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A Note on Risk Prediction for Case-Control
Studies

Sherri Rose and Mark J. van der Laan

Abstract

We introduce a new method for prediction in case-control study designs, which is
a simple extension of the work by van der Laan (2008). Case-control samples are
biased since the proportion of cases in the sample is not the same as the popula-
tion of interest. The case-control weighting for prediction proposed in this paper
relies on knowledge of the true incidence probability P(Y=1) to eliminate the bias
of the sampling design. In many practical settings, case-control weighting will
outperform an existing method for prediction, intercept adjustment.



1 Introduction

The use of modeling for prediction has been well established in the literature.
Risk prediction models have been used most notably to generate tables for
risk of heart disease (Ramsay et al., 1995, 1996; Jackson, 2000). Recently,
Whiteman and Green (2005) discussed the lack of studies for diseases such
as cancer, that have any informative value for prediction. Models do exist,
but many of these instruments have not been validated, or they may perform
poorly for prediction at an individual level versus a population level. Com-
prehensive references for risk prediction models in certain types of cancers can
be found at http://riskfactor.cancer.gov/cancer risk prediction.

What is common among all forms of cancer is a low incidence probability,
and, as such, case-control studies are frequently performed. Many traditional
risk modeling approaches for prediction (e.g. traditional logistic regression)
are not effective when based on case-control study data since the study design
produces a biased sample. The bias is due to the fact that the proportion of
cases in the sample is not the same as the population of interest. This com-
plication may have contributed to the relative lack of predictive modeling for
rare diseases. Many of the published findings for prediction of rare diseases
are based on the stratification of case-control samples.

We introduce a new method for developing predictive models with case-
control study data, which is an extension of theories originally developed
for causal inference in case-control study designs presented by van der Laan
(2008). Our new prediction method involves implementing a simple weighted
model to eliminate the bias of the sampling design, where the weights are
determined by the prevalence probability P ∗0 (Y = 1) ≡ q0. We will com-
pare our weighted models to the use of intercept adjusted logistic maximum
likelihood estimation that also relies on knowledge of q0.

2 Intercept Adjusted Maximum Likelihood

Estimation

First presented by Anderson (1972), the addition of log q0
1−q0 to a logis-

tic regression model intercept yields the true logistic regression function
P ∗0 (Y = 1 | W ). The method has also been discussed elsewhere throughout
the literature (Prentice and Breslow, 1978; Prentice and Pyke, 1979; Green-
land, 1981; Benichou and Wacholder, 1994; Morise et al., 1996; Wacholder,
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1996; Greenland, 2004). Thus, this method, intercept adjusted maximum
likelihood estimation, can be used to ascertain the predicted probability of
disease Y given covariates W with case-control study data.

3 Case-Control Weighting for Prediction

Sampling Design. Let us define O∗ = (W,Y ) ∼ P ∗0 as the experimental
unit and corresponding distribution P ∗0 of interest. The experimental unit O∗

consists of covariates W and a binary outcome Y that defines case or control
status. P ∗0 represents the population from which all cases and controls will
be sampled. We define independent case-control sampling as sampling nC
cases from the conditional distribution of W , given Y = 1, and sampling nCo
controls from W , given Y = 0. However, extensions of our method to other
types of case-control study designs, such as matched case-control sampling
and incidence-density sampling, will be addressed in the discussion.

Weighting. Weights q0 and (1 − q0) 1
J

are assigned to cases and controls,
respectively. The value of J used to weight each control is nCo/nC, the
average number of controls per case.

Case-Control Weighted Maximum Likelihood Estimation. We want
to estimate the conditional probability of Y given W , P ∗0 (Y | W ) ≡ Q∗0(W ),
for each experimental unit in the case-control study. This estimate of Q∗0(W )
is denoted Q̂∗(W ). Maximum likelihood estimation for prospective sampling
can then be performed, using the assigned weights, for prediction with case-
control study data. Consider a nonparametric model for the marginal dis-
tribution of W and a model {Q∗θ : θ} for Q∗0(W ). The case-control weighted
maximum likelihood estimator for Q∗0(W ) is then:

θ̂ = arg max
θ

n∑
i=1

q0 log Q̂∗θ(W1i) + (1− q0)
1

J

J∑
j=1

log(1− Q̂∗θ(W
j
2i)).

The subscripts 1 and 2 indicate values for cases and controls, respectively.
Case-control weighted maximum likelihood estimation can be implemented
as a weighted logistic regression. One can use existing software, including
SAS, STATA, and R, to perform weighted logistic regression.
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Model Selection. In many applied settings, the form of the prediction
model may be unknown. The case-control weighting scheme described in this
paper can also be used in any data-adaptive model selection procedure, as
long as the procedure allows for the experimental units to be weighted. Sim-
ilarly, intercept adjusted maximum likelihood estimation can be performed
with data-adaptive model selection procedures. However, in this case, the
predicted values returned by the estimation procedure are then updated in
a separate step. The Deletion/Substitution/Addition (DSA) algorithm is a
data-adaptive model selection procedure based on cross-validation and uses
polynomial basis functions to search through a parameter space of potential
regression functions (Sinisi and van der Laan, 2004). It has an option for the
experimental units to be weighted. We will use DSA in our simulations to
demonstrate the use of case-control weighting for prediction in case-control
studies.

4 Simulation Studies

4.1 Simulation Study 1

Population. Our first simulation study was designed to illustrate the use
of the case-control weighting scheme for prediction in case-control designs in
a simple population. It was based on a population of N = 55, 000 individu-
als, and we simulated 2 covariates W = {W1,W2} and an indicator Y , which
was 1 for cases and 0 for controls. These variables were generated according
to the following rules:

W1 ∼ U(0, 1)

W2 = 1
1+exp(−(2W1−1))

P ∗0 (Y = 1|W ) = 1
1+exp(−(− sin(W 2

1 )+9 log(W1)+1.2W2−1))
.

The resulting population had a prevalence probability q0 = 0.037. We sam-
pled the population at several sample sizes, each with equal numbers of cases
and controls, and for each sample size we ran 1000 simulations.

Prediction Methods. We estimated P ∗0 (Y = 1|W ) using:
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1. Case-Control Weighted DSA (CCW DSA): Implementing case-control
weighted logistic regression, discussed in Section 3, using the data-
adaptive model selection procedure DSA (Sinisi and van der Laan,
2004).

2. Intercept Adjusted DSA (IA DSA): Implementing an intercept adjusted
logistic regression (Section 2) using DSA.

For the DSA algorithm, we did not force any variables into the model and
thus DSA selected all terms. The maximum size of the model was set to
6 terms, the model was limited to two-way interactions, and the maximum
sum of powers for any term was set to 3. The default setting for cross-
validation was maintained, thus five-fold cross validation was performed to
prevent overfitting. The case-control weighted DSA included weights q0 and
(1 − q0) 1

J
for cases and controls, respectively. Intercept adjusted DSA was

performed without weighting and the predicted values generated for each
model were updated with log q0

1−q0 .

Results. We illustrated each of the predictors using the predicted proba-
bilities of being a case. The means of the true values for each sample size,
among cases only, controls only, and in the total sample, are listed in Table
1. Results for average bias and mean squared error can be seen in Figure
1 and Table 2, respectively. The case-control weighted DSA and intercept
adjusted DSA performed similarly with respect to bias and mean squared
error. There were slight differences in bias, but the magnitudes of these dif-
ferences were small, such that they may not be true differences. Similarly,
the relative efficiency of case-control weighted DSA compared to intercept
adjusted DSA hovered around 1.00.

Table 1: Simulation 1 True Mean Probabilities. N is total sample size.
Equal numbers of cases and controls were used at each sample size.

N Cases Only Controls Only Total Sample
1000 0.1829 0.0313 0.1071
1500 0.1828 0.0315 0.1071
2000 0.1829 0.0314 0.1071
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Figure 1: Simulation 1 Bias Results. CCW is case-control weighted DSA
procedure and IA is intercept adjusted DSA procedure.
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Table 2: Simulation 1 MSE. N is total sample size, MSE is Mean Squared
Error and RE is the Relative Efficiency of CCW DSA compared to IA DSA.
Equal numbers of cases and controls were used at each sample size.

N Method Cases Only Controls Only Total Sample
1000 IA MSE 1.39E-03 1.31E-04 7.63E-04

CCW RE 0.96 0.97 0.96
1500 IA MSE 8.65E-04 8.84E-05 4.77E-04

CCW RE 1.08 1.04 1.07
2000 IA MSE 6.69E-04 6.81E-05 3.68E-04

CCW RE 1.06 1.03 1.06

4.2 Simulation Study 2

Population. Our second simulation study illustrated the use of the case-
control weighting scheme for prediction in case-control designs involving
many covariates, such as a list of candidate SNPs. It was also designed
to demonstrate, in a machine learning setting, that case-control weighting
often outperforms intercept adjustment in practical settings. The simulation
was based on a population of N = 19, 500 individuals, and we simulated a
25-dimensional covariate W and indicator Y , which was 1 for cases and 0
for controls. The 25-dimensional covariate W was comprised of dichotomous
values, generated according to Wi ∼ Binomial(pi). The values of pi ranged
from 0.02 to 0.90. The remaining variable Y was generated using the first 10
covariates, with 8 interaction terms and 1 main term. The resulting popu-
lation had a prevalence probability q0 = 0.054. We sampled 1000 cases and
1000 controls from the population and ran 100 simulations.

Prediction Methods. The same methods described in the previous sim-
ulation were used here: case-control weighted DSA and intercept adjusted
DSA. However, for the DSA algorithm, the maximum size of the model was
set to 10 and the model was limited to main terms. All other settings were
as described in Section 4.1. Due to the complexity of the underlying popu-
lation model, the limiting of the model to a maximum of 10 main terms led
to misspecified models.

Results. Again, we illustrated each of the predictors using the predicted
probabilities of being a case. The means of the true probabilities were 0.2267,
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Table 3: Simulation 2 Results. CCW is Case-Control Weighted DSA,
IA is Intercept Adjusted DSA, MSE is Mean Squared Error, and RE is the
Relative Efficiency of CCW DSA compared to IA DSA. Sample size was 2000
with 1000 cases and 1000 controls, with 1000 samples taken.

MSE Cases Only Controls Only Total Sample
IA MSE 1.60E-02 3.35E-03 9.68E-03

CCW RE 1.50 1.42 1.49
Bias

IA MSE 5.46E-02 -3.73E-03 2.54E-02
CCW RE 4.98E-02 -2.52E-03 2.37E-02

0.0443, and 0.1355 among cases only, controls only, and in the total sample.
Mean squared error and bias results are displayed in Table 3. The case-control
weighted DSA estimator produced less biased predicted probabilities among
cases only, controls only, and in the total sample. The magnitudes of the
differences were larger than those seen in Simulation 1, although still small.
The more important distinction here is that the case-control DSA procedure
was substantially more efficient. These results were not unexpected based on
our findings published in Rose and van der Laan (2008a), where we discussed
the sensitivity of intercept adjusted maximum likelihood estimation to model
misspecification.

5 Discussion

This paper was designed to introduce the use of case-control weighted models
for prediction with case-control study data. This extension follows from the
case-control methodology developed for causal inference described by van der
Laan (2008). Our simulations demonstrated the use of case-control weighted
maximum likelihood estimation in a data-adaptive model selection procedure.
Case-control weighting performed similarly to a previously known method
for prediction in case-control study designs, intercept adjustment, in our
simulations with few covariates and allowances for interactions and higher
powered terms. When the simulation included a larger number of covariates
and was limited to main terms, case-control weighting outperformed intercept
adjustment. This result coincided with our conclusions from Rose and van der
Laan (2008a). There, we demonstrated that intercept adjusted maximum
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likelihood estimation was very sensitive to model misspecification, whereas
case-control weighted maximum likelihood estimation was not. Therefore,
the use of case-control weighting may outperform intercept adjustment in
many practical settings, including situations where a priori specified models
are used and when data-adaptive model selection procedures are used.

We hope that case-control weighting will become a useful device for cre-
ating predictive models for rare diseases. It is an opportunity for us, as part
of the research community, to translate our work into a tool of immediate
use for clinicians and other researchers. We presented case-control weight-
ing for prediction with independent case-control study data. However, the
case-control weighting scheme easily extends to other study designs, such as
matched case-control sampling and incidence-density sampling. For matched

case-control study data, the weights are q0 for cases and q̄0(M) ≡ q0
P ∗

0 (Y=0|M)

P ∗
0 (Y=1|M)

for controls, where M is the matching variable. In incidence-density sam-
pling, q0 is defined as the incidence probability, and the case-control weights
depend on the time points the cases and controls were sampled. See van der
Laan (2008), Rose and van der Laan (2008a), and Rose and van der Laan
(2008b) for details on these additional weighting schemes. For further read-
ing on advances in prediction for case-control study design data, we also
refer readers to Huang and Pepe (2008) who discuss a ‘predictiveness curve’
(Pepe et al., 2007) that incorporates risk prediction with classification per-
formance measures for case-control studies. Their methodology also assumes
knowledge of P ∗0 (Y = 1) ≡ q0.
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