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Application of Time-to-Event Methods in the
Assessment of Safety in Clinical Trials

Kelly L. Moore and Mark J. van der Laan

Abstract

Since randomized controlled trials (RCT) are typically designed and powered for
efficacy rather than safety, power is an important concern in the analysis of the
effect of treatment on the occurrence of adverse events (AE). These outcomes are
often time-to-event outcomes which will naturally be subject to right-censoring
due to early patient withdrawals. In the analysis of the treatment effect on such an
outcome, gains in efficiency, and thus power, can be achieved by exploiting co-
variate information. We apply the targeted maximum likelihood methodology to
the estimation of treatment specific survival at a fixed end point for right-censored
survival outcomes. This approach provides a method for covariate adjustment,
that under no or uninformative censoring, does not require any additional para-
metric modeling assumptions, and, under informative censoring, is consistent un-
der consistent estimation of the censoring mechanism or the conditional hazard
for survival. Thus, the targeted maximum likelihood estimator has two impor-
tant advantages over the Kaplan-Meier estimator: 1) It exploits covariates to im-
prove efficiency, and 2) It is consistent in the presence of informative censoring.
These properties are demonstrated through simulation studies. Extensions to the
methodology are provided for non randomized post-market safety studies and also
for the inclusion of time-dependent covariates.



1 Introduction

Safety analysis in randomized controlled trials (RCT) involves estimation of the treatment
effect on the numerous adverse events (AE) that are collected in the study. RCT are
typically designed and powered for efficacy rather than safety. Even when assessment
of AE is a major objective of study, the trial size is generally not increased to improve
likelihood of detecting AE (Friedman et al. (1998)). As a result, power is an important
concern in the analysis of the effect of treatment on AE in RCT (Peace (1987)).

Typically in an RCT, crude incidences of each AE are reported at some fixed end point
such as the end of study (Gait et al. (2000); Güttner et al. (2007); Liu et al. (2006)).
These crude estimates often ignore missing observations that frequently occur in RCT
due to early patient withdrawals (Menjoge (2003)). A review of published RCT in major
medical journals found that that censored data are often inadequately accounted for in
their statistical analyses (Wood et al. (2004)). A crude estimator that ignores censoring
can be highly biased when the proportion of dropouts differs between treatment groups
(see Gait et al. (2000) for examples).

The crude incidence is an important consideration in the evaluation of safety for very
rare, severe or unexpected AE. Such AE require clinical evaluation for each case and are
not the focus of this paper. Instead, we focus on those AE that are routinely collected
in RCT and most often are not associated with a pre-specified hypothesis. These AE are
typically reported as an observed rate with a confidence interval or p-value.

Patient reporting of AE occurrence usually occurs at many intervals throughout the
study often collected at follow-up interviews rather than only at a single fixed end-point.
As such, time-to-event methods that exploit these data structures may provide further
insight into the safety profile of the drug. The importance of considering estimators of AE
rates that account for time due to differential lengths of exposure and follow-up is discussed
in (O’Neill (1988)). Furthermore, in most RCT in oncology, most if not all patients suffer
from some AE (Nishikawa et al. (2006)) and thus investigators may be interested in the
probability of the occurrence of a given AE by a certain time rather than simply the
incidence. Time-to-event analysis techniques may be more sensitive than crude estimates
in that they readily handle missing observations that frequently occur in RCT due to early
patient withdrawals. For example, in Davis et al. (1987), AE from the Beta-Blocker Heart
Attack Trial were analyzed by comparing distributions of the time to the first AE in the
two treatment arms. The results of this analysis were contrasted to the cross-sectional
crude percentage analysis and were found to be more sensitive in detecting a difference by
taking into account the withdrawals. A vast amount of literature exists for time-to-event
analysis but these methods are often not applied to the analysis of AE in RCT. A general
review of survival analysis methods in RCT (without a particular focus on AE) is provided
in Fleming and Lin (2000).

In this paper we focus on estimation of treatment specific survival at a fixed end point for
right-censored survival outcomes using targeted maximum likelihood estimation (van der
Laan and Rubin (2006)). Survival is estimated based on a hazard fit and thus the time-
dependent nature of the data is exploited. There are two main goals of the methodology
presented in this paper over unadjusted crude proportions and Kaplan-Meier estimators.
The first is to provide an estimator that exploits covariates to improve efficiency in the
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estimation of treatment-specific survival at fixed end points. The second is to provide a
consistent estimator in the presence of informative censoring.

2 Motivation and Outline

Consider the estimation of the effect of treatment on a particular AE at some fixed end
point in the study. From estimation theory, it is known that the nonparametric maximum
likelihood estimator (MLE) is the efficient estimator of the effect of interest (van der Laan
and Robins (2003)). In most RCT, data are collected on baseline (pre-treatment) covariates
in addition to the treatment and the AE of interest. The unadjusted or crude estimator is
defined as the difference in proportions of the AE between treatment groups. This estimator
ignores the covariates and is thus not equivalent to the full MLE. It follows that application
of the unadjusted estimator can lead to a loss in estimation efficiency (precision) in practice.

Conflicting results in initial applications of covariate adjustment in RCT for estimating
the treatment effect for fixed end-point efficacy studies were found. For continuous out-
comes using linear models for adjustment demonstrated gains in precision over the unad-
justed estimate (Pocock et al. (2002)). However adjustment using logistic models for binary
outcomes was shown to actually reduce precision and inflate point estimates (Hernández
et al. (2004); Robinson and Jewell (1991)).

This apparent contradiction was resolved through the application of estimating function
methodology (Tsiatis et al. (2008); Zhang et al. (2008)) and targeted maximum likelihood
estimation (Moore and van der Laan (2009)). In these references, consistent estimators
that do not require parametric modeling assumptions were provided and shown to be more
efficient than the unadjusted estimator, even with binary outcomes. It just so happens that
the coefficient for the treatment variable in a linear regression that contains no interactions
with treatment coincides with the efficient estimating function estimator and thus the
targeted maximum likelihood estimator. This fortunate property does not hold for the
logistic regression setting, i.e., the exponentiated coefficient for treatment from the logistic
regression model does not equal the unadjusted odds ratio. This conditional estimator does
not correspond to the marginal estimator in general and in particular not in the binary
case. The efficient estimate of the marginal (i.e., unconditional) effect obtained from the
conditional regression is the weighted average of the conditional effect of treatment on the
outcome given covariates according to the distribution of the covariates.

With this principle of developing covariate adjusted estimators that do not require para-
metric modeling assumptions for consistency in mind, in this paper we provide a method
for covariate adjustment in RCT for the estimation of treatment specific survival at a fixed
end point for right-censored survival outcomes. Thereby, we can estimate a comparison
of survival between treatment groups at a fixed end point that is some function of the
two treatment specific survival estimates. Examples of such parameters are provided in
section 4 such as the marginal additive difference in survival at a fixed end point. Under
no or uninformative censoring, the estimator provided in this paper does not require any
additional parametric modeling assumptions. Under informative censoring, the estimator
is consistent under consistent estimation of the censoring mechanism or the conditional
hazard for survival.
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It is important to note that the conditional hazard on which the estimate is based
is not meant to infer information about subgroup (conditional) effects of treatment. By
averaging over the covariates that have terms in the hazard model, we obtain a marginal or
unconditional estimate. The methodology presented in this paper can be extended to the
estimation of subgroup specific effects however we focus only on marginal (unconditional)
treatment effects on survival at fixed end point(s).

We also note that the methodology can be extended to provide a competitor test to the
ubiquitous log-rank test. Methods have been proposed for covariate adjustment to improve
power over the logrank test (Hernández et al. (2006); Li (2001); Lu and Tsiatis (2008)).
These are tests for an average effect of treatment over time. Our efficiency results are not
in comparison to these methods but rather to the treatment-specific Kaplan-Meier estimate
at that fixed end point.

In itself treatment specific survival at a fixed end point, and thereby the effect of
treatment on survival at that end point can provide useful information about the given
AE of interest. This is a very common measure to report (see Gait et al. (2000); Güttner
et al. (2007); Liu et al. (2006); Menjoge (2003)), however most of the currently applied
estimation approaches ignore covariates and censoring and do not usually exploit the time-
dependent nature of the data.

We present our method of covariate adjustment under the framework of targeted maxi-
mum likelihood estimation originally introduced in van der Laan and Rubin (2006). Specif-
ically, the paper is outlined as follows. We first begin with a brief introduction to targeted
maximum likelihood estimation in section 3. We then outline the data, model and param-
eter(s) of interest in section 4. The application of targeted maximum likelihood estimation
to our parameter of interest with its statistical properties and inference are presented in
section 5. In section 6 we present a simulation study to demonstrate the efficiency gains
of the proposed method over the current methods in an RCT under no censoring and
uninformative censoring. Furthermore, under informative censoring we demonstrate the
bias that arises with the standard estimator in contrast to the consistency of our proposed
estimator. The targeted maximum likelihood estimator requires estimation of an initial
conditional hazard. Methods for fitting this initial hazard as well as the censoring mech-
anism are provided in section 7. In section 8 we outline the inverse weighting assumption
for the censoring mechanism. Alternative estimators and their properties are briefly out-
lined in section 9. AE data are multivariate in nature in that many AE are collected an
analyzed in any given RCT. In section 10 we outline the multiple testing issues involved
in the analysis of such data. Section 11 provides extensions to the methodology including
time-dependent covariates, and post-market safety analysis. Finally, we conclude with a
discussion in section 12.

3 Introduction to targeted maximum likelihood esti-

mation

Traditional maximum likelihood estimation aims for a trade-off between bias and variance
for the whole density of the observed data O, whereas investigators are typically interested
in a specific parameter of the density of O rather than the whole density itself. In this sec-
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tion we discuss the algorithm generally, for technical details about this estimation approach
we refer the reader to its seminal article (van der Laan and Rubin (2006)).

Define a model M which is a collection of probability distributions of O ∼ p0 and let
p̂ be an initial estimator of p0. We are interested in a particular parameter of the data,
ψ0 = ψ(p0). To estimate this parameter, the targeted maximum likelihood algorithm’s goal
is to find a density p̂∗ ∈M that solves the efficient influence curve estimating equation for
the parameter of interest that results in a bias reduction in comparison to the maximum
likelihood estimate ψ(p̂) but also to find p̂∗ that increases the log-likelihood relative to p̂.

To estimate this p̂∗, the algorithm finds a fluctuation of the initial p̂ that results in a
maximum change in ψ by constructing a path denoted by p̂(ε) through p̂ where ε is a free
parameter. The score of this path at ε = 0 equals the efficient influence curve. The optimal
fluctuation is obtained by maximizing the likelihood of the data over ε and applying this
fluctuation to p̂ to obtain p̂1. This is the first step of the targeted maximum likelihood
algorithm and the process is iterated until the fluctuation is essentially zero. The final step
of the algorithm gives the targeted maximum likelihood estimate p̂∗ which solves the efficient
influence curve estimating equation and thus the resulting substitution estimator ψ(p̂∗)
inherits the desirable properties of the estimating function based methodology, namely local
efficiency and double robustness (van der Laan and Robins (2003)). It is also completely
based on the maximum likelihood principle, resulting in robust finite sample behavior.

Targeted MLEs not only share the optimal properties with estimating equation estima-
tors, but they also overcome some of their drawbacks. Estimating equation methodology
requires that the efficient influence curve can be represented as an estimating function in
terms of a parameter of interest and nuisance parameters which is not required by the
targeted maximum likelihood algorithm since it simply solves the efficient influence curve
estimating equation in p itself. Estimating equation estimators require external estimation
of the nuisance parameters, while in the targeted maximum likelihood estimation proce-
dure the estimator of the parameter of interest and the nuisance parameters are compatible
with a single density estimator. Finally, estimating equation methodology lacks a criterion
for selecting among candidate solutions in situations where multiple solutions in the pa-
rameter of interest exist, where the targeted maximum likelihood estimation approach can
use the likelihood criterion to select among the targeted MLEs indexed by initial density
estimators.

4 Data, Model and Parameter of Interest

We assume that in the study protocol, each patient is monitored at K equally spaced
clinical visits. At each visit, M AE are evaluated as having occurred or not occurred. We
focus on the first occurrence of the AE and thus let T represent the first visit when the
AE reported as occurring and thus can take values {1, ..., K}. The censoring time C is the
first visit when the subject is no longer enrolled in the study. Let A ∈ {0, 1} represent the
treatment assignment at baseline and W represents a vector of baseline covariates. The
observed data are given by O = (T̃ , ∆, A, W ) ∼ p0 where T̃ = min(T, C), ∆ = I(T ≤ C)
is the indicator that that subject was not censored and p0 denotes the density of O. The
conditional hazard is given by λ0(· | A,W ) and the corresponding conditional survival is
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given by S0(· | A,W ). We present the methodology for estimation of the treatment effect
for a single AE out of the M total AE collected. This procedure would be repeated for
each of the M AE. For multiplicity considerations see section 10.

Let T1 represent a patient’s time to the occurrence of an AE had she possibly contrary
to fact been assigned to the treatment group and let T0 likewise represent the time to the
occurrence of the AE had the patient been assigned to the control group.

Let M be the class of all densities of O with respect to an appropriate dominating mea-
sure where M is nonparametric up to possible smoothness conditions. Let our parameter
of interest be represented by Ψ(p0). Specifically, we aim to estimate the following treatment
specific parameters,

P0 → Ψ1(p0)(tk) = Pr(T1 > tk) = E0(S0(tk|A = 1,W )), (1)

and

P0 → Ψ0(p0)(tk) = Pr(T0 > tk) = E0(S0(tk|A = 0,W )), (2)

where the subscript for Ψ denotes the treatment group, either 0 or 1. In order to estimate
the effect of treatment A on survival T we can thereby estimate a parameter that is some
combination of Pr(T1 > tk) and Pr(T0 > tk). Examples include the marginal log hazard of
survival, the marginal additive difference in the probability of survival, and the marginal
log relative risk of survival at a fixed time tk given respectively by,

P0 → ΨHZ(p0)(tk) = log

(
log(Pr(T1 > tk))

log(Pr(T0 > tk))

)
, (3)

P0 → ΨAD(p0)(tk) = Pr(T1 > tk)− Pr(T0 > tk), (4)

and

P0 → ΨRR(p0)(tk) = log

(
Pr(T1 > tk)

Pr(T0 > tk)

)
. (5)

We note that if one averaged ΨHZ(p0)(tk) over t, this would correspond with the Cox pro-
portional hazards parameter and thus the parameter tested by the log rank test. However,
we focus only on the tk-specific parameter in this paper.

5 Targeted maximum likelihood estimation of marginal

treatment specific survival at a fixed end point

Consider an initial fit p̂0 of the density of the observed data O identified by a hazard fit
λ̂0(t | A,W ), the distribution of A identified by ĝ0(1 | W ) and ĝ0(0 | W ) = 1− ĝ0(1 | W ),
the censoring mechanism Ĝ0(t | A,W ) and the marginal distribution of W being the
empirical probability distribution of W1, ...,Wn. In an RCT, treatment is randomized and
ĝ0(1|W ) = 1

n

∑n
i=1 Ai.
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Let the survival time be discrete and let the initial hazard fit λ̂(t | A, W ) be given by a
logistic regression model,

logit(λ̂(t | A,W )) = α̂(t) + m(A,W | β̂),

where m is some function of A and W . The targeted maximum likelihood estimation
algorithm updates this initial fit by adding to it the term εh(t, A, W ), i.e.,

logit(λ̂(ε)(t | A,W )) = α̂(t) + m(A,W |β̂) + εh(t, A,W ). (6)

The algorithm selects h(t, A, W ) such the score for this hazard model at ε = 0 is equal
to the projection of the efficient influence curve on scores generated by the parameter
λ(t | A,W )) in the nonparametric model for the observed data assuming only coarsening
at random (CAR).

The general formula for this covariate h(t, A, W ) for updating an initial hazard fit was
provided in van der Laan and Rubin (2007) and is given by,

h(t, A, W ) =
DFULL(A,W, t | p̂)− Ep̂[D

FULL(A,W, T | p̂) | A,W, T > t)]

Ḡ(t− | A,W )
, (7)

where DFULL is the efficient influence curve of the parameter of interest in the model in
which there is no right censoring. This is also the optimal estimating function in this model.
This full data estimating function for Ψ1(p0)(tk) provided in equation 1 is given by,

DFULL
1 (T, A, W | p)(tk) = [I(T > tk)− S(tk | A,W )]

I(A = 1)

g(1|W )
+ S(tk | 1, W )− ψ1(p), (8)

and for Ψ0(p0)(tk) provided in equation 2 it is given by,

DFULL
0 (T, A, W | p)(tk) = [I(T > tk)− S(tk | A,W )]

I(A = 0)

g(0|W )
+ S(tk | 0, W )− ψ0(p), (9)

To obtain the specific covariates for targeting the parameters Ψ1(p0)(tk) and Ψ0(p0)(tk),
the full data estimating functions provided in equations 8 and 9 at t = tk are substituted
into equation 7. Evaluating these substitutions gives the covariates,

h1(t, A, W ) = − I(A = 1)

g(1)Ḡ(t− | A,W )

S(tk | A,W )

S(t | A,W )
I(t ≤ tk), (10)

and

h0(t, A, W ) = − I(A = 0)

g(0)Ḡ(t− | A,W )

S(tk | A,W )

S(t | A,W )
I(t ≤ tk), (11)

for the treatment specific parameters Ψ1(p0)(tk) and Ψ0(p0)(tk) respectively.
Finding ε̂ in the updated hazard provided in equation 6 to maximize the likelihood of

the observed data can be done in practice by fitting a logistic regression in the covariates
m(A,W | β̂) and h(t, A, W ). The coefficient for m(A,W | β̂) is fixed at one and the
intercept is set to zero and thus the whole regression is not refit, rather only ε is estimated.
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These steps for evaluating ε̂ correspond with a single iteration of the targeted maximum
likelihood algorithm. In the second iteration, the updated λ̂1(t | A,W ) now plays the
role of the initial fit and the covariate h(t, A, W ) is then re-evaluated with the updated
Ŝ1(t | A,W ) based on λ̂1(t | A,W ). In the third iteration λ̂2(t|A,W ) is fit and the
procedure is iterated until ε̂ is essentially zero. The final hazard fit at the last iteration
of the algorithm is denoted by λ̂∗(t | A,W ) with the corresponding survival fit given by
Ŝ∗(t | A,W ).

As we are estimating two treatment specific parameters, we could either carry out
the iterative updating procedure for each parameter separately or update the hazard fit
simultaneously. To update the fit simultaneously, both covariates are added to the initial
fit, i.e.,

logit(λ̂(ε)(t | A, W )) = α̂(t) + m(A,W |β̂) + ε1h1(t, A, W ) + ε2h0(t, A,W ).

The iterative procedure is applied by now estimating two coefficients in each iteration as
described above until both ε1 and ε2 are essentially zero.

Finally, the targeted maximum likelihood estimates of the probability of surviving past
time tk for subjects in treatment arms 1 and 0 given by Ψ1(p0)(tk) and Ψ0(p0)(tk) are
computed by,

ψ̂∗1(tk) =
1

n

n∑
i=1

Ŝ∗(tk | 1, Wi).

and

ψ̂∗0(tk) =
1

n

n∑
i=1

Ŝ∗(tk | 0, Wi).

5.1 Rationale for updating only initial hazard

The initial fit p̂0 of p0 is identified by λ̂0(t | A,W ), ĝ0(A | W ), Ĝ0(t | A,W ) and the
marginal distribution of W . However the algorithm only updates λ̂0(t | A,W ). Assuming
CAR the density of the observed data p factorizes in to the marginal distribution of W
given by pW , the treatment mechanism g(A | W ), the conditional probability of censoring
up to time t given by Ḡ(t | A,W ) and the product over time of the conditional hazard at
T = t given by λ(t | A,W ). This factorization implies the orthogonal decomposition of
functions of O in the Hilbert space L2(p). We can thus apply this decomposition to the
efficient influence curve D(O | p). As shown in van der Laan and Robins (2003), D(O | p)
is orthogonal to the tangent space TCAR(p) of the censoring and treatment mechanisms.
Thus the components corresponding with g(A | W ) and Ḡ(t | A, W ) are zero. This leaves
the non zero components pW and λ(t | A,W ). We choose the initial empirical distribution
for W to estimate pW which is the nonparametric maximum likelihood estimate for pW and
is therefore not updated. Thus the only element that does require updating is λ̂0(t | A,W ).

The efficient influence curve for Ψ1(p0)(tk) can be represented as,

D1(p0) =
∑

t<=tk

h1(g0, G0, S0)(t, A, W )[I(T̃ = t, ∆ = 1)− I(T̃ >= t)λ0(t | A = 1,W )]

+S0(tk | A = 1,W )−Ψ1(p0)(tk), (12)

7
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where S0(tk | A = 1,W ) is a transformation of λ0(t | A = 1, W ). This representation
demonstrates the orthogonal decomposition described above. The empirical mean of the
second component of D1(p0) given by S0(tk | A = 1,W ) − E0S0(tk | A = 1,W ) is always
solved by using empirical distribution to estimate the marginal distribution of W . Thus the
targeted maximum likelihood estimator solves this second component. The first component,
the covariate times the residuals, is solved by performing the iterative targeted maximum
likelihood algorithm with logistic regression fit of the discrete hazard λ0(t | A,W ). We
note that similarly, the efficient influence curve for Ψ0(p0)(tk) can be represented as,

D0(p0) =
∑

t<=tk

h0(g0, G0, S0)(t | A,W )[I(T̃ = t, ∆ = 1)− I(T̃ >= t)λ0(t | A = 0,W )]

+S0(tk | A = 0,W )−Ψ0(p0)(tk). (13)

5.2 Statistical Properties

The targeted maximum likelihood estimate p̂∗ ∈M of p0 solves the efficient influence curve
which is the optimal estimating equation for the parameter of interest. It can be shown
that E0D1(p0) = E0D1(S, g,G) = 0 if either S = S(· | A,W ) (and thus λ(· | A,W )) is
consistently estimated or g0(A | W ) and Ḡ0(· | A,W ) are consistently estimated. When
the treatment is assigned completely at random as in an RCT, the treatment mechanism
is known and g(A | W ) = g(A). Thus consistency of ψ̂∗1(tk) in an RCT relies on only
consistent estimation of Ḡ0(· | A,W ) or S(· | A, W ). When there is no censoring or
censoring is missing completely at random (MCAR), ψ̂∗1(tk) is consistent even when the
estimator Ŝ(· | A,W ) of S(· | A,W ) is inconsistent (e.g., if it relies on a misspecified
model). One is hence not concerned with estimation bias with this method in an RCT.
Under informative or missing at random (MAR) censoring, if Ḡ0(· | A,W ) is consistently
estimated then ψ̂∗1(tk) is consistent even if Ŝ(· | A,W ) is mis-specified. If both are correctly
specified then ψ̂∗1(tk) is efficient. These same statistical properties also hold for ψ̂∗0(tk) .

5.3 Inference

Let p̂∗ represent the targeted maximum likelihood estimate of p0. One can construct a Wald-
type 0.95-confidence interval for ψ̂∗1(tk) based on the estimate of the efficient influence curve
D1(p̂

∗)(O) where D1(p) is given by equation 12. The asymptotic variance of
√

n(ψ̂∗1(tk)−
Ψ1(p0)(tk)) can be estimated with

σ̂2 =
1

n

n∑
i=1

D2
1(p̂

∗)(Oi).

The corresponding asymptotically conservative Wald-type 0.95-confidence interval is de-
fined as ψ̂∗1(tk) ± 1.96 σ̂√

n
. The null hypothesis H0 : Ψ1(p0)(tk) = 0 can be tested with the

test statistic

Tn =
ψ̂∗1(tk)

σ̂√
n

,
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whose asymptotic distribution is N(0, 1) under the null hypothesis. Similarly, confidence
intervals and test statistics for Ψ0(p0)(tk) can be computed based on the estimate of the
efficient influence curve D0(p̂

∗)(O) where D0(p) is given by equation 13.
If our parameter of interest is some function of the treatment specific survival estimates

we can apply the δ-method to obtain the estimate of its influence curve. Specifically the
estimated influence curve for the log hazard of survival, additive difference in survival, and
relative risk of survival at tk provided in equations 3, 4, and 5 are respectively given by,

1. ΨHZ(p0)(tk) : 1

ψ̂∗1(tk) log(ψ̂∗1(tk))
D1(p̂

∗)(O)− 1

ψ̂∗0(tk) log(ψ̂∗0(tk))
D1(p̂

∗)(O)

2. ΨAD(p0)(tk) : D1(p̂
∗)(O)−D1(p̂

∗)(O)

3. ΨRR(p0)(tk) : − 1

1−ψ̂∗1(tk)
D1(p̂

∗)(O) + 1

1−ψ̂∗0(tk)
D1(p̂

∗)(O)

We can again compute confidence intervals and test statistics for these parameters using
the estimated influence curve to estimate the asymptotic variance.

As an alternative to the influence curve based estimates of the asymptotic variance, one
can obtain valid inference using the bootstrap procedure.

The inference provided in this section is for the estimates of the treatment effect for a
single AE. For multiplicity adjustments for the analysis of a set of AE see section 10.

6 Simulation Study

The targeted maximum likelihood estimation procedure was applied to simulated data to
illustrate the estimator’s potential gains in efficiency. The conditions under which the
greatest gains can be achieved over the standard unadjusted estimator were explored in
addition to the estimators’ performance in the presence of informative censoring.

6.1 Simulation Protocol

We simulated 1000 replicates of sample size 300 from the following data generating distri-
bution where time is discrete and takes values tk ∈ {1, ..., 10}:

• Pr(A = 1) = Pr(A = 0) = 0.5

• W ∼ U(0.2, 1.2)

• λ(t|A,W ) = I(tk<10)I(Y (tk−1)=0)
1+exp(−(−3−A+βW W 2))

+ I(tk = 10)

• λC(t|A,W ) = I(∆(tk−1)=0)
1+exp(−(−γ0−γ1A−γ2W ))

,

where λ(t|A,W ) is the hazard for survival and λC(t|A,W ) is the hazard for censoring. Two
different data generating hazards for survival were applied corresponding with two values
for βW . These two values were set to βW ∈ {1, 3} corresponding with correlations between
W and failure time of -0.22 and -0.63 respectively. We refer to the simulated data with
βW = 1 as the weak covariate setting and βW = 3 as the strong covariate setting.

9
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Three different types of censoring were simulated, no censoring, MCAR and MAR.
Each type of censoring was applied to the weak and strong covariate settings for a total
of six simulation scenarios. For both the weak and strong covariate settings, the MCAR
an MAR censoring mechanisms were set such that approximately 33% of the observations
were censored. The censoring was generated to ensure that Ḡ(t|A,W ) > 0 (see section
8 for details of this assumption). If censoring and failure time were tied, the subject was
considered uncensored. For a summary of the simulation settings and the specific parameter
values, see Table 1.

Table 1: Summary of simulation settings. ”Corr” is correlation, γ = (γ0, γ1, γ2) are the
coefficients for the hazard for censoring, and βW is the coefficient for W in the hazard for
survival.

Scenario Censoring γ Corr W and T βW

1 No censoring NA -0.22 (Weak) 1
2 MCAR (-2.7,0,0) -0.22 (Weak) 1
3 MAR (-1.65,0.5,-2) -0.22 (Weak) 1
4 No censoring NA -0.65 (Strong) 3
5 MCAR (-2,0,0) -0.65 (Strong) 3
6 MAR (-1.15,0.5,-2) -0.65 (Strong) 3

The difference in treatment-specific survival probabilities given by ψ(tk) = E0(S0(tk|A =
1,W ) − S0(tk|A = 0,W )) was estimated at each time point tk = 1 through tk = 9. The
unadjusted estimator is defined as the difference in the treatment specific Kaplan-Meier
estimators at tk. The targeted maximum likelihood estimator was applied using two dif-
ferent initial hazard fits. The first initial hazard was correctly specified. The second initial
hazard was mis-specified by including A and W as main terms and an interaction term
between A and W . For both initial hazard fits, only time points 1 through 9 were included
in the fit as the AE had occurred for all subjects by time point 10 and thus the hazard was
one at tk = 10. In the MCAR censoring setting, the censoring mechanism was estimated
using Kaplan-Meier. In the MAR censoring setting, the censoring mechanism was correctly
specified. The update of the initial hazard was performed by adding to it the two covariates
h1 and h0 provided in equations 10 and 11 respectively. The corresponding coefficients ε1

and ε2 were simultaneously estimated by fixing the offset from the initial fit and setting the
intercept to 0. The procedure was iterated until ε1 and ε2 were sufficiently close to zero.

The estimators were compared using a relative efficiency measure based on the mean
squared error (MSE) computed as the MSE of the unadjusted estimates divided by the MSE
of the targeted maximum likelihood estimates. Thus a value greater than one indicates a
gain in efficiency of the covariate adjusted targeted maximum likelihood estimator over the
unadjusted estimator.

In addition to these six simulation scenarios, to explore the relationship between rel-
ative efficiency and the correlation between the covariate and failure time, we gener-
ated data by varying βW in the data generating distribution above for six values, βW ∈
{0.5, 1, 1.5, 2, 2.5, 3} corresponding with correlations between W and failure time of {-0.10,-
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0.22,-0.36,-0.46,-0.56,-0.63} under no censoring. The parameter ψ(5) was estimated based
on 1000 sampled datasets with sample size n = 300.

6.2 Simulation Results and Discussion

6.2.1 Strong covariate setting

In the no censoring and MCAR censoring scenarios, the bias should be approximately
zero. Thus, the relative MSE is essentially comparing the variance of the unadjusted and
targeted maximum likelihood estimates. Any gain in the MSE can therefore be attributed
to a reduction in variance due to the covariate adjustment. In this strong covariate setting,
exploiting this covariate by applying the targeted maximum likelihood estimator should
provide a gain precision due to a reduction in the residuals. In the informative censoring
setting (MAR), in addition to the expected gain in efficiency we expect a reduction in
bias of the targeted maximum likelihood estimator with the correctly specified treatment
mechanism over the unadjusted estimator. The informative censoring is accounted for
through the covariates h1 and h0 that are inverse weighted by the subjects’ conditional
probability of being observed at time t given their observed history.

Figure 1 provides the relative MSE results for ψ̂(tk) for tk ∈ {1, ...9} for the strong
covariate setting with βW = 3. Based on these results, we observe that indeed the expected
gain in efficiency is achieved. The minimum observed relative MSE was 1.25 for tk = 1
in the MAR censoring setting with a mis-specified initial hazard fit. A maximum relative
MSE of 1.9 is observed under the no censoring setting with the correctly specified initial
hazard at tk = 3. The approximate overall average relative MSE was 1.6. Consistently
across all time points and censoring scenarios, the targeted maximum likelihood estimator
is outperforming the unadjusted estimator.

Figure 2 provides the bias as a percent of the truth for the two estimators under the
MAR censoring setting with the correctly specified initial hazard. Clearly as tk increases,
the bias of the unadjusted estimates increases whereas the targeted maximum likelihood
estimates is relatively close to zero in comparison. Thus the targeted maximum likelihood
approach can not only provide gains in efficiency through covariate adjustment, but can
also account for informative censoring as well.

6.2.2 Weak covariate setting

In this weak covariate setting, again in the no censoring and MCAR censoring scenarios,
the bias should essentially be zero. However, we expect a lesser gain in efficiency if any as
compared to the strong covariate setting since the covariate in this setting is not as useful
for hazard prediction. We do again expect a bias reduction in the MAR censoring setting
for the targeted maximum likelihood estimator over the unadjusted estimator.

Figure 3 provides the relative MSE results for the weak correlation simulation with βW =
1. As expected, the relative MSE are all close to one indicating that only small efficiency
gains are achieved when only weak covariates are present in the data. However, as small
the gains are they are also achieved across all time points as in the strong covariate setting.
Regardless of the correlation between the covariate and failure time, in the informative
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Figure 1: Relative MSE: Strong covariate setting (βW = 3)
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Figure 2: Bias: Strong covariate setting (βW = 3) with informative censoring
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Figure 3: Relative MSE: Weak covariate setting (βW = 1)

censoring scenario the targeted maximum likelihood estimate is consistent under consistent
estimation of the censoring mechanism as evidenced in the plot of the % bias in Figure 4.

6.2.3 Relationship between correlation of covariate(s) and failure time with
efficiency gain

As the correlation between W and failure time increases we expect to observe increasing
gains in efficiency. Selecting an arbitrarily selected time point tk = 5 for ease of presen-
tation, Figure 5 clearly demonstrates that as the correlation between W and failure time
increases so does the relative MSE. In fact in for this particular data generating distribu-
tion, at time tk = 5 the relationship is nearly linear. These results reflect similar findings in
RCT with fixed-end point studies where relations between R2 and efficiency gain have been
demonstrated (Moore and van der Laan (2009); Pocock et al. (2002)). This relationship
indicates that if indeed the particular dataset contains covariates that are predictive of the
failure time of the AE of interest, one can achieve gains in precision and thus power by
using the targeted maximum likelihood estimator.

7 Fitting initial hazard and censoring mechanism

Despite these potential gains in efficiency as demonstrated by theory and simulation results,
there has been concern with covariate adjustment in RCT with respect to investigators se-
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Figure 4: Bias: Weak covariate setting (βW = 1) with informative censoring
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lecting covariates to obtain favorable inference. We conjecture that such cheating can be
avoided if one uses an a priori specified algorithm for model selection. When the model
selection procedure is specified in an analysis protocol, the analysis is protected from in-
vestigators guiding causal inferences based on selection of favorable covariates and their
functional forms in a parametric model. In safety analysis, if investigator (sponsor) bias
does indeed exist, it would be reasonable to assume that it would lean towards the treatment
having no effect on the AE and thus the concerns are the reverse from efficacy analysis. The
investigator bias would tend towards the less efficient unadjusted estimator. The analysis
of AEs is often exploratory in nature and the results are meant to flag potential AE of con-
cern which may reduce the motivation for dishonest inference using covariate adjustment.
Regardless of the covariate selection strategy, it should be explicitly outlined to avoid any
such concerns.

There are a number of model selection algorithms that can be applied to data-adaptively
select the initial hazard fit. One such approach is the D/S/A algorithm that searches
through a large space of functional forms using deletion, substitution and addition moves.
One can apply this algorithm to the pooled data (over time) to fit the initial hazard
(Sinisi and van der Laan (2004)). One can also fit hazards using the hazard regression
(HARE) algorithm developed by Kooperberg et al. (1995), which uses piecewise linear
regression splines and adaptively selects the covariates an knots. As another alternative,
one could also include all covariates that have a strong univariate association with failure
time in a hazard fit as main terms in addition to the treatment variable. Since one is
often investigating many AE, a fast algorithm such as the latter may be an appropriate
alternative for computational efficiency.

We also note that if weights are required as they are for the inverse probability of cen-
soring weighted (IPCW) reduced data targeted maximum likelihood estimators as outlined
in section 11.1, the D/S/A algorithm can be run with the corresponding weights.

In addition to the hazard for survival, the hazard for censoring must also be estimated.
One of the algorithms discussed above can also be applied to estimate the censoring mech-
anism. We note that the application of the targeted maximum likelihood estimator to a
set of M AE requires M hazard fits whereas only one fit for censoring is required. Thus,
the censoring mechanism is estimated once and for all and is used in the analysis of each
of the M AE.

8 Inverse weighting assumption

The targeted maximum likelihood estimator, as well as other inverse weighted estimators
(see section 9) for the parameters presented in this paper rely on the assumption that each
subject has a positive probability of being observed (i.e., not censored) at time t, which
can be expressed by,

Ḡ(t− | A,W ) > 0, t = tk.

This identifiability assumption has been addressed as an important assumption for right-
censored data (Robins and Rotnitzky (1992)). In Neugebauer and van der Laan (2005) it
was demonstrated that practical violations of this assumption can result in severely variable
and biased estimates.
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One is alerted of such violations by observing very small probabilities of remaining
uncensored based on the estimated censoring mechanism, i.e., there are patients with a
probability of censoring of almost one given their observed past.

9 Alternative Estimators

Prior to the introduction of targeted maximum likelihood estimation, there were two main
approaches to estimating the treatment specific survival at a fixed end point tk: maximum
likelihood estimation and estimating function estimation. In the maximum likelihood ap-
proach, one obtains an estimate p̂ for p identified by perhaps a Cox proportional hazards
model for continuous survival or logistic regression for discrete survival. The parameter
of interest is then evaluated via substitution, i.e., ψ̂ = ψ(p̂). These maximum likelihood
substitution estimators involve estimating some hazard fit using an a priori specified model
or a model selection algorithm that is concerned with performing well with respect to the
whole density rather than the actual parameter of interest, e.g., the difference in treatment
specific survival at a specific time tk. These type of estimators often have poor performance
and can be heavily biased whenever the estimated hazard is inconsistent (Robins and Ri-
tov (1997)). Furthermore, inference for such maximum likelihood estimators that rely on
parametric models are overly optimistic and thus their corresponding p-values are partic-
ularly unreliable. This is in contrast to the inference for the targeted maximum likelihood
estimators which respects that no a priori models are required.

An alternative to the likelihood based approach is the extensively studied estimating
function based approach. Recall that the full data estimating functions provided in equa-
tions 8 and 9 are estimating functions that could be applied to estimate the treatment
specific survival at time tk if we had access to the full data, i.e., the uncensored survival
time. The full data estimating function can be mapped into a an estimating function based
on the observed data using the IPCW method. The IPCW estimators based on the IPCW
estimating function denoted by DIPCW (T,A, W | ψ1, g, G) have been shown to be consis-
tent and asymptotically linear if the censoring mechanism G can be well approximated
(Robins and Rotnitzky (2005); van der Laan and Robins (2003)). While the IPCW esti-
mators have advantages such as simple implementation, they are not optimal in terms of
robustness and efficiency. Their consistency relies on correct estimation of the censoring
mechanism whereas maximum likelihood estimators rely on correct estimation of the full
likelihood of the data.

The efficient influence curve can be obtained by subtracting from the IPCW estimation
function the IPCW projection onto the tangent space TCAR of scores of the nuisance pa-
rameter G (van der Laan and Robins (2003)). The efficient influence curve is the optimal
estimating function in terms of efficiency and robustness and the corresponding solution to
this equation is the so-called double robust IPCW (DR-IPCW) estimator. The “double”
robust properties of this estimator are equivalent to those of the targeted maximum likeli-
hood estimator as the targeted maximum likelihood estimator solves the efficient influence
curve estimating equation, see section 5.2. Despite the advantageous properties of such
efficient estimating function based estimators, maximum likelihood based estimators are
much more common in practice.
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The more recently introduced targeted maximum likelihood estimation methodology
that was applied in this paper can be viewed as a fusion between the likelihood and esti-
mating function based methods. A notable advantage of the targeted maximum likelihood
estimators is their relative ease of implementation in comparison to estimating equations
which are often difficult to solve.

10 Multiple Testing considerations

An important consideration in safety analysis is multiple testing in that often as many
as hundreds of AE are collected. The ICH guidelines indicate that it is recommended
to adjust for multiplicity when hypothesis tests are applied (ICH (1996)). However, the
ICH guidelines do not provide any specific methods for adjustment. The need for adjust-
ment is demonstrated by the following example outlined in Kaplan et al. (2002). In this
study, out of 92 safety comparisons the investigators found a single significant result ac-
cording to unadjusted p-values. A larger hypothesis driven study for this AE that had no
known clinical explanation was carried out and did not result in any significant findings.
Such false positive results for testing the effect of treatment on a series of AE based on
unadjusted p-values can cause undue concern for approval/labeling and can affect post-
marketing commitments. On the other hand, over adjusting could also result in missing
potentially relevant AE. Thus appropriate adjustment requires some balance between no
adjustment and a highly stringent procedure such as Bonferroni.

Many advances have been made in the area of multiple testing over the Bonferroni-type
methods including resampling based methods to control the familywise error rate (FWER),
for example see van der Laan et al. (2004) and the Benjamini-Hochberg method for con-
trolling the false discovery rate (FDR) (Benjamini and Hochberg (1995)). With FWER
approaches, one is concerned with controlling the probability of erroneously rejecting one
or more of the true null hypotheses, whereas the FDR approach controls the expected pro-
portion of erroneous rejections among all rejections. The resampling based FWER method
makes use of the correlation of test statistics which can provide a gain in power over assum-
ing independence. However, the Benjamini-Hochberg FDR approach has been shown to be
perform well with correlated test statistics as well (Benjamini et al. (1997)). The selection
of the appropriate adjustment depends on whether or not a more conservative approach is
reasonable. In safety analysis, one certainly does not want to miss flagging an important
AE and thus might lean towards an FDR approach.

FDR methods have been proposed specifically in the analysis of AE in Mehrotra and
Heyse (2004). Their method involves a two-step procedure that groups AE by body system
and performs an FDR adjustment both within and across the body system. Presumably
this method attempts to account for the dependency of the AE by grouping in this manner.
Thus the multiple testing considerations and the dependency of the test statistics in safety
analysis has indeed received some attention in literature.

The multiple testing adjustment procedure to be applied in the safety analysis should
be provided in the study protocol to avoid potential for dishonest inference. In addition,
the unadjusted p-values should continue to be reported with the adjusted p-values so all
AE can be evaluated to assess their potential clinical relevance.
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11 Extensions

11.1 Time-dependent covariates

It is not unlikely that many time-dependent measurements are collected at each follow-up
visit in addition to the many AE and efficacy outcome measurements. Such time-dependent
covariates are often predictive of censoring. The efficiency and robustness results presented
in this paper have been based on data structures with baseline covariates only. The tar-
geted maximum likelihood estimation procedure for data structures with time-dependent
covariates is more complex as demonstrated in van der Laan (2008). To overcome this issue
and avoid modeling the full likelihood, van der Laan (2008) introduced IPCW reduced data
targeted maximum likelihood estimators. We provide only an informal description of this
procedure here, for details we refer readers to the formal presentation provided in van der
Laan (2008).

In this framework, the targeted maximum likelihood estimation procedure is carried out
for a reduced data structure Xr, which in this case is the data structure that only includes
baseline covariates. The IPCW reduced data procedure differs from the procedure where
Xr is the full data in that the log-likelihoods are weighted by a time-dependent stabilizing
weight given by,

sw(t) =
I(C > t)Ḡr(t | Xr)

Ḡ(t | X)
.

This stabilizing weight is based on Ḡr(t | Xr) which is the censoring mechanism based on
the reduced data structure that includes baseline covariates only and Ḡ(t | X) which is the
censoring mechanism based on the complete data structure that includes time-dependent
covariates.

In practice in estimation of the parameter ψ(tk) = E0(S0(tk|A = 1,W ) − S0(tk|A =
0,W )), one must apply these weights anytime maximum likelihood estimation is performed.
Thus, the IPCW reduced data targeted maximum likelihood estimation procedure differs
from the standard targeted maximum likelihood procedure provided in section 5 in that
each time the conditional hazard is fit it is weighted by sw(t). These weights are time-
specific and thus each subject receives a different weight at each point in time. The initial
hazard estimate λ̂0(t | A,W ) is weighted by sw(t). The algorithm then updates λ̂0(t |
A,W ) by adding the time-dependent covariates h1(t, A, W and h0(t, A,W ) and estimating
their corresponding coefficients ε1 and ε2. In the IPCW reduced data targeted maximum
likelihood estimation procedure one includes the weights sw(t) in estimation of ε1 and
ε2. These weights are applied in each iteration of the algorithm to obtain the final fit
λ̂∗(t | A, W ) that is achieved when ε̂1 and ε̂2 are sufficiently close to zero. Thus estimation
can again be achieved using standard software with the only additional requirement of
weighting each of the regressions by these time-dependent weights.

Estimation of these time-dependent weights requires estimation of Ḡr(t | X) and Ḡ(t |
X). Model selection algorithms that can be applied to estimate Ḡr(t | X) were described
in section 7. Similarly the censoring mechanism Ḡ(t | X) can be estimated using a Cox
proportional hazards model with time-dependent covariates for continuous censoring times
or logistic regression model with time dependent covariates for discrete censoring times.
Model selection algorithms such as those described in section 7 can also be applied by
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including these time-dependent covariates as candidates.
Let ψ̂r(tk) represent the IPCW reduced data targeted maximum likelihood estimator of

ψ(tk). By applying this IPCW weighting in the reduced data targeted maximum likelihood
estimation procedure a particular type of double robustness is obtained. If there are no
time-dependent covariates that are predictive of censoring time, then the ratio of estimated
survival probabilities of censoring in the above weight sw(t) is one. In this case, if Ḡ(t | X)
is consistently estimated or λ(· | A,W ) is consistently estimated then ψ̂r(tk) is consistent;
if both are consistent then it is even more efficient than the estimator that was based on the
reduced data structure. If there are indeed time-dependent covariates that are predictive
of censoring time, and Ḡ(t | A, W ) is well approximated then ψ̂r(tk) is consistent and the
desired bias reduction is achieved.

11.2 Post market data

As RCT are powered for efficacy, it is often the case that many AE are either not observed
at all during the pre-market phase or so few are observed that statistically conclusive
results are often exceptions (Peace (1987)). In an RCT of a rotavirus vaccine in which
the AE of intussusception among vaccine recipients compared to controls was not found to
be statistically significant. After the vaccine was approved and had been widely used, an
association between this AE and the vaccine was found and it was pulled off the market.
A subsequent analysis demonstrated that to obtain power of 50% to detect a difference as
small as the actual observed Phase III incidence of the AE, a sample size of approximately
90,000 would be required (6 times the actual sample size) (Jacobson et al. (2001)). Due to
the high cost and complications involved in running an RCT, such large sample sizes are
not feasible.

It is not only the rarity of many AE that causes issues in detection during RCT, but
also the fact that RCT may have restrictive inclusion criteria whereas the drug is likely
applied to a less restrictive population in post-market. Furthermore, the follow-up time
in the pre-market phase may not be long enough to detect delayed AE. For a discussion
regarding the difficulties in “proving” safety of a compound in general see Bross (1985).
Post-market monitoring is therefore an important aspect of safety analysis.

There are a number of types of post-market data (for a thorough description of the
various types of post-market data see Glasser et al. (2007)) including spontaneous adverse
event reporting systems (e.g., “MedWatch”). These data can be useful for detecting po-
tentially new or unexpected adverse drug reactions that require further analysis however
they often suffer from under-reporting by as much as a factor of 20 (Edlavitch (1988)).

In this section, we focus on observational post-market studies or pharmacoepidemiolog-
ical studies. Since patients in these type of studies are not randomized to a drug versus
placebo (or competitor), confounding is typically present. Of particular concern is the
fact that sicker patients are often selected to receive one particular drug versus another.
There exists a vast amount of literature for controlling for confounding in epidemiological
studies. Popular methods in pharmacoepidemiology include propensity score (PS) methods
and regression based approaches. However, consistency with these methods rely on correct
specification of the PS or the regression model used. Furthermore, it is not clear how infor-
mative censoring is accounted for with these methods. The targeted maximum likelihood
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estimators are double robust and are thus more advantageous than these commonly applied
alternative approaches.

Before we proceed with discussion of estimation of causal effects with observational
data, we first outline the data and assumptions. Suppose we observe n independent and
identically distributed copies of O = (T̃ , ∆, A, W ) ∼ p0 as defined in section 4. Causal
effects are based on a hypothetical full data structure X = (T1,1, T1,0, T0,1, T0,0,W ) which is
a collection of action specific survival times where this action is comprised of treatment and
censoring. Note that we are only interested in the counterfactuals under this joint action-
mechanism that consists of both censoring and treatment mechanisms where censoring
equals zero, i.e., T1,0 and T0,0. In other words, we aim to investigate what would have
happened under each treatment had censoring not occurred.

The consistency assumption states that the observed data consist of the counterfactual
outcome corresponding with the joint action actually observed. The coarsening at random
(CAR) assumption implies that the joint action is conditionally independent of the full
data X given the observed data. We denote the conditional probability distribution of
treatment A by g0(a | X) ≡ P (A = a | X). In observational studies, CAR implies
g0(A | X) = g0(A | W ), in contrast to RCT in which treatment is assigned completely at
random and g0(A | X) = g0(A).

We aim to estimate ψ(tk) = E0(S0(tk|A = 1,W ) − S0(tk|A = 0,W )) = Pr(T1,0 >
tk)− Pr(T0,0 > tk). Even under no censoring or MCAR, we are can no longer rely on the
unadjusted treatment specific Kaplan-Meier estimates being unbiased due to confounding
of treatment.

Under the assumptions above, the targeted maximum likelihood estimator for ψ(tk) is
double robust and locally efficient. Thus the targeted maximum likelihood estimation pro-
cedure described in this paper is theoretically optimal in terms of robustness and efficiency.
In our presentation, we assumed that treatment was assigned at random. In observational
studies, in addition to estimating λ(· | A, W ) and possibly Ḡ(· | A, W ) (when censoring is
present), observational studies require estimation of the treatment mechanism g(A | W )
as well. It has been demonstrated that when censoring is MCAR in an RCT, the targeted
maximum likelihood estimate ψ̂∗(tk) is consistent under mis-specification of λ(· | A,W )
since g(A | W ) is always correctly specified. However, even under MCAR, in observational
studies, consistency of ψ̂∗(tk) relies on consistent estimation of λ(· | A,W ) or g(A | W )
and is efficient if both are consistently estimated (van der Laan and Rubin (2006)). When
censoring is MAR, then consistency of ψ̂∗(tk) also relies on consistent estimation of the
joint missingness g(A | W ) and Ḡ(· | A,W ) or λ(· | A,W ).

We also note that the targeted maximum likelihood estimators as well as the commonly
applied PS methods rely on the experimental treatment assignment (ETA) assumption.
Under this assumption, each patient must have a positive probability of receiving each
treatment. The inverse weighted PS estimator is known to suffer severely from violations of
this assumption in practice (Neugebauer and van der Laan (2005); Robins and Rotnitzky
(1992); Wang et al. (2006)). This poor performance is evident with inverse weighting,
however we note that all other PS methods rely on this assumption as well, but are not
as sensitive to practical violations. This assumption is essentially about information in the
data and violations of it indicate that for certain strata of the data, a given treatment
level is never or rarely experienced. When the ETA is violated estimation methods rely on
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extrapolation.
If it is the case that a given treatment level is very rare or non-existent for given strata

of the population, an investigator may want to re-consider the original research question
of interest. To this end, van der Laan and Petersen (2007) developed causal effect models
for realistic intervention rules. These models allow estimation of the effect of realistic
interventions, that is only intervening on patients for whom the intervention is reasonably
“possible” where “possible” is defined by g(A | W ) greater than some value, e.g., 0.05. We
note that targeted maximum likelihood estimation can be applied to estimate parameters
from such models. For applications of such models see Bembom and van der Laan (2007).

The ETA assumption and development of realistic causal models are simply examples
of some of the many considerations that arise with observational data as compared to RCT
data. However despite the many issues the rich field of causal inference provides promising
methods for safety analysis in post-market data. As it is not possible to observe all AE
in the pre-market phase, post-market safety analysis is an important and emerging area of
research.

12 Discussion

Safety analysis is an important aspect in new drug approvals and has become increasingly
evident with the recent cases of drugs withdrawn from the market (e.g., Vioxx). Increasing
estimation efficiency is one area that can help overcome the issue that RCT are not powered
for safety. Using covariate information is a promising approach to help detect AE that may
have remained undetected with the standard crude analysis. Furthermore, time-to-event
methods for AE analysis may be more appropriate particularly in studies where the AE
often occur for all patients, such as oncology studies. Exploiting the time-dependent nature
can further provide more efficient estimates for the effect of treatment on AE occurrence.

In this paper we provided a method for covariate adjustment in RCT for estimating the
effect of treatment on the AE failing to occur by a fixed end point. The method does not
require any parametric modeling assumptions under MCAR censoring and thus is robust
to mis-specification of the hazard fit. The methods advantages were twofold. The first
is the potential efficiency gains over the unadjusted estimator. The second is that the
targeted maximum likelihood estimator accounts for informative censoring through inverse
weighting of the covariate(s) that is added to an initial hazard fit. The standard unadjusted
estimator is biased in the informative censoring setting.

The estimator has a relatively straightforward implementation. Given an initial hazard
fit either logistic for discrete failure times or Cox proportional hazards for continuous
survival times, one updates this fit by iteratively adding a time dependent covariate(s).

The simulation study demonstrated the potential gains in efficiency that can be achieved
in addition to the relation of the correlation between the covariate(s) and failure time and
efficiency gains. When no predictive covariates were present the relative efficiency was
approximately one indicating that one is protected from actually losing precision from
applying this method even when the covariates provide little information about failure
time. The simulations also demonstrated the reduction in bias in the informative censoring
setting.
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Considerations for balancing the potential for false positives and the danger of missing
possibly significant AE are an important aspect of safety analysis. The strategies from the
rich field of multiple testing briefly discussed in this paper can exploit the correlation of
the AE outcomes and thus provide the most powerful tests.

While this paper focused on estimation of treatment specific survival at a specific end
point an overall average effect of treatment over time may be of interest. The targeted
maximum likelihood estimation procedure described in this paper can be extended to es-
timate this effect to provide a competitor to the ubiquitous log-rank test. Future work
includes providing a method for exploiting covariate information using the targeted maxi-
mum likelihood estimation procedure to improve power over the log-rank test.
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