
University of California, Berkeley
U.C. Berkeley Division of Biostatistics Working Paper Series

Year  Paper 

Targeted Maximum Likelihood Learning

Mark J. van der Laan∗ Daniel Rubin†

∗Division of Biostatistics, School of Public Health, University of California, Berkeley,
laan@berkeley.edu
†Division of Biostatistics, School of Public Health, University of California, Berkeley,

daniel.rubin@fda.hhs.gov
This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/ucbbiostat/paper213

Copyright c©2006 by the authors.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Collection Of Biostatistics Research Archive

https://core.ac.uk/display/61320337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Targeted Maximum Likelihood Learning

Mark J. van der Laan and Daniel Rubin

Abstract

Suppose one observes a sample of independent and identically distributed obser-
vations from a particular data generating distribution. Suppose that one has avail-
able an estimate of the density of the data generating distribution such as a maxi-
mum likelihood estimator according to a given or data adaptively selected model.
Suppose that one is concerned with estimation of a particular pathwise differen-
tiable Euclidean parameter. A substitution estimator evaluating the parameter of
the density estimator is typically too biased and might not even converge at the
parametric rate: that is, the density estimator was targeted to be a good estimator
of the density and might therefore result in a poor estimator of a particular smooth
functional of the density. In this article we propose a one step (and, by iteration, k-
th step) targeted maximum likelihood density estimator which involves 1) creating
a hardest parametric submodel with parameter epsilon through the given density
estimator with score equal to the efficient influence curve of the pathwise differ-
entiable parameter at the density estimator, 2) estimating this parameter epsilon
with the maximum likelihood estimator, and 3) defining a new density estimator
as the corresponding update of the original density estimator. We show that itera-
tion of this algorithm results in a targeted maximum likelihood density estimator
which solves the efficient influence curve estimating equation and thereby yields
an efficient or locally efficient estimator of the parameter of interest under regu-
larity conditions. We also show that, if the parameter is linear and the model is
convex, then the targeted maximum likelihood estimator is often achieved in the
first step, and it results in a locally efficient estimator at an arbitrary (e.g., heavily
misspecified) starting density. This tool provides us with a new class of targeted
likelihood based estimators of pathwise differentiable parameters.

We also show that the targeted maximum likelihood estimators are now in full
agreement with the locally efficient estimating function methodology as presented
in Robins and Rotnitzky (1992) and van der Laan and Robins (2003), creating, in



particular, algebraic equivalence between the double robust locally efficient es-
timators using the targeted maximum likelihood estimators as an estimate of its
nuisance parameters, and targeted maximum likelihood estimators. In addition, it
is argued that the targeted MLE has various advantages relative to the current esti-
mating function based approach.We proceed by providing data driven methodolo-
gies to select the initial density estimator for the targeted MLE, thereby providing
data adaptive targeted maximum likelihood estimation methodology. Finally, we
show that targeted maximum likelihood estimation can be generalized to estimate
any kind of parameter, such as infinite dimensional non-pathwise differentiable
parameters, by restricting the likelihood and cross-validated log-likelihood to tar-
geted candidate density estimators only. We illustrate the method with various
worked out examples.



1 Introduction

Let O1, . . . , On be n independent and identically distributed (i.i.d.) obser-
vations of an experimental unit O with probability distribution P0 ∈ M,
where M is the statistical model. For the sake of presentation, we will as-
sume that M is dominated by a common measure μ so that we can identify
each possible probability measure P ∈ M by its density p = dP/dμ. In
the discussion we point out that our methods are not restricted to models
dominated by a single measure. Let Pn be the empirical probability distri-
bution of O1, . . . , On which puts mass 1/n on each of the n observations. Let
p0 = dP0

dμ
be the density of p0 with respect to a dominating measure μ, and

let pn be a density estimator of p0. For example, pn ≡ Φ(Pn) could be the
maximum likelihood estimator defined by the following mapping Φ

pn = Φ(Pn) ≡ arg max
P∈M

n∑
i=1

log
dP

dμ
(Oi).

Alternatively, if the model M is too large in the sense that the maximum
likelihood estimator is too variable or even inconsistent, then one typically
proposes a sieve Ms ⊂ M, indexed by indices s, approximating M, and
computes candidate maximum likelihood estimators

pns = Φs(Pn) ≡ arg max
P∈Ms

n∑
i=1

log
dP

dμ
(Oi).

In such a setting it remains to data adaptively select s. For example, one
could use likelihood based cross-validation to select s:

sn = arg max
s

EBn

∑
i:Bn(i)=1

log Φs(P
0
n,Bn

)(Oi),

where Bn ∈ {0, 1}n is a random vector of binary variables defining a random
split in a training sample {i : Bn(i) = 0} and validation sample {i : Bn(i) =
1}, and P 0

n,Bn
, P 1

n,Bn
denote the empirical probability distributions of the

training and validation sample, respectively. Now, one would define the
estimator of p0 as the cross-validated maximum likelihood estimator given
by

pn = Φ(Pn) ≡ pnsn = Φsn(Pn).

It is common practice to evaluate one or many Euclidean valued smooth
functionals Ψ(pn) of the density estimator pn and view them as estimators of
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the parameter Ψ(p0) for given parameter mappings Ψ : M → IRd. Although
this method is known to result in efficient estimators of Ψ(p0) in paramet-
ric models (i.e., M in the above definition of pn is a parametric model), in
general, such substitution estimators are not correctly trading off bias and
variance with respect to the parameter of interest ψ0 = Ψ(p0). For exam-
ple, a univariate (standard) kernel density estimator optimizing the mean
squared error with respect to p0, assuming a continuous second derivative,
can have bias of the order n−2/5 based on an optimal bandwidth of the order
n−1/5. The corresponding substitution estimator of the cumulative distribu-
tion function at a point can have bias which converges to zero at the same
rate n−2/5, but a variance of O(1/n), so that the substitution estimator has
a variance (1/n) which is smaller than the square bias (n−4/5) by an order
of magnitude. In particular, the smoothed empirical cumulative distribu-
tion functions will not even converge at root-n rate due to the fact that

√
n

times the bias n−2/5 does not converge to zero: that is, in this kernel density
estimator example

√
nn−2.5 → ∞, so that the relative efficiency of the empir-

ical cumulative distribution function and this smooth cumulative distribution
function converges to zero. This shows that substitution estimators based
on optimal (for the purpose of the density itself) density estimators of the
cumulative distribution function are typically theoretically inferior to other
more targeted estimators of the parameter of interest. In general, substitu-
tion estimators based on density estimators might simply not be very good
estimators, and, in particular, likelihood based substitution estimators will
often fail to be asymptotically efficient due to the bias caused by the curse
of dimensionality: the kernel density example already shows the failure of
likelihood based learning of smooth parameters of a density of a univariate
random variable, and it gets much worse for densities of multivariate random
variables. This issue has been stressed repeatly by Robins and co-authors
(see e.g., Robins and Rotnitzky (1992) and van der Laan and Robins (2002)).
This article proposes a method which, given a particular pathwise differen-
tiable parameter of interest, allows one to map a density estimator (such as
pn or pns for each s) into a targeted maximum likelihood density estimator so
that the corresponding substitution estimator of ψ0 is locally efficient, under
reasonable conditions: that is, if the starting density estimator is consistent,
it will typically be efficient, and otherwise in certain classes of problems it
might still be consistent and asymptotically linear.

Specifically, in this article we propose a one step maximum likelihood den-
sity estimator which involves 1) creating a parametric model with Euclidean
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parameter ε (e.g., the same dimension d as the parameter ψ0) through a
given density estimator p0

n (e.g., s-specific MLE pns) at ε = 0 whose scores
include the components of the efficient influence curve of the pathwise dif-
ferentiable parameter at the density estimator p0

n, 2) estimating ε with the
maximum likelihood estimator of this parametric model, and 3) defining a
new density estimator p1

n as the corresponding fluctuation of the original
density estimator p0

n. In addition, iterating this process results in a sequence
of pk

n with increasing log-likelihood converging to a solution of the efficient
influence curve estimating equation, and thereby typically results in a locally
efficient substitution estimator of ψ0. We refer to this solution as the targeted
maximum likelihood estimator based on the initial p0

n. We provide various
examples in which this targeted maximum likelihood estimator is achieved
at the first step of the algorithm.

In particular, one can map each model based MLE pns into a targeted
MLE p∗ns (targeted towards ψ0). We suggest that it is appropriate to select
among this collection of targeted MLE’s p∗ns with likelihood based cross-
validation, as explained in Section 2.5. That is, let p∗ns = Φ̂∗

s(Pn) be the
s-specific targeted MLE applied to the initial density estimator pns. Let

sn = arg max
s

EBn

∑
i:Bn(i)=1

log Φ̂∗
s(P

0
n,Bn

)(Oi),

where Bn ∈ {0, 1}n is a random vector of binary variables defining a random
split in a training sample {i : Bn(i) = 0} and validation sample {i : Bn(i) =
1}, and P 0

n,Bn
, P 1

n,Bn
denote the empirical probability distributions of the

training and validation sample, respectively, as above. Now, likelihood cross-
validated targeted MLE is defined as:

p∗n = Φ̂(Pn) ≡ p∗nsn
= Φ̂∗

sn
(Pn).

We also note that the candidate models indexed by s can be chosen to repre-
sent a sieve in a possibly misspecified (big) model M, as long as this model
M is still such that the Kullback-Leibler projection of the true density p0 on
this model identifies the parameter of interest Ψ(p0) correctly: for example,
if the parameter of interest is a parameter of a regression of an outcome Y
on covariates W , then one might select as big model the normal densities
with unspecified conditional mean, given W , and certain possibly misspeci-
fied conditional variance, even though the true density p0 is not a member
of this model.

3
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1.1 Organization of article.

In Section 2, given an initial density estimator p0
n (e.g., pns) of p0, we for-

mally define the k-th order targeted maximum likelihood density estimator
pk

n, and corresponding targeted maximum likelihood estimator Ψ(pk
n) of ψ0.

In addition, we discuss an important option for the targeted MLE which
also allows it to update nuisance parameters which are needed to estimate
the efficient influence curve. We illustrate the targeted MLE of the cumula-
tive distribution function at a point in a nonparametric model. In this case,
it appears that the first step targeted MLE of ψ0 algebraically equals the
empirical cumulative distribution function, for any given initial density esti-
mator p0

n. Thus, while the original substitution estimator of the cumulative
distribution function would not converge at the parametric rate 1/

√
n due

to it being too biased, the first order targeted bias corrected density esti-
mator estimates the cumulative distribution function efficiently. In Section
3 we establish that the targeted MLE solves the efficient influence curve es-
timating equation, which provides the basis of its asymptotic efficiency for
ψ0. In Section 4 we present general templates for establishing consistency,
asymptotic linearity and efficiency of the targeted MLE of ψ0, which pro-
vides a particular powerful theorem for convex models and linear pathwise
differentiable parameters stating that the targeted MLE will be consistent
and asymptotically linear for an arbitrary starting density, and it will be
efficient if the starting (or its targeted MLE version) density consistently
estimates the efficient influence curve. We illustrate the latter result with
two examples. In Section 5 we discuss the relation, and in particular, the
algebraic equivalence, between targeted maximum likelihood estimation and
estimating function based estimation if one estimates the nuisance parame-
ters in the estimating functions with the targeted MLE. In Subsection 5.1 we
focus on censored data models to make the comparison with the estimating
function methodology in van der Laan and Robins (2002). In particular, we
present the targeted MLE approach which results in algebraic equivalence
between the Inverse Probability of Censoring Weighted estimator, the dou-
ble robust IPCW estimator, and the targeted MLE of a parameter of the full
data distribution based on observing n i.i.d. observations of a censored data
structure under coarsening at random (CAR). These results show that the
targeted MLE does not only provide a boost for likelihood based estimation,
but it also provides an improvement relative to the current implementation of
locally efficient estimation based on estimating function methodology. Some
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additional important benefits of targeted MLE relative to estimating func-
tion based estimation are provided in the discussion. In Section 6 we present
important examples illustrating the power and computational simplicity of
this new targeted maximum likelihood estimator: estimation of marginal
means, marginal causal effects and the parametric component in a semi-
parametric regression model. We also provide a simulation to illustrate the
targeted MLE of a marginal causal effect. In Section 7 we present a loss
based approach of targeted MLE learning based on the unified loss function
based approach in van der Laan and Dudoit (2003), which provides a general
template for searching among targeted MLE’s indexed by the initial density.
In Section 8 we present a potentially very promising alternative approach of
targeted MLE learning relative to targeted MLE learning as presented in Sec-
tion 7, which yields a particularly powerful approach for selecting nuisance
parameter fits.

In Section 9 we present a study of the targeted MLE algorithm Pn →
Φ∗(Pn) (viewed as a mapping from the empirical probability distribution to
the resulting density) in the case that Pn is replaced by the true distribution
P0, in particular, in relation to its starting density p0. This will help us
understand that the targeted MLE algorithm can be viewed as an algorithm
providing bias reduction with respect to ψ0 at each step, and that it is an
algorithm which quickly converges to a solution of the equation setting the
expectation under the true distribution of the efficient influence curve at a
candidate density p equal to zero. In particular, in the case of convex models
and linear parameters (typically a single step suffices) it always converges
to a solution for which the parameter of interest is correctly identified. In
Section 10 we show how the targeted MLE can be applied to estimate the
risk function in unified loss function based learning of arbitrary (including
non-pathwise differentiable) parameters, as presented in van der Laan and
Dudoit (2003). In Section 11 we show how the targeted MLE principle can
be used directly to provide a completely data driven targeted maximum
likelihood learning methodology of any kind of parameter (finite dimensional
or infinite dimensional). In Section 12 we illustrate this general targeted MLE
methodology to data adaptively estimate W -adjusted variable importance
E0(Y | A, W ) − E0(Y | A = 0, W ) based on observing n i.i.d. copies of
(W, A, Y ). We end this article with a discussion in Section 13.
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1.2 Some relevant literature overview.

There exist various methods for construction of an efficient estimator of a
parameter based on parametric models. In particular, Fisher’s method of
maximum likelihood estimation can be applied, or closely related M-estimate
(i.e., estimators defined as solutions of estimating equations) methods which
work under minimal conditions. Maximum likelihood estimation in semi-
parametric models has been an extensive research area of interest. Here we
suffice with a referral to van der Vaart and Wellner (1996b) for a partial
overview of the theory for the analysis of maximum likelihood. There are
plenty of examples in which the straightforward semiparametric MLE even
fails to be consistent, but often an appropriate regularization can be ap-
plied to repair the consistency of the semiparametric MLE: e.g., see van der
Laan (1995b) for such examples based on censored data. However, as ar-
gued above in the kernel density estimator example, maximum likelihood
based smoothing/model selection will often provide the wrong trade-off of
bias and variance for specific smooth parameters. The literature has rec-
ognized this problem such as in smoothing survival functions or smoothing
the nonparametric components in a semiparametric regression model, noting
that so called “under-smoothing” is needed to obtain root-n consistency for
the parameter of interest: see e.g., Cosslett (2004).

For an overview of the literature on efficient estimation of pathwise differ-
entiable parameters in semiparametric models we refer to Bickel et al. (1997).
In particular, the latter presents the general one step estimator based on an
estimate of the efficient influence curve: see e.g. Klaassen (1987). For an
overview of the related literature on estimation function based estimation of
pathwise differentiable parameters based on censored data we refer to van der
Laan and Robins (2002).

A general loss function-based approach for model selection and estima-
tion, thereby including maximum likelihood estimation as a special case, is
described in Barron et al. (1999). It uses sieve theory to define penalized
empirical risk criteria. In particular, Barron (1989) and Barron (1991) de-
velop this theory in the context of artificial neural networks. Connections
with cross-validation methods are discussed in Birgé and Massart (1997).
Barron et al. (1999) and Birgé and Massart (1997) have studied thoroughly
the penalty functions to be used in adaptive estimation on sieves. They
use powerful Talagrand concentration and deviation inequalities for empir-
ical processes (Ledoux, 1996; Massart, 1998; Talagrand, 1996a,b) to obtain
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so-called oracle inequalities for the theoretical risk of their estimators. The
method of oracle inequalities was also used to prove minimax optimality prop-
erties of nonparametric estimators in Johnstone (1998). The Birgé-Massart
penalties are based on the dimension of the classes of functions. This ap-
proach has been shown to perform well for sieves that frequently occur in
nonparametric univariate regression and nonparametric univariate density
estimation problems (e.g., nested families of Sobolev ellipsoids). In van der
Laan et al. (2003) we prove an oracle inequality for likelihood based cross-
validation. In van der Laan et al. (2006) and van der Vaart et al. (2006) we
prove general results for loss based estimation based on ε-nets, and oracle
inequalities for V -fold cross-validation, respectively. In the all of the above
references the loss function is a known function of the experimental unit and
a candidate parameter value whose expectation is minimized by the true pa-
rameter value, and, as a consequence, it only applies to a limited number of
parameters.

A unified loss function approach based methodology for estimation and
estimator selection, and concrete illustration of this method in various ex-
amples is presented in van der Laan and Dudoit (2003). This methodology
is general by allowing the loss function to be an unknown function of the
experimental unit and the parameter values. van der Laan and Rubin (2005)
and van der Laan and Rubin (2006) present an alternative unified estimat-
ing function methodology for both estimation and estimator selection. The
latter two methodologies provide two general strategies for data adaptive
estimation of any parameter in any model.

We note that these (unified) loss function and (unified) estimating func-
tion based approaches give up on using the log-likelihood as loss function
for the purpose of estimator selection and estimation when the parameter of
interest is not the actual density of the data, but a particular parameter of
it: these methods replace the log-likelihood loss function by a loss function
or an estimating function targeted at the parameter of interest. From that
point of view, the current article shows that it is not necessary to replace the
log-likelihood loss function by a targeted loss function, but that one can also
target the directions in which one maximizes the log-likelihood.

7
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2 (k-th Step) Targeted maximum likelihood

estimators.

Let Ψ : M → IRd be a pathwise differentiable parameter at any density p ∈
M, where M denotes the statistical model consisting of the possible densities
p = dP/dμ of O with respect to some dominating measure μ. That is, given a
sufficiently rich class of one-dimensional regular parametric submodels {pδ :
δ} with parameter δ of M through the density p at δ = 0, we have for each
of these submodels pδ with score s at δ = 0 and pδ=0 = p

d

dδ
Ψ(pδ)|δ=0 = EpS(p)(O)s(O)

for some S(p) ∈ (L2
0(p))d, where L2

0(p) denotes the Hilbert space of functions
of O with mean 0 and finite variance under P , endowed with inner product
〈h1, h2〉P = Eph1(O)h2(O). This random variable S(p) ∈ (L2

0(p))d is called
a gradient of the pathwise derivative at p. Let T (p) ⊂ L2

0(p) be the tangent
space at p which is defined as the closure of the linear span of the scores s
of this class of submodels through p. If the model is not locally saturated
in the sense that T (p) = L2

0(p), then there can be many gradients. Let
T⊥

nuis(p) ⊂ L2
0(p) be the orthogonal complement of the so called nuisance

tangent space, where the latter is defined as the closure of the linear span of
all scores of pδ for which the pathwise derivative equals 0 (see van der Laan
and Robins (2002), Chapter 1). As in van der Laan and Robins (2002), we
denote the set of gradients at p with T⊥∗

nuis(p) ⊂ (T⊥
nuis(p))d. Let S∗(p) be the

so called canonical gradient which is the unique gradient whose d components
S∗(p)j, j = 1, . . . , d, are elements of the tangent space T (P ). A submodel
{pε : ε} with score S∗(p) at ε = 0 is often referred to as a hardest submodel
(Bickel et al. (1993)), as we will also do in this article.

Let (O, p) → D(p)(O) be a point-wise well defined class of functions on
the Cartesian product of the support of O and the model M, which satisfies

D(p) = S∗(p) P0-a.e. for all p ∈ M.

Example 1 (Cumulative Distribution function at a point in a non-
parametric model) Let O be a Euclidean valued d-variate random variable
with density p0. Let M be the class of all continuous densities with respect
to Lebesgue measure μ, and let Ψ(p) =

∫ t
0 p(o)dμ(o) be the cumulative distri-

bution function at a point t ∈ IR corresponding with density p. In this case

8

http://biostats.bepress.com/ucbbiostat/paper213



Ψ : M → IR is pathwise differentiable parameter at p with efficient influence
curve S(p)(O) = I(O ≤ t)−Ψ(p), and, because the model is locally saturated,
it is also the only influence curve/gradient. So D(p) = I(O ≤ t) − Ψ(p).

Similarly, given a set of user supplied points {t1, . . . , td}, we can define
the d-dimensional Euclidean parameter Ψ(p) = (Ψ(p)(tj) ≡ ∫ tj

0 p(o)dμ(o) :
j = 1, . . . , d) representing the cumulative distribution function at d points.
In this case, D(p) = (I(O ≤ tj) − Ψ(p)(tj) : j = 1, . . . , d) has d components.

A general methodology for construction of functions Dh(p) indexed by
an h ∈ H so that {Dh(p) : h ∈ H} ⊂ T⊥

nuis(p) (or equality) is presented in
van der Laan and Robins (2002). In van der Laan and Robins (2002) the class
of functions {Dh(p) : h ∈ H} is referred to as a representation of the orthogo-
nal complement of the nuisance tangent space, which is then used to map into
a class of corresponding estimating functions for the pathwise differentiable
parameter p → Ψ(p) of the form p → Dh(Ψ(p), Υ(p)) with Υ representing
a nuisance parameter. In van der Laan and Robins (2002), for a variety of
general classes of models and censored data structures O, explicit representa-
tions of the orthogonal complement of the nuisance tangent space, T⊥

nuis(p),
corresponding gradients, T⊥∗

nuis(p), and canonical gradient S∗(p), have been
provided.

Let p0
n = Φ(Pn) ∈ M be a density estimator of p0 = dP0/dμ. Define now

a parametric submodel {p0
n(ε) : ε ∈ IRk} ⊂ M through p0

n at ε = 0 whose
linear span of scores of ε at ε = 0 includes all d components of D(pn). One
possibility is to choose ε ∈ IRd of the same dimension as D(p) and arrange
that the score of εj at ε = 0 equals Dj(p), j = 1, . . . , d. For example, if the
model M is convex then the following model typically applies

p0
n(ε) ≡ (1 + ε�D(p0

n))p0
n, (1)

where ε ∈ IRd denotes the parameter ranging over all values for which p0
n(ε)

is a proper density. Note that indeed p0
n(0) = p0

n, p0
n(ε) is a density (positive

valued and integrates till 1) for ε small enough, and d
dε

log p0
n(ε)

∣∣∣
ε=0

= D(p0
n).

One can also use an exponential family

p0
n(ε) ≡ C(ε, p0

n) exp(ε�D(p0
n))p0

n

for C(ε, p0
n) be a normalizing constant. In general, one can choose a param-

eterization ε → p0
n(ε) ∈ M which is smooth in ε at ε = 0 and whose score

at ε = 0 equals D(p0
n). However, we will also consider submodels p0

n(ε) with

9
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additional scores in order to arrange that the targeted MLE will be fully
targeted towards estimation of D(p0).

Let

εn = ε(Pn | p0
n) ≡ arg max

{ε:p0
n(ε)∈M}

n∑
i=1

log p0
n(ε)(Oi)

be the maximum likelihood estimator of ε treating the density estimator p0
n

as given and fixed. We will assume that the maximum is attained in the
interior of M so that εn solves the estimating equation:

0 = Pn

d
dε

p0
n(ε)

p0
n(ε)

.

Here we use the notation Pf ≡ ∫
f(o)dP (o). For example, if p0

n(ε) = (1 +
ε�D(p0

n))p0
n, as one might choose in convex models, then we have that εn is

the solution of

0 =
1

n

n∑
i=1

D(p0
n)(Oi)

1 + ε�n D(p0
n)(Oi)

.

This defines now an updated density estimator

p1
n ≡ p0

n(εn) = p0
n(ε(Pn | p0

n)) ∈ M.

Note that this simply defines a method for mapping an initial density esti-
mator p0

n ∈ M in a new density estimator p1
n ∈ M, which we call the first

step targeted maximum likelihood estimator. By iterating this process one
obtains the k-step targeted maximum likelihood estimator pk

n, k = 1, . . .

Definition 1 Given an initial density estimator p0
n = Φ̂0(Pn) based on the

empirical probability distribution Pn, a parametric fluctuation {p0
n(ε) : ε} ⊂

M satisfying p0
n(0) = p0

n, and d
dε

log p0
n(ε)

∣∣∣
ε=0

= D∗(p0
n), where the linear

span of the components of D∗(p0
n) include all d components of a canonical

gradient D(p0
n) of the parameter of interest Ψ : M → IRd at p0

n, a maximum
likelihood estimator

ε(Pn | p0
n) ≡ arg max

ε

n∑
i=1

log p0
n(ε)(Oi)

of ε, we define the first step targeted maximum likelihood density estimator
as

p1
n = Φ̂1(Pn) ≡ p0

n(ε(Pn | p0
n)).
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This process can be iterated to define the k-step targeted maximum likelihood
density estimator as

pk+1
n = Φ̂k+1(Pn) ≡ pk

n(ε(Pn | pk
n)), k = 0, 1, . . ..

The corresponding k-step targeted maximum likelihood estimator of ψ0 is
defined as

Ψ̂k(Pn) = Ψ(pk
n).

The targeted maximum likelihood estimator is defined as

ψn = Φ̂∗(Pn) ≡ lim
k→∞

Ψ(pk
n),

assuming this limit exists.

2.1 Example: Targeted maximum likelihood estima-
tion of the cumulative distribution function (CDF)
in a nonparametric model.

Consider an initial data generating density p0 = f , let F (t) =
∫ t
−∞ f(o)do

denote the associated CDF at some fixed point t ∈ IR, and consider the
parametric model{

fε(o) = (1 + ε[I(o ≤ t) − F (t)])f(o) : − 1

1 − F (t)
≤ ε ≤ 1

F (t)

}
, (2)

where one can check that the range restraint on ε serves merely to ensure that
the family is indeed a proper class of densities. Consider estimating ε from
maximum likelihood based on an i.i.d. sample {Oi}n

i=1. The log likelihood
is,

l(ε) =
n∑

i=1

log(1 + ε[I(Oi ≤ t) − F (t)]) +
n∑

i=1

log f(Oi). (3)

Its derivative is,

l′(ε) =
n∑

i=1

I(Oi ≤ t) − F (t)

1 + ε[I(Oi ≤ t) − F (t)]
. (4)

Its second derivative is easily seen to be,

l′′(ε) = −
n∑

i=1

{
I(Oi ≤ t) − F (t)

1 + ε[I(Oi ≤ t) − F (t)]

}2

. (5)

11
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Because the log likelihood is concave, we know that the maximum is achieved
if l′(ε) = 0 has a solution. Letting Fn(·) denote the empirical distribution
function, note that we can decompose the terms in l′(ε) into two parts (those
for which I(Oi ≤ t) are 0 or 1), and the MLE of ε can be seen to solve,

0 = l′(ε)

=
n∑

i=1

I(Oi ≤ t) − F (t)

1 + ε[I(Oi ≤ t) − F (t)]

= nFn(t)
1 − F (t)

1 + ε[1 − F (t)]
+ n(1 − Fn(t))

−F (t)

1 − εF (t)
.

Moving the second term on the right to the other side of the equation, divid-
ing both sides by n, and multiplying both sides by (1+ε[1−F (t)])(1−εF (t)),
the equation reduces to,

Fn(t)(1 − F (t))(1 − εF (t)) = (1 − Fn(t))F (t)(1 + ε(1 − F (t))). (6)

This is linear in ε, and one can check that the solution is

εn =
Fn(t)(1 − F (t)) − (1 − Fn(t))F (t)

F (t)(1 − F (t))

=
Fn(t) − Fn(t)F (t) − F (t) + Fn(t)F (t)

F (t)(1 − F (t))

=
Fn(t) − F (t)

F (t)(1 − F (t))
. (7)

Because 0 ≤ Fn(t) ≤ 1, one can check that indeed

− 1

1 − F (t)
= − F (t)

F (t)(1 − F (t)
≤ εn ≤ 1 − F (t)

F (t)(1 − F (t))
=

1

F (t)
, (8)

so the range restraint on ε for the family (2) always holds for the maxi-
mum likelihood estimator, meaning that fεn(·) is a proper density. Now, the
resulting CDF at t for this density is then,

Fεn(t) =
∫ t

−∞
fεn(o)do

=
∫ t

−∞
(1 + εn[I(o ≤ t) − F (t)])f(o)do

12
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=
∫ t

−∞
f(o)do + εn

∫ t

−∞
I(o ≤ t)f(o)do − ε1F (t)

∫ t

−∞
f(o)do

= F (t) + εnF (t) − εnF (t)2 = F (t) + ε1F (t)(1 − F (t))

= F (t) +
Fn(t) − F (t)

F (t)(1 − F (t))
F (t)(1 − F (t)) from (7)

= F (t) + Fn(t) − F (t) = Fn(t).

Therefore, for any initial density f(·) and any time point t, the targeted
likelihood maximum likelihood estimator of the CDF reduces to the empirical
distribution estimator in a single step. This result immediately generalizes
to Ψ(p) =

∫
A p(o)dμ(o) for any measurable set A.

2.2 Some remarks about the targeted maximum like-
lihood estimator

One particular (candidate) estimator of ψ0 is to estimate ψ0 with ψn ≡
limk→∞ Ψ(pk

n), assuming this limit exists as established in the next section if
ε(Pn | pk

n) → 0 for k → ∞. The resulting estimator ψn is for all practical pur-
poses equivalent with the k-th step targeted maximum likelihood estimator,
for sufficiently large k.

We also note that if for a given k ∈ {0, 1, . . .}, PnD(pk
n) = 0, then pm

n = pk
n

for m = k + 1, . . . and thus ψn = Ψ(pk
n), due to the fact that the MLE of ε

equals zero at step k (since the value ε = 0 solves the derivative PnD(pk
n) of

ε → Pn log pk
n(ε) and it is assumed that this corresponds with the maximum).

For example, below we provide various examples in which p1
n already solves

the optimal estimating equation PnD(p1
n) = 0 so that the targeted maximum

likelihood estimator is achieved in the first step: ψn = Ψ(p1
n). Although, we

will show that the consistency and asymptotic linearity (and sometimes even
the efficiency) of the targeted MLE ψn in convex models for linear parameter
Ψ does not depend on the asymptotic properties of p0

n, in general, the targeted
maximum likelihood estimator ψn of ψ0 will typically depend on the (second
order behavior of the) initial estimator p0

n, so that it is typically important
to obtain a likelihood based estimator p0

n of p0 with reasonable consistency
properties. Specific proposals for data adaptive searches among candidate
initial density estimators will be provided in this article. In particular, we
will argue that one can use likelihood based cross-validation to select among
targeted MLE’s indexed by different choices of p0

n.

13
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As a potentially useful practical modification of this targeted MLE algo-
rithm Φ∗(Pn) for ψn we suggest that at each step one does not necessarily
need to select the maximizer ε(Pn | pk

n), but instead one might simply se-
lect an ε so that Pn log pk

n(ε) > Pn log pk
n, thereby still guaranteeing that

the likelihood increases at each step. The important property driving the
asymptotics of the resulting estimator is that the algorithm is such that for
k converging to infinity the likelihood increases at each step, and (as a con-
sequence) the maximizer of ε → Pn log pk

n(ε) converges to zero so that in the
limit limk PnD(pk

n) = 0. A similar type of modification is provided below in
the Section 2.4.

2.3 Targeting the nuisance parameter estimate in each
step of the targeted MLE.

Since the efficient influence curve D(p) at p is orthogonal to the nuisance
tangent space Tnuis(p) (i.e., the closure of the linear span of the scores of
paths through p for which the pathwise derivative equals 0), the so called
hardest submodel p(ε) through a p ∈ M with score D(p) at ε = 0 might
not provide any updates for certain nuisance parameters Γ(p) which are ac-
tually needed to evaluate D(p): say D(p) = D(Q(p), Γ(p)). For example,
the efficient influence curve of a survival function based on right censored
data depends on the censoring mechanism, but the projection of the efficient
influence curve on the space of scores of the censoring mechanism equals
zero so that the hardest submodel does not need to update the censoring
mechanism. As a consequence, in these situations the submodel p(ε) will not
fluctuate the nuisance parameter Γ, so that the resulting targeted maximum
likelihood estimator will solve an estimating equation PnD(Q(p), γ0

n) = 0
with γ0

n = Γ(p0
n) equal to the initial estimator of γ0 corresponding with the

initial density estimator p0
n. Although the efficient influence curve’s depen-

dence on Γ is such that the properties of γ0
n only affects the second order

terms in the resulting targeted ML estimator of ψ0 (see e.g. van der Laan
and Robins (2002)), it is still of practical interest to also make the estimator
of γ0 targeted towards estimation of D(p0). This can be achieved by selecting
a p(ε) with scores in the tangent space for Γ at p so that the targeted MLE
also involves iteratively updating Γ(pk). Specifically, one might add ε com-
ponents to p(ε) (submodel through p at ε = 0) with score at their null values
equal to the efficient influence curve of a parameter p1 → EpD1(Q(p), Γ(p1))

14

http://biostats.bepress.com/ucbbiostat/paper213



at p1 = p, where D1 is such that D(p) = D1(p) + D2(p) for an appropriately
chosen decomposition of D(p) in terms D1(p) and D2(p). For example, in
CAR censored data models considered in Section 5.1 we use the decomposi-
tion D(p) = D1(p) − Π(D1(p) | TΓ(p)), where TΓ(p) is a nuisance space for
the parameter Γ(p) and Γ represents the censoring mechanism. The latter
parameter p1 → EpD1(Q(p), Γ(p1)) represents now a function of Γ relevant
for identifying the mean of the efficient influence curve, and thereby can
be used to indirectly target the estimator of γ0 towards estimation of ψ0.
Selecting as score at ε = 0 the efficient influence curve of the parameter
p1 → EpD(Q(p), Γ(p1)) does not work, since the latter function has direc-
tional derivatives equal to zero, due to the fact that D(Q(p), g(p)) is orthog-
onal to the nuisance tangent space Tnuis(p). We illustrate this approach for
estimation of a parameter of the full data distribution based on a coarsening
at random censored data observed data structures in the Section , and in
Section 6 through specific examples.

2.4 Modified one-step targeted MLE.

In practice the following one-step approach applied to an initial density es-
timator p0

n of p0 might result in estimators of ψ0 with essentially the same
practical performance as the targeted MLE ψn = limk Ψ(pk

n) based on the
same p0

n, or it might simply be an alternative approach to finding the targeted
MLE.

Consider an initial estimator p0
n of p0. As above, let {p0

n(ε) : ε ∈ IRk} ⊂ M
be a (hardest) submodel through p0

n at ε = 0 with score D∗(p0
n) at ε = 0

whose linear span includes the components of the canonical gradient D(p0
n)

at p0
n. Now, instead of letting the algorithm maximize the likelihood in ε and

iterating the process till one converges to a solution p∞n of PnD
∗(p) = 0, we

suggest that one might also search for the solution εn of

PnD
∗(p0

n(ε)) = 0.

This corresponds with solving k equations in k unknowns. If this solution
does not exist or requires an iterative algorithm to find, then this approach is
not more practical than the iterative maximum likelihood algorithm defining
the targeted MLE. If this solution εn exists it might not correspond with
the actual maximum likelihood estimator in ε of ε → Pn log p0

n(ε), but we
conjecture that it will typically still increase the likelihood relative to ε = 0
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(and thus p0
n), and by solving PnD

∗(p0
n(εn)) = 0 the theorems in Section 4

for proving local efficiency of Ψ(p0
n(εn)) apply. In addition, we note that by

setting p1
n = p0

n(εn) the targeted MLE approach starting with p1
n will not

provide any changes in the sense that pk
n = p1

n for k = 2, . . ., due to the
fact that PnD

∗(p1
n) = 0, and thus this estimator equals the targeted MLE

starting at p1
n. The following example illustrates this approach.

Example 2 (Smooth efficient estimation of a cumulative distribu-
tion function (CDF) at several points) In this case we have that the effi-
cient influence curve of the cumulative distribution function Ψ(p) = (

∫ tj
0 p(o)dμ(o) :

j = 1, . . . , d) at d points equals D(p)(O) = {I(O ≤ tj) − Ψ(p)(tj) : j =
1, . . . , d}. Let p0

n be an initial density estimator of p0, and let p0
n(ε) =

(1+ε�D(p0
n))p0

n be a d-dimensional parametric submodel with parameter ε =
(ε1, . . . , εd) with score D(p0

n) at ε = 0. Instead of solving for the MLE εMLE of
ε → Pn log p0

n(ε), which corresponds with solving PnD(p0
n)/(1+ε�D(p0

n)) = 0,
we can also simply solve

0 = PnD(p0
n(ε)) = PnD((1 + ε�D(p0

n))p0
n)

= PnD(p0
n) − Ep0

n
D(p0

n)D(p0
n)�ε,

where Σ(p0
n) ≡ Ep0

n
D(p0

n)D(p0
n)� equals the covariance matrix of (I(O ≤ tj) :

j = 1, . . . , d) under p0
n. Thus, the solution εn of this equation is given by:

εn = Σ(p0
n)−1PnD(p0

n).

Thus, given a smooth distribution function
∫ ·
0 p0

n(o)dμ(o) based on a density
estimator p0

n, we can map this smooth CDF into a CDF which agrees with
the empirical distribution function at a user supplied set of points t1, . . . , td
given by:

F̃n(·) =
∫ ·

0
(1 + (Σ(p0

n)−1PnD(p0
n))�D(p0

n)(o))p0
n(o)dμ(o).

This provides an interesting explicit methodology for construction of efficient
smooth estimators of a cumulative distribution function. The explicitness of
this estimator only relies on the linearity of the parameter p → Ψ(p), and the
convexity of the model so that the used pn(ε) is an appropriate submodel.
We also note that the efficiency of the resulting estimator of the cumulative
distribution function at these points does not depend on the initial density
estimator p0

n.
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2.5 Philosophy of using the (cross-validated) log-likelihood
to select among candidate targeted MLE’s

Above we proposed that for the purpose of selecting among different tar-
geted MLE’s (e.g. indexed by different initial density estimators) of a path-
wise differentiable parameter of interest, it is appropriate to use likelihood
based cross-validation, while (seemingly contradictory) we also argued that
likelihood based cross-validation would be inappropriate for selecting among
general candidate density estimators. Firstly, one should note that this data
adaptive targeted MLE approach differs in a crucial way from the current
sieve based maximum likelihood methodology involving 1) proposing a sieve
(say indexed by s as given previously) Ms ⊂ M on the model M, 2) com-
puting the maximum likelihood estimator for each element of the sieve, 3)
using likelihood based cross-validation to select among the resulting candi-
date maximum likelihood estimators, and 4) estimating the parameter of
interest with the substitution estimator. Namely, we use the log-likelihood
as criteria (both the empirical log-likelihood and the cross-validated log like-
lihood) to compare targeted MLE’s instead of regular MLE’s, where targeted
MLE solve the efficient influence curve equation PnD(p) = 0.

In order to understand the heuristic behind using the log-likelihood as
criteria restricted to targeted MLE only, it helps to consider an infinite data
set so that Pn is replaced by P0 and the targeted MLE p∗(p) starting at p is
a solution of P0D(p∗) = 0. For example, consider convex models and linear
parameters so that P0D(p) = Ψ(p0) − Ψ(p) for any p with p0/p bounded
(van der Laan (1998)), and consider two candidate targeted MLEs p∗1, p

∗
2.

Since they are targeted MLE’s they solve P0D(p1) = 0 and P0D(p2) = 0.
Thus Ψ(p∗1) = Ψ(p∗2) = ψ0. Since they already perfectly nail down the pa-
rameter of interest ψ0 a comparison of the log likelihoods P0 log p∗1−P0 log p∗2
now evaluates the performance of the nuisance part of the densities p∗1, p

∗
2.

So our claim corresponds in this case with stating that the log likelihood loss
function provides a sensible criteria for comparing densities which perform
equally good with respect to the parameter of interest ψ0. In general, we
have that P0D(p) ≈ Ψ(p0) − Ψ(p). In this case, solving P0D(p) = 0 does
not guarantee that Ψ(p) = ψ0. However, any deviation of Ψ(p0) − Ψ(p)
from zero is now due to nuisance parameters needed to identify D(p) (e.g.
D(p) = D(Ψ(p), Υ(p)) and P0D(ψ, υ0) = 0 is uniquely solved by ψ0). There-
fore, for two targeted densities p∗1, p

∗
2 solving P0D(p∗1) = P0D(p∗2) = 0, it

makes still sense to now just compare them by their log-likelihood risk.
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For finite samples the principle idea behind is that if two density esti-
mators, differing only in fits of parameters needed to identify D(p0), have
been fully targeted towards fitting a certain pathwise differentiable parame-
ter (by applying the targeted MLE algorithm using them as initial density
estimator), then a difference in log-likelihood now reflects the performance
of the two density estimators in estimating the needed (for the purpose of
the pathwise differentiable parameter) nuisance parameters to nail down the
parameter of interest, while if these two density estimators would be non-
targeted, then a difference in log-likelihood can be due to a difference in how
much each of them has been fully targeted to fit the parameter of interest
as well as how well it fits the required nuisance parameters. For example,
consider two possible increases in fit of the nuisance parameters needed to
fit D(p0), but suppose that one of the fits results in a large gain of the log-
likelihood during the targeted MLE algorithm, while for the other fit the
targeted MLE algorithm yields only a small increase in log-likelihood. Then
a comparison of the log likelihood for the two targeted fits will select the
increase in nuisance parameter fit which results in the subsequent maximal
increase in log-likelihood during the targeted MLE algorithm. That is, by us-
ing the log-likelihood to only compare targeted density estimators solving the
efficient influence curve estimating equation, the criteria rewards increases in
fits of the density which are directly relevant for estimation of the parameter
of interest.

In particular, an increase in fit of nuisance parameters which are not
needed to evaluate the efficient influence curve D(p0) will result in a zero in-
crease during the targeted MLE algorithm. However, they will still increase
the log-likelihood because the log-likelihood’s starting value for the targeted
MLE algorithm has increased. In order to avoid such irrelevant increases
in fit for the purpose of fitting the parameter of interest, it is important
to generate candidate initial density estimators (which will be inputted in
the targeted MLE algorithm) which mainly differ in how they estimate the
parameters needed to identify the efficient influence curve D(p0). This can
be partly arranged by choosing the model M as small as possible without
changing the efficient influence curve of the parameter of interest and how
one would estimate the efficient influence curve (e.g., assuming normal error
distributions if the parameter is a parameter of regressions and the efficient
influence curve only depends on the first and second moment of the condi-
tional distribution of the outcome given the covariates), and by using a sieve
within the model M which only changes the candidate density estimators

18

http://biostats.bepress.com/ucbbiostat/paper213



with respect how they will fit the parameters needed to identity the efficient
influence curve D(p0). In Section 8 we propose to use the actual increase of
the log-likelihood during the targeted MLE algorithm as a way of evaluating
among different nuisance parameter fits in Section 8.

3 The targeted maximum likelihood estima-

tor solves the efficient influence curve esti-

mating equation.

We have the following trivial, but useful result. It states that if the MLE’s
ε(Pn | pk

n) at step k of the targeted MLE algorithm converge to zero for
k → ∞ (as one expects to hold if the log likelihood of the data is uniformly
bounded in the model M), then the algorithm converges to a solution of the
efficient influence curve equation PnD(p) = 0 in the sense that PnD(pk

n) → 0.

Result 1 Let Pn be given. Assume that

lim
ε→0

lim sup
k→∞

| Pn

d
dε

pk
n(ε)

pk
n(ε)

− Pn
pk′

n (0)

pk
n(0)

|→ 0, (9)

that for each k there exist a constant matrix Ak so that Ak
pk′

n

pk
n

= D(pk
n) with

lim supk→∞ ‖ Ak ‖< ∞, where ‖ A ‖ denotes a matrix norm.

If ε(Pn | pk
n) solves Pn

d
dε

pk
n(ε)

pk
n(ε)

= 0 for all k, and ε(Pn | pk
n) → 0 for k → ∞,

then we have
PnD(pk

n) → 0 for k → ∞.

The condition (9) holds if the score of the one-dimensional submodel p(ε)
at ε converges to the score at ε = 0 for ε → 0 uniformly in a set containing the
k-step targeted MLE’s pk

n, k = 1, 2, . . ., and that for each p ∈ M, the linear

span of the components p′(0)
p(0)

includes the components of D(p). Since the
likelihood increases at each step one might indeed expect that typically the
targeted MLE algorithm will converge and thereby that ε(Pn | pk

n) → 0. That
is, Result 1 essentially states that, if the targeted MLE algorithm converges,
then the algorithm will converge to a solution of the efficient influence curve
equation in the sense that by choosing k large enough PnD(pk

n) ≈ 0 with
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arbitrary small deviation from 0.
Proof. Let εk = ε(Pn | pk

n), k = 0, . . .. If εk → 0 for k → ∞, then

Pn

d
dεk

pk
n(εk)

pk
n(εk)

− Pn
pk′

n (0)

pk
n(0)

→ 0

for k → ∞. Let Ak be such that Ak
pk′

n (0)
pk

n(0)
= D(pk

n). By assumption, the
matrix has a norm bounded uniformly in k. Thus, we also have

PnAk

d
dεk

pk
n(εk)

pk
n(εk)

− PnD(pk
n) → 0

for k → ∞. However, Pn
d

dεk
pk

n(εk)/p
k
n(εk) = 0 (and thus Ak applied to this

equals 0 as well), which shows that PnD(pk
n) → 0. �

4 Efficiency of the targeted maximum likeli-

hood estimator.

In this section we provide templates for proving consistency, asymptotic lin-
earity and efficiency of the targeted maximum likelihood estimator of a path-
wise differentiable parameter. Since convexity of the model and linearity of
the parameter allows a particular strong result, we separate this situation
from the general case.

4.1 Local efficiency of targeted maximum likelihood
estimator of linear parameters in convex models.

Let p∞n denote the limit of our algorithm if it exists as a density with respect
to μ in M, and otherwise it represents a pk

n ∈ M for a large enough k. If the
condition of the above Result 1 holds, then p∞n ∈ M, and for all practical
purposes, we have PnD(p∞n ) = 0. If this is true, then this result can be used
to establish efficiency of the substitution estimator Ψ(p∞n ) as an estimator
of ψ0 under the assumption that the parameter Ψ : M → IRd is linear and
M is convex, under weak regularity conditions. Specifically, by the identity
for convex models and linear parameters in van der Laan (1998) we have
Ψ(p) − Ψ(p0) = −P0D(p) for any p, p0 ∈ M for which p0/p < ∞. Thus, if
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p∞n ∈ M and it is bounded away from 0 on the support of p0, then combining
PnD(p∞n ) = 0 with the latter identity gives us

Ψ(p∞n ) − Ψ(p0) = (Pn − P0)D(p∞n ). (10)

Even if p∞n does not satisfy p0/p
∞
n < ∞, then the identity Ψ(p∞n ) − Ψ(p0) =

−P0D(p∞n ) can still be established under a continuity condition on p →
P0D(p) (see van der Laan (1998)), so that (10) can even be established for
density estimators not satisfying this support condition.

Applying empirical process theory (van der Vaart and Wellner (1996a))
now proves that Ψ(p∞n ) is root-n consistent if D(p∞n ) falls in a P0 Donsker class
with probability tending to 1. If one can now also establish that P0(D(p∞n )−
D(p1))

2 converges to zero in probability for a certain p1 ∈ M, then it follows
that Ψ(p∞n ) is asymptotically linear with influence curve D0(p1) ≡ D(p1) −
P0D(p1):

Ψ(p∞n ) − Ψ(p0) = (Pn − P0)D0(p1) + oP (1/
√

n),

where we note that p1 can be an arbitrary limit (i.e., p1 �= p0 is allowed). In
particular, if the limit p1 is such that D(p1) = D(p0), then Ψ(p∞n ) is asymp-
totically linear with influence curve D(p0). Thus, if D(p0) is the efficient
influence curve, then Ψ(p∞n ) is asymptotically efficient.

Theorem 1 Suppose the conclusion of Result 1 holds, and K = K(n) is
chosen large enough so that the targeted MLE pn = pK

n satisfies PnD(pn) =
R(n,K(n)) = oP (1/

√
n) (where limK→∞ R(n, K) = 0). Assume that pn ∈

M, p0/pn < ∞ uniformly over a support of p0, M is convex, and Ψ : M →
IRd is linear. Then

Ψ(pn) − Ψ(p0) = (Pn − P0)D(pn) + R(n,K(n)).

If D(pn) falls in a P0 Donsker class with probability tending to 1, then

Ψ(pn) − ψ0 = OP (1/
√

n).

If it is also shown that P0(D(pn) − D(p1))
2 → 0 in probability for n → ∞

for some p1 ∈ M, then it follows that Ψ(pn) is asymptotically linear with
influence curve D(p1) − P0D(p1):

Ψ(pn) − Ψ(p0) = (Pn − P0)D(p1) + oP (1/
√

n).

In particular, if D(p1) = D(p0), and D(p0) is the efficient influence curve of
Ψ at p0, then Ψ(pn) is asymptotically efficient.
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This shows that the targeted MLE of a linear parameter in a convex model
is typically consistent and asymptotically linear for arbitrary starting density
p0

n, and if the targeted MLE p∞n is consistent in the sense that P0(D(p∞n ) −
D(p0))

2 → 0 with probability tending to 1 for n converging to infinity (e.g.,
the initial starting density p0

n would already yield a consistent estimator
D(pn

0 ) of D(p0)), then the targeted MLE will also be efficient. We will now
provide two examples illustrating this theorem. The first example represents
a case in which the targeted MLE is efficient for arbitrary starting density p0

n.
The second example represents the case that the targeted MLE is consistent
and asymptotically linear for arbitrary starting density p0

n, and is efficient if
the starting density consistently estimates D(p0).

Example 3 ((Efficiency of a smooth cumulative distribution func-
tion) In this example we have D(p)(O) = I(O ≤ t)−∫ t

0 p(o)dμ(o). A targeted
MLE pn solving PnD(pn) = 0 satisfies that Ψ(pn) = PnI(· ≤ t) equals the
empirical cumulative distribution function at t and is therefore asymptot-
ically efficient, for arbitrary starting density p0. Thus in this example the
initial density does not need to be consistent in order to make the targeted
MLE asymptotically efficient. Suppose that p0

nh is indexed by a bandwidth
or model choice h, and let p∗nh be the targeted MLE density estimator using
as starting density p0

nh. Each of the targeted MLE’s p∗nh results in the same
estimator of the cumulative distribution function Ψ(p0) at time t. If one uses
likelihood cross-validation to select h, then one selects among all of these
targeted MLE’s the one which is supposedly closest to the true density p0

with respect to Kullback-Leibler divergence, which now provides a valid and
reasonable criteria since all the candidates density estimators already map
into efficient (and algebraically equivalent) estimators of ψ0.

Example 4 ((Local efficiency of targeted MLE based on censored
data) We consider a particular example of a censored data structure to
illustrate that Theorem 1 yields local efficiency of the targeted MLE based
on CAR censored data structures based on any starting density p0

n, under
very weak conditions.

Suppose that the full data structure X = (W, Y (a) : a ∈ {0, 1}) on the
experimental unit consists of a set of baseline covariates W , and treatment
specific outcomes Y (a), indexed by treatment values a ∈ {0, 1}. Suppose
that the observed data structure O = (W, A, Y = Y (A)) ∼ p0, and it is
assumed that the conditional probability distribution g0(· | X) of A, given
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X, satisfies g0(A | X) = g0(A | W ): that is, A is independent of X, given
W . Suppose that this conditional probability distribution of g0(A | W ) of
A, given W , is known, and satisfies 0 < g0(1 | W ) < 1, as it would be in
a randomized trial aiming to establish the causal effect of A on Y . Let M
be the class of all densities of O with respect to an appropriate dominating
measure. We have

M = {p(O) = QXA(W, Y )g0(A | X) : QX0, QX1},

where the full data sub-distributions QXa(w, y) = PW,Y (a)(w, y) are joint
densities of (W, Y (a)), a ∈ {0, 1}, and are unspecified. As a consequence, M
is a convex model. Let Ψ : M → IR be defined as Ψ(p) = Ep(Y (1)−Y (0)) =
Ep(Ep(Y | A = 1, W )−Ep(Y | A = 0, W )), which is often called the marginal
causal effect of treatment A on the outcome Y . In this case, Ψ(p) is pathwise
differentiable at p with efficient influence curve S(p) defined by

S(p) =
(Y − Q(p)(A, W ))(I(A = 1) − I(A = 0))

g(p)(A | W )
+Q(p)(1, W )−Q(p)(0, W )−Ψ(p),

where g(p)(· | W ) = Prp(A = · | W ) = g0(· | W ), and Q(p)(A, W ) =
Ep(Y | A, W ). Note that Ψ(p) depends on p through Q(p) and its marginal
distribution pW of W . Due to the factorization of the density of O in a QX-
factor and g0 factor, this is also the efficient influence curve if g0 is unknown
or modelled. The class of all gradients at p ∈ M is given by:

{
(Y − Q(A, W ))(I(A = 1) − I(A = 0))

g0(A | W )
+ Q(1, W ) − Q(0, W ) − Ψ(p) : Q

}
,

where Q can be an arbitrary function of A, W .
So we could define

DQ(p)(O) ≡ (Y − Q(A, W ))(I(A = 1) − I(A = 0))

g0(A | W )
+Q(1, W )−Q(0, W )−Ψ(p),

and D(p) = DQ(p)(p) represents the efficient influence curve. We are now
ready to define the targeted MLE of p0 with respect to the parameter ψ0.

Let p0
n be an initial density estimator of p0. For example, p0

n could cor-
respond with the empirical distribution of W , and a normal distribution for
the conditional density of Y , given A, W , with mean Q0

n(A, W ) and variance
σ2

n(A, W ), where Q0
n is an estimate of Q(p0)(A, W ) = E0(Y | A, W ). Let p∗n
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be a targeted MLE, as we explicitly define in the later Section 6 in detail,
solving PnD(p∗n) = 0. In Section 6, we show for a particular hardest sub-
model pk

n(ε) consisting of normal densities of Y , conditional on A, W , with
ε corresponding with a fluctuation of current regression Qk

n(A, W ), that the
targeted MLE is achieved in the first step (i.e., p∗n = p1

n), and indeed solves
the score equation PnD(p1

n) = 0. Let’s consider this particular targeted MLE
for illustration, but the following arguments apply to any targeted MLE solv-
ing PnD(p∗n) = 0.

Application of the theorem teaches us that

Ψ(p∗n) − ψ0 = (Pn − P0)DQ(p∗n).

Since g0 is bounded away from zero, if Q1
n is a nice smooth function (e.g.,

with a uniformly bounded uniform sectional variation norm, van der Laan
(1995b)), it follows that DQ(p∗n) falls in a P0-Donsker class, and thus that
Ψ(p∗n)−ψ0 = OP (1/

√
n). If the initial regression estimator Q0

n = Q(p0
n) con-

verges to a possibly misspecified Q1 = Q(p1), then it follows that Ψ(p∗n) is
asymptotically linear with influence curve DQ(p1)(O), where p1 is the possibly
misspecified limit of p1

n. Finally, if Q0
n is actually consistent for Q(p0), then

the targeted MLE of ψ0 is asymptotically efficient. We can use likelihood
based cross-validation to select among targeted MLE’s indexed by different
candidate initial estimators Q0

n, thereby improving the efficiency relative to a
targeted MLE with a fixed initial Q0

n. Thus this example teaches us that the
targeted MLE Ψ(p∗n) of ψ0, which typically equals the first step targeted MLE,
is consistent and asymptotically linear for arbitrary initial regression estima-
tor Q0

n, and it is efficient if Q0
n happens to be consistent, where the latter

can potentially be achieved by using a machine learning type algorithm and
selecting the fine tuning parameters with likelihood based cross-validation.
These results still carry through if g0 is unknown but is known to belong to
a parametric model.

4.2 Local efficiency of the targeted maximum likeli-
hood estimator for general smooth parameters un-
der a consistency-rate condition on the initial den-
sity estimator.

The remarkable robustness with respect to the starting density p0
n as observed

in the previous subsection is a consequence of the convexity of the model and
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linearity of the parameter Ψ. In general, such results cannot be expected to
hold. In this subsection we present a more general approach for establishing
the wished asymptotic linearity and efficiency of the targeted MLE of any
pathwise differentiable parameter.

Let p∞n ∈ M denote the limit of the targeted MLE algorithm if it exists
and otherwise it represents a pk

n for a large k. If the targeted MLE solves
the efficient influence curve equation, then for all practical purposes, we have
PnD(p∞n ) = 0. Let R(p, p0) be defined by

Ψ(p) − Ψ(p0) = −P0D(p) + R(p, p0)

for any p ∈ M. We note that by pathwise differentiability of Ψ at p, R(p, p0)
represents a second order term in the difference p−p0. Combining PnD(p∞n ) =
0 with the latter identity gives us

Ψ(p∞n ) − Ψ(p0) = (Pn − P0)D(p∞n ) + R(p∞n , p0).

Applying empirical process theory now proves that Ψ(p∞n ) is root-n con-
sistent if D(p∞n ) falls in a P0 Donsker class with probability tending to 1,
and R(p∞n , p0) = oP (1/

√
n). If one can now also establish that P0(D(p∞n ) −

D(p1))
2 converges to zero in probability for a possibly misspecified p1 ∈ M,

then it follows that Ψ(p∞n ) is asymptotically linear with influence curve
D(p1) − P0D(p1):

Ψ(p∞n ) − Ψ(p0) = (Pn − P0)D(p1) + oP (1/
√

n).

In particular, if D(p1) = D(p0), then the targeted MLE is asymptotically effi-
cient. Note that the asymptotic linearity requires that R(p∞n , p0) = oP (1/

√
n),

while the convexity of the model and linearity of the parameter as assumed
in the previous subsection allowed us to avoid such a condition: i.e. in that
case we had R(p, p0) = 0 for arbitrary p ∈ M with p0/p < ∞. Our bias
reduction results for the targeted MLE algorithm in Section 9 show that the
first step in the targeted MLE algorithm applied to a consistent initial den-
sity estimator reduces the rate at which the asymptotic bias of Ψ(p0

n) − ψ0

converges to zero to the rate at which second order terms in p0
n−p0 converge

to zero, suggesting that the first step might in many situations already yield
an efficient estimator. However, it will be beyond the scope of this article to
establish formal results for the targeted MLE in this article in more detail.
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5 Fusion of targeted maximum likelihood es-

timation and estimating function based es-

timation.

In this section we show that the targeted MLE can be viewed as a solution of
an optimal estimating equation for the parameter of interest, if one estimates
the nuisance parameters with the targeted MLE itself. This comparison can
only be made by making the assumption that the efficient influence curve
can be viewed as an estimating function of the parameter of interest, which
is needed for the estimating function methodology (van der Laan and Robins
(2002)), but not for targeted MLE.

As previously argued, a sieve-based maximum likelihood estimator of a
pathwise differentiable parameter is based on choices such as the sieve and
the criteria for trading off variance and bias, which is completely unrelated to
the actual parameter Ψ. As a consequence, such likelihood based estimators
suffer, in principle, from serious bias for the parameter of interest ψ0. Let p0

n

be such a likelihood based estimator of p0 and Ψ(p0
n) be the corresponding

substitution estimator of ψ0.
On the other hand, estimating function methodology (van der Laan and

Robins (2002)) constructs estimating functions Dh(ψ, υ)(O) for the parame-
ter of interest ψ indexed by a choice h, based on a representation of the or-
thogonal complement of the nuisance tangent space p → T⊥

nuis(p), which typi-
cally also depend on an unknown nuisance parameter Υ satisfying EpDh(Ψ(p), Υ(p)) =
0 for all p ∈ M. The current recommendation in estimating function
methodology (see e.g., van der Laan and Robins (2002)) proposes to use
an external estimator υn of nuisance parameters and estimate ψ0 with the
solution of 0 = PnDhn(ψ, υn) = 0 in ψ. For example, one could use the
maximum likelihood estimator p0

n and estimate ψ0 with the solution ψn0 of
0 = PnDh(p0

n)(ψ, Υ(p0
n)). This estimator ψn0 is not necessarily, and in fact,

will typically not be equal to Ψ(p0
n). Thus, even if the nuisance parameters

are based on a maximum likelihood estimator p0
n, the resulting estimating

function based estimators of ψ0 are intrinsically different from (and less bi-
ased than) the likelihood based estimator Ψ(p0

n).
However, let pn be the targeted maximum likelihood estimator based on

hardest submodels at p with efficient influence curve D(p) = Dh(p)(Ψ(p), Υ(p))
and starting with the initial density estimator p0

n, so that pn solves PnD(pn) =
Dh(pn)(Ψ(pn), Υ(pn)) = 0. Again, we consider the (now targeted) maxi-
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mum likelihood estimator Ψ(pn) versus the estimating function based esti-
mator described in the previous paragraph. The estimating function based
estimator ψn of ψ0 is defined as the solution of the estimating equation
0 = PnDh(pn)(ψ, Υ(pn)), which differs from above by now using the targeted
MLE pn (based on p0

n) to estimate the index and nuisance parameters (in-
stead of likelihood based p0

n). Because PnDh(pn)(Ψ(pn), Υ(pn)) = 0, it follows
that the estimating function based estimator ψn now equals Ψ(pn), assuming
that this solution is unique. That is, if one estimates the nuisance parameters
and index in the estimating function methodology with a targeted maximum
likelihood estimator pn, then the (or, at least, one of the) estimating function
based estimator ψn and the targeted maximum likelihood estimator Ψ(pn)
are identical.

We also note that the targeted MLE is more widely applicable than the
estimating function based methodology since it does not require the represen-
tation of an estimating function as a function of the parameter of interest and
a variation independent nuisance parameter. Another advantage of targeted
MLE relative to estimating function based estimation that it is invariant to
monotone transformations of the parameter of interest.

5.1 Targeted maximum likelihood estimation of path-
wise differentiable parameters in CAR-censored data
models

This targeted MLE approach has a particular nice application in estima-
tion of pathwise differentiable parameters based on censored data under the
coarsening at random assumption (Heitjan and Rubin (1991), Jacobsen and
Keiding (1995), Gill et al. (1997), van der Laan and Robins (2002)). That is,
let O = Φ(C, X) ∼ p0 for some known many to one mapping Φ, X ∼ FX0 is
the full data structure one wishes to observe on a randomly sampled exper-
imental unit, and assume that the conditional distribution of the censoring
variable C, given X, i.e., the censoring mechanism, satisfies coarsening at
random (CAR). In this case it is known that the density of O factorizes as:
p0(0) = g(p0)(O | X)Q(p0)(O), where g(p0)(O | X) (which is only a function
of O by CAR) is the conditional density of O, given X, which thus only de-
pends on the conditional distribution of C, given X. The Q(p0) factor only
depends on the distribution FX0 of the full data structure X (van der Laan
and Robins (2002)). Thus given a model M for O obtained by modelling
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FX0 and or the censoring mechanism g0(O | X), each p ∈ M is identified
by (g(p), Q(p)). Let Ψ(p) = Ψ(Q(p)) be a pathwise differentiable parame-
ter of the Q(p)-part of the density p of O: i.e., it represents an identifiable
parameter of FX . In this case, it is known that the efficient influence curve
D(p) = D(g(p), Q(p)) at p ∈ M is orthogonal to the tangent space TCAR(p)
of the censoring mechanism g at p only assuming CAR (i.e., the Hilbert space
in L2

0(P ) spanned by all scores of parametric submodels through g(p) at p),
where TCAR(p) = {h(O) : Ep(h(O) | X) = 0} consists of all functions of O
with conditional mean, given X, equal to zero. As a consequence, given an
initial estimator Q0 of Q(p0) and g0 of g(p0), a hardest parametric model
for ψ0 can be chosen to be of the form p0(ε) ≈ (1 + εD(p0))p0 = g0Q0(ε),
where Q0(ε) ≈ (1 + εD(Q0, g0))Q0. That is, the hardest parametric model
only corresponds with changing Q0, but it leaves g0 untouched. The targeted
MLE approach proceeds now as defined above.

In particular, the one-step method to obtain a targeted MLE p0(εn) solv-
ing the efficient influence curve estimating equation, presented in the previous
subsection 2.4, corresponds now with solving

PnD(g(p0), Q0(ε)) = 0. (11)

In particular, if M is convex and Ψ(Q) is linear, then Q → D(g,Q) is linear
(van der Laan and Robins (2002)). As a consequence, in this case, if one
uses a model Q0(ε) = (1 + εD(g0, Q0))Q0 for ε in an appropriate range, then
the equation (11) is linear in ε and thus allows a closed form solution εn.
One would need to check if this choice εn correspond with a valid density
p0(εn), and that it results in an increase of the likelihood relative to p0 (as
one certainly expects to be the case, since it solves the score equation at
ε = 0 of the next hardest parametric submodel).

This targeted maximum likelihood estimation of a pathwise differentiable
parameter of the full data distribution of X relies on having an estimator
g(p0) of the censoring mechanism g0 = g(p0), and the targeted MLE provides
no further updates of this estimator. Because of the factorization of the likeli-
hood, estimation of g0 can be based on the log-likelihood g → Pn log g(O | X)
and can thus be achieved with standard maximum likelihood estimation and
likelihood based cross-validation to control the bias and variance trade-off.
However, one might wish to also make a likelihood based estimator g0

n tar-
geted to our goal of estimation of Ψ(Q0). As pointed out in Section 2.3, the
definition of targeted maximum likelihood estimator allows one to also cre-
ate extra scores for orthogonal nuisance parameters such as g for the purpose
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of making the maximum likelihood for g targeted towards estimation of the
efficient influence curve, which happens to depend on g0.

5.2 Targeted maximum likelihood estimation in CAR
censored data models: including targeting the cen-
soring mechanism.

In this subsection we propose a targeted maximum likelihood methodology
for estimation of ψ0 which involves updating of estimators of both g0 and Q0.
As shown in van der Laan and Robins (2002) (Theorem 1.3), we have that
any gradient D(p) can be decomposed as D(p) = DIPCW (p)−DCAR(p) with
DIPCW being a so called Inverse Probability of Censoring Weighted (IPCW)
function, and DCAR(p) = Π(DIPCW (p) | TCAR(p)) is the projection of the
IPCW function DIPCW (p) onto TCAR(p) in the Hilbert space L2

0(p). In order
to relate these functions to estimating functions for ψ0 (as in van der Laan and
Robins (2002)) we will also sometimes use DIPCW (p) = DIPCW (g(p), Ψ(p))
and D(p) = D(g(p), Q(p), Ψ(p)) in the case that these functions can be
represented as an estimating function in ψ indexed by nuisance parame-
ters being functions of g(p) and Q(p): we note that the IPCW estimating
function typically only depends on p through g(p) and Ψ(p). Given an ini-
tial estimator p0

n = (g0
n, Q

0
n), in the censored data literature one defines the

IPCW-estimator and DR-IPCW estimator as the solutions of the estimating
equations PnDIPCW (g0

n, ψ) = 0 and PnD(g0
n, Q

0
n, ψ) = 0, respectively, and

Ψ(Q0
n) is called the likelihood based estimator (making the assumption that

Q0
n is likelihood based).

We will now describe the targeted MLE algorithm also involving the up-
dating of g0

n. At step k it now involves also a parametric submodel g(pk
n)(ε2)

through g(pk
n) with score DCAR(gk

n, Q
k
n) at ε2 = 0. It can be shown that

DCAR(g(p), Q(p)) corresponds with the efficient influence curve of the pa-
rameter Φ(g) = EpDIPCW (g,Q(p)) at g = g(p), so that this parametric
submodel makes the estimator of g0 targeted for estimation of the mean of
the IPCW -component of the efficient influence curve. In particular, it is also
the parametric submodel which makes the IPCW estimator ψn,IPCW , defined
as the solution of the IPCW estimating equation 0 = PnDIPCW (gn, ψ), effi-
cient if the submodel is correctly specified, under regularity conditions. As
above, let Qk

n(ε1) be a parametric submodel through Qk
n with score D(gk

n, Q
k
n)

at ε1 = 0.
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Targeted MLE algorithm:

• Set k = 0.

• Let pk
n = (gk

n, Q
k
n).

• Let ε1nk = arg maxε1 Pn log Qk
n(ε1), and ε2nk = arg maxε2 Pn log gk

n(ε2).

• Set gk+1
n = gk

n(ε2n) and Qk+1
n = Qk

n(ε1n). Set pk+1
n = (gk+1

n , Qk+1
n ).

• Set k = k + 1, and iterate this process utill convergence.

If ε1nk and ε2nk converge to zero for k → ∞ (which can be expected
because both factors g and Q of the likelihood are increasing at each step),
then the targeted MLE algorithm will converge to a simultaneous solution of

lim
k

PnDCAR(gk, Qk) = 0 and lim
k

PnD(gk, Qk) = 0.

Equivalence of IPCW, DR-IPCW, and targeted MLE: As a conse-
quence of the decomposition D(p) = DIPCW (p)−DCAR(p), this implies also
limk DIPCW (gk, Ψ(Qk)) = 0. Note that the double robust IPCW estimator
defined as the solution in ψ of PnD(gk

n, Q
k
n, ψ) = 0, the targeted maximum

likelihood estimator Ψ(Qk
n), and the IPCW estimator defined as the solution

of PnD(gk
n, ψ) = 0, all based on these targeted MLE’s gk

n, Q
k
n are identical

up to an arbitrarily small error decreasing in k (assuming uniqueness of the
DR-IPCW and IPCW solution).

6 Examples of the targeted maximum likeli-

hood estimator.

In this section we provide various important examples of the targeted MLE
to illustrate its remarkable simplicity and good properties.

6.1 Targeted Maximum likelihood estimation of a mean
in a nonparametric model.

Consider an initial data generating density p0 (with respect to a dominating
measure μ) of a possibly multivariate random variable O, a given function
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w(·), and define the parameter of interest as

Ψ(p) = Ep[w(O)] =
∫

w(o)p(o)dμ(o).

Assume the density p0 is such that the moment generating function of the
random variable w(O),

φ0(ε) = Ep0 [exp(εw(O))] =
∫

exp(εw(x))p0(x)dμ(x),

its derivative

φ0′(ε) =
∫ d

dε
exp(εw(x))p0(x)dμ(x) =

∫
w(x) exp(εw(x))p0(x)dμ(x),

and its second derivative

φ0′′(ε) =
∫ d

dε
w(x) exp(εw(x))p0(x)dμ(x) =

∫
w(x)2 exp(εw(x))p0(x)dμ(x)

exist for all real-valued ε. For the exponential family

{
p0(ε)(x) =

exp(ε(w(x) − ψ0))p0(x)∫
exp(ε(w(x) − ψ0))p0(x)dμ(x)

: ε

}
,

consider attempting to estimate ε with maximum likelihood based on an i.i.d.
sample {Oi}n

i=1. Here ψ0 = Ψ(p0). The log likelihood is then,

l(ε) =
n∑

i=1

[log(p0(Oi))+ε(w(Oi)−ψ0)−log
(∫

exp(ε(w(x) − ψ0))p0(x)dμ(x)
)
].

The first derivative is,

l′(ε) =
n∑

i=1

[w(Oi) − ψ0 −
∫
(w(x) − ψ0) exp(ε(w(x) − ψ0))p0(x)dμ(x)∫

exp(ε(w(x) − ψ0))p0(x)dμ(x)
]

= nW̄n − nψ0

−n
exp(−ψ0ε)

∫
w(x) exp(εw(x))p0(x)dμ(x) − ψ0 exp(−ψ0ε)

∫
exp(εw(x))p0(x)dμ(x)

exp(−ψ0ε)
∫

exp(εw(x))p0(x)dμ(x)

= nW̄n − nψ0 − n
φ0′(ε)
φ0(ε)

+ nψ0 = W̄n − n
φ0′(ε)
φ0(ε)

, (12)
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where W̄n denotes the sample mean 1
n

∑n
i=1 w(Oi). The second derivative is,

l′′(ε) = n
[φ0′(ε)]2 − φ0′′(ε)φ0(ε)

[φ0(ε)]2
.

Note that by Cauchy-Schwarz,

|φ0′(ε)| = |
∫

w(x) exp(εw(x))p0(x)dμ(x)|

≤
∫

|w(x)|(1) exp(εw(x))p0(x)dμ(x)

≤
√∫

w(x)2 exp(εw(x))p0(x)dμ(x)
∫

exp(εw(x))p0(x)dμ(x)

=
√

φ0′′(ε)φ0(ε),

implying that l′′(ε) ≤ 0 for all ε. Because the log likelihood is concave, the
maximum likelihood estimator of ε is any solution ε1 of l′(ε1) = 0. Hence, by
(12), if an mle εn exists then it solves,

φ0′

φ0
(εn) = W̄n.

Now, the mean of w(X) under p0(εn) is given by

∫
w(x)p0(εn)(x)dμ(x) =

∫
w(x) exp(εn(w(x) − ψ0))p0(x)dμ(x)∫

exp(εn(w(x) − ψ0))p0(x)dμ(x)

=
exp(−ψ0εn)

∫
w(x) exp(εnw(x))p0(x)dμ(x)

exp(−ψ0εn)
∫

exp(εnw(x))p0(x)dμ(x)

=
φ0′

φ0
(εn) = W̄n.

Therefore, given any initial density p0(·) for O, the targeted one-step maxi-
mum likelihood estimator of the mean of w(O) reduces to the sample mean
W̄n = 1

n

∑n
i=1 w(Oi).

6.2 Targeted maximum likelihood estimation of a marginal
causal effect in nonparametric model: submodel I

A locally optimal method for estimation of the causal effect of a time-
independent treatment A in a semiparametric regression model has been
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given in Robins and Mark (1992). Double robust locally efficient estimation
of the causal effect of a point treatment assuming a marginal structural model
has been provided in Robins (2000), Robins and Rotnitzky (2001), Robins
et al. (2000) and Neugebauer and van der Laan (2002): see also van der Laan
and Robins (2002).

Let O = (W, A, Y ), W be a vector of baseline covariates, A be a binary
treatment variable, and Y an outcome of interest. Let M be the class of all
densities of O with respect to an appropriate dominating measure: so M is
nonparametric up to possible smoothness conditions. Let Ψ : M → IR be
defined as Ψ(p) = Ep(Ep(Y | A = 1, W ) − Ep(Y | A = 0, W )), where it is
assumed 0 < P (A = 1 | W ) < 1 with probability one so that this parameter
is well defined. This parameter corresponds with the marginal causal effect of
A on Y if one assumes the usual consistency assumption, temperal ordering
assumption, and randomzation assumption required for causal inference. In
order to acknowledge that this parameter is of interest in general, van der
Laan (2006b) refers to this parameter as the variable importance of variable
A. This parameter Ψ(p) is pathwise differentiable at p with efficient influence
curve S(p) defined by

S(p) =
(Y − Q(p)(A, W ))(I(A = 1) − I(A = 0))

g(p)(A | W )

+Q(p)(1, W ) − Q(p)(0, W ) − Ψ(p),

where g(p)(· | W ) = Prp(A = · | W ), and Q(p)(A, W ) = Ep(Y | A, W ) (see
e.g., Robins (2000), van der Laan (2006b)). Note that Ψ(p) depends on p
through Q(p) and its marginal distribution pW of W . Because the model
is locally saturated, it is also the only influence curve/gradient (Gill et al.
(1997)). So we will set D(p) = S(p).

We can decompose this efficient score D(p) into three subcomponents as
follows:

D(p) = D(p) − Ep(D(p) | A, W ) + Ep(D(p) | A, W ) − Ep(D(p) | W )

+Ep(D(p) | W ) − EpD(p),

which corresponds with scores for p(Y | A, W ), p(A|W ) and p(W ), respec-
tively. We have

D1(p)(O) ≡ D(p) − Ep(D(p) | A, W )
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= (Y − Q(p)(A, W ))

{
I(A = 1) − I(A = 0)

g(p)(A | W )

}

Ep(D(p) | A, W ) − Ep(D(p) | W ) = (Q(p)(1, W ) − Q(p)(0, W ) − Ψ(p))

−E(Q(p)(1, W ) − Q(p)(0, W ) − Ψ(p) | W )

= 0

D2(p) ≡ Ep(D(p) | W ) − Ep(D(p))

= Q(p)(1, W ) − Q(p)(0, W ) − Ψ(p).

Consider an initial density estimator p0
n of the density p0 of (W, A, Y )

with marginal distribution of W being the empirical probability distribution
of W1, . . . , Wn. We have that D(p0

n) = D1(p
0
n) + D2(p

0
n) and thus that a one-

dimensional p0
n(ε) with score D(p0

n) at ε = 0 corresponds with a zero score for
g(p0

n). In addition, we have that PnD2(p
0
n) = 0 (i.e., the empirical distribution

of W is a nonparametric maximum likelihood estimator) so that p0
n(ε) can

be selected to only vary p0
n(Y | A, W ) with a score D1(pn) at ε = 0. We

also define D0(p) = Y (I(A = 1)− I(A = 0))/g(p)(A | W ) and θ(p)(A, W ) =
Ep(D0(p) | A, W ) = Q(p)(A, W )(I(A = 1) − I(A = 0))/g(p)(A | W ), so
that D1(p) = D0(p) − θ(p). As one dimensional submodel we consider the
exponential family{

p0
n(ε)(O) = p0

n(W )g(p0
n)(A | W )

exp(ε(D0(p
0
n)(O) − θ(p0

n)(A, W )))p0
n(Y | A, W )

Ep0
n
(exp(ε(D0(p0

n)(O) − θ(p0
n)(A, W )) | A, W )

: ε

}
.

(13)
To compute the first step targeted MLE we need to estimate ε with maximum
likelihood based on an i.i.d. sample {Oi}n

i=1.
Given any density p, we define

φp(ε | A, W ) = Ep[exp(εD0(p)(O)) | A, W ], (14)

its derivative

φ′
p(ε) = Ep[D0(p)(O) exp(εD0(p)(O)) | A, W ), (15)

and its second derivative

φ′′
p(ε) = Ep[D0(p)(O)2 exp(εD0(p)(O)) | A, W ], (16)

and we assume these integrals exist for all real-valued ε at p = p0
n ∈ M. The

log likelihood can be expressed in terms of these functions as follows:

l(ε) =
n∑

i=1

{log(p0
n(Oi)) + ε(D0(p

0
n)(Oi) − θ(p0

n)(A, W ))}

34

http://biostats.bepress.com/ucbbiostat/paper213



− log
(
Ep0

n
(exp(ε(D0(p

0
n)(O) − θ(p0

n)(A, W ))) | A, W )
)
. (17)

Analogous to the algebraic derivation at (12) it follows that the first deriva-
tive and second derivative of l(ε) are given by

l′(ε) =
1

n

n∑
i=1

{
D0(p

0
n)(Oi) −

φ′
p0

n
(ε | Ai, Wi)

φp0
n
(ε | Ai, Wi)

}
,

and

l′′(ε) = Pn

[φ′
p0

n
(ε)]2 − φ′′

p0
n
(ε)φp0

n
(ε)

[φp0
n
(ε)]2

,

respectively, where we treat φ′
p0

n
as a function of (A, W ). By the Cauchy-

Schwarz inequality (analogous to (13)), it follows that l′′(ε) ≤ 0 for all ε.
Because the log likelihood is concave, the maximum likelihood estimator of
ε is any solution ε1 of l′(ε1) = 0. Hence, by (18), if an mle εn exists then it
solves,

Pn

φ′
p0

n

φp0
n

(εn) = PnD0(p
0
n). (18)

Analogous to (13), it follows that the conditional mean of D0(p
0
n)(O), given

A, W , under p0
n(εn) is given by

Ep0
n(εn)(D0(p

0
n)(O) | A, W ) =

φ′
p0

n

φp0
n

(εn | A, W ),

which shows that εn satisfies the equality

1

n

n∑
i=1

(Yi − Q(p0
n(εn))(Ai, Wi))

I(Ai = 1) − I(Ai = 0)

g(p0
n)(Ai | Wi)

= 0. (19)

We also note that

Ψ(p0
n(εn)) = Ep0

n(εn){Q(p0
n(εn))(1, W ) − Q(p0

n(εn)(0, W )}
= Pn{Q(p0

n(εn))(1, W ) − Q(p0
n(εn))(0, W )}, (20)

because the marginal distribution of W under p0
n(εn) equals the marginal

distribution of W under p0
n and the latter equals the empirical distribution
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of W . Thus,

PnD(p0
n(εn)) =

1

n

n∑
i=1

(Yi − Q(p0
n(εn)(Ai, Wi))

I(Ai = 1) − I(Ai = 0)

g(p0
n)(Ai | Wi)

+Q(p0
n(εn)(1, Wi) − Q(p0

n(εn)(0, Wi) − Ψ(p0
n(εn)

= 0 +
n∑

i=1

Q(p0
n(εn))(1, Wi) − Q(p0

n(εn))(0, Wi) − Ψ(p0
n(εn)) by (19)

= 0 by (20).

This proves that the targeted maximum likelihood estimator is achieved in
the first step of the algorithm and solves the efficient influence curve esti-
mating equation PnD(p) = 0. Note that we could also have solved directly
PnD(p0

n(ε)) = 0 and we would have found the same solution, but it would
not have been an easier approach.

This result can be generalized to many other linear pathwise differentiable
parameters in nonparametric models based on censored data structure un-
der the coarsening at random assumption, where D(p) represents the double
robust estimating function/efficient influence curve, as presented in (van der
Laan and Robins (2002)) in closed form for numerous censored data struc-
tures.

6.3 Targeted maximum likelihood estimation of a marginal
causal effect in nonparametric model: submodel II

We now propose an easily implemented targeted maximum likelihood esti-
mator of the marginal causal effect by using a normal regression model as
hardest submodel. Specifically, consider an initial density estimator p0

n with
marginal distribution of W equal to the empirical probability distribution
of W1, . . . , Wn, and let the conditional probability density p0

n(Y | A, W ) =
1

σ(Q0
n)(A,W )

f0({Y −Q0
n(A, W )}/σ(Q0

n)(A, W )) be a normal density with mean

Q0
n(A, W ) and variance σ(Q0

n)2(A, W ). Here f0 denotes the N(0, 1) density.
In addition, g(pn

0 )(A | W ) is a particular fit of the conditional density of A,
given W . We now consider as possible submodels p0

n(ε)

p0
n(ε)(Y | A, W ) =

1

σ(Q0
n(A, W )

f0

(
Y − Q0

n(A, W ) − εh(p0
n)(A, W )

σ(Q0
n)(A, W )

)
,

where the function h will be specified so that the score of p0
n at ε = 0 equals

the efficient influence curve at p0
n. The maximum likelihood estimator of ε is
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simply given by the weighted least squares estimator for a univariate linear
regression model:

εn = arg min
ε

n∑
i=1

(Yi − Q0
n(Ai, Wi) − εh(p0

n)(Ai, Wi))
2 1

σ(Q0
n)2(Ai, Wi)

.

The score of p0
n(ε)(Y | A, W ) at a value ε is given by:

S(ε) = −Y − Q0
n(A, W ) − εh(p0

n)(A, W )

σ(Q0
n)2(A, W )

h(p0
n)(A, W ),

and εn solves indeed PnS(εn) = 0. If we set

h(p0
n)(A, W ) ≡

(
I(A = 1)

g0
n(1 | W )

− I(A = 0)

g0
n(0 | W )

)
σ(Q0

n)2(A, W ),

then the score S(0) = D1(p
0
n) = (Y −Q0

n(A, W ))(I(A = 1)/g0
n(1 | W )−I(A =

0)/g0
n(0 | W )) of p0

n(ε)(Y | A, W ) at ε = 0 corresponds with the efficient
influence curve at p0

n. As in our previous subsection, since p0
n(W ) equals the

empirical distribution of W the MLE of ε1 → Pn log p0(ε1)(W ) equals ε = 0,
and g0

n(A | W ) will not be varied by p0
n(ε): that is, the marginal distribution

of W and the treatment mechanism g0(A | W ) will not be updated in the
algorithm for calculating the targeted maximum likelihood estimator.

Let p1
n = p0

n(εn) whose conditional distribution of Y , given A, W , is a
normal density with mean Q1

n(A, W ) and variance σ2(Q1
n)(A, W ), where

Q1
n(A, W ) = Q(p1

n)(A, W ) = Q0
n(A, W ) + εnh(p0

n)(A, W ).

The corresponding estimate of ψ0 is given by

Ψ(p1
n) =

1

n

n∑
i=1

Q1
n(1, Wi) − Q1

n(0, Wi).

It is straightforward to show that PnD(p1
n) = 0 in the case that σ0

n(A, W )
is constant in the model {p0

n(ε) : ε}, but is simply set at an initial estimate.
Thus in this case the targeted maximum likelihood is achieved at the first
step. For arbitrary fixed values of σ(A, W ), the targeted MLE is locally
efficient in the sense that if g(p0

n) is consistent at some rate, then it is con-
sistent and asymptotically linear for arbitrary Q0

n, and it is efficient if Q0
n

is consistent for Q0(A, W ). Likewise, a consistent Q1
n(A, W ) will lead to a

consistent estimator of the parameter of interest ψ0, even with an arbitrary
fit of the treatment mechanism g(A|W ). Iterative estimation of σ provides
no (asymptotic) reward, and could simply be omitted by setting (e.g.) σ at
an initial estimate, so that the targeted MLE is achieved in a single step.
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6.4 Targeting the treatment mechanism as well.

We will now proceed with this example, but also use for g0 a targeted
maximum likelihood estimator. Our goal is to make the IPTW estimator
ψn,IPTW = 1

n

∑n
i=1 Yi

I(Ai=1)−I(Ai=0)
gn(Ai|Wi)

corresponding wiht the targeted MLE gn

an efficient estimator. Let g(p0
n)(A | W ) be an initial estimator and represent

it as a logistic function:

g(p0
n)(1 | W ) =

1

1 + exp(−m0
n(W ))

.

Consider as parametric submodel

g(p0
n)(ε2)(1 | W ) =

1

1 + exp(−m0
n(W ) − ε2h(p0

n)(W ))
. (21)

Let ε2n = arg max Pn log g(p0
n)(ε). In practice this can be done by fitting a

logistic regression in the covariates m0
n(W ) and h(p0

n)(W ), setting the inter-
cept equal to zero, and setting the coefficient in front of m0

n(W ) equal to 1,
and set ε2n equal to fitted coefficient in front of h(p0

n)(W ). It is also fine to
refit the intercept and coefficient in front of m0

n(W ), since choosing additional
parameters still guarantees that the linear span of scores includes the score
of h(p0

n)(W ). We have

d

dε2

log g(p0
n)(ε2)

∣∣∣∣∣
ε2=0

(O) = h(p0
n)(W )(A − g(p0

n)(1 | W )).

Solving for h so that

h(W )(A − g(p0
n)(1 | W )) = DCAR(p0

n)(O)

=
Q(p0

n)(A, W )

g0
n(A | W )

{I(A = 1) − I(A = 0)}
−{Q(p0

n)(1, W ) − Q(p0
n)(0, W )}

yields the solution

h(p0
n)(W ) =

Q(p0
n)(1, W )

g(p0
n)(1 | W )

+
Q(p0

n)(0, W )

g(p0
n)(0 | W )

.

We are now ready to present the proposed targeted MLE which also targets
the treatment mechanism fit.
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The algorithm for targeted maximum likelihood estimation of a
marginal causal effect, including the targeting of the treatment
mechanism. Thus the algorithm for targeted maximum likelihood estima-
tion of ψ0 can be described as follows. Let k = 0, and let g0(A | W ) and the
regression fit Q0(A, W ) of E0(Y | A, W ) be given. Let

hk
1 = h1(g

k, Qk)(A, W ) ≡
(

I(A = 1)

gk(1 | W )
− I(A = 0)

gk(0 | W )

)
σ(Qk)2(A, W )

and

hk
2 = h2(g

k, Qk)(W ) =
Qk(1, W )

gk(1 | W )
+

Qk(0, W )

gk(0 | W )
.

Let mk(W ) = log(gk(1 | W )/gk(0 | W )) so that gk(1 | W ) = 1/(1 +
exp(−mk(W )). Consider the logistic regression model

gk(ε2)(1 | W ) =
1

1 + exp(−mk(W ) − ε2hk
2(W ))

.

Let ε2n(k) = arg maxε2 Pn log gk(ε2) be the maximum likelihood estimator of
this univariate logistic regression model, and let

ε1n(k) = arg min
ε1

n∑
i=1

(Yi − Qk(Ai, Wi) − ε1h
k
1(Ai, Wi))

2 1

σ(Qk)2(Ai, Wi)
,

the univariate least squares estimator of ε1.
Now, update gk and Qk as follows:

Qk+1(A, W ) = Qk(A, W ) + ε1n(k)hk
1(A, W )

mk+1(A, W ) = mk(W ) + ε2n(k)hk
2(W )

gk+1(A | W ) =
1

1 + exp(−mk+1(W ))

Set k = k + 1 and iterate this algorithm.

Equivalence of IPTW, DR-IPTW, and targeted maximum likeli-
hood estimators. Recall that the efficient influence curve function is de-
composed as D(g,Q)(O) = DIPTW (g,Q)−DCAR(g,Q), where DIPTW (g,Q) =

Y
g(A|W )

(I(A = 1) − I(A = 0)) − Ψ(Q), and DCAR(g,Q) = Q(A,W )
g(A|W )

(I(A =
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1) − I(A = 0)) − (Q(1, W ) − Q(0, W )). For k converging to infinity the
targeted MLE yields a final estimator gn of the treatment mechanism and a
regression fit Qn(A, W ) so that the score equations of the two submodels in
ε1 and ε2 are solved at ε1 = ε2 = 0:

PnD(gn, Qn) = 0 and PnDCAR(gn, Qn) = 0.

This implies also that
PnDIPTW (gn, Qn) = 0.

Thus, we can conclude that the three estimators

Ψn,IPTW =
1

n

n∑
i=1

Yi

gn(Ai | Wi)
(I(Ai = 1) − I(Ai = 0))

Ψn,DR−IPTW =
1

n

n∑
i=1

Yi

gn(Ai | Wi)
(I(Ai = 1) − I(Ai = 0)) − DCAR(gn, Qn)(Ai, Wi)

Ψn,MLE =
1

n

n∑
i=1

Qn(1, Wi) − Qn(0, Wi)

are algebraically identical: Ψn,IPTW = Ψn,DR−IPTW = Ψn,MLE. That is, the
targeted MLE Ψ(Qn) equals the IPTW and DR-IPTW estimator based on
the targeted MLE (gn, Qn) as estimators of the nuisance parameters (g0, Q0)
of the corresponding estimating equations.

6.5 Simulation for targeted MLE of marginal variable
importance.

Simulated data can be used to illustrate the benefits of the targeted likelihood
procedure. We simulated replicates of the data structure O = (W, A, Y ) ∼ p0

representing baseline covariates, a binary treatment, and a response measure-
ment on a subject, and attempted to estimate the causal effect of treatment
A on response Y . We generated 1000 datasets of size n = 200 according to
the following mechanism:

W ∼ U(0, 1)

A ∈ {0, 1} g(1|W ) = P (A = 1|W ) =
1

1 + exp(−8W2 + 8W − 1)

ε ∼ N(0, 1), ε ⊥ (W, A)

Y = AQ(1, W ) + (1 − A)Q(0, W ) + ε = −(8W2 − 8W + 1)A − 2

3
(1 − A) + ε
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Here O represented a censored data structure. The unavailable counterfactual
data was given by,

X = (W, Y0, Y1) = (W, Q(0, W ) + ε, Q(1, W ) + ε).

It could be be verified that the coarsening at random assumption held, or
that,

{A ⊥ X|W},
as well as the experimental treatment assignment assumption, implied by,

0 < 0.26 < g(1|W ) < .74 < 1 with probability one.

Together these assumptions made it possible to estimate the parameter,

Ψ(p0) = E[Y1] − E[Y0] = 1,

representing the counterfactual mean difference between the treatment group
(A = 1) and the control group (A = 0).

The standard estimators for this problem are the inverse probability of
treatment (IPTW), maximum likelihood (G-computation), and doubly ro-
bust (efficient) estimators. These respectively depend on fitting either the
censoring mechanism g or the nuisance parameter Q(A, W ) = E[Y |W ], and
are given by:

Ψ
n,IPTW(g) =

1

n

n∑
i=1

Yihg(Ai, Wi), for hg(A, W ) =
A

g(1|W )
− 1 − A

g(0|W )

Ψ
n,MLE(Q) =

1

n

n∑
i=1

[Q(1, Wi) − Q(0, Wi)]

Ψ
n,DR-IPTW(g,Q) = Ψ

n,IPTW + Ψ
n,MLE − 1

n

n∑
i=1

hg(Ai, Wi)Q(Ai, Wi)

Typically estimation is based on forming external estimates of at least one
of the two nuisance parameters g or Q, and then applying one of the IPTW,
maximum likelihood, or double robust estimators. The three estimators can
potentially be very different from one another, leading to difficulties when
interpreting the data. Targeted likelihood resolves this problem, by estimat-
ing both nuisance parameters g and Q accurately with maximum likelihood,
but in a way so that the IPTW, maximum likelihood, and doubly robust
estimators are algebraically equivalent.
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As our initial fit to p0 prescribed that {Y |A, W} followed a Gaussian
distribution with fixed variance, the hardest one-dimensional submodel ε →
pε for estimation of Ψ(p0) could be given by,

{Y |A, W} ∼ N(Q(0)
n (A, W ) + εhg(A, W ), σ2),

while the laws of {W} and {A|W} were left unchanged. The maximum
likelihood estimator of ε became,

εn =

∑n
i=1 hg(Ai, Wi)(Yi − Q(0)

n (Ai, Wi))∑n
i=1 hg(Ai, Wi)

,

leading to the updated estimate of Q(A, W ) = E[Y |A, W ],

Q(1)
n (A, W ) = Q(0)

n (A, W ) + εnhg(A, W ).

When the treatment mechanism g was not updated, the targeted likelihood
algorithm converged in a single iteration. Note that the update did not
depend in any way on the choice of variance σ2 for the law of {Y |A, W},
so long as it was a constant. The parameter Ψ(p0) was then estimated
with Ψ(p(εn)), which was equal to Ψ

n,MLE(Q(1)
n ) and Ψ

n,DR-IPTW(g,Q(1)
n ).

The treatment mechanism g could also be updated with targeted likelihood,
to make the IPTW estimator equivalent with the maximum likelihood and
double robust estimators. This was done by making a one-dimensional model
gε(1|W ) through g(1|W ) at ε = 0, whose score at ε = 0 was the projection
of the IPTW estimator’s influence curve on TCAR. Such a submodel could
be formed by taking,

logit(gε(1|W )) = g(1|W ) + ε[
Q(1, W )

g(1|W )
+

Q(0, W )

g(0|W )
].

Because this was simply a logistic model for {A|W}, we could estimate ε
through logistic regression. After iterating the targeted likelihood procedure
to update both of the Q and g nuisance parameters until convergence, the
IPTW, maximum likelihood, and double robust estimators of Ψ(p0) became
equivalent.

For this data structure, Ψ
n,DR-IPTW(g,Q) was asymptotically efficient,

meaning that its asymptotic performance was superior to any other regular
estimator. This efficient estimator could not be used directly on observed
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data, due to its dependence on the unknown nuisance paramters g and Q.
We assessed the quality of an estimator Ψn through the ratio

R(Ψn) =
Ep0 [n|Ψn − Ψ(p0)|2]

Ep0 [n|Ψn,DR-IPTW(g,Q) − Ψ(p0)|2]

For large enough sample size n, and consistent and asymptotically linear Ψn,
this approximated the asymptotic relative efficiency of Ψn to the efficient esti-
mator, and necessarily exceeded one. We approximated R(Ψn) after forming
Ψn on 1000 simulated datasets of size n = 200.

In our simulations, we considered known censoring mechanism g, as could
occur in a randomized clinical trial. We misspecified the nuisance parame-
ter Q, by estimating E[Y |W ] in the A = 0 and A = 1 strata with linear
regression, while quadratic regression would have been appropriate. This
first-order approximation to Q lead to an inaccurate maximum likelihood
estimator, having R(Ψn) = 2.63. Confidence intervals for R(Ψn) were negli-
gible, due to the number of simulations. The misspecified nuisance parameter
Q did not affect the performance of the IPTW estimator, or the consistency
of the double robust estimator, which respectively had asymptotic relative
efficiencies R(Ψn) of 1.18 and 1.15. Note that the IPTW estimator was
unbiased, but was less accurate than the double robust estimator with mis-
specified Q. After updating Q with a single targeted likelihood iteration,
R(Ψn) decreased to 1.10. The resulting estimator was then a maximum like-
lihood estimator (and double robust estimator) with updated Q, and the
update greatly increased of the accuracy of the parameter estimate. When
also updating the censoring mechanism g, the asymptotic relative efficiency
dropped even further to 1.07, making the estimator almost equivalent with
the efficient estimator. In spite of the fact that the censoring mechanism
g was already known, estimating it from the data was nevertheless benefi-
cial, as could be surmised from Chapter 2.3.7 of (van der Laan and Robins
(2002)).

Thus, the targeted likelihood algorithm allowed us to estimate the nui-
sance parameters g and Q with maximum likelihood in a manner such that
three standard estimators become identical, and led to better performance
than was achieved by the initial IPTW, maximum likelihood, and double
robust estimators.
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6.6 Semiparametric regression example.

Let O = (W, A, Y ) ∼ p0 and consider the semiparametric regression model
M = {p : Ep(Y | A, W ) − Ep(Y | A = 0, W ) = m(A, W | β(p))} for some
parametrization β → m(A, W | β) satisfying m(0, W | β) = 0 for all β ∈ IRd.
This is equivalent with assuming E0(Y | A, W ) = m(A, W | β0) + θ0(W )
with θ0 unspecified and m(0, W | β) = 0, and can therefore also be viewed
as a semiparametric regression model. It has been recognized that a maxi-
mum likelihood fit (e.g., generalized additive models) of the semiparametric
regression suffers from bias for the parametric part, so that one needs to
undersmooth the nonparametric components in the semiparametric regres-
sion model. However, the literature does not provide practical guidance.
Therefore, the targeted MLE approach presented here provides an impor-
tance practical improvement. Let Ψ(p) = β(p) ∈ IRd be the parameter of
interest.

This type of semiparametric regression models has been considered by
various authors (e.g., Newey (1995); Rosenbaum and Rubin (1983); Robins
et al. (1992); Robins and Rotnitzky; Yu and van der Laan (2003)). The latter
three articles derive the orthogonal complement of the nuisance tangent space
(i.e., the set of all gradients of the pathwise derivative), the efficient influence
curve/canonical gradient, and establish the wished double robustness of the
corresponding estimating functions. In particular, for our purpose we refer
to Theorem 2.1 and 2.2 in Yu and van der Laan (2003) for the following
statements.

The orthogonal complement of the nuisance tangent space is given by:

T⊥
nuis(p) = {Dh(p) : h} ⊂ L2

0(P ),

where

Dh(p)(O) ≡ (h(A, W ) − Ep(h(A, W ) | W ))(Y − m(A, W | β(p)) − Ep(Y | A = 0, W )).

The orthogonal complement of the nuisance tangent space corresponds with
the set of gradients for Ψ at p given by:

T⊥
nuis(p)∗ =

{
−c(p)(h)−1Dh(p)(O) : h = (h1, . . . , hd)

}
,

where c(p)(h) = d
dβ

EpDh(p, β)
∣∣∣
β=β(p)

, and Dh now represents a vector func-

tion (Dh1 , . . . , Dhd
). The efficient influence curve is identified by a closed
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form index h(p) (see e.g., Yu and van der Laan (2003)), which is provided
below (29). Let D(p) = Dh(p)(p) be this efficient influence curve at p as
identified by this index h(p).

Let g(p) be the conditional density of A, given W , under p, let Q(p)
be the conditional distribution of Y , given A, W , under p. We note that
the parameter Ψ(p) is only a function of Q(p), and the density factorizes as
p(O) = p(W )g(p)(A | W )Q(p)(Y | A, W ). As a consequence, the elements
Dh(p) are orthogonal to the tangent spaces of the nuisance parameter g(p)
and the nuisance parameter p(W ). That is, we can decompose the efficient
score D(p) into three subcomponents as follows:

D(p) = D(p) − Ep(D(p) | A, W ) + Ep(D(p) | A, W ) − Ep(D(p) | W )

+Ep(D(p) | W ) − EpD(p),

which corresponds with scores for p(Y | A, W ), p(A|W ) and p(W ) at p,
respectively, but Ep(D(p) | A, W ) − Ep(D(p) | W ) = 0 and Ep(D(p) |
W ) − E(D(p)) = 0. Thus the efficient influence curve D(p) represents only
a score for Q(p)(Y | A, W ), and indeed satisfies Ep(D(p)(O) | A, W ) = 0.

Consider an initial density estimator p0
n = (p0

nW , g(p0
n), Q(p0

n)) of (W, A, Y )
with marginal distribution of W being the empirical probability distribution
of W1, . . . , Wn. Above we showed that a submodel p0

n(ε) through p0
n and

with score D(p0
n) at ε = 0 can be selected to only vary the conditional den-

sity Q(p0
n) of Y , given A, W , with a score D(p0

n) at ε = 0. Such a submodel
will now be presented.

Hardest parametric submodel.

Let p0
n ∈ M. Suppose that Q(p0

n) is a normal distribution with mean
θ(p0

n)(A, W ) = Ep0
n
(Y | A, W ) and variance σ2(A, W ) = σ2(Q0

n)(A, W ). Re-
call that D(p0

n) = (h(p0
n)(A, W ) − Ep0

n
(h(p0

n) | W ))(Y − m(A, W | β(p0)) −
Ep0

n
(Y | A = 0, W )). For notational convenience, we will represent this

function as h(p0
n)(A, W )(Y − Ep0

n
(Y | A, W )) with now h(p0

n) satisfying
Ep0

n
(h(p0

n)(A, W ) | W ) = 0. Consider the parametric submodel of M defined
as the normal density with conditional variance σ2(A, W ) and conditional
mean m(A, W | β0

n(ε)) + θ0
n(ε). That is,

Q0
n(ε)(Y | A, W ) =

1

σ(A, W )
f0

(
Y − m(A, W | β0

n(ε)) − θ0
n(ε)(W )

σ(A, W )

)
,
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where β0
n(0) = β(Q0

n), θ0
n(0) = θ(Q0

n) = EQ0
n
(Y | A = 0, W ), and f0 is the

standard normal density. We note that this is a valid submodel through Q0
n

at ε = 0. Let β(ε) ≡ β(Q0
n) + ε and θ0

n(ε) = θ(Q0
n) + ε�r. It remains to

find a function r(W ) so that the score of Q0
n(ε) at ε = 0 equals the efficient

influence curve D(p0
n).

We have that the score S(ε) at ε is given by (note that f ′
0(x)/f0(x) =

2x/σ2)

S(ε) =
(Y − m(A, W | β0

n(ε)) − θ0
n(ε)(W ))

σ2(A, W )

{
d

dε
m(A, W | β0

n(ε)) − d

dε
θ0

n(ε)(W )

}

=

{
d

dβ0
n(ε)

m(A, W | β0
n(ε)) − r(W ))

}
(Y − m(A, W | β0

n(ε)) − θ0
n(ε)(W ))

σ2(A, W )
.

Solving for r so that S(0) = D(p0) yields the equation

h(p0
n)(A, W )(Y − EQ0(Y | A, W )) =
1

σ2(A,W )

{
d

dβ(Q0
n)

m(A, W | β(Q0
n)) − r(W )

}
(Y − EQ0

n
(Y | A, W )).

In order to have that the score equals Dh for a particular h(A, W ) with
Ep0

n
(h(A, W ) | W ) = 0, we need

r(p0
n)(W ) =

Ep0
n

(
d/dβ0

nm(A,W |β0
n)

σ2(A,W )
| W

)
Ep0

n

(
1

σ2(A,W )
| W

) .

This yields the following score for our submodel p0
n(ε) at ε = 0:

S(0) = h(p0
n)(A, W )(Y − m(A, W | β(Q0

n)) − θ(Q0
n)(W )),

where

h(p0
n)(A, W ) ≡ 1

σ2(A, W )

d

dβ(Q0
n)

m(A, W | β(Q0
n)) (22)

− 1

σ2(A, W )

Ep0
n

(
d

dβ(Q0
n)

m(A, W | β(Q0
n))/σ2(A, W ) | W

)
Ep0

n
(1/σ2(A, W ) | W )

.

This choice h(p0
n) gives a score S(0) equal to the efficient influence curve (see

e.g., Yu and van der Laan (2003)). So we succeeded in finding a submodel
p0

n(ε) with a score at ε = 0 equal to the efficient influence curve at p0
n. Thus

we are now ready to define the targeted MLE.
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Consider the log-likelihood for p0
n(ε) in ε:

l(ε) ≡ 1

n

n∑
i=1

log f0

(
Yi − m(Ai, Wi | β0

n + ε) − (θ0
n(W ) + ε�r(p0

n)(W ))

σ(A, W )

)
.

Let εn be the maximizer, which can thus be computed with standard weighted
least squares regression:

εn = arg min
ε

n∑
i=1

1

σ2(Ai, Wi)

(
Yi − m(Ai, Wi | β0

n + ε) − θ0
n(Wi) − εr(p0

n)(Wi)
)2

(23)

The score equation 0 = d/dεl(ε) = PnS(ε) for εn is given by

0 = Pn

{
d

dβ0
n(ε)

m(β0
n(ε)) − r(p0

n))
}

(Y − m(β0
n(ε)) − θ0

n − ε�r(p0
n))

σ2
.

In the sequel we consider the case that m(A, W | β) = β�m1(A, W ) is
linear in β for some specified covariate vector m1(A, W ). In this case we
have d/dβm(A, W | β) = m1(A, W ) so that the score equation PnS(ε) = 0
reduces to:

0 = Pn
{m1 − r(p0

n)} (Y − (β0
n + εn)m1 − θ0

n − ε�n r(p0
n))

σ2
. (24)

Firstly, we note that εn exist in closed form:

εn = A−1
n Pn

{m1 − r(p0
n)} (Y − β0�

n m1 − θ0
n)

σ2
,

where the d × d matrix An is given by

An ≡ 1

n

n∑
i=1

1

σ2(Ai, Wi)

{
m1(Ai, Wi) − r(p0

n)(Wi)
}

(m1(Ai, Wi)+ r(p0
n)(Wi))

�.

Let p0
n(εn) be the new density estimator. Recall that the distribution of

(A, W ) under p0
n(εn) is still the same as under p0

n, because p0
n(ε) only updates

the conditional distribution of Y , given A, W . We now wish to investigate
if the first step targeted MLE p1

n ≡ p0
n(εn) already solves the efficient score

equation: PnD(p1
n) = PnD(p0

n(εn)) = 0. We have that PnD(p0
n(εn)) is given

by

Pn
{m1 − r(p0

n(εn))} (Y − (β0
n + εn)m1 − θ0

n − εnr(p
0
n(εn)))

σ2
.
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Because r(p0
n(ε)) = r(p0

n), it follows that PnD(p0(εn)) is given by

Pn
{m1 − r(p0

n)} (Y − (β0
n + εn)m1 − θ0

n − εnr(p
0
n))

σ2
,

but the latter equals zero by the fact that PnS(εn) = 0 (31). This proves that,
if m(A, W | β) is linear in β, then the targeted maximum likelihood estimator
is achieved in the first step of the algorithm and solves the efficient influence
curve estimating equation PnD(p) = 0. If one would also update σ2(A, W )
in the submodel p0

n(ε), then the algorithm would have to be iterated in order
to converge to a targeted MLE solving PnD(p) = 0. For nonlinear models
m(A, W | β) the targeted MLE algorithm will also need to be iterated till
convergence.

6.7 Targeting the treatment mechanism as well.

We will now proceed with this example, but also use for g0(A | W ) a targeted
maximum likelihood estimator. We note that

D(p) = (h(p)(A | W ) − Eg(p)(h(p) | W ))(Y − m(A, W | β(p)) − DCAR(p),

where
DCAR(p) = (h(p)(A | W ) − Eg(p)(h(p) | W ))θ(p)(W )

with θ(p) = Ep(Y | A = 0, W ). DCAR(p) is a valid score for g(p) since it is
a function of A, W with conditional mean zero, given W . Let g(p0

n)(A | W )
be the initial conditional distribution of A, given W , and consider a sub-
model g(p0

n)(ε2) with g(p0
n)(0) = g(p0

n) and score DCAR(p0
n) at ε2 = 0. If A

is binary, we provided a logistic regression model with covariate r(p0
n)(W )

which satisfies these restrictions (21). In general, we can use an exponen-
tial submodel g(p0

n)(ε) = c(ε2, p
0
n) exp(ε2DCAR(p0

n))g(p0
n), where c(·) is the

normalizing constant. Let ε2n = arg max Pn log g(p0
n)(ε), or we can choose a

model of conditional normal densities as we used for Q(p0
n)(Y | A, W ) above.

If A is binary and we use the logistic regression model (21) with additional
covariate r2(p

0
n)(W ), then we have

d

dε2

log g(p0
n)(ε2)

∣∣∣∣∣
ε2=0

(O) = r2(p
0
n)(W )(A − g(p0

n)(1 | W )).

So then one can solve for r2 by setting

r2(W )(A − g(p0
n)(1 | W )) = DCAR(p0

n)(O).
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This yields the solution

r2(p
0
n)(W ) =

h(p0
n)(1, W )θ(p0

n)(W )

1 − g(p0
n)(1 | W )

.

If A is continuous, one could use a normal density model updating the re-
gression Ep0

n
(A | W ) and find the right updating function so that the score

of g(p0
n)(ε) at ε = 0 equals DCAR(p0

n), as we did above. We leave this excer-
cise to the reader. We are now ready to present the proposed targeted MLE
which also targets the treatment mechanism fit.

The algorithm for targeted maximum likelihood estimation of a
semiparametric regression model, including the targeting of the
treatment mechanism. Thus the algorithm for targeted maximum like-
lihood estimation of ψ0 = β(p0) can be described as follows. To be specific,
we consider the case that A is binary and that we use the logistic regres-
sion model with the additional covariate r2 described above. Let θ0

n, β0
n and

g0
n(A | W ) be given. Set k = 0. Let Qk

n(A, W ) = m(A, W | βk
n) + θk

n(W ).
The density pk

n is identified by Qk
n and gk

n, where we treat σ2(A, W ) as given,
and the marginal distribution of W is fixed at the empirical probability dis-
tribution.

Consider

r1(p
k
n)(W ) =

Epk
n

(
d/dβk

nm(A,W |βk
n)

σ2(A,W )
| W

)
Epk

n

(
1

σ2(A,W )
| W

)
and

r2(p
k
n)(W ) =

h(pk
n)(1, W )θ(pk

n)(W )

1 − g(pk
n)(1 | W )

.

Let

εk
1n = arg min

ε1

n∑
i=1

1

σ2(Ai, Wi)

(
Yi − m(Ai, Wi | βk

n + ε1) − θk
n(Wi) − ε�1 r1(p

k
n)(Wi)

)2
(25)

Let mk
n(W ) = log(gk

n(1 | W )/gk
n(0 | W )) so that gk

n(1 | W ) = 1/(1 +
exp(−mk

n(W )). Consider the logistic regression model

gk
n(ε2)(1 | W ) =

1

1 + exp(−mk
n(W ) − ε2r2(pk

n)(W ))
.
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Let εk
2n = arg maxε2 Pn log gk

n(ε2) be the maximum likelihood estimator of this
univariate logistic regression model. In general, εk

2n = arg maxε2 Pn log gk
n(ε2),

where gk
n(ε2) is a submodel so that gk

n(0) = gk
n and it has score DCAR(pk

n) at
ε = 0, where DCAR(pk

n) = (h(pk
n)(A, W )−Epk

n
(h(pk

n) | W ))θ(pk
n)(W ), and the

dependence on pk
n is only through gk

n, Q
k
n. Now, update gk

n and Qk
n as follows:

βk+1
n = βk

n + εk
1n

θk+1
n = θk

n + εk
1nr1(p

k
n)

Qk+1
n (A, W ) = m(A, W | βk+1

n ) + θk+1
n (W )

mk+1
n (W ) = mk

n(W ) + εk
2nr2(p

k
n)(W )

gk+1
n (A | W ) =

1

1 + exp(−mk+1
n (W ))

Set k = k + 1 and iterate this algorithm.

Equivalence of IPTW, DR-IPTW, and targeted maximum likeli-
hood estimators. Recall that the efficient influence curve function is de-
composed as D(g,Q)(O) = DPTW (g,Q)−DCAR(g,Q), where DCAR(g,Q) =
(h(g,Q)(A, W )−Eg(h(g,Q) | W ))θ(Q)(W ) and DPTW (g,Q) = (h(g,Q)(A, W )−
Eg(h(g,Q) | W ))(Y − m(A, W | β(Q)), h(g,Q) is a specified function, and
PTW stands now for ”Probability of Treatment Weighting”. For k converg-
ing to infinity the targeted MLE yields a final estimator gn of the treatment
mechanism and a regression fit Qn(A, W ) = m(A, W | β(Qn)) + θ(Qn)(W )
so that the score equations of the two submodels in ε1 and ε2 are solved at
ε1 = ε2 = 0:

PnD(gn, Qn) = 0 and PnDCAR(gn, Qn) = 0.

This implies also that
PnDPTW (gn, Qn) = 0.

Thus, we can conclude that the three estimators βn,PTW solving PnDPTW (β, gn) =
0, βn,DR−PTW solving PnD(β, gn, Qn) = 0, and the targeted MLE β(Qn) are
identical: here DPTW (β, g) and D(β, g,Q) are the natural representations so
that DPTW (p) = DPTW (β(p), g(p)) and D(p) = D(β(p), g(p), Q(p)). That is,
the targeted MLE β(Qn) equals the PTW and DR-PTW estimator based if
one uses the targeted MLE (gn, Qn) as estimators of the nuisance parameters.
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7 Targeted MLE as loss based estimation.

In the previous sections we defined a targeted MLE in terms of an initial den-
sity estimator and the targeted MLE algorithm applied to this initial density
estimator. In order to provide a general data adaptive likelihood based ap-
proach for construction of targeted MLE’s (also allowing for an integrated
data adaptive approach for searching over the initial densities, just as in sieve
based MLE), we now note that the targeted MLE approach corresponds with
a particular modified log-likelihood loss function. Specifically, let

L(p | P0) ≡ − log p∗(p),

where p∗(p) is defined as the limit for k → ∞ of the targeted MLE applied
to P0 and starting at p:

pk+1 = arg max
p∈{pk(ε):ε}

P0 log p. (26)

Note that L(p | P0) is a loss function for densities p of the data indexed by
unknown nuisance parameters, since the εk

0 ≡ arg maxε P0 log pk(ε) are un-
known. However, estimation of the unknown nuisance parameter corresponds
simply with applying the targeted MLE algorithm to the data starting at p.
The loss function satisfies

p0 = arg min
p∈M

P0L(p | P0),

because p∗(p0) = p0 and p0 = arg minp∈M −P0 log p. Therefore, we can
apply the unified loss based learning approach presented in van der Laan
and Dudoit (2003) based on this new loss function L(p | P0) for a candidate
density p. Succinctly, this loss based learning approach works as follows. Let
Ms ⊂ M be a sieve of M indexed by fine tuning parameters s. Let

psn = Φ̂s(Pn) ≡ arg min
p∈Ms

PnL(p | Pn) = arg max
p∈Ms

Pn log p∗n(p),

where p∗n(p) represents the limit density of the targeted MLE algorithm start-
ing at p applied to the data Pn. Note that this maximization corresponds
with maximizing the log likelihood over solutions of PnD(p∗) = 0, where the
p∗ = p∗(p) is restricted by the constraints on the initial p. We can select s
with likelihood based cross-validation:

sn = Ŝ(Pn) ≡ arg min
s

EBnP 1
n,Bn

L(Φ̂s(P
0
n,Bn

) | P 0
n,Bn

),
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resulting in the targeted ML density estimator

pn ≡ psnn = Φ̂Ŝ(Pn)(Pn)

and targeted ML estimator of ψ0 given by ψn = Ψ(pn).

8 Targeting the fitting of the nuisance pa-

rameters/initial density.

In the above sections we proposed a targeted MLE algorithm which takes
an initial density estimator as starting point and maps it into a solution
of the efficient influence curve equation while increasing the log-likelihood
along the hardest submodel for the parameter of interest. In addition, as in
Section 7, we noted that one can use the log likelihood and log-likelihood
based cross-validation to select among candidate targeted MLE’s indexed
by different starting densities. In this loss based approach based on the loss
function L(p | P0) = − log p∗0(p) a candidate fit of a nuisance parameter is now
scored by how well it is fitting the nuisance parameter as well as how it helps
to increase the likelihood along the hardest submodel during the targeted
MLE algorithm. In this section we propose an approach which scores a
candidate nuisance parameter fit only by how much it helps to increase the
log-likelihood during the targeted MLE algorithm, since the latter is fully
targeted at estimation of the parameter of interest. This provides a new
criteria for selecting among candidate nuisance parameter fits and generates
templates for powerful data adaptive algorithms for estimating the parameter
of interest, as we point out in more detail below.

The resulting proposed algorithms are of the following general form: 1)
we start with a simple initial targeted ML density estimator based on a low
dimensional model (e.g., a singleton), 2) given the initial targeted MLE, we
have a set of candidate nuisance parameter moves in which each move repre-
sents a mapping from the targeted ML density estimator into a new density
estimator increasing the log-likelihood of the data, 3) we select the nuisance
parameter move which results in a maximal value of the log-likelihood at
the targeted MLE starting at the nuisance parameter move minus the log-
likelihood at the nuisance parameter move itself, 4) we iterate this algorithm
till convergence, and 5) certain constraints on the set of nuisance parameter
moves will be selected with likelihood based cross-validation.
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Formally, the algorithm can be described as follows. Given a p ∈ M,
we define Mnuis,s(p) as a collection of parametric nuisance submodels of M
through p indexed by an index s ranging over an index set. Specifically, let
Mnuis,s(p) = {{p(δ | h) : δ} : h ∈ Hs} be a set of paths {p(δ | h) : δ} with pa-
rameter δ through p at δ = 0 and score h ∈ Tnuis(p) at δ = 0, where h ranges
over a set of scores Hs ⊂ Tnuis(p) in the nuisance tangent space Tnuis(p) at p
of M. Thus, each path {p(δ | h) : δ} represents a parametric model in which

the nuisance parameter fit can be improved satisfying d
dδ

Ψ(p(δ | h))
∣∣∣
δ=0

= 0.

The proposed algorithm can now be formulated as follows.

Initial targeted MLE: For each s, start with an initial targeted MLE den-
sity p0

ns solving PnD(p0
ns) = 0.

Compute MLE’s among all candidate nuisance moves increasing the
log-likelihood. Let pnsh ≡ arg maxp∈{p0

ns(δ|h):δ} Pn log p, h ∈ Hs, for all
s.

Select best nuisance parameter move with respect to the parameter of interest:
For each s, let

hns ≡ arg max
h∈Hs

Pn log
p∗n(pnsh)

pnsh

,

where p∗n(p) denotes the targeted MLE starting at p.

Compute next targeted MLE: For each s, let p1
ns ≡ p∗n(pnhns) be the

targeted MLE starting at pnhns .

Iterate until convergence: Iterate this process mapping a targeted MLE
pk

ns into a new targeted MLE pk+1
ns , k = 0, 1, . . ., for each s. Note that,

for each s, the likelihood is increasing in k. Denote the resulting limit
density estimator with pns, for each s.

Likelihood based cross-validation to select s: Select among the candi-
date density estimators pns with likelihood based cross-validation, re-
sulting in the targeted MLE pn ≡ pnsn , where sn is the index minimizing
the cross-validated log-likelihood of the candidate estimators pns.

This algorithm provides for each s a sequence of solutions pk
ns of the

efficient influence curve estimating equation PnD(pk
ns) = 0, k = 1, . . ., where

the log-likelihood of the data increases in k. At step k of the algorithm
it searches among candidate nuisance parameter fluctuations through pk

ns
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(i.e., MLE’s of pk
n(δ | h) in δ along directions h), each of them increasing

the overall log-likelihood relative to the current density estimator pk
ns, and

it selects the one which results in a maximal increase of the log-likelihood
along the hardest submodel through the improved fit with score being the
efficient influence curve with respect to the parameter of interest.

The main deviation of this algorithm relative to the loss based estimation
approach in Section 7 is that the criteria used to select among candidate im-
proved nuisance parameter fits (say) ph is given by h → Pn log p∗n(ph)

ph
instead

of h → Pn log p∗n(ph). That is, this new criteria rewards improved nuisance
parameter fits which yield a steep learning curve for the targeted MLE algo-
rithm, but, on the other hand, an improved fit of a nuisance parameter which
has no effect on the targeted MLE algorithm results in no award at all. In
particular, this implies that only improved fits for nuisance parameters the
efficient influence curve depends on can be selected, and among them, one
selects the one which provides the steepest learning curve for the targeted
MLE algorithm. As a consequence, this new criteria will select nuisance pa-
rameter fits directly affecting the canonical gradient (and specifically, moving
the empirical mean of the canonical gradient away from 0), which itself is
already a great property.

As an example, consider estimation of a parameter Ψ(FX) of the full
data distribution FX based on a censored data structure O = Φ(C, X)
of X ∼ FX under the assumption of CAR on the conditional distribu-
tion of C, given X. Represent a candidate density p of O as p = g ∗ Q,
where g represents the censoring mechanism and Q represents the factor
indexed by the distribution of the full data. The efficient influence curve
of the full data parameter of interest depends, in particular, on the cen-
soring mechanism, while the parameter of interest is not a function of the
censoring mechanism. Consider a hardest submodel only updating Q and
let Q∗(g,Q) represent the targeted MLE of Q starting at (g,Q). The log-
likelihood log p consists of a sum of a log-likelihood of the censoring mech-
anism log g and a log likelihood indexed by the distribution of the full data
log Q. Consider two candidate densities p1 = g1Q and p2 = g2Q. If one uses
the targeted log-likelihood as criteria to select among p1 and p2 (and thus
among the two censoring fits), we would calculate Pn log p∗(p1)− log p∗(p2) =
Pn log g1/g2 + Pn log Q∗(g1, Q) − Pn log Q∗(g2, Q), and if it is larger than 0,
then we would select p1. As a consequence, p1 = g1Q affects the targeted
log-likelihood in a direct manner through the censoring part of the log like-
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lihood Pn log g1, and indirectly through an improved fit of the score/efficient
influence curve of the hardest submodel the targeted MLE algorithm is based
upon. However, an improved fit of the censoring mechanism itself is not nec-
essarily of interest since the parameter of interest is only a function of the full
data factor Q of the density of the data. On the other hand, in the above al-
gorithm we score p1 with Pn log p∗(p1)/p1 = Pn log Q∗(g1, Q)/Q and we score
p2 with Pn log p∗(p2)/p2 = Pn log Q∗(g2, Q)/Q, so that we would select the
pj with Pn log Q∗(gj, Q) = maxl Pn log Q∗(gl, Q). In this manner one selects
nuisance parameter fits gj which give maximal log likelihood Pn log Q∗(gj, Q),
which makes sense since the corresponding targeted MLE will be defined as
Ψ(Q∗(gj, Q)).

As another example, consider estimation of E(Y | A, W ) − E(Y | A =
0, W ) = m(A, W | β) according to a model m(· | β) based on i.i.d. sampling
(W, A, Y ). The efficient influence curve is unknown up to the parameter
of interest β(p), and the variation independent nuisance parameters θ(p) =
Ep(Y | A = 0, W ) and g(p)(A | W ). In Section 6 we presented the targeted
MLE p∗n(p) of β based on a normal regression model taking as starting density
p. Nuisance parameter moves represent now proposed MLE updates of a
current fit of θ(pk) and g(pk). Such moves could, for example, be represented
by adding or substituting variables to fit these nuisance parameters. These
moves could be restricted by a constraint s constraining the size of the models
for θ and g, the choice of variables, the Euclidan norm of the coefficient vector,
among others. The proposed algorithm would now score these MLE updates
pk(δ) of the nuisance parameters θ(pk) and g(pk) by evaluating the increase
of the targeted log-likelihood Pn log p∗n(pk(δ))/pk(δ), and selecting the update
pk(δ) which maximizes this increase of the log-likelihood during the targeted
MLE algorithm. As a consequence, our algorithms above would aim to select
variables in the treatment mechanism and E(Y | A = 0, W ) which yield a
maximal change in the parameter of interest, as measured by the increase
of the targeted log-likelihood, while always mapping into a new improved
solution of the efficient influence curve equation. Again, this means that the
nuisance parameter fits are selected to be increase the likelihood and be very
relevant and important for fitting the parameter of interest.

An interesting variation of this class of algorithms is obtained by replacing
the targeted MLE step by an alternative maximization w.r.t. to the parame-
ter of interest value only, assuming an appropriate way of parameterizing the
density estimator in terms of nuisance terms and a term directly affecting
the parameter of interest. We would still recommend to run the targeted
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MLE algorithm at the very end to guarantee that one ends up with a density
estimator solving the efficient influence curve estimating equation.

9 The bias correction the targeted maximum

likelihood algorithm achieves at each step.

The purpose of this section is to provide an understanding of the bias correc-
tion the targeted MLE algorithm provides relative to the bias of the initial
density estimator p0

n.

9.1 The first step bias correction in the targeted MLE
algorithm.

Consider a collection of candidate density estimators pnh ≡ Φh(Pn) of p0

indexed by an index h, where h corresponds with the bias of pnh with respect
to p0: e.g. h is the bandwidth of a kernel density estimator pnh or h indexes
a model choice and pnh is the corresponding maximum likelihood estimator.
Let ph ≡ Φh(P0) represent the asymptotic target of these candidate density
estimators for fixed index h. Let p1

nh = pnh(εn) ≈ (1 + εnD(pnh))pnh be
the first step targeted maximum likelihood density estimator, and let p1

h ≡
ph(ε0) ≈ (1 + ε0D(ph))ph denote its asymptotic target with ε0 being the
asymptotic limit of εn for fixed h as defined below. In this subsection we are
concerned with comparing, for each fixed h, the asymptotic bias Ψ(ph)−Ψ(p0)
of the substitution estimator Ψ(pnh) relative to the asymptotic bias Ψ(p1

h)−
Ψ(p0) of the first step targeted MLE Ψ(p1

nh). The theorem below shows that
{Ψ(p1

h)−Ψ(p0)}/{Ψ(ph)−Ψ(p0)} will generally converge to zero at a certain
rate if h converges to zero: in the special case that the model is convex and
the parameter Ψ is linear the result is particular strong. In this theorem we
suppress the dependence on h and thus denote ph with p and p1

h = p(ε0),
but the remainders are studied in the context of p approximating p0. For
simpicity, we present the result for univariate parameters Ψ(p) : M → IR,
but it can be easily generalized to Euclidean valued parameters.

In order to establish a result we first prove the following expression for
the relative asymptotic bias of the first step targeted MLE relative to the
asymptotic bias of the initial estimator.
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Lemma 1 Let Ψ : M → IR be a pathwise differentiable parameter at any
p ∈ M, and let D(p) be the canonical gradient of this pathwise derivative
at p. Let p0, p be given. Let p(ε) = (1 + εD(p))p + o(ε) ∈ M be a smooth
submodel through p with score D(p) and information EpD(p)2 at ε = 0. Let

ε0 = ε(p0 | p) ≡ arg max
ε

EP0 log p(ε).

We assume that ε0 solves P0

d
dε

p(ε)

p(ε)
= 0.

We note
d

dε
Ψ(p(ε))

∣∣∣∣∣
ε=0

= PD(p)2.

Define the following remainders:

R1(ε0, p) ≡ Ψ(p(ε0)) − Ψ(p) − PD(p)2ε0

R2(p, p0) ≡ Ψ(p0) − Ψ(p) − P0D(p)

R3(p, p0) ≡ ε(p0 | p) −
{
P0D(p0)

2
}−1

P0D(p)

We have

Ψ(p(ε0)) − Ψ(p0)

Ψ(p) − Ψ(p0)
= R(p(ε0), p, p0)

≡ PD(p)2 − P0D(p0)
2

PD(p)2
− R2(p, p0) + PD(p)2R3(p, p0) + R1(ε0, p)

Ψ(p) − Ψ(p0)
.

Proof: We have

Ψ(p(ε0)) − Ψ(p0)

Ψ(p) − Ψ(p0)
=

Ψ(p(ε0)) − Ψ(p)

Ψ(p) − Ψ(p0)
+ 1

=
ε0PD(p)2 + R1(ε0, p)

Ψ(p) − Ψ(p0)
+ 1

=
ε0PD(p)2

Ψ(p) − Ψ(p0)
+ 1 +

R1(ε0, p)

Ψ(p) − Ψ(p0)

=

P0D(p)
P0D(p0)2

PD(p)2

Ψ(p) − Ψ(p0)
+ 1 +

R3(p, p0)PD(p)2

Ψ(p) − Ψ(p0)
+

R1(ε0, p)

Ψ(p) − Ψ(p0)
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Let c0 ≡ PD(p)2/P0D(p0)
2. Note

c0
P0D(p)

Ψ(p) − Ψ(p0)
= c0

Ψ(p0) − Ψ(p) − R2(p, p0)

Ψ(p) − Ψ(p0)

= −c0 − R2(p, p0)

Ψ(p) − Ψ(p0)

= −1 + (1 − c0) − R2(p, p0)

Ψ(p) − Ψ(p0)
.

Thus,

Ψ(p(ε0)) − Ψ(p0)

Ψ(p) − Ψ(p0)
= (1 − c0) − R2(p, p0)

Ψ(p) − Ψ(p0)
+

R3(p, p0)PD(p)2

Ψ(p) − Ψ(p0)
+

R1(ε0, p)

Ψ(p) − Ψ(p0)

=
PD(p)2 − P0D(p0)

2

PD(p)2
− R2(p, p0) + PD(p)2R3(p, p0) + R1(ε0, p)

Ψ(p) − Ψ(p0)

= R(p(ε0), p, p0).�

This theorem can now be applied to p = ph, and p1
h = ph(ε0) with h =

h(n) be a sequence converging to zero representing the asymptotic bias of
the initial density estimators pnh. One would now need to establish that
R(ph(n)(ε0), ph(n), p0) = O(r(n)) for some sequence r(n) converging to zero.
Such a result would then establish that the first step targeted MLE has a
smaller asymptotic bias than the original estimator by an order of magnitude.
We will now formalize this approach by carefully investigating the remainders
R1, R2 and R3.

Understanding the relative bias correction term: The first and sec-
ond remainder terms R1 and R2 will typically involve second order differences
in p − p0 because of pathwise differentiability of Ψ at p and p0, respectively,
and are therefore easy to understand/express in terms of p − p0 and ε0. We
will now carefully derive an expression for R3 which will allow us to establish
the theorem. Define

U(ε, p) = P0

d
dε

p(ε)

p(ε)

as the expectation under P0 of the score at ε of p(ε). For example, if p(ε) =
(1 + εD(p))p, then

U(ε, p) = P0
D(p)

1 + εD(p)
.
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It is assumed that d
dε

U(ε, p0) at ε = 0 equals −P0D(p0)
2. We have U(0, p0) =

0 and U(ε0, p)=0. Thus we can start with the identity

U(ε0, p0) − U(0, p0) = −{U(ε0, p) − U(ε0, p0)} .

By continuous differentiability of ε → U(ε, p0) at ε = 0 with invertible deriva-
tive, it follows that

ε0 = − d

dε
U(ε, p0)

∣∣∣∣∣
−1

ε=0

{U(ε0, p) − U(ε0, p0)} + R31(p, p0, ε0),

where R31 = o(| ε0 |). By assumption, we have d
dε

U(ε, p0)
∣∣∣
ε=0

= −P0D(p0)
2.

So

ε0 =
1

P0D(p0)2
{U(ε0, p) − U(ε0, p0)} + R31(p, p0, ε0)

=
1

P0D(p0)2
{U(0, p) − U(0, p0)} + R32(p, p0, ε0) + R31(p, p0, ε0)

=
1

P0D(p0)2
P0D(p) + R32(p, p0, ε0) + R31(p, p0, ε0),

where

R32 ≡ 1

P0D(p0)2
{U(ε0, p) − U(ε0, p0) − U(0, p) + U(0, p0)} .

Now, note that R3 = R31/P0D(p0)
2 +R32 and that typically R31, R32 involve

terms with ε0 squared and ε0 times p − p0 .
Suppose now that p = p(n) is a sequence approximating p0 for n →

∞. Assume that for this sequence we have R31(p, p0, ε0) = o(| ε0 |) and
R32(p, p0, ε0) = o(| ε0 |). Then it follows that ε0 = O(| P0D(p) |). Define
d(p, p0) ≡| P0D(p) |. Then it follows that ε0 = O(d(p, p0)).

Now, assume that for the sequence p approximating p0, and using that
ε0 = O(d(p, p0)), there exist a polynomial function r3(x) = xa3 for some a3 >
1 so that R31(p, p0, ε0) = O(r3(d(p, p0))) and R32(p, p0, ε0) = O(r3(d(p, p0))).
As a consequence, this shows that R3(p, p0) = O(r3(d(p, p0))). Assume that,
if ε0 = O(d(p, p0)), then there exists a polynomial function r1(x) = xa1 for
some a1 > 1 so that R1(ε0, p) = O(r1(d(p, p0))). One might even expect that
R1(ε, p) = O(ε2) so that this might hold for a1 = 2 in many applications.
Assume that there exists a polynomial function r2(x) = xa2 for some a2 > 1
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so that R2(p, p0) = O(r2(d(p, p0))). Again, this is reasonable condition since
R2(p, p0) is the second order term in Ψ(p0) − Ψ(p) = P0D(p) + R2(p, p0),
which should thus be of smaller order than the first order approximation
P0D(p).

Let a ≡ min(a1, a2, a3). Assume that P0D(p)/{Ψ(p0) − Ψ(p)} = O(1).
Then an application of the Lemma teaches us that

Ψ(p(ε0)) − Ψ(p0)

Ψ(p) − Ψ(p0)
= O(| PD(p)2 − P0D(p0)

2 |) + O(d(p, p0)
a−1).

This proves the following Theorem.

Theorem 2 Let Ψ : M → IR be a pathwise differentiable parameter at any
p ∈ M, and let D(p) be the canonical gradient of this pathwise derivative at
p. Let p0 be given and let p = p(n) be sequence of densities in M (possibly
approximating p0). We will suppress the dependence on n of all quantities.
Let p(ε) = (1 + εD(p))p + o(ε) ∈ M be a smooth submodel through p with
score D(p) and information EpD(p)2 at ε = 0. Let

ε0 = ε(p0 | p) ≡ arg max
ε

EP0 log p(ε).

We assume that ε0 solves P0

d
dε

p(ε)

p(ε)
= 0. We refer to the definitions of

R1, R2, R3 in Lemma 1.
Define

U(ε, p) = P0

d
dε

p(ε)

p(ε)
.

It is assumed that d
dε

U(ε, p0) at ε = 0 equals −P0D(p0)
2, U(0, p0) = 0 and

U(ε0, p)=0. Define

R31(p, p0, ε0) ≡ U(ε, p0) − U(0, p0) − d

dε
U(ε, p0)

∣∣∣∣∣
ε=0

ε0

R32(p, p0, ε0) ≡ 1

P0D(p0)2
{U(ε0, p) − U(ε0, p0) − U(0, p) + U(0, p0)} .

(In relation to Lemma 1, we have R3 = R31/P0D(p0)
2 + R32.) Suppose now

that for the sequence p = p(n) approximating p0 we have R31(p, p0, ε0) = o(|
ε0 |) and R32(p, p0, ε0) = o(| ε0 |). Then ε0 = O(| P0D(p) |).

Let d(p, p0) ≡| P0D(p) | so that ε0 = O(d(p, p0)).
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Assume that, if ε0 = O(d(p, p0)), then there exist a polynomial func-
tion r3(x) = xa3 for some a3 > 1 so that R31(p, p0, ε0) = O(r3(d(p, p0))) and
R32(p, p0, ε0) = O(r3(d(p, p0)). Then, in relation to the Lemma 1, R3(p, p0, ε0) =
O(r3(d(p, p0))).

Assume that, if ε0 = O(d(p, p0)), then there exists a polynomial function
r1(x) = xa1 for some a1 > 1 so that R1(ε0, p) = O(r1(d(p, p0))). Assume
that there exists a polynomial function r2(x) = xa2 for some a2 > 1 so that
R2(p, p0) = O(r2(d(p, p0))).

Let a ≡ min(a1, a2, a3). Assume that P0D(p)/{Ψ(p0) − Ψ(p)} = O(1).
Then

Ψ(p(ε0)) − Ψ(p0)

Ψ(p) − Ψ(p0)
= O(| PD(p)2 − P0D(p0)

2 |) + O(d(p, p0)
a−1).

9.2 The asymptotic bias of the k-th Step targeted MLE.

Iterative application of this theorem provides us also with a result for the
bias of the k-th step targeted MLE.

Result 2 We have

Ψ(p2) − Ψ(p0)

Ψ(p) − Ψ(p0)
=

Ψ(p2) − Ψ(p0)

Ψ(p1) − Ψ(p0)

Ψ(p1) − Ψ(p0)

Ψ(p) − Ψ(p0)
≡ R(p2, p1, p0)R(p1, p, p0).

In general, we obtain:

Ψ(pk) − Ψ(p0)

Ψ(p) − Ψ(p0)
=

k∏
j=1

R(pj, pj−1, p0),

where p0 ≡ p.

It should be observed that, for a sequence p = p(n) approximating p0,
R(pj, pj−1, p0) for j ≥ 2 might not converge to zero for n → ∞ anymore
because for j large enough, the denominator Ψ(pj)−Ψ(p0) in R(pj, pj−1, p0)
might be of smaller order than the second order remainders R1, R2, R3 in the
numerator of R(pj, pj−1, p0). Because of this observation we expect that in
many examples (with nonlinear parameter and/or nonconvex model) the rate
of convergence of the second order terms Rl, R2, R3 at the initial p will typi-
cally dominate the rate of convergence of Ψ(pj)−Ψ(p0) for j = 1, 2, . . .. That
is, the main bias reduction seems to occur at the first step of the targeted
MLE algorithm.
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9.3 Bias correction term for linear parameter in con-
vex model.

We will apply Lemma 1. Let ph denote the limit of a density estimator based
on a sample of random variables O1, . . . , On from p0 ∈ M with M a convex
model. Let Ψ(p) be linear in p, and let ph(ε) = (1 + εD(p))ph ∈ M for a set
of ε values including 0. Thus for each such ε we have

Ψ(ph(ε))−Ψ(ph)
ε

=
∫

D(ph)
2ph(o)dμ(o),

which shows that R1(ε, p) = 0 for all p and allowed ε values. In addition, by
the identity for convex models and linear parameters (van der Laan (1998,
1995a)) we also have

P0D(ph) =
∫

D(ph)
p0 − ph

ph

phdμ = Ψ(p0) − Ψ(ph),

under the assumption that p0/ph < ∞, which proves that R2(p, p0) = 0 for
all p, p0 with p0/p < ∞.

It remains to establish an explicit expression or bound on R3(ph, p0). We
have U(ε, p) = P0D(p)/(1 + εD(p)) with U(ε0, p) = 0 = U(0, p0), and it is
assumed that ε0 is such that p(ε0) ∈ M. Thus

U(ε0, p) − U(0, p) = −{U(0, p) − U(0, p0)} = −P0D(p).

By the continuous differentiability of ε → U(ε, p) at 0, it follows that

U(ε0, p) − U(0, p) = −ε0P0
D(p)2

1 + ε1D(p)

for some ε1 ∈ (0, ε0). Thus

ε0 =

{
P0

D(p)2

1 + ε1D(p)

}−1

P0D(p).

Thus,
ε0 = O(| P0D(p) |) = O(| Ψ(p) − Ψ(p0) |).

Define now g(ε1) ≡
{
P0

D(p)2

1+ε1D(p)

}−1
and note that g(0) = 1/P0D(p0)

2. Thus

ε0 = g(ε1)P0D(p) =
P0D(p)

P0D(p0)2
+ (g(ε1) − g(0))P0D(p).
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Thus,

R3(p, p0) = (g(ε1) − g(0))P0D(p)

= O(| ε0 |)P0D(p)

= O(| P0D(p) |2)
= O(| Ψ(p) − Ψ(p0) |2).

Thus, we have now proved that

Ψ(ph(ε0)) − Ψ(p0)

Ψ(ph) − Ψ(p0)
=

PhD(ph)
2 − P0D(p0)

2

PhD(ph)2
− PhD(ph)

2O(| Ψ(ph) − Ψ(p0) |).

Finally, we note that

PD(p)2−P0D(p0)
2 = Ψ(p)(1−Ψ(p))−Ψ(p0)(1−Ψ(p0)) = O(| Ψ(p)−Ψ(p0) |).

Application of Lemma 1 now yields the following result.

Result 3 Let ph denote the limit of a density estimator based on a sample
of random variables O1, . . . , On from p0 satisfying that p0/ph is uniformly
bounded in O on a support of p0 for each h. Let M be convex and let Ψ :
M → IR be linear. Let D(p) be a gradient of Ψ at p. Let ph(ε) = (1 +
εD(p))ph ∈ M for ε in an interval I including 0. Let ε0 be defined as the
solution of P0D(ph)/(1 + εD(ph)) = 0 and be such that ph(ε0) ∈ M (i.e.,
ε0 ∈ I). We have

Ψ(ph(ε0)) − Ψ(p0)

Ψ(ph) − Ψ(p0)
= O(| Ψ(ph) − Ψ(p0) |).

This result can be generalized to other parameterizations p(ε) = (1 +
εD(p))p + o(ε). It shows that in convex models and for linear parameters Ψ
the targeted MLE algorithm applied to an arbitrary initial p and Pn replaced
by the true P0 always converges to ψ0. In other words, in the case of a convex
model and linear parameter, the targeted MLE algorithm can be viewed as a
very fast algorithm mapping an arbitrarily biased initial p (in particular, Ψ(p)
far away from ψ0) into a density p∗ with Ψ(p∗) = Ψ(p0). In fact, by carrying
out the infinite sample versions (replace Pn by P0) of our examples in which
we showed that the one-step targeted MLE solved the efficient influence curve
equation PnS(p) = 0, it follows that for many choices of hardest submodels
{p(ε) : ε} the algorithm converges in the first step.
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9.4 Targeted MLE algorithm converges to solution of
efficient influence curve equation.

Analogous to result 1 one can show that if the targeted MLE algorithm
with Pn replaced by P0 converges, then it will converge to a solution of the
equation P0D(p) = 0.

Result 4 Let P0 be given. Assume that

lim
ε→0

lim sup
k→∞

| P0

d
dε

pk(ε)

pk(ε)
− P0

pk′(0)

pk(0)
|→ 0, (27)

that for each k there exist a matrix Ak so that Ak
pk′(0)
pk(0)

= D(pk) with lim supk→∞ ‖
Ak ‖< ∞, where ‖ · ‖ denotes a matrix norm. If ε(P0 | pk) solves P0

d
dε

pk(ε)

pk(ε)
=

0 for all k, and ε(P0 | pk) → 0 for k → ∞ then we have

P0D(pk) → 0 for k → ∞.

In convex models and linear parameters we have that, if p0/p
k < ∞,

then P0D(pk) = Ψ(p0) − Ψ(pk), so that in this case the convergence of the
algorithm P0D(pk) → 0 implies Ψ(pk) → Ψ(p0).

For example, this convergence of the targeted MLE algorithm at P0 to
a solution P0D(p) = 0, for an arbitrary initial starting value p ∈ M, for
linear parameters in convex models, can now be applied to the targeted MLE
algorithm of a full data parameter of a distribution of the full data structure
X based on censored data O = Φ(C, X) in the case that the conditional
distribution of C, given X, is known.

9.5 Example: Marginal causal effect in nonparametric
model.

We revisit this example to illustrate these convergence results of the targeted
MLE algorithm at P0 for arbitrary starting density p0. In the case that
g0(A | W ) is known, then the efficient influence curve at p ∈ M is still given

by D(p) = (Y −Q(p)(A,W ))
g0(A|W )

{I(A = 1)− I(A = 0)}− (Q(p)(1, W )−Q(p)(0, W )).

We have that D(p) = DIPTW (p) − DCAR(p), where DIPTW (p) = Y/g0(A |
W )(I(A = 1) − I(A = 0)). Indeed, we have P0D(p) = Ψ(Q(p0)) − Ψ(Q(p))
so that solving the equation P0D(p) = 0 fully identifies ψ0. That is, the
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targeted MLE algorithm at P0 will for an arbitrary starting density p0 still
converges to ψ0 in the sense that Ψ(pk) − Ψ(p0) → 0 for k → ∞.

Consider now the model in which g0 is unknown. Suppose that we start
the algorithm with a p0 for which g(p0) is misspecified: i.e., g(p0) �= g0.
In addition, assume that our hardest submodels p(ε) have score D(p) at
ε = 0 and only fluctuate the conditional distribution of Y , given A, W , and
marginal distribution of W . Since g(p) is now not updated, the algorithm
will converge to a solution P0D(g(p0), Q) = 0. One can show that

P0D(g(p0), Q) = Ψ(Q) − Ψ(Q0) + E0(Q − Q0)(1, W )
g(p0) − g0

g(p0)
(1 | W )

+E0(Q − Q0)(0, W )
g0 − g(p0)

1 − g(p0)
(1 | W ).

Thus solving the equation P0D(g(p0), Q) = 0 in Q does not provide a guar-
antee that Ψ(Q) = ψ0, though it is certainly a possible solution. It is possible
to prove a result that if g0

m converges for m → ∞ at a certain rate to the
the true g0, then the limits or k-step versions of the targeted MLE algorithm
with initial (g0

m, Q0
m) will give a ψ0m converging much faster to ψ0 than the

original Ψ(Q0
m) converges to ψ0, but where the gain in rate will be bounded

from above by the rate at which second order term involving g0
m − g0 and

Q0
m − Q0 will converge to zero.

Consider now the targeted MLE algorithm in which the hardest sub-
model p(ε) fluctuates both factors Q(p) and g(p) of p with scores D(p) =

DIPTW (p) − DCAR(p) for Q(p) and DCAR(p) = Q(p)(A,W )
g(p)(A|W )

(I(A = 1) − I(A =

0)) − (Q(p)(1, W ) − Q(p)(0, W )) for g(p) at ε = 0. Again, consider the
targeted MLE algorithm at P0 with starting density p0. Under minor con-
ditions the algorithm will converge to a solution of P0D(g,Q) = 0 and
P0DCAR(g,Q) = 0, and thus also of P0DIPTW (g,Q) = 0. In addition, in
this case g will be closer to g0 than g(p0) since the algorithm involves at
each step k maximization of the log-likelihood g → P0 log g along submodels
through the current g(pk).
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10 Application of targeted maximum likeli-

hood estimation in unified loss based learn-

ing.

In van der Laan and Dudoit (2003), van der Laan et al. (2006), van der Vaart
et al. (2006), van der Laan and Rubin (2005)) we have developed the theo-
retical underpinnings of a unified approach to statistical/machine learning,
termed targeted empirical learning, which generalizes existing methods such
as maximum likelihood estimation, estimating function based estimation,
and nonparametric regression/classification. Targeted empirical learning is
based on defining the parameter of interest, modelling this parameter while
leaving nuisance parameters as unspecified as possible, and then developing
targeted, robust, and highly efficient estimators of the parameter of inter-
est. The random variables/experimental units considered in this context are
typically longitudinal data structures observed on a randomly sampled sub-
ject, which may be subject to censoring, missingness and time-dependent
confounding of the treatment variables of interest. The methodology we pro-
pose is applicable to such longitudinal data structure regardless of whether
they arise in randomized trials or observational studies. Targeted empirical
learning is also the approach to follow for testing a null hypothesis about the
parameter of interest since it avoids bias due to modelling assumptions about
nuisance parameters, a common problem with likelihood-based approaches
that aim to estimate the entire distribution of the data instead of targeting
the parameter of interest.

If the parameter of interest is pathwise differentiable, so that it is a
relatively smooth function of the data generating distribution, then such
targeted, robust estimators can be constructed using estimating functions
(which are orthogonal to all the nuisance scores) for the parameter of inter-
est (Robins and Rotnitzky (1992), van der Laan and Robins (2002)), and, as
we now know, with the targeted MLE.

We have developed two general approaches for targeted empirical learn-
ing of general parameters (including non-smooth parameters), not only gen-
eralizing any of the currently available statistical learning methods such as
maximum likelihood estimation, machine learning involving nonparametric
estimation of regression functions or densities, estimating function method-
ology, but also providing a framework that is flexible enough to address
any question of interest about a data generating experiment. These meth-
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ods, namely unified loss-based learning and unified estimating function based
learning, rely on defining the parameter of interest as a minimizer of the ex-
pectation of a loss function or as a minimizer of the norm of the expectation
of a set (possibly infinite dimensional) of estimating functions (van der Laan
and Dudoit (2003), van der Laan and Rubin (2005)), generating candidate
estimators by minimizing the empirical counterparts of these loss-based or
estimating function based criteria, and selecting the estimator that achieves
the best bias-variance trade-off through cross-validation. In this discussion,
we will focus on the loss based estimation approach.

Nuisance Parameter Estimation: Typically, the loss function is indexed
by a possibly high dimensional nuisance parameter. It is often not hard
to construct candidate estimators for this nuisance parameter, ranging from
highly biased estimators with small variance to estimators with small bias
but high variance. The main challenge instead lies in selecting among these
candidate estimators of the nuisance parameters for the purpose of obtaining
a good corresponding estimator of the parameter of interest. One of the
main methodological challenges is thus to develop new methods for data
adaptively selecting among candidate estimators of the nuisance parameter
using a method that is targeted at the parameter of interest itself rather than
at the nuisance parameter. The targeted maximum likelihood estimator is
well suited for this purpose.

Unified loss based learning: We will now describe a short abstract
summary of unified loss based learning and how targeted MLE can be applied
to estimate the nuisance parameters of the loss function. Subsequently, we
provide a concrete illustration. Suppose we observe n i.i.d. observations
O1, . . . , On of a random variable O ∼ p0. Let M be the model for p0 (which
is often nonparametric), and let Θ : M → D be the parameter of interest,
which can be function valued so that D might represent a function space.
Let Θ = {Θ(p) : p ∈ M} ⊂ D denote the parameter space. Let (O, θ, p) →
L(O, θ | p) be a so called loss (real valued) function defined on the cartesian
product of the support of O, Θ, and M, satisfying

θ0 = arg min
θ∈Θ

P0L(θ | p0),

where P0L(θ | p0) =
∫

L(o, θ | p0)dP0(o).
Consider now the parameter Ψ(P )(θ) ≡ PL(θ | p), where p = dP/dμ.

That is, Ψ(P ) denotes the so called risk function at P in machine learning,
and Ψ(P )(θ) denotes the risk at θ. Given θ, we wish to construct a good esti-
mator of Ψ(P )(θ). Clearly, the challenge is how to estimate the unknown loss
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function L(θ | p0) for the purpose of obtaining a good estimate of Ψ(P0)(θ).
We note that Ψ(P )(θ) is a real valued and typically pathwise differentiable
parameter. Let pnθ ≡ Φ̂θ(Pn) be a targeted MLE density estimator of p0,
which is targeted towards the parameter Ψ(P0)(θ). This results now in a
targeted MLE estimator

Ψ̂(Pn)(θ) ≡ Ψ(pnθ)(θ)

of the risk function ψ0(θ). Suppose that the model is nonparametric and the
loss function is chosen so that PnL(θ | p0) is an efficient estimator of Ψ(p0)(θ).
In that case the efficient influence curve of p → Ψ(p)(θ) at p = p0 is Dθ(p0) =
L(θ | p0) − Ψ(p0)(θ). As a consequence, since the targeted MLE pn,θ solves
the efficient influence curve estimating equation, we have PnDθ(pn,θ) = 0
and thus that the targeted MLE of the risk function Ψ(pn,θ)(θ) equals the
empirical mean PnL(θ | pn,θ) of the loss function with the nuisance parameter
estimated with the targeted MLE:

Ψ̂(Pn)(θ) = PnL(θ | pn,θ).

Given this targeted MLE estimator of the risk, we can now proceed in
a standard sieve based manner to construct candidate estimators of θ0. Let
Θs be a subspace of the parameter space Θ indexed by s ranging over some
index set. We can now define s-specific estimators of θ0 given by:

Θ̂s(Pn) ≡ arg min
θ∈Θs

Ψ̂(Pn)(θ),

and, in a nonparametric model this can also be represented as

Θ̂s(Pn) ≡ arg min
θ∈Θs

PnL(θ | pn,θ).

In order to select among these candidate estimators Θ̂s(Pn) of θ0 we
use cross-validation. That is, let Bn ∈ {0, 1}n denote a random split in a
training sample {i : Bn(i) = 0} and validation sample {i : Bn(i) = 1}, and
let P 0

n,Bn
, P 1

n,Bn
denote the corresponding empirical probability distributions,

respectively. We will now estimate the loss function based on the training
sample: L(θ | Φ̂θ(P

0
n,Bn

)), where we recall that pn,θ = Φ̂θ(Pn). Subsequently,
we proceed as usual by evaluating the empirical mean of the loss function
over the validation sample at candidate estimators of θ0 over the training
sample. This gives the following cross-validation selector:

S(Pn) = arg min
s

EBnP 1
n,Bn

L(Θ̂s(P
0
n,Bn

) | Φ̂Θ̂s(P 0
n,Bn

)(P
0
n,Bn

)).
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The final estimator is defined as:

Θ̂(Pn) ≡ Θ̂S(Pn)(Pn).

In order to be specific we will illustrate this general application of targeted
maximum likelihood estimation to the unified loss function based learning by
using a concrete example.

10.1 Data adaptive estimation of the adjusted causal
effect of a binary treatment.

Let X = (W, (Y (a) : a)) ∼ FX0 be the full data random variable of interest
consisting of a set of baseline covariates W , and treatment specific outcomes
Y (a) indexed by a finite set of treatment values. For simplicity, we will
assume that treatment is binary. Let V ⊂ W be a subset of the covariates,
and suppose we wish to estimate the causal effect of treatment adjusted by
V . That is, our parameter of interest is θ0(a, V ) ≡ E0(Y (a) | V ). In addition,
suppose we wish to estimate this parameter without assuming any particular
functional form for θ0(a, V ). That is, our model for FX0 is nonparametric.
A valid loss function for the full data structure for this causal effect is given
by:

L(X, θ) =
∑
a

(Y (a) − θ(a, V ))2h(a, V ),

where h can be an arbitrary function. This loss function satisfies that
θ0 = arg minθ E0L(X, θ). Let Θ denote the parameter space consisting of
all functions θ of a, V . Consider the risk function ψ0(θ) ≡ E0L(X, θ). Given
an estimate of this risk function at each value of θ, one can construct cross-
validated sieve based estimators of θ0 as in van der Laan and Dudoit (2003)
(see above). In the following, ψ0(θ) will represent our parameter of interest
we wish to estimate with a targeted MLE pn,θ based on observing n i.i.d.
copies of the observed (missing) data structure O = (W, A, Y (A)) ∼ p0.
Subsequently, we will show how this estimate is used to construct such cross-
validated sieve based estimators, exactly analogous to the general presenta-
tion already given.

The observed data structure is O = (W, A, Y = Y (A)) ∼ p0, which is thus
a missing data structure on X with missingness variable A. We assume that A
is conditionally independent of X, given W , and that 0 < P (A = 1 | X) < 1
FX0-a.e. Let g0 = g(p0) denote the conditional probability distribution
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of A, given X, which is often called the treatment mechanism. This so
called randomization assumption corresponds with the coarsening at ran-
dom assumption for censored data, which teaches us that the data gen-
erating density factorizes as p0(O) = Q(p0)(Y, A, W )g(p0)(A | W ), where
Q(p0)(Y,A, W ) = p0(Y | A, W )p0(W ) is identified by the full data distri-
bution FX0 through the relation PY (a),W (y, w) = Q(p0)(y, a, w). We make
no further assumption about the observed data distribution p0 so that the
model M is nonparametric.

The double robust IPTW loss function, as used in Wang et al. (2006) and
van der Laan (2006a), is given by:

L(O, θ | g(p0), Q(p0)) ≡ (Y − θ(A, V ))2h(A, V )

g(p0)(A | W )

−EQ(p0)((Y − θ(A, V ))2 | A, W )h(A, V )

g(p0)(A | W )

+
∑
a

EQ(p0)((Y − θ(A, V ))2 | A = a, W )h(a, V ).

This loss function satisfies E0L(O, θ | g,Q) = ψ0(θ) if g = g(p0) and 0 <
g(p0)(a | W ) < 1 a.e., or Q = Q(p0). We have that Dθ(p0)(O) = L(O, θ |
g(p0), Q(p0)) − Ψ(p0)(θ) is the efficient influence curve of p → Ψ(p)(θ) at
p = p0. Because the model is nonparametric, it is also the only influence
curve/gradient.

We can decompose this efficient influence curve D(p) into three subcom-
ponents as follows:

D(p) = D(p) − Ep(D(p) | A, W ) + Ep(D(p) | A, W ) − Ep(D(p) | W )

+Ep(D(p) | W ) − EpD(p),

which corresponds with scores for p(Y | A, W ), p(A|W ) and p(W ), respec-
tively. We have

D1θ(p)(O) ≡ Dθ(p) − Ep(Dθ(p) | A, W )

=
(Y − θ(A, V ))2h(A, V )

g(p0)(A | W )

−EQ(p0)((Y − θ(A, V ))2 | A, W )h(A, V )

g(p0)(A | W )

D2θ(p) ≡ Ep(Dθ(p) | W ) − Ep(Dθ(p))
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=
∑
a

EQ(p)((Y − θ(A, V ))2 | A = a, W )h(a, V ) − Ψ(p)(θ)

D3θ(p)(O) ≡ Ep(Dθ(p) | A, W ) − Ep(Dθ(p) | W )

= 0.

Consider an initial density estimator p0
n of the density p0 of (W, A, Y )

with marginal distribution of W being the empirical probability distribution
of W1, . . . , Wn. We have that D(p0

n) = D1(p
0
n) + D2(p

0
n) and thus that a one-

dimensional p0
n(ε) with score D(p0

n) at ε = 0 corresponds with a zero score
for the treatment mechanism g(p0

n). In addition, we have that PnD2(p
0
n) = 0

(i.e., the empirical distribution of W is a nonparametric maximum likelihood
estimator) so that p0

n(ε) can be selected to only vary p0
n(Y | A, W ) with a

score D1(pn) at ε = 0. We also define D0(p) = (Y −θ(A,V ))2h(A,V )
g(p)(A|W )

so that we

have D1(p) = D0(p)−ρ(p) with ρ(p) = E(D0(p) | A, W ). As one dimensional
submodel we consider the exponential family{

p0
n(ε)(O) = p0

n(W )g(p0
n)(A | W )

exp(ε(D0(p
0
n)(O) − ρ(p0

n)(A, W )))p0
n(Y | A, W )

Ep0
n
(exp(ε(D0(p0

n)(O) − ρ(p0
n)(A, W )) | A, W )

: ε

}
,

(28)
but we could also apply the normal regression model as in Section 6. To
compute the first step targeted MLE we need to estimate ε with maximum
likelihood based on an i.i.d. sample {Oi}n

i=1. Exactly analogous to Section 6,
it is shown that the maximum likelihood estimator εn satisfies PnD(p0

n(εn)) =
0. This proves that the targeted maximum likelihood estimator is achieved
in the first step of the algorithm and solves the efficient influence curve
estimating equation PnD(p) = 0.

We will denote this targeted maximum likelihood density estimator of p0

with pn,θ, and its corresponding mapping from Pn to the density with Φ̂θ(Pn):

i.e. pn,θ = Φ̂θ(Pn). Because the targeted MLE solves the efficient influence
curve estimating equation, we have that the targeted MLE of ψ0(θ) can be
expressed as the empirical mean of the loss function L(θ | pn,θ) with the
nuisance parameters in the loss function estimated with the targeted MLE:

Ψ̂(Pn)(θ) = Ψ(pn,θ)(θ) = PnL(θ | pn,θ).

Let Θs be a subspace of the parameter space Θ indexed by s ranging over
some index set. We can now define s-specific estimators of θ0 given by:

Θ̂s(Pn) ≡ arg min
θ∈Θs

Ψ̂(Pn)(θ) = PnL(θ | Φ̂θ(Pn)).
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In order to select among these candidate estimators Pn → Θ̂s(Pn) of θ0 we
use cross-validation:

S(Pn) = arg min
s

EBnP 1
n,Bn

L
(
Θ̂s(P

0
n,Bn

) | Φ̂Θ̂s(P 0
n,Bn

)(P
0
n,Bn

)
)

.

The final estimator is defined as:

Θ̂(Pn) ≡ Θ̂S(Pn)(Pn).

Finally, we note that the targeted MLE pn,θ, of p0 can also be modified
so that the estimator of g0 is also updated at each step, by using submodels
g(pk

n)(ε) through g(pk
n) at ε = 0 with score (at ε = 0)

Dθ,CAR ≡ −EQ(pk
n))((Y − θ(A, V ))2 | A, W )h(A, V )

g(pk
n)(A | W )

+
∑
a

EQ(pk
n)((Y − θ(A, V ))2 | A = a, W )h(a, V ).

If one would use the latter targeted MLE pn,θ = (gn,θ, Qn,θ) of p0 = (g0, Q0),
then one would have

PnLIPTW (θ | gn,θ) = PnL(θ | (gn,θ, Qn,θ) = Ψ(pn,θ)(θ),

where LIPTW (θ | g) = (Y − θ(a, V ))2h(a, V )/g(A | W ) is the so called
IPTW loss function, and Ψ(pn,θ)(θ) is the likelihood based estimator of risk.
So in this case the three types of estimators (DR-IPTW, IPTW, targeted
likelihood) of the risk of a candidate θ are all identical.

11 Targeted maximum likelihood learning.

Loss based learning provides a general approach for the nonparametric/semiparametric
estimation of nonregular (and often infinite dimensional) parameters, by nat-
urally incorporating loss based cross-validation as a tool to trade off bias and
variance of candidate estimators of the parameter of interest. In the previous
section we showed that the targeted MLE could now be used to obtain a tar-
geted estimate of the risk (mean of loss) function. In this section, we propose
a (direct) targeted MLE approach of such infinite dimensional non-regular
parameters, thereby still using the minus log-likelihood/minus log density as
loss function.
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Let O1, . . . , On be i.i.d. copies of a random variable O ∼ p0 ∈ M. Let
Ψ : M → D be the parameter we wish to estimate, where D can be a function
space. In this case, we do not assume that Ψ is pathwise differentiable, but Ψ
could be an infinite dimensional parameter. Let Ψ ≡ {Ψ(p) : p ∈ M} ⊂ D
be the parameter space. We wish to estimate ψ0 = Ψ(p0).

Example 5 (Nonparametric estimation of adjusted causal effect)
Let O = (W, A, Y ) ∼ p0, W co-variates, A a binary treatment, and Y an
outcome of interest. Let the parameter of interest be the V -adjusted variable
importance Ψ(p)(V ) = Ep(Ep(Y | A = 1, W )−Ep(Y | A = 0, W ) | V ), which
equals the causal effect E(Y (1)−Y (0) | V ) if one assumes the time ordering
W, A, Y , the consistency assumption stating that O = (W, A, Y = Y (A)) is
a missing data structure on X = (W, Y (0), Y (1)), and the randomization
assumption P (A = 1 | X) = P (A = 1 | W ). Suppose that we are not willing
to make any assumptions on the functional form of ψ0(V ) = Ψ(p0)(V ). That
is, our model for p0 is nonparametric.

11.1 Outline of approach.

The approach we propose involves a number of steps. Firstly, one proposes a
parametrization of the parameter space Ψ in terms of subsets I of basis func-
tions and corresponding euclidean vector of coefficients βI = (β(j) : j ∈ I).
It is assumed that each of these I-specific subspaces ΨI defines a pathwise dif-
ferentiable parameter in our model by defining it as the ”projection” of Ψ(p)
onto the I-specific finite dimensional subspace. Secondly, one selects a sieve
Ψs ⊂ Ψ indexed by constraints s ranging over a set of possible constraints on
the subsets I of basis functions, and thereby of the parameter space Ψ. For
each s and each I-specific subspace in Ψs one computes the targeted MLE
density estimator targeted towards the I-specific pathwise differentiable pa-
rameter, and one selects the targeted MLE density estimator with maximal
value of the log likelihood. This now provides a collection of s-specific tar-
geted MLE density estimators. Finally, one selects s with likelihood based
cross-validation. The proposed estimator of ψ0 is the substitution estimator
by plugging in the by likelihood based cross-validation selected targeted MLE
density estimator into the parameter mapping Ψ. Since the targeted MLE’s
are also indexed by initial density estimators which itself might be indexed
by constraints measuring how data adaptive they are, one might also wish to
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select these constraints with likelihood based cross-validation. Therefore, in
our approach outlined in the next subsection we include this option as well.

11.2 Stepwise presentation of targeted maximum like-
lihood learning.

Below, we provide the step by step implementation of this data adaptively
selected targeted MLE of an infinite dimensional parameter.

Parametrization: Consider a parametrization of Ψ in terms of an index
set I and a possibly infinite dimensional vector β:

Ψ = {ψI,β : I, β}.

For example, ψI,β =
∑

j∈I β(j)φj, where {φj : j ∈ J} is a basis for the
function space D in which Ψ is embedded.

I-specific pathwise differentiable parameter: Consider now the pa-
rameter ΨI : M → Ψ defined as

ΨI(p) = inf
ψ∈ΨI

d(ψ, Ψ(p)).

That is, we simply define an I-specific parameter as the projection of the
true Ψ(p) onto the (finite dimensional) sub-space ΨI . We assume that ΨI :
M → ΨI is now a pathwise differentiable parameter.

I-specific targeted MLE(s): Let DI(p) denote the efficient influence
curve/canonical gradient at p. Let p0

nIl, l = 1, . . . , L be a collection of possible
initial density estimators of p0, we will use to define the targeted MLE of ψI0,
where l indicates a measure of how data adaptive (e.g., nonparametric) one
selects these density estimators. Let now p∗nIl = Φ̂Il(Pn) be the targeted
MLE with respect to ψI0 = ΨI(P0) based on the initial density estimator
p0

nIl and a hardest submodel pk
nIl(ε) with score DI(p

k
nIl) at ε = 0 at step k

of the targeted MLE algorithm. Because the starting density can affect the
performance of the targeted MLE we decided to respect the fact that also
this starting density might be indexed by a choice l (for each I), which will
need to be selected with likelihood based cross-validation: see below.

Collection of targeted MLE(s): This provides us with a collection of
candidate targeted MLE density estimators p∗nIl indexed by I and starting
density choices l, and corresponding targeted MLE Ψ̂Il(Pn) = Ψ(p∗nIl) of ψI0.
It remains to select (I, l).
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Sieve on the parameter space: Consider now a sieve Ψs ⊂ Ψ indexed
by vector valued s, where the index set is rich enough so that infs infψ∈Ψs d(ψ0, ψ) =
0 with respect to some metric d. To be specific, given a vector function m
measuring various measures of complexity of a candidate ψI,β, we define

Ψs = {ψI,β : m(I) ≤ s}.

For example, m1(I) =| I | might represent the number of non-zero coeffi-
cients, and m2(I) might represent a maximal complexity of the basis func-
tions φj with j ∈ I.

(s, l)-specific targeted MLE(s): We now define the s-specific targeted
MLE by

p∗nsl = Φ̂s,l(Pn) ≡ arg max
{I:m(I)≤s}

Pn log p∗nIl.

That is, to compute this estimator requires choosing the I-specific targeted
MLE among all I with m(I) ≤ s with the maximal value of the log-likelihood.
In practice, to approximate this maximization problem aggressive algorithms
searching among subsets I might be required such as the DSA algorithm for
variable selection in regression (Sinisi and van der Laan (2004)).

Likelihood based cross-validation to select s, l: We now propose to
select l and s with likelihood based cross-validation. Thus we select s, l data
adaptively with

(sn, ln) ≡ arg min
s,l

EBnP 1
n,Bn

log Φ̂sl(P
0
n,Bn

),

to obtain a cross-validated targeted MLE density estimator p∗n ≡ p∗nsnln , and
corresponding cross-validated targeted MLE

ψn ≡ Ψsn(p∗nsnln).

12 Example: Targeted maximum likelihood

learning of W-adjusted variable importance

We now apply the targeted maximum likelihood learning template as pre-
sented in the previous section to a particular problem.

Let O = (W, A, Y ) ∼ p0 and assume that the parameter of interest is
Ψ(p)(A, W ) = Ep(Y | A, W ) − Ep(Y | A = 0, W ). Suppose that we are
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not willing to make any assumptions on the functional form of ψ0(A, W ) =
Ψ(p0)(A, W ), beyond the known fact that ψ0(0, W ) = 0 for all W .

Let M only assume that the conditional distribution of Y , given A, W , is
normally distributed, where θ(p)(A, W ) = Ep(Y | A, W ) denotes the mean of
this conditional normal distribution, and σ2(p)(A, W ) denotes its variance.
Given a collection of basis functions {φj : j} satisfying φj(0, W ) = 0 for
all W , we define a parametric subspace ΨI = {∑

j∈I β(j)φj : β} of the
parameter space Ψ. Let ψI,β ≡ ∑

j∈I β(j)φj. We now define the pathwise
differentiable parameter ΨI : M → Ψ by letting ΨI(p) denote a ”projection”
of Ψ(p) onto ΨI . The precise definition involves the choice of an estimating
function hI(p)(A, W ) presented below, and defining ΨI(p) =

∑
j∈I β(p)(j)φj

with β(p)(j), j ∈ I identified by the solution in β of

0 = Ep(hI(p)(A, W ) − Ep(hI(p)(A, W ) | W ))(Y − ψI,β(A, W ) − θ(p)(0, W )).

I-specific targeted MLE

Let O = (W, A, Y ) ∼ p0 and consider the semiparametric regression model
MI = {p : Ep(Y | A, W ) − Ep(Y | A = 0, W ) = ψI,β(p)(A, W )} for some
parametrization β → ψI,β(A, W ) satisfying ψI,β(0, W ) = 0 for all β ∈ IRd.
Let βI(p)) = (β(p)(j) : j ∈ I) be the parameter of interest in this semipara-
metric regression model.

The orthogonal complement of the nuisance tangent space of βI is given
by:

T⊥
nuis(p) = {Dh(p) : h} ⊂ L2

0(P ),

where

Dh(p)(O) ≡ (h(A, W )−Ep(h(A, W ) | W ))(Y −ψI(A, W | β(p))−Ep(Y | A = 0, W )).

The orthogonal complement of the nuisance tangent space corresponds with
the set of gradients for βI at p given by:

T⊥
nuis(p)∗ =

{
−c(p)(h)−1Dh(p) : h = (h1, . . . , hd)

}
,

where c(p)(h) = d
dβ

EpDh(p, β)
∣∣∣
β=β(p)

, and Dh now represents a vector func-

tion (Dh1 , . . . , Dhd
). The efficient influence curve is identified by a closed

form index hI(p), which is provided below (29). Let DI(p) = DhI(p)(p) be
this efficient influence curve at p as identified by this index hI(p).
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Let g(p) be the conditional density of A, given W , under p, and let Q(p)
be the conditional distribution of Y , given A, W , under p. We note that
the parameter ΨI(p) is only a function of Q(p), and the density factorizes as
p(O) = pW (W )g(p)(A | W )Q(p)(Y | A, W ). As a consequence the elements
Dh(p) are orthogonal to the tangent spaces of the nuisance parameter g(p)
and the nuisance parameter pW . That is, we can decompose the efficient
score DI(p) of βI at p into three subcomponents as follows:

DI(p) = DI(p) − Ep(DI(p) | A, W ) + Ep(DI(p) | A, W ) − Ep(DI(p) | W )

+Ep(DI(p) | W ) − EpDI(p),

which corresponds with scores for Q(p)(Y | A, W ), g(p)(A|W ) and pW at
p, respectively. However, Ep(DI(p) | A, W ) − Ep(DI(p) | W ) = 0 and
Ep(DI(p) | W ) − E(DI(p)) = 0. Thus the efficient influence curve DI(p)
represents only a score for Q(p)(Y | A, W ), and indeed satisfies Ep(DI(p) |
A, W ) = 0.

Consider an initial density estimator p0
n = (p0

nW , g(p0
n), Q(p0

n)) of (W, A, Y )
with marginal distribution of W being the empirical probability distribution
of W1, . . . , Wn. The above decomposition of the efficient influence curve
DI(p) shows that a submodel p0

n(ε) through p0
n with score DI(p

0
n) at ε = 0

can be selected to only vary Q(p0
n) with a score DI(p

0
n) at ε = 0. Such a

submodel will now be presented.
Let p0

n ∈ MI . Let Q(p0
n) be the conditional normal distribution with

mean Ep0
n
(Y | A, W ) = ψI,β0

n
(A, W ) + Ep0

n
(Y | A = 0, W ) and variance

σ2(A, W ) = σ2(Q0
n)(A, W ). Recall that DI(p

0
n) = (hI(p

0
n)(A, W )−Ep0(hI(p

0
n) |

W ))(Y −ψI,β0
n
(A, W )−Ep0

n
(Y | A = 0, W )). For notational convenience, we

will represent this function as hI(p
0
n)(A, W )(Y − Ep0

n
(Y | A, W )), but now

choosing hI(p
0
n) so that Ep0

n
(hI(p

0
n)(A, W ) | W ) = 0. Consider the paramet-

ric submodel of MI defined as the normal density with conditional variance
σ2(A, W ) and conditional mean ψI,β0

n(ε)(A, W ) + θ0
n(ε). That is,

Q0
n(ε)(Y | A, W ) =

1

σ(A, W )
f0

(
Y − ψI,β0

n(ε)(A, W ) − θ0
n(ε)(W )

σ(A, W )

)
,

where β0
n(0) = β(Q0

n), θ0
n(0) = θ(Q0

n) = EQ0
n
(Y | A = 0, W ), and f0 is

the standard normal density. We note that this is a valid submodel in MI

through Q0
n at ε = 0. Let β(ε) ≡ β(Q0

n) + ε and θ0
n(ε) = θ(Q0) + ε�rI . It

remains to find a function rI(W ) so that the score of Q0
n(ε) at ε = 0 equals

the efficient influence curve DI(p
0
n).
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Derivation of rI. We have that the score S(ε) at ε is given by (note
that f ′

0(x)/f0(x) = 2x/σ2)

S(ε) =
(Y − ψI,β0

n(ε)(A, W ) − θ0
n(ε)(W ))

σ2(A, W )

{
d

dε
ψI,β0

n(ε)(A, W ) − d

dε
θ0

n(ε)(W ))

}

=

{
d

dβ0
n(ε)

ψI,β0
n(ε)(A, W ) − r(W ))

}
(Y − ψI,β0

n(ε)(A, W )) − θ0
n(ε)(W ))

σ2(A, W )
.

Solving for r so that S(0) = DI(p
0) yields the equation

hI(p
0
n)(A, W )(Y − EQ0(Y | A, W )) =

1
σ2(A,W )

{
d

dβ(Q0
n)

ψI,β(Q0
n)(A, W ) − r(W )

}
(Y − EQ0

n
(Y | A, W )).

In order to have that the score equals Dh for a particular h(A, W ) with
Ep0

n
(h(A, W ) | W ) = 0, we need

rI(p
0
n)(W ) =

Ep0
n

(
d/dβ0

nψ
I,β0

n
(A,W )

σ2(A,W )
| W

)

Ep0
n

(
1

σ2(A,W )
| W

) .

This yields the following score for our submodel p0
n(ε) at ε = 0:

S(0) = hI(p
0
n)(A, W )(Y − ψI,β(Q0

n)(A, W )) − θ(Q0
n)(W )),

where

hI(p
0
n)(A, W ) =

1

σ2(A, W )

d

dβ(Q0
n)

ψI,β(Q0
n)(A, W ))

− 1

σ2(A, W )

Ep0
n

(
d

dβ(Q0
n)

ψI,β(Q0
n)(A, W ))/σ2(A, W ) | W

)
Ep0

n
(1/σ2(A, W ) | W )

.(29)

This choice hI(p
0
n) corresponds with the efficient influence curve. So we

succeeded in finding a submodel p0
n(ε) with a score at ε = 0 equal to the

efficient influence curve at p0
n. Thus we are now ready to define the targeted

MLE for βI .
Consider the log-likelihood for p0

n(ε) in ε:

l(ε) ≡ 1

n

n∑
i=1

log f0

(
Yi − ψI,β0

n+ε(Ai, Wi) − (θ0
n(W ) + ε�rI(p

0
n)(W ))

σ(A, W )

)
.
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Let εn be the maximizer, which can thus be computed with standard weighted
least squares regression:

εn = arg min
ε

n∑
i=1

1

σ2(Ai, Wi)

(
Yi − ψI,β0

n+ε(Ai, Wi) − θ0
n(Wi) − ε�rI(p

0
n)(Wi)

)2
(30)

The score equation d/dεl(ε) = PnS(ε) for εn is given by

0 = Pn

{
d

β0
n(ε)

ψI,β0
n(ε) − rI(p

0
n)

}
(Y − ψI,β0

n(ε) − θ0
n − εrI(p

0
n))

σ2
.

In the sequel we consider the case that ψI,β(A, W ) is linear in β for some
specified covariate vector mI(A, W ). In this case we have d/dβψI(A, W |
β) = mI(A, W ) so that the score equation PnS(ε) = 0 reduces to:

0 = Pn
{mI − rI(p

0
n)} (Y − (β0

n + εn)mI − θ0
n − ε�n rI(p

0
n))

σ2
. (31)

Firstly, we note that εn exist in closed form:

εn = A−1
n Pn

{mI − rI(p
0
n)} (Y − β0

nmI − θ0
n

σ2
,

where the d × d matrix An is given by

An ≡ Pn
1

σ2

{
mI − rI(p

0
n)

}
(mI + rI(p

0
n))�.

Let p0
n(εn) be the new density estimator. Recall that the distribution of

(A, W ) under p0
n(εn) is still the same as under p0

n, because p0
n(ε) only updates

the conditional distribution of Y , given A, W . We now wish to investigate
when this first step targeted MLE p1

n ≡ p0
n(εn) already solves the efficient

score equation: PnDI(p
1
n) = PnDI(p

0
n(εn)) = 0. We have that PnDI(p

0
n(εn))

is given by

Pn
{mI − rI(p

0
n(εn))} (Y − (β0

n + εn)mI − θ0
n − ε�n rI(p

0(εn)))

σ2
.

Because rI(p
0
n(ε)) = rI(p

0
n), it follows that PnDI(p

0(εn)) is given by

Pn
{mI − rI(p

0
n)} (Y − (β0

n + εn)mI − θ0
n − εnrI(p

0
n))

σ2
,

79

Hosted by The Berkeley Electronic Press



but the latter equals zero by the fact that PnS(εn) = 0. This proves that,
if ψI,β is linear in β, then the targeted maximum likelihood estimator is
achieved in the first step of the algorithm and solves the efficient influence
curve estimating equation PnDI(p) = 0. If one would also update σ2(A, W ) in
the submodel p0

n(ε), then the algorithm would have to be iterated to converge
to a targeted MLE solving PnDI(p) = 0. For nonlinear models ψI,β the
targeted MLE algorithm will also need to be iterated till convergence.

Collection of targeted MLE(s).

The initial density estimator p0
n is indexed by I because Ep0

n
(Y | A, W ) −

Ep0
n
(Y | A = 0, W ) = ψI,β(p0

n)(A, W )). In addition, it might also be indexed
by different choices of the fit of the treatment mechanism and E(Y |A =
0, W ): for example, both of these nuisance parameters might be fitted with a
machine learning algorithm indexed by various fine tuning constraints mea-
suring how agressive the algorithm searched the space of possible regres-
sions. We will denote these latter choices with l. Therefore, the targeted
MLE of βI is indexed by I and l. For example, to obtain an initial estimator
Ep0

n
(Y | A, W ) with parametric component ψI,β one could use the backfitting

algorithm, which would then be indexed by fine tuning parameters measur-
ing how nonparametric the nonparametric component Ep0

n
(Y | A = 0, W ) is

fitted.
This provides us with a collection of candidate targeted MLE density

estimators p∗nII indexed by I and starting density choices l, and corresponding
targeted MLE Ψ̂Il(Pn) = ΨI(p

∗
nIl) of ψI0. It remains to select (I, l).

Data adaptive targeted MLE for given constraints.

Sieve on the parameter space: Consider now a sieve Ψs ⊂ Ψ indexed by
s. To be specific, given a vector function m measuring various measures of
complexity of a candidate subset of basis functions, we define

Ψs = ∪{I:m(I)≤s}ψI.

For example, m1(I) =| I | might represent the number of non-zero coeffi-
cients, and m2(I) might represent a maximal complexity (e.g., the order) of
the basis functions φj with j ∈ I.
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(s, l)-specific targeted MLE(s): For each choice of l and s, we define
the following subset estimator of basis functions

In(s, l) = I(s, l)(Pn) ≡ arg max
{I:m(I)≤s}

Pn log p∗nIl.

Since the targeted MLE’s only differ in their fit of the regression E(Y |A, W )
this maximization problem corresponds with minimizing the residual sum
of squared errors, possibly weighted by 1/σ2(A, W ) over all (I, l)-specific
regression fits Ep∗

nIl
(Y | A, W ). To compute this estimator In(s, l) requires

choosing the I-specific targeted MLE among all I with m(I) ≤ s with the
maximal value of the log-likelihood, or, in this case, minimal value of RSS.
In practice, to approximate this maximization problem aggressive algorithms
searching among subsets I might be required such as the DSA algorithm for
variable selection in regression (Sinisi and van der Laan (2004)).

We now define the (s, l)-specific targeted MLE density estimator by

p∗nsl ≡ p∗nIn(s,l)l.

Let’s denote the algorithm from the data Pn to this (s, l)-specific targeted
MLE with Φ̂sl(Pn): p∗nsl = Φ̂sl(Pn).

Likelihood based cross-validation to select s, l: We now select l
(indicating the initial density used in the targeted MLE’s) and s (indicat-
ing constraints on the parameter space of the parameter of interest) with
likelihood based cross-validation. Thus we select s, l data adaptively with

(sn, ln) ≡ arg min
s,l

EBnP 1
n,Bn

log Φ̂sl(P
0
n,Bn

).

Because the densities p∗nsl are all normally distributed and only differ in their
regression fit, it follows that (sn, ln) simply indicates the regression estimator
of E(Y | A, W ) among all (s, l)-specific regression fits Ep∗

nsl
(Y | A, W ) with

minimal cross-validated RSS. We now obtain a cross-validated targeted MLE
density estimator

p∗n ≡ p∗nsnln ,

and corresponding cross-validated targeted MLE of ψ0 given by

ψn ≡ Ψ(p∗n).
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13 Discussion.

In this article we assumed a model in terms of densities with respect to a
known dominating measure, and our targeted MLE density estimators are
assumed to be dominated by this dominating measure. This allowed us to
simplify the presentation of the method. However, we also wish to stress that
the presented targeted maximum likelihood estimation methodology can eas-
ily be generalized to targeted maximum likelihood estimation in models in
terms of probability distributions including (say) discrete as well as contin-
uous distributions, just as this is common practice in maximum likelihood
estimation in semiparametric models. The targeted MLE algorithm takes
as input an initial density with respect to a specified dominating measure,
and is based on a hardest submodel in terms of densities with respect to
this same dominating measure. Thus, the targeted MLE algorithm can be
applied to discrete distributions as well as continuous distributions, and as a
consequence, the loss based targeted MLE learning as presented in Section 7
applies to models which are not necessarily dominated by a single dominating
measure.

Given a density estimator we defined a targeted density estimator through
an iterative maximum likelihood algorithm along hardest sub models with a
score equal to the efficient influence curve of the parameter of interest. This
tool allows us to map any candidate density into its targeted version. We
now showed that by using the minus log density as loss function and thereby
use the log-likelihood criteria in combination with the cross-validated log-
likelihood criteria, but restricted to targeted density estimators only, we can
build data adaptive sieve based algorithms for generating a final targeted ML
density estimator and corresponding substitution estimator of the parameter
of interest. We also used the increase of the log-likelihood during the targeted
MLE algorithm as a powerful criteria for evaluating nuisance parameter fits,
thereby providing a road map for a new and general class of targeted MLE
algorithms which also fully target the fitting of the nuisance parameters: see
Section 8. By restricting the log-likelihood criteria and cross-validated log-
likelihood criteria to targeted densities only, targeted maximum likelihood
estimation provides now a purely likelihood based methodology for estima-
tion of any kind of parameter such as pathwise differentiable parameters and
infinite dimensional parameters.

In particular, we showed that targeted maximum likelihood estimation
completely unifies maximum likelihood estimation and estimating function
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based estimation, and results in important improvements in both. Targeted
MLE also deals naturally with the issue of multiple solutions of estimating
equations by using the log-likelihood as the criteria to be maximized. An-
other nice feature of targeted MLE is that it always improves on the initial
density estimator by increasing the log-likelihood fit. As a consequence, when
targeted MLE is applied to estimate a pathwise differentiable parameter of a
full data distribution FX in CAR censored data models, as in (van der Laan
and Robins (2002)), if one applies the targeted MLE to an initial p0

n = g0
nQ

0
n

of p0 = g0Q0, then it provides an estimator which is guaranteed to be more
efficient than the double robust IPCW estimator based on estimating the
nuisance parameters (g0, Q0) with p0

n. So the targeted MLE algorithm pro-
vides a natural way to always improve on any initial double robust IPCW
locally efficient estimator as presented in van der Laan and Robins (2002).
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