n, if h∗n < 0, then hn = 0, and, if h∗n > 1, then
hn = 1. If ψ0 6= 0, then the denominator of h∗n converges to some positive
number. Consider now the j-term of the sum in the numerator, and denote
the factor in front of the term within brackets with Φj(P 1

n,Bn
, P 0

n,Bn
). Now,

write this factor as {Φj(P 1
n,Bn

, P 0
n,Bn

)−Φj(P0, P0)}+Φj(P0, P0). The first
difference is OP (1/

√
n) so that the corresponding term will be oP (1/

√
n).

The second term results in the following contribution to the numerator of
h∗n

d∑
j=1

Φj(P0, P0)
(
EBn

P 1
n,Bn

Dj(· | Ψ̂0(P 0
n,Bn

), Ĉ(P 0
n,Bn

))
)
.

The latter term is precisely (15), so that it is shown to be oP (1/
√
n) in the

same manner as outlined in general under (15). This shows that, if ψ0 6= 0,
then, under minor conditions, hn = op(1/

√
n). If ψ0 happens to be zero,

then the data adaptively shrinked estimator will be superefficient, as in our
other examples.
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3.5. Example: Convex combination of estimators.

Let X ∼ f0, the model is nonparametric, the parameter of interest is ψ0 =
E0r(X) for some function r, and suppose we observe n i.i.d. observations
X1, . . . , Xn of X. The estimating function for ψ0, derived from the efficient
influence curveD(X | P0) = r(X)−ψ0 at P0, is given byD(X | ψ) = r(X)−
ψ. Let Ψ̂0(Pn) ≡ Pnr be the efficient estimator in the nonparametric model,
and let Ψ̂1(Pn) be an estimator of ψ0 based on a submodel. For example,
ψ0 = F0(t) is the cumulative distribution function at a point t, Ψ̂0(Pn) is
the empirical cumulative distribution function, and Ψ̂1(Pn) is an estimator
based on a parametric model. Let Ψ̂h(Pn) = hΨ̂1(Pn) + (1 − h)Ψ̂0(Pn),
h ∈ [0, 1], be the convex combination of the two estimators. Our cross-
validated estimating function criteria is given by:

Θ̂n(1−p)(h) = EBn

(
P 1
n,Bn

r − Ψ̂h(P 0
n,Bn

)
)2

.

This is a convex function in h (i.e., second derivative is positive). Consider
the solution of setting the derivative of Θ̂n(1−p)(h) equal to zero:

hn =
EBn

{P 1
n,Bn

− P 0
n,Bn

}r(Ψ̂1 − Ψ̂0)(P 0
n,Bn

)

EBn

{
(Ψ̂1 − Ψ̂0)(P 0

n,Bn
)
}2

=
EBn{(P 1

n,Bn
− P0)− (P 0

n,Bn
− P0)}r

{
(Ψ̂1 − Ψ̂0)(P 0

n,Bn
)− (Ψ̂1 − Ψ̂0)(P0)

}
EBn

{
(Ψ̂1 − Ψ̂0)(P 0

n,Bn
)
}2 ,

where we used that EBn(P 1
n,Bn

− P 0
n,Bn

)r = 0.
If hn ∈ (0, 1), then this is the minimum. If hn > 1, then 1 is the mini-

mum, and if hn < 0, then 0 is the minimum. Let h∗n ∈ [0, 1] be this mini-
mizer of Θ̂n(1−p)(h). If Ψ̂1(Pn) is inconsistent and Ψ̂1(Pn)−Ψ̂1(P0) = oP (1),
then it follows immediately that h∗n = oP (1/

√
n). Here we also assume that

E0r
2 <∞ and, for simpicity, that Bn has finite support uniformly in n (as

in V -fold cross-validation). This shows that under these conditions Ψ̂h∗n
(Pn)

is asymptotically equivalent with the efficient empirical cumulative distrib-
ution function. In the special case that Ψ̂1(Pn) is also a consistent estimator
for ψ0, then hn converges in distribution to a random variable with mean
zero and support [0, 1]. As a consequence, Ψ̂h∗n(Pn) is a superefficient esti-
mator at any P0 for which Ψ̂1 is consistent.
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3.6. Example: Substitution estimators based on kernel

density estimators.

Let X ∼ f0, the model is nonparametric, the parameter of interest is
ψ0 = E0r(X) for some function r, and suppose we observe n i.i.d. ob-
servations X1, . . . , Xn of X. The estimating function for ψ0, derived from
the efficient influence curve D(X | P0) = r(X) − ψ0 at P0, is given by
D(X | ψ) = r(X) − ψ. Let Ψ̂h(Pn) be the mean of r(X) w.r.t. a kernel
density estimator 1/nh

∑
iK((Xi − ·)/h), with density kernel K, and let

Ψ̂0(Pn) =
∫
r(x)dPn(x) be the empirical mean of r(X). Suppose that the

kernel K does not have mean zero so that the bias of the estimators Ψ̂h(Pn)
is linear in h: if we work with orthogonal kernels, we would define h as a
power of the bandwidth so that h still represents the bias of the kernel
density estimator. In this case, the estimators Ψ̂h(Pn) have an asymptotic
bias O(h), which thus only disappears at

√
n-rate if h = o(1/

√
n). Our

cross-validation criteria is defined as

Θ̂n(1−p)(h)2 = EBn

(
Ψ̂0(P 1

n,Bn
)− Ψ̂h(P 0

n,Bn
)
)2

, (16)

and the cross-validation selector hn of h is its minimizer. For example, if
Bn represents a leave-one out cross-validation scheme, then this criteria
would resemble standard leave-one out cross-validation, except where the
outcome is replaced by r:

Θ̂n(1−p)(h)2 =
1
n

n∑
i=1

(
r(Xi)− Ψ̂h(Pn,−i)

)2

.

Note that (16) represents a slight modification of our general proposal
in the sense that we put the EBn inside the square root (but still out-
side the squares). It simplifies the algebraic manipulations needed to
establish the wished result for general pathwise differentiable parame-
ters (see our accompanying technical report). We have Θ̃n(1−p)(h)2 =

EBn

(
ψ0 − Ψ̂h(P 0

n,Bn
)
)2

. That is, the oracle selector k̃n(1−p) corresponds
with selecting the estimator whose training sample realizations are closest
to the true value ψ0.

In this example Ψ̂0 is an estimator which does not use any smoothing.
The purpose of smoothing in this example (that is, selecting a h > 0) is
to obtain a finite sample improvement relative to Ψ̂0. For example, if it is
known that the true cumulative distribution function is very smooth, then it
makes sense to use a smooth estimator, even though the discrete empirical
cumulative distribution function is already asymptotically efficient in the
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nonparametric model. However, in order to remain efficient the bandwidth
will have to be chosen so that the asymptotic bias is of smaller order than
1/
√
n: that is, we wish to show that hn = oP (1/

√
n).

We note

Ψ̂h(Pn) =
1
nh

n∑
i=1

∫
r(x)K((Xi − x)/h)dx

=
1
n

n∑
i=1

∫
r(Xi + yh)K(y)dy,

and the derivative of Θ̂n(1−p)(h)2 w.r.t. h is given by

U(h, Pn) = 2EBn

(
Ψ̂0(P 1

n,Bn
)− Ψ̂h(P 0

n,Bn
)
)
P 0
n,Bn

d

dh

∫
r(·+ yh)K(y)dy.

We will follow the proof of Theorem 1 in order to illustrate it in this ex-
ample. We have U(hn, Pn) = 0, and we note that U(h0 = 0, P0) = 0, where
U(h, P0) is defined by replacing P 1

n,Bn
and P 0

n,Bn
by P0. The equations

U(0, P0) = 0 and U(hn, Pn) = 0 provides us with a basis for establishing
that hn = oP (1/

√
n), and thereby that Ψ̂hn is still asymptotically efficient.

Firstly, we note that

U(hn, P0)− U(0, P0) = −{U(hn, Pn)− U(hn, P0)}.

Since

U(h, P ) = 2
(
Ψ̂0(P )− Ψ̂h(P )

)
P
d

dh

∫
r(·+ yh)K(y)dy,

it follows that

d

dh
U(h, P0)

∣∣∣∣
h=0

= −2
(
P0

d

dh

∫
r(·+ yh)K(y)dy

∣∣∣∣
h=0

)2

,

which verifies that the derivative of h→ U(h, P0) at h = 0 is bounded away
from zero. Below, we will show that hn converges to zero in probability.
Then, it follows

hn =
(
− d

dh
U(h, P0)

∣∣∣∣
h=0

)−1

{U(hn, Pn)− U(hn, P0)}+ o(hn).

Below, we will also show that

{U(hn, Pn)− U(hn, P0)} − {U(0, Pn)− U(0, P0)} = oP (1/
√
n) + oP (hn).

(17)
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Then, it follows that

hn =
(
− d

dh
U(h, P0)

∣∣∣∣
h=0

)−1

{U(0, Pn)− U(0, P0)}+ oP (hn) + oP (1/
√
n).

Now, we note that

U(0, Pn) = EBn

(
P 1
n,Bn

r − P 0
n,Bn

r
)
P 0
n,Bn

r1,

where r1 ≡ d
dh

∫
r(·+ yh)K(y)dy

∣∣
h=0

. Write P 0
n,Bn

r1 = (P 0
n,Bn

− P )r1 +
Pr1, and note that the term resulting from Pr1 equals exactly zero. Thus,

U(0, Pn) = EBn

(
(P 1
n,Bn

− P0)r − (P 0
n,Bn

− P0)r
)
(P 0
n,Bn

− P0)r1,

which is indeed oP (1/
√
n) if P0r1 < ∞ and P0r

2 < ∞. To conclude, this
shows that hn = oP (hn) + oP (1/

√
n), and thus the wished result hn =

oP (1/
√
n).

Convergence of hn to 0: We need to verify that hn = oP (1). If r
has compact support, it follows that hn ≤ M for some M < ∞. As a
consequence, by compactness of [0,M ], for each subsequence of hn, there
exists a subsequence (say) hk which converges to a h∞ for k converging to
infinity. Since U(hk, Pk) = 0 and U(hk, Pk) − U(hk, P0) converges to zero
as k converges to infinity under the already needed Donsker class condition
specified below, it follows that U(hk, P0) converges to zero. In addition,
it also follows that U(hk, P0) converges to U(h∞, P0), which shows that
U(h∞, P0) = 0. This shows that h∞ = 0. This proves that hn converges to
zero a.s., and thus, in particular, in probability.

Verification of (17): This second order difference can be written as a
sum with the following four terms:

EBn
(P 0
n,Bn

− P0)(Rhn
−R0)P 0

n,Bn
r1,hn

EBn

(
(P 1
n,Bn

− P0)R0 − (P 0
n,Bn

− P0)Rhn

)
P 0
n,Bn

(r1,hn
− r1,0)

EBn
P 0
n,Bn

(Rhn
−R0)(P 0

n,Bn
− P0)r1,hn

EBn

(
P 1
n,Bn

R0 − P 0
n,Bn

Rhn

)
(P 0
n,Bn

− P0)(r1,hn
− r1,0),

where Rh(X) ≡
∫
r(X+yh)K(y)dy, and r1,h(X) = d

dh

∫
r(X+yh)K(y)dy.

If
∫

(Rhn −R0)2(x)dP0(x) converges to zero in probability (as follows from
hn = oP (1) and continuity of r), and if {Rh−R0 : h ∈ [0, 1]} is a P0-Donsker
class, then it follows (?) that this (P 0

n,Bn
− P0)(Rhn − R0) = oP (1/

√
n).

Examples of P0-Donsker classes are provided in ?: e.g., if Rh has variation
smaller than a universal M <∞, then {Rh−R0 : h} is a P0-Donsker class.

We also assume that {r1,h : h > 0} is a Glivenko-Cantelli class so that
suph(P 0

n,Bn
− P0)r1,h = oP (1). This proves that the first three terms are
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oP (1/
√
n): for technical convenience, we assume a V -fold cross-validation

scheme so that EBn
only yields a sum of V terms, which each can be

analyzed seperately. Regarding the fourth term, first write

P 1
n,Bn

R0−P 0
n,Bn

Rhn = (P 1
n,Bn

−P0)R0− (P 0
n,Bn

−P0)Rhn +P0(R0−Rhn).

The terms resulting from the first term is oP (1/
√
n) since (P 1

n,Bn
−P0)R0 =

OP (1/
√
n) and (P 0

n,Bn
−P0)(r1,hn−r1,0) = oP (1). Similarly, this follows for

the term resulting from the second term. The term resulting from P0(R0−
Rhn) is given by:

P0(R0 −Rhn
)(Pn − P0)(r1,hn

− r1,0).

It follows that P0(Rhn
−R0) = OP (hn) so that the last term is oP (hn).

Thus under these empirical process conditions on r1,h, we have proved
that hn = oP (1/

√
n), and, consequently, that the substitution estimators

based on an integrated kernel density estimator using bandwidth hn will
be asymptotically efficient. We will state this as a result. Inspection of the
proof shows that we can replace the condition that {r1,h : h ∈ (0,M ]} is a
P0-Glivenko-Cantelli class by (Pn−P0)r1,hn = oP (1), which allows sharper
results, as illustrated in the next subsection.

Theorem 2: Let X be a real valued random variable with density f0
with compact support contained in [0,M ], and, given a function r which is
continuous F0-a.e., let ψ0 = E0r(X) be its parameter of interest. Suppose
we observe n i.i.d. observations X1, . . . , Xn of X. Let Ψ̂b(Pn) be the mean of
r(X) w.r.t. a kernel density estimator 1/nb

∑
iK((Xi − ·)/b), with density

kernel K, and let Ψ̂0(Pn) =
∫
r(x)dPn(x) be the empirical mean of r(X).

Let h→ b(h) be a 1-1 parametrization with inverse b→ h(b) satisfying

d

dh
P0

∫
r(·+ yb(h))K(y)dy

∣∣∣∣
h=0

6= 0.

That is, h(b) represents the order of the bias of the integrated kernel density
estimator with bandwidth b. For example, if the kernel K does not have
mean zero, then one can choose h = b.

Let

Θ̂n(1−p)(h)2 = EBn

(
Ψ̂0(P 1

n,Bn
)− Ψ̂h(P 0

n,Bn
)
)2

,

and hn is its minimizer over the interval [0,M ]. Let Bn correspond
with V -fold cross-validation for a fixed V . Let r1,h(X) ≡ d/dh

∫
r(X +

yb(h))K(y)dy, and Rh(X) ≡
∫
r(X + yh)K(y)dy. Assume that {r1,h :

h ∈ (0,M ]} is a P0-Glivenko-Cantelli class or the weaker assumption
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(Pn − P0)r1,hn
= oP (1), and {Rh : h ∈ [0,M ]} is a P0-Donsker class.

For example, the latter holds if Rh has variation smaller than a universal
C <∞.

Then hn = oP (1/
√
n).

Special case: Smoothing of the empirical cumulative

distribution.

As a challenging example, consider the case ψ0 = F0(x0), which corresponds
with the choice r(X) = I(X ≤ x0). In order to be explicit, let K(x) =
I[−1,1](x) be the uniform kernel density. In this case, r1,b(X) = r1,h(b) =
I({X − x0}/b < 1)/(2b) is a uniform density over [x0 − b, x0 + b], and
typically h(b) = b2. Though, supb∈[0,M ] P0r1,b < ∞, the class of functions
{r1,b : b} does not have an integrable envelope, which shows that it is not
a Glivenko-Cantelli class: see page 125 ?. So, though our Theorem 2 is
very close to also being able to include non-smooth r’s, our conditions are
too strong for showing that our smoothed empirical distribution at x0 is
an asympotically efficient estimator of F0(x0). However, inspection of the
proof of Theorem 2 shows that we can replace the Glivenko-Cantelli class
condition on r1,b by the condition that (Pn − P0)r1,bn = oP (1), where we
already know bn → 0 a.s. That is, we need that bn is such that the kernel
density estimator with bandwidth bn is consistent at x0. Intuitively, we
certainly expect this to hold, since consistency of kernel density estimators
for non-random bandwidth bn only requires nbn →∞.

Formally, the following type proof has been used to establish con-
sistency of kernel density estimators for data dependent bandwidth bn
for which nbn → ∞ a.s (or in probability): personal communication by
Aad van der Vaart. For notational convenience, let x0 = 0 and consider
the uniform kernel. For fixed δ > 0 consider the class of all functions
x → fb(x) ≡ I(−b,b)(x)(2b)−1 with b > δ. This is a VC class with en-
velope Fδ(x) = min((2|x|)−1, (2δ)−1). Consequently, by empirical process
theory (?) E supb>δ(Pn − P0)fb . n−1/2J(1)(PF 2

δ )1/2, where J(1) denotes
the uniform entropy relative to the envelope, a finite number for a VC-class.
Since the 1/2δ in the envelope only contributes to the integral over the in-
terval [0, δ], it follows that PF 2

δ = O(1/δ), where we assume that the true
density f0 is bounded. This yields an upper bound of the order (nδ)−1/2

for small δ. We now proceed as follows. Let Mn be a sequence such that
Pr(bn > Mn/n) → 1, which exists since nbn → ∞. For this sequence Mn
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we have

Pr (| (Pn − P )fbn
|> ε) ≤ Pr

(
sup

b>Mn/n

| (Pn − P )fb |> ε

)
+ o(1).

By the above VC-class empirical process result, the expectation of
supb>Mn/n | (Pn − P )fb | is bounded by O(1/

√
Mn) = o(1). Since con-

vergence in expectation implies convergence in probability this shows that
Pr (| (Pn − P )fbn

|> ε) converges to zero.
Thus, it remains to prove that 1/(nbn) = oP (1). Though, we expect

this to hold, actually proving that there exist no subsequence of bn which
converges too fast does not seem to be easy to us. Therefore, we pro-
pose the following to obtain a formal result. We redefine our bandwidth
as b∗n = max(bn, cn/n) for a given sequence cn → ∞ with cn/

√
n = o(1),

and aim to prove that the corresponding bias h∗n = oP (1/
√
n). Consider

now the subsequence bn(m), m = 1, 2, . . ., defined by deleting each element
of b∗n which does not equal bn. In order to prove that h∗n = oP (1/

√
n)

it suffices to prove that hn(m) = oP (1/
√
n(m)). For this subsequence,

we have U(hn(m), Pn(m)) = 0, and we can apply Theorem 2, where now,
by definition of hn(m), we know that n(m)bn(m) → ∞, so that we have
(Pn(m) − P0)rbn(m) = oP (1). This proves the following formal result.

Theorem 3: Let X be a real valued random variable with bounded density
f0 with compact support contained in [0,M ], let the parameter of interest
ψ0 = F0(x0) =

∫
I(0,x0](x)dF0(x) be the cumulative distribution function

at x0 ∈ (0,M). Suppose we observe n i.i.d. observations X1, . . . , Xn of X.
Let Ψ̂b(Pn) =

∫
I(0,x0](x)fn,b(x)dx, where fn,b(x) = 1/nb

∑
iK((Xi − ·)/b)

is a kernel density estimator with density kernel K and bandwidth b. Let
Ψ̂0(Pn) = PnI(0,x0] be the empirical cumulative distribution function. Let
h→ b(h) be a 1-1 parametrization with inverse b→ h(b) satisfying

d

dh
P0

∫
r(·+ yb(h))K(y)dy

∣∣∣∣
h=0

6= 0.

That is, h(b) represents the order of the bias of the integrated kernel density
estimator with bandwidth b.

Let

Θ̂n(1−p)(b)2 = EBn

(
Ψ̂0(P 1

n,Bn
)− Ψ̂b(P 0

n,Bn
)
)2

,

where Bn correspond with V -fold cross-validation for a fixed V . Let bn be
its minimizer over the interval [0,M ]. Let b∗n = max(bn, cn/n) for a given
sequence cn →∞ with cn/

√
n = o(1).
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Then h∗n = oP (1/
√
n).

3.7. Example: Smooth estimation of a survival function.

Let O = (T̃ ≡ min(T,C),∆ ≡ I(T ≤ C)), where T is a survival time of
interest with cumulative distribution function F0, C is a right-censoring
variable independent of T with cumulative distribution function G0. Let
F̄0(t) = P (T > t) be the survival function of T , and Ḡ0(t) = P (C > t) be
the cumulative distribution function of C. We will assume that Ḡ0(T ) > 0
F0-a.e. Let ψ0 = E0r(T ). For example, if r(T ) = I(T ≥ t), then ψ0 = S0(t)
is the survival function at t. We observe n i.i.d. observations O1, . . . , On of
O, and we are concerned with smooth estimation of ψ0. Smoothing Kaplan-
Meier estimator has received considerable attention in the literature: see e.g.
1 and 9. However, though it has been recognized that undersmoothing is
essential in order to obtain an asymptotically efficient estimator, a data
adaptive method for selecting such a bandwidth has not been presented.

Let Ψ̂h(Pn) =
∫
r(s)fnb(s)ds, where

fnb(s) =
1
nb

n∑
i=1

K((Ti − s)/b)
∆i

Ḡn(Ti)

is an inverse probability of censoring weighted kernel density estimator of
the true density f0(s) of T with kernel K and bandwidth b = b(h). Here
Ḡn(t) = 1−Gn(t) denotes the Kaplan-Meier estimator of Ḡ0(t) ≡ 1−G0(t)
based on (T̃i, 1−∆i), i = 1, . . . , n. We note that

Ψ̂0(Pn) =
1
n

n∑
i=1

r(Ti)
∆i

Ḡn(Ti)
,

which is known to be an efficient estimator of ψ0 (Chapter 3, 32). In partic-
ular, if r(T ) = I(T > t), then Ψ̂0(Pn) equals the Kaplan-Meier estimator
of the survival function S(t) at time t.

Let h→ b(h) be a 1-1 parametrization with inverse b→ h(b) satisfying

d

dh
P0

∫
r(·+ yb(h))K(y)dy

∣∣∣∣
h=0

6= 0.

That is, h(b) represents the order of the bias of the integrated kernel density
estimator with bandwidth b. For example, if he kernelK does not have mean
zero, then one can choose h = b.

Let D(O | ψ,G) ≡ r(T ) ∆
Ḡ(T )

−ψ be the inverse probability of censoring
weighted full-data estimating function r(T )−ψ for ψ0. The actual efficient
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influence curve based estimating function for ψ0 is given by

D(O | ψ,G, S) ≡ r(T )
∆

Ḡ(T )
− ψ +

∫
S(max(t, u−))

S(u−)
dMG(u)
Ḡ(u−)

,

where dMG(u) = I(T̃ ∈ du,∆ = 0) − I(T̃ ≥ u) dG(u)
Ḡ(u−)

. Here S denotes
a candidate survival function and D(O | ψ0, G0, S0) equals the efficient
influence curve for ψ0 (see Chapter 3, 32).

Consider now our proposed criterian based on the estimating function
D(O | ψ,G):

Θ̂n(1−p)(h)2 = EBn

{
P 1
n,Bn

D(· | Ψ̂h(P 0
n,Bn

), G0
n,Bn

)
}2

= EBn

{
Ψ̂h(P 0

n,Bn
)− 1

np

n∑
i=1

I(Bn(i) = 1)r(T̃i)
∆i

Ḡ0
n,Bn

(T̃i)

}2

,

where G0
n,Bn

denotes the Kaplan-Meier estimator of G0 based on P 0
n,Bn

.
Similarly, one defines the criterian based on the estimating function D(O |
ψ,G, S). Let hn be its minimizer.

We also note that the corresponding target criterian for both estimating
functions is given by

Θ̃n(1−p)(h)2 = EBn

{
P0D(· | Ψ̂h(P 0

n,Bn
), G0, S0)

}2

= EBn

{
Ψ̂h(P 0

n,Bn
)− ψ0

}2

.

That is, the comparable oracle selector k̃n(1−p) corresponds with selecting
the estimator whose training sample realizations are closest to the true
value ψ0.

Following the template as laid out in Theorem 1, we can establish that,
if there exists a δ > 0 s.t. Ḡ(τ) > δ > 0 and r satisfies the conditions
of Theorem 2, then hn = oP (1/

√
n). As pointed out after Theorem 2, our

conditions are too strong for the indicator function r(T ) = I(T > t) so that
it remains to be shown that the smoothed Kaplan-Meier estimator Ψ̂hn(Pn)
is an asymptotically efficient estimator of S(t).

3.8. A class of general examples.

Consider candidate estimators Ψ̂h(Pn) of a pathwise differentiable d-
dimensional parameter ψ0 of P0 indexed by a continuous univariate index
h. Let ψ0 = Ψ(P0) ∈ IRd be pathwise differentiable euclidean parameter of
the data generating distribution P0 in a model M, which is identified as the
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solution of the d-dimensional vector equation P0D(· | ψ, γ0) = 0 for ψ rang-
ing over the parameter space of Ψ. For example, D could be the optimal
estimating function derived from the efficient influence curve representation
of Ψ : M→ IRd. Let Ψ̂0(Pn) be defined as the solution of the corresponding
estimating equation 0 = PnD(· | ψ, Γ̂(Pn)), which, for example, could be
an efficient estimator of ψ0 in model M. One can now imagine a variety of
general methods for constructing candidate estimators of ψ0 to which we
can then apply the cross-validation method based on estimating function
D. Firstly, one might have a sequence of submodels Mh ⊂M indexed by a
fine tuning parameter h, and Ψ̂h(Pn) would be an efficient estimator of the
true ψ0 under the assumption that P0 ∈ Mh. We conjecture that, if the
true data generating distribution happens to be an element of submodel
Mh for a h > 0, then the resulting cross-validation selected estimator Ψ̂hn

might be superefficient (and thus be a non-regular estimator). In our pre-
vious examples, this could be explicitly shown. Secondly, one might have a
particular submodel of interest ofM1 ⊂M, and let Ψ̂1(Pn) be an estimator
of ψ0 under the assumption that P0 ∈ M1. One can now define candidate
estimators as convex combinations Ψ̂h(Pn) = (1 − h)Ψ̂0(Pn) + hΨ̂1(Pn),
where h ∈ [0, 1].

A particular example of this type is treated in an upcoming paper 2 in
which the goal is to estimate the causal effect of treatment on an outcome in
a randomized trial with non-compliance, assuming a particular functional
form of the causal effect (e.g. through a structural nested mean model as
studied in 31). In these applications, using the randomization arm as an
instrumental variable, it is possible to construct unbiased estimating func-
tions, and thereby regular asymptotically linear estimators, for the causal
parameter without making the commonly made assumption that the actual
treatment is not subject to unmeasured confounding. However, these esti-
mators are typically extremely variable. On the other hand, if one is willing
to make the assumption of no unmeasured confounding then one has access
to estimators with much smaller variance. This suggest to let M be the big
model only assuming randomization of the treatment arm (which is known
to be true), and letM1 be the submodel which also assumes that treatment
is not confounded by unmeasured variables. Our cross-validation method-
ology allows us now to compute this range of estimators Ψ̂h(Pn), h ∈ [0, 1],
relying on h-specific degree on the no-unmeasured confouding assumption,
and simply let the data present us with the appropriate choice of h, while
still being at least as efficient as the estimator Ψ̂0 in the big modelM. For a
detailed treatment of this important application of our estimating function
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methodology we refer to 2. As the reader can imagine, it is not hard to
come up with a large range of very interesting and important applications
of this methodology, which allows us to trade off bias and variance w.r.t. to
a parameter of interest within the context of a given possibly large model.

4. General finite sample result.

Recall Θ̃n(1−p)(k) ≡ EBn
‖ P0D(· | Ψ̂k(P 0

n,Bn
), γ0) ‖, k̃ =

arg mink=1,...,K(n) Θ̃n(1−p)(k), Θ̂n(1−p)(k) ≡ EBn
‖ P 1

n,Bn
D(· |

Ψ̂k(P 0
n,Bn

), Γ̂(P 0
n,Bn

)) ‖, and kn = arg mink=1,...,K(n) Θ̂n(1−p)(k). For no-
tational convenience, we define D0

n,Bn
(O | ψ) ≡ D(O | ψ, Γ̂(P 0

n,Bn
)) and

D(O | ψ) ≡ D(O | ψ, γ0). We also define G1
n,Bn

=
√
np(P 1

n,Bn
− P0) as the

centered empirical process based on the validation sample identified by the
sample split Bn, and recall the notation Gf ≡

∫
f(o)dG(o).

The following theorem provides us with our most general finite sample
result. It compares our cross-validation selector with the oracle selector in
terms of the criterian Θ̃n(1−p) which measures in first order the norm of the
estimator minus the true parameter. Our subsequent results are derived by
establishing bounds on the remainder terms in this theorem.

Theorem 4: We have

Θ̃n(1−p)(kn) ≤ Θ̃n(1−p)(k̃) (18)

+
1

√
np
EBn

{
‖ G1

n,Bn
D0
n,Bn

(· | Ψ̂k̃(P
0
n,Bn

)) ‖ + ‖ G1
n,Bn

D(· | Ψ̂kn
(P 0
n,Bn

)) ‖
}

+
1

√
np
EBn

{
‖ G1

n,Bn

(
D0
n,Bn

−D
)
(· | Ψ̂k̃(P

0
n,Bn

)) ‖
}

+2 max
k∈{1,...,K(n)}

EBn ‖ P0(D0
n,Bn

−D)(· | Ψ̂k(P 0
n,Bn

)) ‖ .

Proof: Firstly, we note that by the triangle inequality property of a norm,
we have

EBn ‖ P0D(· | Ψ̂kn(P 0
n,Bn

)) ‖ ≤ EBn ‖ P 1
n,Bn

D(· | Ψ̂kn(P 0
n,Bn

)) ‖

+
1

√
np
EBn ‖ G1

n,Bn
D(· | Ψ̂kn(P 0

n,Bn
) ‖ .

The left-hand side equals Θ̃n(1−p)(kn), and the last term on the right-hand
side represents one of the empirical process terms on the right-hand side
of the inequality (18) to be proved. We will now study the other term,
and bound it by a sum of five terms, which results in the inequality
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(18). Repeated application (first and third inequality below) of the tri-
angle inequality property of a norm, and the fact that by definition of kn
Θ̂n(1−p)(kn) ≤ Θ̂n(1−p)(k̃) (second inequality below), provides us with the
following series of inequalities:

EBn
‖ P 1

n,Bn
D(· | Ψ̂kn

(P 0
n,Bn

)) ‖≤ EBn
‖ P 1

n,Bn
D0
n,Bn

(· | Ψ̂kn
(P 0
n,Bn

)) ‖
+EBn

‖ P 1
n,Bn

(D0
n,Bn

−D)(· | Ψ̂kn
(P 0
n,Bn

)) ‖
≤ EBn

‖ P 1
n,Bn

D0
n,Bn

(· | Ψ̂k̃(P
0
n,Bn

)) ‖
+EBn

‖ P 1
n,Bn

(D0
n,Bn

−D)(· | Ψ̂kn
(P 0
n,Bn

)) ‖
≤ EBn

‖ (P 1
n,Bn

− P0)D0
n,Bn

(· | Ψ̂k̃(P
0
n,Bn

)) ‖
+EBn ‖ P0D

0
n,Bn

(· | Ψ̂k̃(P
0
n,Bn

)) ‖
+EBn ‖ (P 1

n,Bn
− P0)(D0

n,Bn
−D)(· | Ψ̂kn(P 0

n,Bn
)) ‖

+EBn ‖ P0(D0
n,Bn

−D)(· | Ψ̂kn(P 0
n,Bn

)) ‖ .

Finally, again by the triangle inequality property, we have that the second
term of this sum of 4 terms can be bounded as follows:

EBn
‖ P0D

0
n,Bn

(· | Ψ̂k̃(P
0
n,Bn

)) ‖ ≤ EBn
‖ P0(D0

n,Bn
−D)(· | Ψ̂k̃(P

0
n,Bn

)) ‖

+EBn
‖ P0D(· | Ψ̂k̃(P

0
n,Bn

)) ‖

Collection of all 5 terms yields the proof of the theorem. �

5. Corollaries of Theorem 4.

We will present corollaries of Theorem 4 for the following three norms.

Definition 5: For a countable sequence of real numbers ai and weights
wb ≥ 0 with

∑∞
b=1 wb = 1, define the following norms:

‖(a1, a2, ...)‖1 =
∑∞
b=1 wb|ab|.

‖(a1, a2, ...)‖2 =
√∑∞

b=1 wb|ab|2.
‖(a1, a2, ...)‖∞ = supb≥1|ab|.

The following corollary of Theorem 4 establishes that our cross-validation
selector performs as well as the oracle selector k̃ up till a term of order
logK(n)/np and a term rn due to the estimation of the nuisance parameter.

Corollary 6: Let

rn ≡ 2 max
k∈{1,...,K(n)}

EBn
‖ P0(D0

n,Bn
−D)(· | Ψ̂k(P 0

n,Bn
)) ‖ .

Assume that supb∈B |Db(·|·)| ≤M <∞ a.s. Define hn,K(n) as the maximum
of the covering numbers

∫∞
0

supQ
√

logN(εM2,Fn, L2(Q))dε corresponding
with the following choices of function classes: Fn = {Db(·|Ψ̂k(P 0

n,Bn
))},
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Fn = {(D0
n,Bn

)b(·|Ψ̂k(P 0
n,Bn

))}, and Fn = {(D0
n,Bn

− D)b(·|Ψ̂k(P 0
n,Bn

))},
for 1 ≤ b <∞, 1 ≤ k ≤ K(n).

Then for ‖ · ‖ = ‖ · ‖1 or ‖ · ‖ = ‖ · ‖2, we have for a universal constant
c (only depending on M)

E[Θ̃n(1−p)(kn)] ≤ E[Θ̃n(1−p)(k̃)] + c
√

logK(n)/
√
np+ E[rn].

For ‖ · ‖ = ‖ · ‖∞, we have

E[Θ̃n(1−p)(kn)] ≤ E[Θ̃n(1−p)(k̃)] +M2hn,K(n)/
√
np+ E[rn].

Proof: Firstly, we take expectations on both sides of the inequality in
Theorem 4. For the second, third, and fourth terms on the right side of
the inequality (call them En,Bn [Un,i], i=1,2,3), we note that by Fubini’s
theorem,

E[En,BnUn,i] = E[Un,i] = EBn,P 0
n,Bn

EP 1
n,Bn

Un,i.

Finally, we apply the inequalities from Lemma 10 below to the inner ex-
pectation for these three terms to obtain the desired result. �

5.1. Lemmas for Corollary 6.

Lemma 7: Let f1, ..., fK(n) be functions with the same domain and range
dimension as O → D(O|ψ, γ), where f bk represents the bth component of
the kth function. Assume that |f bk | ≤M <∞ for 1 ≤ b, k <∞.
Then E[maxfb

k∈{f
b
1 ,...,f

b
K(n)}

|G1
n,Bn

f bk |] ≤ cM
√

logK(n), for a universal
contant c.

Proof: This is trivially implied by formula (2.5.5) in vdVW. �

Lemma 8: Under the assumptions and notation of Lemma 7, we have
E[maxfb

k∈{f
b
1 ,...,f

b
K(n)}

|(P 1
n,Bn

− P )f bk |2] ≤ c logK(n)/n.

Proof: Firstly, we use the Bonferroni inequality to bound the tail
probability (probability of exceeding s) of the quantity inside the ex-
pectation by K(n) maxk Pr[|(P 1

n,Bn
− P )f bk |2 ≥ s]. Thge latter equals

K(n) maxk Pr[|(P 1
n,Bn

− P )f bk | ≥
√
s], which can be bounded by

K(n) exp(−sn/c) for some constant c, by Bernstein’s inequality. Finally,
by Lemma 16, this bound implies the desired result. �

Lemma 9: Let N(·, ·, ·) denote the covering number as defined in ?. Con-
sider the assumptions and notation of Lemma 7. Let Fn ≡ {f bk : 1 ≤ k ≤
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K(n), 1 ≤ b ≤ ∞}, and hn,K(n) ≡
∫∞
0

√
log supQN(εM2,Fn, L2(Q))dε.

Then

E[ sup
f∈Fn

|G1
n,Bn

f |] ≤ cM2hn,K(n) for some universal constant c.

proof. See Chapter 2 in van der Vaart, Wellner (1996). �

Lemma 10: Under the assumptions and notation of Lemma 7, Lemma 8,
and Lemma 9, we have

1
√
np
EP 1

n,Bn
[ max
fk∈{f1,...,fK(n)}

‖G1
n,Bn

fk‖1] ≤ c
√

logK(n)/
√
np.

1
√
np
EP 1

n,Bn
[ max
fk∈{f1,...,fK(n)}

‖G1
n,Bn

fk‖2] ≤ c
√

logK(n)/
√
np.

1
√
np
EP 1

n,Bn
[ max
fk∈{f1,...,fK(n)}

‖G1
n,Bn

fk‖∞] ≤ M2hn,K(n)/
√
np.

Proof:
1√
npEP 1

n,Bn
[maxfk∈{f1,...,fK(n)} ‖G1

n,Bn
fk‖1]

= 1√
npEP 1

n,Bn
[maxfk∈{f1,...,fK(n)}

∑∞
b=1 wb|G1

n,Bn
f bk |]

≤ 1√
npEP 1

n,Bn
[
∑∞
b=1 wb maxfk∈{f1,...,fK(n)} |G1

n,Bn
f bk |]

= 1√
np

∑∞
b=1 wbEP 1

n,Bn
[maxfk∈{f1,...,fK(n)} |G1

n,Bn
f bk |],

The desired result then follows from Lemma 7.

1√
npEP 1

n,Bn
[maxfk∈{f1,...,fK(n)} ‖G1

n,Bn
fk‖2]

= 1√
npEP 1

n,Bn
[maxfk∈{f1,...,fK(n)}

√∑∞
b=1 wb|G1

n,Bn
f bk |2]

≤ 1√
npEP 1

n,Bn
[
√∑∞

b=1 wb maxfk∈{f1,...,fK(n)} |G1
n,Bn

f bk |2]

≤ 1√
np

√∑∞
b=1 wbEP 1

n,Bn
[maxfk∈{f1,...,fK(n)} |G1

n,Bn
f bk |2], by Jensen’s in-

equality.
Then desired result then follows from Lemma 8.

1√
npEP 1

n,Bn
[maxfk∈{f1,...,fK(n)} ‖G1

n,Bn
fk‖∞]

= 1√
npEP 1

n,Bn
[supf∈Fn

|G1
n,Bn

f |], for Fn ≡ {f bk : 1 ≤ k ≤ K(n), 1 ≤ b ≤ ∞}
The desired result then follows from Lemma 9. �

5.2. Asymptotic implications.

The next corollary shows that the cross-validation selector kn is asymptoti-
cally equivalent to the oracle selector k̃n(1−p) in the case that 1) the rate of
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convergence achieved by the oracle selector is worse than the almost para-
metric rate logK(n)/n, and 2) the number K(n) of candidate estimators
is polynomial in n.

Our observation is based on the following trivial lemma.

Lemma 11: Suppose that an, bn, cn ∈ R are such that 0 < an ≤ bn ≤
an + cn, and that lim sup cn

an
= 0. Then limn→∞ an/bn = 1.

Proof: Dividing by an in the inequality, we obtain,
0 < 1 ≤ lim inf bn/an ≤ lim sup bn/an ≤ 1 + lim sup cn/an = 1
=⇒ lim bn/an = 1
⇐⇒ lim an/bn = 1.

Corollary 12: Let rn and hn,K(n) be defined as in Corollary 6, and assume
that, in addition to the assumptions of Corollary 6, we have

max(rn,
√

logK(n)/np)
E[Θ̃n(1−p)(k̃)]

→ 0 for n→∞. (19)

Then

lim
E[Θ̃n(1−p)(k̃)]

E[Θ̃n(1−p)(kn)]
= 1.

Proof: This is immediate from Corollary 6 and Lemma 11. �
We note that the proportion p in Corollary 12 can be selected to con-

verge to zero with sample size at a rate p(n) so that logK(n)/np(n) remains
of smaller order than E[Θ̃n(1−p)(k̃)]. In this case, Corollary 12 provides
also conditions under which the cross-validation selector is asymptotically
equivalent with the oracle selector k̃n.

5.3. The oracle selector in convex linear models.

Finally, we state here that our target criterian Θ̃n(1−p)(ψ) actually reduces
to the norm of the difference ψ0 − ψ in the case that the parameter Ψ is
linear, and the parameter space is convex, and various other cases. This
was made explicit in our examples in Section 3.

Corollary 13: Suppose that

P0Db(O | ψ, γ0) = ψb0 − ψb for all b ∈ B.

This holds, in particular, if Db(O | ψ0, γ0) is a gradient of a real valued
linear parameter Ψb : M→ IR at P0 (for all P0 ∈ M), M is convex, and
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the regularity conditions of Theorem 2.2 in 25 hold. Let ψ be representing
the vector (ψb : b ∈ B), so that ‖ ψ−ψ0 ‖≡‖ (ψb : b)− (ψb0 : b) ‖ is defined
as the norm ‖ · ‖ of the corresponding vector.

Then in Corollaries 6 and 12, E[Θ̃n(1−p)(k̃)] and E[Θ̃n(1−p)(kn)] may
be replaced by E‖Ψ̂k̃(P

0
n,Bn

) − Ψ(P0)‖ and E‖Ψ̂kn
(P 0
n,Bn

) − Ψ(P0)‖. Here
k̃ is the minimizer over k ∈ {1, 2, ...,K(n)} of the random quantity
EBn‖Ψ̂k(P 0

n,Bn
)−Ψ(P0)‖.

Proof: This is trivial. �

6. Estimating function based cross-validation for
density/hazard estimation

In this section we present estimating function based cross-validation for
density estimation and hazard estimation by specifying a particular choice
of estimating function. In particular, we illustrate that the corresponding
target criterian satisfies the exact difference between a candidate density
and the true density. Our example would be completely analogue in the
regression case, and is therefore omitted, and left to the interested reader.
Density estimation and regression allow the application of loss-based cross-
validation based on the minus log loss function and squared error loss func-
tion, respectively. Since density estimation and regression are two well stud-
ied problems in the literature, we decided that it is of interest to illustrate
our method in these cases as well. We remark, however, that the need for
estimating function based cross-validation was motivated by problems in
which loss-based cross-validation is not easily available.

6.1. Example: Density estimation.

Let X ∼ P0 be a univariate random variable with density f0. Suppose
that the model is nonparametric, the parameter of interest is the density
itself: Ψ(P ) = f , ψ0 = Ψ(P0) = f0. Let φb, b = 1, . . . be a countable
orthonormal basis in the Hilbert space L2(dx) of square integrable func-
tions w.r.t Lebesgue measure, where dx denotes the Lebesgue measure.
Let Ψb(P ) = Pφb =

∫
φb(x)f(x)dx. Now, the efficient influence curve

of Ψb(P ) is given by Db(X | P0) = φb(X) − E0φb(X). A correspond-
ing estimating function is given by Db(X | ψ) = φb(X) −

∫
φb(x)ψ(x)dx.

Thus Θ̂n(1−p)(k) = EBn
‖ (P 1

n,Bn
φb −

∫
φb(x)Ψ̂k(P 0

n,Bn
)(x)dx : b) ‖. Since
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P0Db(· | ψ) =
∫
φb(x)(ψ0 − ψ)(x)dx = ψb0 − ψb, we have

Θ̃n(1−p)(k) = EBn
‖
(∫

φb(x)(Ψ̂k(P 0
n,Bn

)− ψ0)(x)dx : b
)
‖ .

If we use the Euclidean norm, then

Θ̃n(1−p)(k) =

√∫ {
Ψ̂k(P 0

n,Bn
)(x)− ψ0(x)

}2

dx

is simply the L2(dx)-norm between the candidate density estimator
Ψ̂k(P 0

n,Bn
) and the true density ψ0.

6.2. Example: Hazard estimation.

Let X ∼ P0 be a univariate random variable with density f0, survival
function S0 and hazard λ0 = f0/S0. Suppose that the model is nonpara-
metric, and the parameter of interest is the hazard: Ψ(P ) = λ = f/S,
ψ0 = Ψ(P0) = f0/S0. Let φb, b = 1, . . . be a countable orthonormal basis
in L2(dx). Let Ψb(P ) =

∫
φb(x)λ(x)dx, where λ denotes the hazard corre-

sponding with probability distribution P . Now, the efficient influence curve
of the real valued parameter Ψb(P ) at P0 is given by

Db(X | P0) =
φb(X)
S0(X)

−
∫ X

0

φb(x)
S0(x)

λ0(x)dx.

A corresponding estimating function for a candidate hazard ψ in thus de-
fined as

Db(X | ψ, S0) =
φb(X)
S0(X)

−
∫ X

0

φb(x)
S0(x)

ψ(x)dx,

which is thus indexed by a root-n estimable nuisance parameter S0. Thus,
the cross-validation criteria Θ̂n(1−p)(k) is defined as

EBn ‖

(
P 1
n,Bn

φb/S0 −
∫
P 1
n,Bn

I(x < ·) φb(x)
S0
n,Bn

(x)
Ψ̂k(P 0

n,Bn
)(x)dx : b

)
‖,

where S0
n,Bn

denotes an estimator of the survival function based on the
training sample P 0

n,Bn
. Since P0Db(· | ψ, S0) =

∫
φb(x)(ψ0 − ψ)(x)dx =

ψb0 − ψb, we have that the target criterian equals

Θ̃n(1−p)(k) = EBn ‖
(∫

φb(x)(Ψ̂k(P 0
n,Bn

)− ψ0)(x)dx : b
)
‖ .
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If we use the Euclidean norm, then

Θ̃n(1−p)(k) =

√∫
Ψ̂k(P 0

n,Bn
)(x)− ψ0(x)}2dx

is simply the L2(dx)-norm between the candidate hazard estimator
Ψ̂k(P 0

n,Bn
) and the true hazard ψ0. Finally, we note that our cross-validation

selector for selection among hazard estimators would in first order not be
affected by the nuisance parameter since the nuisance parameter S0 can be
estimated at a parametric rate, while the minimax rates for hazard estima-
tion is worse than the root-n rate for all smoothness classes.

7. Unified estimating function based learning.

In this article we have focussed on estimating function based cross-
validation methodology for selecting among a class of estimators. However,
in this section, we show that the estimating function itself, in combina-
tion with a sieve, can be used to construct such candidate estimators, and
thereby, in combination with cross-validation, results in an estimator of the
parameter of interest. This definition of an estimator follows the complete
analogue of the unified loss based estimation methodology presented in 28

and subsequent application papers by us, but with the empirical mean of
the loss function replaced by the norm of the empirical mean of the esti-
mating function.

7.1. Road Map.

Specifically, this unified estimating function based estimation methodology
can be represented by the following road map.

Parameter of interest: Let O1, . . . , On be i.i.d. observations of O ∼ P0,
where it is known that P0 ∈ M for a statistical model M. Let
Ψ : M→ D(S) be the parameter of interest, where D(S) denotes
the class of real valued functions on S (e.g S = {1, . . . , d}, or
S = IRd). Let ψ0 = Ψ(P0) be the true parameter value we aim to
learn from the data.

Estimating function: Let D(O,ψ | υ) = (Db(O | ψ, υ) : b ∈ B) be an
unbiased estimating function for ψ0 with nuisance parameter Υ.
That is, for each b ∈ B, (O,ψ, υ) → Db(O | ψ, υ) is a real valued
function on the cartesian product of a support of P0, the parameter
space Ψ of Ψ, and the nuisance parameter space {Υ(P ) : P ∈M}
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of a particular nuisance parameter Υ on model M. In addition, it
is assumed that the estimating function is unbiased in the sense
that P0D(· | ψo,Υ(P0)) = 0. In Section 2 it was shown how to
construct such an estimating function in terms of the b-specific
efficient influence curves of b-specific pathwise differentiable real
valued parameters.

Nuisance parameter estimator: Let Pn → Υ̂(Pn) be an estimator of
υ0 = Υ(P0).

Criteria: Norm of estimating equation: Given a particular norm ‖ · ‖
on vectors (x(b) : b ∈ B) with real valued components, we define
the following empirical criteria on the parameter space Ψ of Ψ:

Θ̂(Pn)(ψ) ≡‖ PnD(· | ψ, Υ̂(Pn)) ‖ .

For example, if we use the euclidean norm with weights w(b), we
obtain

Θ̂(Pn)(ψ) ≡
∑
b∈B

w(b)
(
PnDb(· | ψ, Υ̂(Pn))

)2

.

Sieve on parameter space: Let Ψs ⊂ Ψ be a subspace of the parameter
space indexed by s ∈ An.

Subspace-specific estimators: For each subspace, we can define the es-
timator as the minimizer of the norm of the estimating equation:

Ψ̂s(Pn) = arg min
ψ∈Ψs

Θ̂(Pn)(ψ).

Cross-validation selector: Let

Ŝ(Pn) = arg min
s∈An

EBn
‖ P 1

n,Bn
D(· | Ψ̂s(P 0

n,Bn
), Υ̂(P 0

n,Bn
)) ‖ .

For example, if we use the Euclidean norm, we can choose (here we
put EBn within square root, but outside squares):

Ŝ(Pn) = arg min
s∈An

EBn

∑
b∈B

w(b)
(
P 1
n,Bn

Db(· | Ψ̂s(P 0
n,Bn

), Υ̂(P 0
n,Bn

))
)2

.

Estimator: We estimate ψ0 with

Ψ̂(Pn) ≡ Ψ̂Ŝ(Pn)(Pn).

This estimating equation methodology generalizes the estimating equation
methodology as currently used for euclidean pathwise differentiable parame-
ters such as (locally efficient) generalized estimating equations for repeated
measures regression, and the locally efficient estimating function method-
ology for censored data as presented in 32.
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8. Minimax adaptive estimating function based learning.

In 28 we proved that, for epsilon-net sieves Ψs,ε ⊂ Ψs indexed by both
s and ε (where Ψs,ε denotes a finite set of elements which approximates
each element in Ψs within distance ε), this type of estimator based on the
empirical mean of a loss function (instead of the norm of the estimating
equation) satisfies a finite sample inequality, which implies that the estima-
tor is minimax adaptive w.r.t. to the sequence of subspaces Ψs, s ∈ An. In
this section we will establish the analogue of this finite sample inequality for
the estimating function based estimator presented in the previous section.

Let Ψs,ε = {ψs,εj : j = 1, . . . , Ns(ε)} ⊂ Ψs be a finite subset of size
Ns(ε), (s, ε) ∈ An, where the size of An is denoted with K(n). We view
Ψs,ε as a discrete approximation of Ψs, where the approximation error is
an increasing function in ε, and the approximation error converges to zero
for ε → 0. If we set Ψs,ε equal to an ε-net of Ψs, that is, a set of points
such that each element of Ψs is within a distance ε of a point in Ψs,ε,
then our finite sample inequality below implies minimax adaptive rates of
convergence for our estimator.

For each (s, ε) ∈ An, we define the estimator

Ψ̂s,ε(Pn) = arg min
ψ∈Ψs,ε

EBn
‖ P 1

n,Bn
D(· | ψ, Γ̂(P 0

n,Bn
)) ‖ .

We select the subspace-index s and the resolution ε with estimating function
based cross-validation:

(sn, εn) = (Ŝ(Pn), Ê(Pn)) = arg min
s,ε

EBn ‖ P 1
n,Bn

D(· | Ψ̂(P 0
n,Bn

), Γ̂(P 0
n,Bn

)) ‖ .

Our estimator is given by

Ψ̂(Pn) ≡ Ψ̂sn,εn(Pn).

The next theorem presents a finite sample inequality for this estimator.

Theorem 14: Define

r(n) ≡ 2 sup
ψ∈Ψ

EBn
‖ P0

{
D(· | ψ, Γ̂(P 0

n,Bn
))−D(· | ψ, γ0)

}
‖ .

We will assume that

Er(n) ≤ rnuis(n(1− p)),

where rnuis(n) is a particular function of n converging to zero. We also
assume that

sup
o,ψ,υ,b

| Db(o | ψ, υ) |≤M <∞,
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where the supremum is taken over the cartesian product of a support of P0,
the parameter space for Ψ, and the nuisance parameter space for Υ.

Let

B0(ε, s) ≡ min
ψ∈Ψε,s

‖ P0D(· | ψ, γ0) ‖ .

Then,

E ‖ P0D(· | Ψ̂sn,εn(P 0
n,Bn

), γ0) ‖ ≤ min
s,ε

{
B0(ε, s) + c(M)

logNs(ε)
n(1− p)p

}
+rnuis(n(1− p)2) + rnuis(n(1− p)) + c(M)

logK(n)
np

.

Proof: In this proof we will use the same short-hand notation as introduced
at the start of Section ??.

Given a collection of candidate estimators E ≡ {Ψ̂k : k} whose realiza-
tions are in Ψ, and the distribution FBn

of the cross-validation scheme Bn,
we define the following function of the empirical distribution function Pn:

Re(Pn | E , FBn) ≡ 1
√
np
EBn

{
‖ G1

n,Bn
D0
n,Bn

(· | Ψ̂k̃(P
0
n,Bn

)) ‖
}

+

1
√
np
EBn

{
‖ G1

n,Bn
D(· | Ψ̂kn(P 0

n,Bn
)) ‖ + ‖ G1

n,Bn

(
D0
n,Bn

−D
)
(· | Ψ̂k̃(P

0
n,Bn

)) ‖
}
.

Given a collection of candidate estimators E ≡ {Ψ̂k : k ∈ An}, and the
distribution FBn of the cross-validation scheme Bn, we also define

Rnuis(Pn | E , FBn) ≡ 2 max
k∈{1,...,K(n)}

EBn ‖ P0(D0
n,Bn

−D)(· | Ψ̂k(P 0
n,Bn

)) ‖ .

Theorem 4 states that

EBn ‖ P0D(· | Ψ̂kn(P 0
n,Bn

), γ0) ‖ ≤ min
k
EBn ‖ P0D(· | Ψ̂k(P 0

n,Bn
), γ0) ‖

+Re(Pn | E , FBn) +Rnuis(Pn | E , FBn). (20)

Under the condition that supo,ψ,γ,b | Db(o | ψ, γ) |≤M <∞, by Lemma
7, we have that

ERe(Pn | E , FBn
) ≤ c(M)

log | E |
np

,

where c(M) only depends on M . That is, this upper bound on the expec-
tation of Re(Pn | E , FBn

) only depends on the class of estimators through
the actual number of estimators.
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We can bound the Rnuis term as follows:

Rnuis(Pn | E , FBn) ≤ 2 sup
ψ∈Ψ

EBn ‖ P0(D0
n,Bn

−D)(· | ψ) ‖

≡ Rnuis(Pn | FBn),

where the latter quantity does not depend on the class of estimators any-
more. In the theorem we assumed that

ERnuis(Pn | FBn
) ≤ rnuis(n(1− p)),

where rnuis(n) is a particular function of n converging to zero.
To simplify notation, we will denote Re(Pn | E , FBn

) with Re(Pn |
K(n), p), since in our analysis only the expectation bounds on these random
variables matter, and as shown above, these only depend on the number of
estimators K(n) and the proportion p constituting the validation sample.
Similarly, we will denote Rnuis(Pn | FBn

) with Rnuis(Pn | p). Using this
notation, the finite sample inequality (??) reads as:

EBn
‖ P0D(· | Ψ̂kn

(P 0
n,Bn

), γ0) ‖ ≤ min
k
EBn

‖ P0D(· | Ψ̂k(P 0
n,Bn

), γ0) ‖

+Re(Pn | K(n), p) +Rnuis(Pn | p). (21)

The proof of the Theorem is essentially a double application of this inequal-
ity (??), as we will show now.

Application of this inequality (??) to the estimators Ψ̂ε,s, (s, ε) ∈ An,
yields

EBn
‖ P0D(· | Ψ̂sn,εn(P 0

n,Bn
)) ‖ ≤ min

s,ε
EBn

‖ P0D(· | Ψ̂s,ε(P 0
n,Bn

)) ‖

+Re(Pn | K(n), p) +Rnuis(Pn | p). (22)

Application of (??) to the constant estimators Ψ̂s,ε
j (Pn) = ψs,εj , j =

1, . . . , Ns(ε), yields

‖ P0D(· | Ψ̂s,ε(Pn)) ‖ ≤ min
ψ∈Ψε,s

‖ P0D(· | ψ) ‖

+Re(Pn | Ns(ε), p) +Rnuis(Pn | p).

Application of the latter inequality to the empirical distribution P 0
n,Bn

of
the Bn-specific training sample gives us:

‖ P0D(· | Ψ̂s,ε(P 0
n,Bn

)) ‖ ≤ min
ψ∈Ψε,s

‖ P0D(· | ψ) ‖

+Re(P 0
n,Bn

| Ns(ε), p) +Rnuis(P 0
n,Bn

| p).
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Substitution of this inequality in (??), and noting that EBnRnuis(P
0
n,Bn

| p)
does not depend on (ε, s), yields:

EBn
‖ P0D(· | Ψ̂sn,εn(P 0

n,Bn
)) ‖ ≤ (23)

min
s,ε

{
min
ψ∈Ψε,s

‖ P0D(· | ψ) ‖ +EBn
Re(P 0

n,Bn
| Ns(ε), p)

}
+EBn

Rnuis(P 0
n,Bn

| p) +Re(Pn | K(n), p) +Rnuis(Pn | p). (24)

Taking expectations on both sides of the latter inequality provides us
with

E ‖ P0D(· | Ψ̂sn,εn(P 0
n,Bn

)) ‖ ≤ min
s,ε

{
B0(ε, s) + ERe(P 0

n,Bn
| Ns(ε), p)

}
+ERnuis(P 0

n,Bn
| p) + ERe(Pn | K(n), p) + ERnuis(Pn | p)

≤ min
s,ε

{
B0(ε, s) + c(M)

logNs(ε)
n(1− p)p

}
+rnuis(n(1− p)2) + rnuis(n(1− p)) + c(M)

logK(n)
np

,

where we applied the previously stated bounds on the expectations of the
Re and Rnuis terms. This proves the theorem. �

Asymptotic interpretation of finite sample inequality. In order to
interpret this finite sample inequality one should first notice that if the
number K(n) of candidate sets Ψε,s is polynomial in sample size, which is
neither a theoretical (for achieving optimal rates of convergence) or prac-
tical limitation, then the term logK(n)/np = O(log n/n). Secondly, the
contribution due to the estimation of γ0 is bounded by the rate rnuis(n).
By selecting the estimating function in the manner described in Section 2,
one expects that γ → P0D(· | ψ0, γ) has directional derivatives equal to
zero. Consequently, in that case, the rate rnuis(n) might be mainly a func-
tion of a second order difference between Γ̂(Pn) and γ0. In the situation
that rnuis(n) is relatively small (in relation to the first term) and K(n) is
polynomial in sample size, the driving term is the minimum over ε, s of the
sum of the approximation error B0(ε, s) for the sieve Ψs,ε and the logarithm
of the covering number Ns(ε) divided by n. Using known covering numbers
for a variety of sieves and an estimating function so that ‖ P0D(· | ψ, γ0) ‖
correponds with a standard norm between ψ and ψ0 (e.g., see regression
and density estimation example in Section ??), it follows that this trade-off
corresponds with a minimax adaptive rate of convergence in the classical
regression and density examples. We refer to 28 and 30 for such illustrations.
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9. Summary

In this article we introduced a cross-validation method for selecting an es-
timator among a class of estimators, which only requires specification of
an (possibly infinite dimensional) estimating function for the parameter of
interest. We provide a method, based on canonical gradients of a collection
of real valued path-wise differentiable parameters, for constructing an es-
timating function so that its expectation at a candidate parameter value
equals in first order a difference between the candidate and the true para-
meter value. In this manner, the estimating function based cross-validation
selector is aimed at selecting the estimator which performs best w.r.t. to
the parameter of interest. This is formally established by showing that 1) if
the parameter is path-wise differentiable, our cross-validation selector data
adaptively under-smooths so that it results in an asymptotically efficient
(or superefficient) estimator, and 2) if none of the candidate estimators
achieve the parametric rate, then the cross-validation selector is asymptoti-
cally equivalent with the oracle selector. We also provided various examples
indicating the wide range of applications for this methodology. In particu-
lar, we show that our methodology solves a long standing problem of how
to data adaptively smooth an empirical cumulative distribution function (or
Kaplan-Meier estimator) while preserving the asymptotic efficiency. Finally,
we generalize estimating function methodology for path-wise differentiable
parameters to a completely general sieve based estimating function method-
ology, thereby generalizing estimating function methodology fo0r pathwise
differentiable parameters and ”machine learning” for regression and den-
sity estimation, to learning of general parameters. We formally prove that,
if one augments a given sieve with the inclusion of epsilon-nets within each
element of the sieve, then this estimator satisfies a finite sample inequality,
which shows it is mini-max adaptive w.r.t. the sieve and w.r.t. to the esti-
mating function based norm. In the future we plan to investigate and apply
this general estimating function methodology to a variety of examples.

Appendix.

Some useful lemmas

Our proof of finite sample results is based on Bernstein’s inequality, which
we state here as a lemma for ease of reference. A proof is given in Lemma
A.2, p. 564 in 12.

Lemma 15: Bernstein’s inequality. Let Zi, i = 1, . . . , n, be independent
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real valued random variables such that Zi ∈ [a, b] with probability one. Let
0 <

∑n
i=1 VAR(Zi)/n ≤ σ2. Then, for all ε > 0,

Pr

(
1
n

n∑
i=1

(Zi − EZi) > ε

)
≤ exp

(
−1

2
nε2

σ2 + ε(b− a)/3

)
.

This implies

Pr

(
1
n
|
n∑
i=1

(Zi − EZi) |> ε

)
≤ 2 exp

(
−1

2
nε2

σ2 + ε(b− a)/3

)
.

We have the following immediate corollary of Bernstein’s inequality, which
allows us to obtain the wished tail probabilities for products Z2

1n, Z1nZ2n.

Lemma 16: Bernstein’s inequality. Given arbitrary random variables
(Z1n, Z2n), we have

P (Z1nZ2n ≥ s) ≤ P (Z1n ≥
√
s) + P (Z2n ≥

√
s).

This allows us to obtain explicit tail probabilities from tail probabilities de-
rived for Z1n and Z2n separately. In particular, if (Z1i, Z2i), i = 1, . . . , n,
are independent bivariate random variables such that Zji ∈ [a, b], j = 1, 2,
with probability one, 0 <

∑n
i=1 VAR(Zji)/n ≤ σ2, j = 1, 2, then, for all

ε > 0,

Pr

(
1
n

n∑
i=1

(Z1i − EZ1i)
1
n

n∑
i=1

(Z2i − EZ2i) > ε

)
≤ 2 exp

(
−1

2
nε

σ2 +
√
ε(b− a)/3

)
.

This implies

Pr

(
| 1
n

n∑
i=1

(Z1i − EZ1i)
1
n

n∑
i=1

(Z2i − EZ2i) |> ε

)
≤ 4 exp

(
−1

2
nε

σ2 +
√
ε(b− a)/3

)
.

These bounds can be directly translated into bounds on the corresponding
expectations. In particular, we can apply the following simple lemma.

Lemma 17: Let Zn be a random variable satisfying that P (Zn ≥ s) ≤
C(n) exp(−ns/c) for all s ≥ 0. Then EZn ≤ c(logC(n)+1)

n .
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