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Super Learner

Mark J. van der Laan, Eric C. Polley, and Alan E. Hubbard

Abstract

Previous articles (van der Laan and Dudoit (2003); van der Laan et al. (2006); Sin-
isi et al. (2007)) advertised and theoretically validated the use of cross-validation
to select among many candidate estimators to compute a so called super learner
which outperforms any of the given candidate estimators. The theoretical basis
was provided for this super learner based on oracle results for the cross-validation
selector (e.g., van der Laan and Dudoit (2003); van der Laan et al. (2006)) and
in Sinisi et al. (2007). In addition, these papers contained a practical demonstra-
tion of the adaptivity of this so called super learner in the context of prediction of
the fitness of the HIV virus as a function of its mutations. This article proposes
a fast algorithm for constructing a super learner in prediction which uses V-fold
cross-validation to select a functional form of an initial set of candidate predictors
according to a parametric or semi-parametric model, or possibly, data adaptively.
The paper contains a proof that the resulting super learner performs asymptoti-
cally as well as the oracle selector among the continuum of estimators defined by
the (semi-)parametric functional forms of the initial set of candidate estimators.

This approach also yields a new class of cross-validation methods to select among
a family of candidate estimators by formulating the minimization of the cross-
validated risk over the family of candidate estimators as a new least squares re-
gression problem which itself can be carried out with any type of parametric or
nonparametric regression methodology (e.g. using cross-validation itself), thereby
preventing over-fitting of the cross-validated risk. Simulations and data analysis
suggest this new proposed super learner superior to competing methods. This ap-
proach for construction of a super learner generalizes to any parameter which can
be defined as a minimizer of a loss function.



1 Introduction

Numerous methods exist to learn from data the best predictor of a given
outcome based on a sample of n independent and identically distributed ob-
servations Oi = (Yi, Xi), Yi the outcome of interest, and Xi a vector of input
variables, i = 1, . . . , n. A few examples include decision trees, neural net-
works, support vector regression, least angle regression, logic regression, poly-
class, MARS, and the Deletion/Substitution/Addition (D/S/A) algorithm.
Such algorithms, or learners, can be characterized by the mechanism used
to search the parameter space of possible regression functions. For example,
the D/S/A algorithm (Sinisi and van der Laan, 2004) uses polynomial basis
functions, while logic regression (Ruczinski et al., 2003) constructs Boolean
expressions of binary covariates. The performance of a particular learner de-
pends on how effective its searching strategy is in approximating the optimal
predictor defined by the true data generating distribution. Thus, the rela-
tive performance of various learners will depend on the true data-generating
distribution. In practice, it is generally impossible to know a priori which
learner will perform best for a given prediction problem and data set.

The framework for unified loss-based estimation (van der Laan and Du-
doit, 2003) suggests a solution to this problem in the form of a new estimator,
termed the “super learner”. In the context of prediction, this estimator is
itself a prediction algorithm, which applies a set of candidate learners to
the observed data, and chooses the optimal learner for a given prediction
problem based on cross-validated risk. Theoretical results show that such
a super learner will perform asymptotically as well or better than any of
the candidate learners (van der Laan and Dudoit, 2003; van der Laan et al.,
2006).

To be specific, consider some candidate learning algorithms. Least Angle
Regression (LARS) (Efron et al., 2004) is a model selection algorithm related
to the lasso. Logic Regression (Ruczinski et al., 2003) is an adaptive regres-
sion methodology that attempts to construct predictors as Boolean combi-
nations of binary covariates. The Deletion/Substitution/Addition (D/S/A)
algorithm (Sinisi and van der Laan, 2004) for polynomial regression data-
adaptively generates candidate predictors as polynomial combinations of con-
tinuous and/or binary covariates, and also is available as an R package at
http://www.stat.berkeley.edu/users/laan/Software/. Classification and Re-
gression Trees (CART) (Breiman et al., 1984) builds a recursive partition
of the covariates. Another candidate algorithm is random forests Breiman
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Method R Package Authors
Least Angle Regression lars Hastie and Efron
Logic Regression LogicReg Kooperberg and Ruczinski
D/S/A DSA Neugebauer and Bullard
Regression Trees rpart Therneau and Atkinson
Ridge Regression MASS Venables and Ripley
Random Foretss randomForest Liaw and Wiener
Adaptive Regression Splines polspline Kooperberg

Table 1: R Packages for Candidate Learners. R is available at http://www.r-
project.org

(2001), which is a random bootstrap version of the regression tree. Ridge
Regression (Hoerl and Kennard, 1970) minimizes a penalized least squares
with a penalty on the L2 norm of the parameter vector. Multivariate Adap-
tive Regression Splines (MARS) Friedman (1991) is an automated model
selection algorithm which creates a regression spline function. Table 1 con-
tains citations of R packages for each of the candidate learners. All of these
methods have the option to carry out selection using v-fold cross-validation.
The selected fine-tuning parameter(s) can include the ratio of the L1 norm
of the coefficient vector in LARS to the norm of the coefficient vector from
least squares; the number of logic trees and leaves in Logic Regression; and
the number of terms and a complexity measure on each of the terms in DSA.

Cross-validation divides the available learning set into a training set and
a validation set. Observations in the training set are used to construct (or
train) the estimators, and observations in the validation set are used to as-
sess the performance of (or validate) these estimators. The cross-validation
selector selects the learner with the best performance on the validation sets.
In v-fold cross-validation, the learning set is divided into v mutually exclu-
sive and exhaustive sets of as nearly equal size as possible. Each set and
its complement play the role of the validation and training sample, respec-
tively, giving v splits of the learning sample into a training and corresponding
validation sample. For each of the v splits, the estimator is applied to the
training set, and its risk is estimated with the corresponding validation set.
For each estimator/learner the v risks over the v validation sets are aver-
aged resulting in the so-called cross-validated risk. The estimator with the
minimal cross-validated risk is selected.
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It is helpful to consider each learner as an algorithm applied to empirical
distributions. Thus, if we index a particular learner with an index k, then
this learner can be represented as a function Pn → Ψ̂k(Pn) from empirical
probability distributions Pn to functions of the covariates. Consider a collec-
tion of K(n) learners Ψ̂k, k = 1, . . . , K(n), in parameter space Ψ. The super
learner is a new estimator defined as

Ψ̂(Pn) ≡ Ψ̂K̂(Pn)(Pn),

where K̂(Pn) denotes the cross-validation selector described above which
simply selects the learner which performed best in terms of cross-validated
risk. Specifically,

K̂(Pn) ≡ arg min
k
EBn

∑

i,Bn(i)=1

(Yi − Ψ̂k(P
0
n,Bn

)(Xi))
2,

where Bn ∈ {0, 1}n denotes a random binary vector whose realizations define
a split of the learning sample into a training sample {i : Bn(i) = 0} and
validation sample {i : Bn(i) = 1}. Here P 1

n,Bn
and P 0

n,Bn
are the empirical

probability distributions of the validation and training sample, respectively.
The aggressive use of cross-validation is inspired by the following theo-

rem. Under the Assumption A1 that the loss function L(O,ψ) = (Y −ψ(X))2

is uniformly bounded, and the Assumption A2 that the variance of the ψ0-
centered loss function L(O,ψ)−L(O,ψ0) can be bounded by its expectation
uniformly in ψ, van der Laan et al. (2006) (Theorem 3.1) establish the fol-
lowing finite sample inequality.

Theorem 1 Let {ψ̂k = Ψ̂k(Pn), k = 1, ..., K(n)} be a given set of K(n)
estimators of the parameter value ψ0 = arg minψ∈Ψ

∫

L(o, ψ)dP0(o). Let
d0(ψ, ψ0) ≡ EP0

{L(O,ψ) − L(O,ψ0)} denote the risk difference between a
candidate estimator ψ and the parameter ψ0. Suppose that Ψ is a param-
eter space so that Ψ̂k(Pn) ∈ Ψ for all k, with probability 1. Let K̂(Pn) ≡
arg mink EBn

∫

L(o, Ψ̂k(P
0
n,Bn

))dP 1
n,Bn

(o) be the cross-validation selector, and

let K̃(Pn) ≡ arg mink EBn

∫

L(o, Ψ̂k(P
0
n,Bn

))dP0(o) be the comparable oracle
selector. Let p be the proportion of observations in the validation sample.
Then, under assumptions A1 and A2, one has the following finite sample
inequality for any λ > 0 (where C(λ) is a constant, defined in van der Laan
et al. (2006)):

Ed0(Ψ̂K̂(Pn)(P
0
n,Bn

), ψ0) ≤ (1+2λ)Ed0(Ψ̂K̃(Pn)(P
0
n,Bn

), ψ0)+2C(λ)
1 + log(K(n))

np
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The “oracle” selector is defined in Theorem 1 as the estimator, among
the K(n) learners considered, which minimizes risk under the true data-
generating distribution. In other words, the oracle selector is the best possible
estimator given the set of candidates considered; however, it depends on both
the observed data and P0, and thus is unknown.

This Theorem shows us that the super learner performs as well (in terms
of expected risk difference) as the oracle selector, up to a typically second
order term. Thus, as long as the number of candidate learners considered
(K(n)) is polynomial in sample size, the super learner is the optimal learner
in the following sense:

• If, as is typical, none of the candidate learners (nor, as a result, the
oracle selector) converge at a parametric rate, the super learner per-
forms asymptotically as well (in the risk difference sense) as the oracle
selector, which chooses the best of the candidate learners.

• If one of the candidate learners searches within a parametric model
and that parametric model contains the truth, and thus achieves a
parametric rate of convergence, then the super learner achieves the
almost parametric rate of convergence log n/n.

Organization: The current article builds and extends this super learn-
ing methodology in the following way. In section 2 we will describe our new
proposal for super learning, also using an initial set of candidate learners and
cross-validation as above, but now allowing for semi-parametric families of
the candidate learners, and formulating the minimization of cross-validated
risk as another regression problem for which one can select an appropriate re-
gression methodology (e.g involving cross-validation or penalized regression).
This is an important improvement relative to our previous super learning pro-
posal by 1) extending the set of initial candidate learners into a large family
of candidate learners one obtains by combining the initial candidate learn-
ers according to a parametric or semi-parametric model, thereby obtain a
potentially much more flexible prediction algorithm, and 2) by controlling
over-fitting of the cross-validated risk through the use of data adaptive re-
gression algorithms using cross-validation or penalization itself. Importantly,
these gains come at no cost regarding computing time. In Section 3 we inves-
tigate the practical performance of this new super learning algorithm based
on simulated as well as a number of real data sets. The article ends with a
discussion.
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2 The proposed super learning algorithm

Suppose one observes n i.i.d. observations Oi = (Xi, Yi) ∼ P0, i = 1, . . . , n,
and the goal is to estimate the regression ψ0(X) = E0(Y | X) of Y ∈ Y on
X ∈ X . The regression can be defined as the minimizer of the expectation
of the squared error loss function:

ψ0 = arg min
ψ
E0L(O,ψ),

where L(O,ψ) = (Y − ψ(X))2. The proposed super learning algorithm im-
mediately applies to any parameters that can be defined as minimizers of a
loss function L(O,ψ) over a parameter space Ψ, but the article focuses on
the prediction problem using the squared error loss function.

Let Ψ̂j, j = 1, . . . , J , be a collection of J candidate estimators, which
represent mappings from the empirical probability distribution Pn into the
parameter space Ψ consisting of functions of X.

The proposed super learner uses V -fold cross-validation. Let v ∈ {1, . . . , V }
index a sample split into a validation sample V (v) ⊂ {1, . . . , n} and training
sample (the complement of V (v)) T (v) ⊂ {1, . . . , n}, where V (v) ∪ T (v) =
{1, . . . , n}. Here we note that the union, ∪Vv=1V (v) = {1, . . . , n}, of the
validation samples equals the total sample, and the validations samples are
disjoint: V (v1) ∩ V (v2) = ∅ for v1 6= v2. For each v ∈ {1, . . . , V }, let,
ψnjv ≡ Ψ̂j(PnT (v)) be the realization of the j-estimator Ψ̂j when applied to
the training sample PnT (v).

For an observation i, let v(i) denote the validation sample it belongs to,
i = 1, . . . , n. We now construct a new data set of n observations as follows:
(Yi, Zi), where Zi ≡ (ψnjv(i)(Xi) : j = 1, . . . , J) is the vector consisting of
the J predicted values according to the J estimators trained on the training
sample PnT (v(i)), i = 1, . . . , n. Let Z be the set of possible outcomes for Z.

Minimum cross-validated risk predictor: Another input of this su-
per learning algorithm is yet another user-supplied prediction algorithm Ψ̃
that estimates the regression E(Y | Z) of Y onto Z based on the data set
(Yi, Zi), i = 1, . . . , n. For notational convenience, we will denote {(Yi, Zi) :
i = 1, . . . , n} with Pn,Y,Z , so that Ψ̃ is a mapping from Pn,Y,Z to Ψ̃(Pn,Y,Z) :
Z → Y , where the latter is a function from Z to Y . We will refer to this
algorithm Ψ̃ as the minimum cross-validated risk predictor since it aims to
minimize the cross-validated risk, ψ̃ →

∑n
i=1(Yi − ψ̃(Zi))

2, over a set of
candidate functions ψ̃ from Z into Y , although, we allow penalization or
cross-validation to avoid over-fitting of this cross-validated risk criteria.
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This now defines a mapping Ψ̂∗ from the original data Pn ≡ {Yi, Xi) : i =
1, . . . , n} into the predictor

Ψ̃
(

{Yi, Zi = (Ψ̂j(PnT (vi))(Xi) : j = 1, . . . , J)) : i = 1, . . . , n}
)

obtained by applying the cross-validated risk minimizer Ψ̃ to Pn,Y,Z = {(Yi, Zi) :

i = 1, . . . , n}. Let’s denote ψ∗
n = Ψ̂∗(Pn) as the actual obtained predictor

when one applies the estimator/learner Ψ̂∗ to the original sample Pn. We
note that ψ∗

n ∈ Ψ∗ ≡ {f : Z → Y} is a function of Z into the outcome set Y
for Y .

The super predictor for a value X based on the data (i.e., Pn) is now
given by

Ψ̂(Pn)(X) ≡ Ψ̂∗(Pn)((Ψ̂j(Pn)(X), j = 1, . . . , J). (1)

In words, the super predictor of Y for a value X is obtained by evaluating
the predictor ψ∗

n = Ψ̂∗(Pn) at the J predicted values, Ψ̂j(Pn)(X), at X of
the J candidate estimators.

2.1 Specific choices of the minimum cross-validated

risk predictor.

Parametric minimum cross-validated risk predictor: Consider a few
concrete choices that aims to fit a regression of Y onto the J predicted
values Z based on (Yi, Zi), i = 1, . . . , n,for the algorithm Ψ̂∗. Define the
cross-validated risk criteria:

RCV (α) ≡
n
∑

i=1

(Yi −m(Zi | α))2,

where one could use, for example, the linear regression model m(z | α) =
αz. If Y ∈ {0, 1}, then one could use the logistic linear regression model
m(z | α) = 1/(1 + exp(−αz)), if one allows predictions in the range of
[0, 1], or, if one wants a predictor mapping into {0, 1}, then a natural choice
m(z | α0, α) ≡ I(1/(1 + exp(−αz)) > α0) as the indicator that the logistic
regression score exceeds a cut-off α0. Let αn = arg minαRCV (α) be the least
squares or MLE estimator, and let

ψ∗

n(z) ≡ m(z | αn).

6
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One could also estimate α with a constrained least squares regression estima-
tor such as penalized L1-regression (Lasso), penalized L2 regression (shrink-
age), where the constraints are selected with cross-validation, or one could
restrict α to the set of positive weights summing up till 1.

Data adaptive minimum cross-validated risk predictor: There is
no need to restrict ψ∗

n to parametric regression fits. For example, one could
define ψ∗

n in terms of the application of a particular data adaptive (machine
learning) regression algorithm to the data set (Yi, Zi), i = 1, . . . , n, such as
classification and regression trees (CART), the deletion/substitution/addition
regression algorithm (D/S/A), and polynomial spline regression (MARS),
among others. In fact, one could apply a super learning algorithm itself to
estimate E(Y | Z).

Thus, this super learning algorithm is indexed, beyond the choice of initial
candidate estimators, by a choice of minimum cross-validated risk predictor.
As a consequence, the proposal provides a whole class of tools indexed by
an arbitrary choice of a regression algorithm (i.e., ψ∗

n) to map a set of candi-
date estimators into a new cross-validated estimator (i.e. super learner). In
particular, it provides a new way of using the cross-validated risk function,
which goes beyond minimizing the cross-validated risk over a set of candidate
estimators.

3 Finite sample result and asymptotics for

the super learner.

An immediate consequence of Theorem 1 above is the following result for the
proposed super learner algorithm (1), which provides for the case that the
minimum cross-validated risk predictor is a based on a parametric regression
model.

Theorem 2 Assume P ((Y,X) ∈ Y × X ) = 1, where Y is a bounded set in
IR, and X is a bounded Euclidean set. Assume that the candidate estimators
map into Y: P (Ψ̂j(Pn) ∈ Y , j = 1, . . . , J) = 1.

Let v ∈ {1, . . . , V } index a sample split into a validation sample V (v) ⊂
{1, . . . , n} and corresponding training sample T (v) ⊂ {1, . . . , n} (complement
of V (v)), where V (v) ∪ T (v) = {1, . . . , n}, and ∪Vv=1V (v) = {1, . . . , n}. For
each v ∈ {1, . . . , V }, let, ψnjv ≡ Ψ̂j(PnT (v)), X → Y, be the realization of the

j-th estimator Ψ̂j when applied to the training sample T (v).

7
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For an observation i let v(i) be the validation sample observation i be-
longs to, i = 1, . . . , n. Construct a new data set of n observations defined as:
(Yi, Zi), where Zi ≡ (ψnjv(i)(Xi) : j = 1, . . . , J) ∈ YJ is the J-dimensional
vector consisting of the J predicted values according to the J estimators
trained on the training sample T (v(i)), i = 1, . . . , n.

Consider a regression model z → m(z | α) for E(Y | Z) indexed by a
α ∈ A representing a set of functions from YJ into Y. Consider a grid (or
any finite subset) An of α-values in the parameter space A. Let K(n) =| An |
be the number of grid points which grows at most at a polynomial rate in n:
K(n) ≤ nq for some q <∞.

Let

αn ≡ arg min
α∈An

n
∑

i=1

(Yi −m(Zi | α))2.

Consider the regression estimator ψn : X → Y defined as

ψn(x) ≡ m((ψjn(x) : j = 1, . . . , J) | αn).

For each α ∈ A, define the candidate estimator Ψ̂α(Pn) ≡ m((Ψ̂j(Pn) :
j = 1, . . . , J) | α): i.e.

Ψ̂α(Pn)(x) = m((Ψ̂j(Pn)(x) : j = 1, . . . , J) | α).

Consider the oracle selector of α:

α̃n ≡ arg min
α∈An

1

V

V
∑

v=1

d(Ψ̂α(PnT (v)), ψ0),

where

d(ψ, ψ0) = E0(L(X,ψ) − L(X,ψ0)) = E0(ψ(X) − ψ0(X))2.

For each δ > 0 we have that there exists a C(δ) <∞ such that

1

V

V
∑

v=1

Ed(Ψ̂αn
(PnT (v)), ψ0) ≤ (1+δ)E min

α∈An

1

V

V
∑

v=1

d(Ψ̂α(PnT (v)), ψ0)+C(δ)
V log n

n
.

Thus, if

Eminα∈An

1
V

∑V
v=1 d(Ψ̂α(PnT (v)), ψ0)
logn
n

→ 0 as n→ ∞, (2)

8
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then it follows that the estimator Ψ̂αn
is asymptotically equivalent with the

oracle estimator Ψ̂α̃n
when applied to samples of size (1 − 1/V )n:

1
V

∑V
v=1Ed(Ψ̂αn

(PnT (v)), ψ0)

Eminα∈An

1
V

∑V
v=1 d(Ψ̂α(PnT (v)), ψ0)

→ 1 as n→ ∞.

If (2) does not hold, then it follows that Ψ̂αn
achieves the (log n)/n rate:

1

V

V
∑

v=1

Ed(Ψ̂αn
(PnT (v)), ψ0) = O

(

log n

n

)

.

Discussion of conditions. The discrete approximation An of A used in
this theorem is typically asymptotically negligible. For example, if A is a
bounded Euclidean set, then the distance between neighboring points on the
grid can be chosen as small as 1/nq for some q < ∞ so that minimizing
a criteria over such a fine grid An versus minimizing over the whole set
A results in asymptotically equivalent procedures. For example, if α is a
Euclidean parameter and ‖ m(· | α1)−m(· | α2) ‖∞< C ‖ α1 −α2 ‖ for some
C < ∞, where ‖ · ‖∞ denotes the supremum norm, then it follows that for
each δ > 0 we have that there exists a C(δ) <∞ such that

1

V

V
∑

v=1

Ed(Ψ̂αn
(PnT (v)), ψ0) ≤ (1+δ)Emin

α∈A

1

V

V
∑

v=1

d(Ψ̂α(PnT (v)), ψ0)+C(δ)
log n

n
,

where αn = arg minα∈A
∑n
i=1(Yi −m(Zi | α))2. The other conclusions of the

theorem now also apply.
This theorem implies that the selected prediction algorithm Ψ̂αn

will ei-
ther perform asymptotically as well (up till the constant) as the best estima-
tor among the family of estimators {Ψ̂α : α ∈ A} when applied to samples of
size n(1− 1/V ), or achieve the parametric model rate 1/n up till a log n fac-
tor. By a simple argument as presented in van der Laan and Dudoit (2003),
Dudoit and van der Laan (2005) and van der Vaart et al. (2006), it follows
that by letting the V = Vn in the V-fold cross-validation scheme converge
to infinity at a slow enough rate relative to n, then either ψn = Ψ̂αn

(Pn)
performs asymptotically as well (up till the constant) as the best estimator
among the estimators {Ψ̂α : α} applied to the full sample Pn, or it achieves
the parametric rate of convergence up till the log n factor.

The take home message of this theorem is that our super learner will
perform asymptotically as well as the best estimator among the family of

9
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candidate estimators Ψ̂α indexed by α. By choosing the regression model
m(· | α) so that there exist a αj so that m(Z | αj) = Zj for each j = 1, . . . , J
(e.g., m(Z | α) = αZ), then it follows, in particular, that the resulting pre-
diction algorithm asymptotically outperforms each of the initial candidate
estimators Ψ̂j. More importantly and practically, the set of candidate esti-

mators Ψ̂α can include interesting combinations of these J estimators which
exploit the strengths of various of these estimators for the particular data
generating distribution P0 instead of focusing on one of them. For example,
if one uses the linear regression model m(Z | α) = αZ, then the candi-
date estimators {Ψ̂α : α} include all averages of the J estimators, including
convex combinations. As becomes evident in our data analysis and simula-
tion results, the selected estimator ψ∗

n based on a linear (or logistic linear)
regression model is often indeed (or logistic function of) an average of com-
peting estimators in which various of the candidate estimators significantly
contribute to the average.

4 Simulation results

In this section, we conducted a simulation study to evaluate the working
characteristics of the super learner. The simulations considered has a known
data generating distribution. The simulation involves a continuous response
variable. The true model is:

Yi = 2w1w10 + 4w2w7 + 3w4w5 + −5w6w10 + 3w8w9 + w1w2w4

+ − 2w7(1 − w6)w2w9 + −4(1 − w10)w1(1 − w4) + ε (3)

where wj ∼ Binomial(p = 0.4), j = 1, . . . , 10 and ε ∼ Normal(0, 1).
Each observation consists of the 10 dimensional covariate vector W, and
the continuous response variable Y. The parameter of interest is ψ0(W ) =
E0(Y|W). The simulated learning dataset contains a sample of 500 observa-
tions (i=1,. . . ,500) from 3.

We applied the super learner to the learning set using five candidate
learners. The first candidate was a simple linear regression model with only
main terms, which will be estimated with regular least squares. The second
candidate was main terms least angle regression with lasso (LARS) Efron
et al. (2004). Internal cross-validation (i.e. another layer of cross-validation
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http://biostats.bepress.com/ucbbiostat/paper222



inside each training split) was used the estimate the optimal fraction parame-
ter, λ0 ∈ (0, 1). The third candidate was the Deletion/Substitution/Addition
(D/S/A) algorithm for data-adaptive polynomial regression Sinisi and van der
Laan (2004). For the D/S/A algorithm, we allowed interaction terms and
restricted the model to less than 50 terms. The D/S/A uses internal cross-
validation to determine the best model in this model space. The fourth
candidate was logic regression Ruczinski et al. (2003) where the number of
trees was selected to be 5 and the number of leaves to be 20 based on 10-fold
cross validation of the learning dataset. For the logic regression fine-tuning
parameters, we searched over #trees ∈ {1, . . . , 5} and #leaves ∈ {1, . . . , 20}.
The final candidate algorithm was random forests Breiman (2001). Table 1
contains references for the R packages of each canidate learner.

We applied the super learner with 10-fold cross-validation on the learning
set. Applying the prediction to all 10 folds of the learning set gives us
the predicted values Zi ≡ (Ψ̂jν(i)(Wi) : j = 1, . . . , 5) and corresponding Yi
for each observation i = 1, . . . , 500. We then proposed the linear model
E(Y|Z) = α + βZ and used least squares to estimate the intercept α and
parameter-vector β based on (Yi, Zi), i = 1, . . . , n.

After having obtained the fit αn, βn of α, β, next, each of the candidate
learners was fit on the entire learning set, which gives the super learner
Ψ̂(Pn)(W ) = αn + βn(Ψ̂j(Pn)(W ) : j = 1, . . . , 5)) when applied to a new
covariate vector W .

To evaluate the super learner next to each of the candidate learners, an
additional 10,000 observations was simulated from the same data generating
distribution. Using the models on the learning dataset, we calculated the
mean square prediction error (MSPE) on this new validation dataset. Table 2
has the results for the Relative mean square prediction error (RMPSE), where
RMSPE(x) = MSPE(x)/MSPE(least squares). Among the candidates,
the D/S/A algorithm appears to have the smallest error, but the super learner
improves on the D/S/A fit. The estimates βn all appear to be nonzero
except for the simple linear regression model. The super learner can combine
information from the candidate learners to build a better predictor.

The second simulation considers continuous covariates as opposed to bi-
nary covariates from the first simulation. Let X be a 1 x 20 dimensional
random vector and X ∼ Np(0, 16 ∗ Idp) where p = 20 and Idp is the p-
dimensional identity matrix. Each column of X is a covariate in the models
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method RMSPE βn
Least Squares 1.00 0.038

LARS 1.15 -0.171
D/S/A 0.22 0.535
Logic 0.32 0.274

Random Forest 0.42 0.398
Super Learner 0.20

Table 2: Simulation Example 1: Estimates of the relative mean square pre-
diction error (compared to least squares) based on the validation sample
N=10,000. The estimates for β in the super learner are also reported in the
right column (αn = −0.018).

used below. The outcome is defined as:

Yi = X1X2 +X2
10 −X3X17 −X15X4 +X9X5 +X19 −X2

20 +X9X8 + ε, (4)

where ε ∼ Normal(0, 16) and Xj is the jth column of X. From this model,
5200 observations were simulated. The training sample contained the first
200, and the validation sample the final 5000. The super learner was applied
with the following candidate learners:

• Simple linear regression with all 20 main terms.

• LARS with internal cross-validation to find the optimal fraction.

• D/S/A with internal cross-validation to select the best model with
fewer than 25 terms allowing for interaction and quadratic terms.

• Ridge regression with internal cross-validation to select the optimal L2
penalty parameter.

• Random forests with 1,000 trees.

• Adaptive regression splines.

Table 3 contains the results for the second simulation. As in the first
simulation, the relative mean square prediction error is used to evaluate
the candidate learners and the super learner. For this model, simple linear
regression, LARS, and ridge regression all appear to have the same results.
Random forests and adaptive regression splines are better able to pick up
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the non-linear relationship, but among the candidate learners, the D/S/A is
the best with a relative MSPE of 0.43. But the super learner improves on
the fit even more with a relative MSPE of 0.22 by combining the candidate
learners. Since the model for ψ∗

n(z) can be near collinear, the estimates of β
are often unstable and should not be used to determine the best candidate
by comparing the magnitude of the parameter estimate.

method RMSPE βn
Least Squares 1.00 -0.73

LARS 0.91 -0.92
D/S/A 0.43 0.86
Ridge 0.98 0.61

Random Forest 0.71 1.06
MARS 0.61 0.05

Super Learner 0.22

Table 3: Simulation Example 2: Estimates of the relative mean square pre-
diction error (compared to Least Squares) based on the validation sample
(N=5,000). The estimates for β in the super learner are also reported in the
right column (αn = 0.03).

The main advantage of the proposed super learner is the adaptivity to
different data generating distributions across many studies. The third simu-
lation demonstrates this feature by creating 3 additional studies and applying
the super learner and the candidates to all 3 studies then combining the re-
sults with the second simulation and evaluating the mean square error across
all 4 studies. Equation 5 shows the data generating distributions for the 3
new studies. The data generating distribution for the covariates X is the
same as the second simulation example above. To be consisted across the 4
studies, the same candidate learners from the second simulation were applied
to these 3 new studies.
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method study 1 study 2 study 3 2nd simulation overall
Least Squares 1.00 1.00 1.00 1.00 1.00

LARS 0.91 0.95 1.00 0.91 0.95
D/S/A 0.22 0.95 1.04 0.43 0.71
Ridge 0.96 0.99 1.02 0.98 1.00

Random Forest 0.39 0.72 1.18 0.71 0.91
MARS 0.02 0.82 0.17 0.61 0.38

Super Learner 0.02 0.67 0.16 0.22 0.19

Table 4: Simulation Example 3: Estimates of the relative mean square pre-
diction error (compared to least squares) based on the validation sample.
The 3 new studies from 5 are combined with the second simulation exam-
ple and the relative mean square prediction error is reported in the overall
column.

Yij =



















































−5 +X2 + 6(X10 + 8)+ − 6(X10)+ − 7(X10 − 5)+

− 6(X15 + 6)+ + 8(X15)+ + 7(X15 − 6)+ + ε if j = 1

10 · I(X1 > −4 and X2 > 0 and X3 > −4) + ε if j = 2

−4 +X2 +
√

|X3| + sin(X4) − .3X6X11 + 3X7

+ .3X3
8 − 2X9 − 2X10 − 2X11 + ε if j = 3

(5)

where ε ∼ Normal(0, 16) and I(x) = 1 if x is true, and 0 otherwise. For the 4
studies (the 3 new studies combined with the second simulation), the training
sample contained 200 observations and the validation sample contained 5,000
observations.

Table 4 contains the results from the second simulation. For the first
study (j = 1), the adaptive regression spline function is able to well estimate
the true distribution. The super learner is not able to improve on the fit,
but it does not do worse than the best candidate algorithm here. In the
second study (j = 2), the adaptive regression spline function is not the best
candidate learner. The random forests performs best in the second study,
but the super learner is able to improve on the fit. The third study (j = 3)
is similar to the first in that the adaptive regression splines function is able
to approximate the true distribution well, but the super learner does not
do worse. The squared prediction error from these three studies and the
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second simulation was combined to give a mean squared prediction error
for the four studies. The last column in table 4 gives the relative mspe for
each of the candidate learners and the super learner. If the researcher had
selected just one of the candidate learners, they might have done well within
one or two of the studies, but overall the super learner will outperform the
candidate learners. For example, the adaptive regression spline (MARS)
learner performs well on the first and third study, and does well overall with
a relative mspe of 0.38, but the super learner outperforms the MARS learner
with an overall relative mspe of 0.19. The super learner is able to adapt to
the different data generating distributions and will outperform any candidate
learner across many studies.

5 Data Analysis

We applied the super learner to the diabetes dataset from the LARS package
in R. Details on the dataset can be found in Efron et al. (2004). The dataset
consists of 442 observations of 10 covariates (9 quantitative and 1 qualitative)
and a continuous outcome. The covariates have been standardized to have
mean zero and unit L2 norm. We selected 6 candidate learners for the super
learner. The first candidate was least squares using all 10 covariates. Next
we considered the least squares model with all possible two-way interactions
and quadratic terms on the quantitative covariates. The third and fourth
candidates were applying LARS to the main effects and all possible two-
way interaction models above. Internal cross-validation was used to select
the “fraction” point for the prediction. The fifth candidate algorithm was
D/S/A allowing for two-way interactions and a maximum model size of 64.
The final candidate learner was the random forests algorithm. For the super
learner, we then used a linear model and estimated the parameters with least
squares.

We also applied the proposed super learner to the HIV-1 drug resistance
dataset in Sinisi et al. (2007) and Rhee et al. (2006). The goal of the data is
to predict drug susceptibility based on mutations in the protease and reverse
transcriptase enzymes. The HIV-1 sequences were obtained from publicly
available isolates in the Stanford HIV Reverse Transcriptase and Protease
Sequence Database. Details on the data and previous analysis can be found
in Sinisi et al. (2007) and Rhee et al. (2006). The outcome of interest is
standardized log fold change in drug susceptibility, defined as the ratio IC50
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of an isolate to a standard wildtype control isolate; IC50 (inhibitory concen-
tration) is the concentration of the drug needed to inhibit viral replication
by 50%. We focused our analysis to a single protease inhibitor, nelfinavir,
where we have 740 viral isolates in the learning sample of 61 binary predictor
covariates and one quantitative outcome.

For the HIV dataset, we considered six candidate algorithms. The first
candidate was least squares on all main terms. The second candidate was
the LARS algorithm. Internal cross validation was used to determine the
best fraction parameter. The third candidate was logic regression. Similar
to the simulation example, we used 10-fold cross-validation on the entire
learning set to determine the parameters,#trees ∈ {1, . . . , 5} and #leaves ∈
{1, . . . , 20}, for logic regression. For the HIV dataset, we selected #trees = 5
and #leaves = 10. The fourth candidate was the CART algorithm. We also
applied the D/S/A algorithm searching over only main effects terms and a
maximum model size of 35. The final candidate was random forests. For the
super learner, a linear model was used to estimate the parameters with least
squares. All models were fit in R similar to the simulation example above.

To evaluate the performance of the super learner in comparison to each
of the candidate learners we split the learning dataset into 10 validation
datasets and corresponding training datasets. The super learner and each
candidate learner was fit one each fold of the cross-validation, giving us a
honest cross-validated risk estimate to compare the super learner to each of
the candidate learners.

5.1 Super Learner Results

Table 5 presents results for the diabetes data analysis. A 10-fold cross-
validation estimate of the mean squared error was calculated, and the relative
risk estimate is reported. The relative cross-validation risk estimate (RCV)
is RCV (x) = CV (x)/CV (main terms least squares), where CV (x) is the
cross-validation risk estimate for x. Based on the cross validated estimate,
the D/S/A has the best estimate among the candidate learners. The super
learner does not appear to improve significantly on the D/S/A learner, but
it does not do any worse either. We also report the estimates αn and βn
used in the super learner. The D/S/A algorithm has the largest coefficient
(0.481) and appears to be given the most weight in the super learner. We
also note that least squares with all possible two-way interactions is barely
used in the super learner, with a coefficient of −0.003. This example shows
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Method RCV risk βn
Least Squares (1) 1.00 0.172
Least Squares (2) 1.13 -0.003

LARS (1) 1.07 0.239
LARS (2) 1.08 0.126
D/S/A 0.98 0.481

Random Forests 1.07 0.027
Super Learner 0.98

Table 5: Super learner results for the diabetes dataset. Least Squares (1)
and LARS (1) refer to the main effects only models. Least Squares (2) and
LARS (2) refer to the all possible two-way interaction models. Relative 10-
fold Honest Cross-Validation risk estimates, compared to main terms least
squares (RCV risk) are reported. βn in the super learner is reported in the
last column (αn = −6.228).

how the super learner can use cross validation to data adaptively select (i.e.
give more weight) to the better candidate predictors.

Table 6 presents the results for the HIV data analysis. Based on 10-
fold cross validated estimates of the mean squared error, main terms least
squares performs best, although random forests and LARS have similar er-
ror estimates to least squares. In contrast to the diabetes data analysis
above, D/S/A does not perform well on this dataset. This highlights the
need for a super learner since one candidate algorithm will not work on all
datasets. Among the candidate algorithms, least squares has the smallest
cross-validated risk estimate, but the super learner has a smaller risk esti-
mate (RCV = 0.87). We also present the estimates for α and β in table 6.
Both least squares and random forests appear to be receiving the most weight
in the super learner with coefficients 0.552 and 0.510 respectively. Again, the
super learner can use the cross validated predictions to data adaptively build
the best predictor.

These are both situations where one of the candidate learners does a good
job of prediction and gives little room for improvement for the super learner.
But these examples also demonstrate that one candidate algorithm may not
be flexible enough to perform best on all data generating distributions and
since a researcher is unlikely to know apriori which candidate learner will
work best, the super learner is a natural choice for prediction.
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Method RCV risk βn
Least Squares 1.00 0.552

LARS 1.03 0.075
Logic 1.52 -0.020
CART 1.77 0.076
D/S/A 1.53 -0.161

Random Forests 1.02 0.510
Super Learner 0.87

Table 6: Super learner results for the HIV dataset. Relative 10-fold hon-
est cross validated risk estimates (RCV risk) compared to least squares are
reported. βn in the super learner is reported in the last column (αn = 0.027).

6 Discussion.

The new super learning approach provides both a fundamental theoretical
as well as practical improvement to the construction of a predictor. The
super learner is a fleixble prediction algorithm which can perform well on
many different data generating distributions, and utilizes cross-validation
to protect against over-fitting. We wish to stress that the theory suggests
that to achieve the best performance one should not apply this algorithm to
a restricted set of algorithms, but one should aim to include any available
sensible algorithms. In addition, the amount of computations does not exceed
the amount of computations it takes to calculate each of the predictors on
the training and full data sets. In our simulations we used a particular set of
available algorithms, only because they were easily available as R functions.
Thus, the potential for improving estimators applies to a very wide array of
practical problems.

Our results generalize to parameters which can be defined as minimizers
of a loss function, including (unknown) loss functions indexed by parameters
of the true data generating distribution (van der Laan and Dudoit (2003)).
In particular, the super learner approach applies to maximum likelihood es-
timation in semiparametric or nonparametric models for the data generating
distribution, and to targeted maximum likelihood estimation w.r.t. to a par-
ticular smooth functional of the density of the data, as presented in van der
Laan and Rubin (2007).
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