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Correspondences between Regression Models
for Complex Binary Outcomes and Those for

Structured Multivariate Survival Analyses

Nicholas P. Jewell

Abstract

Doksum and Gasko [5] described a one-to-one correspondence between regres-
sion models for binary outcomes and those for continuous time survival analyses.
This correspondence has been exploited heavily in the analysis of current status
data (Jewell and van der Laan [11], Shiboski [18]). Here, we explore similar
correspondences for complex survival models and categorical regression models
for polytomous data. We include discussion of competing risks and progressive
multi-state survival random variables.



1 Introduction

Consider a continuous time survival response T that is measured on an individual with a
known p-dimensional set of covariates Z = (Z1, . . . , Zp). A survival regression model focuses
on the relationship between the (conditional) distribution function Fz, of T , given Z = z,
and z. Examples of such models include the Cox model (Cox [3]) and the proportional
odds model (Bennett [2]); in each of these, the model can be made fully parametric if
both the regression relationship and a baseline version of F are parametrically described,
semi-parametric if only one of these is parametrically modeled, or nonparametric if both
are only loosely specified.

At a fixed value t, a binary characteristic is defined by the event T < t which occurs with
probability pt = Pr(T < t). A survival time regression model for T automatically induces
a binary regression model relating pt;z = Pr(T < t|Z = z) to both t and z. Doksum
and Gasko [6] examine this correspondence in detail for several familiar survival models
including those noted above. One simple example is the proportional odds model for which

Fz(t) =
eα(t)+βz

1 + eα(t)+βz
(1)

where α(t) is a non-decreasing function with α(0) = −∞, α(∞) = ∞, and where β is a
p-dimensional vector of regression coefficients. With this model

log
pt;z

1 − pt;z

= α(t) + βz,

a logistic regression model in z with ‘intercept’ α(t). As noted, if F0 is assumed to follow a
parametric model (for example, the log-logistic distribution [15], Chapter 2.2.6), then this
logistic model is also fully parametric (with α(t) = a+ b log t in the log-logistic distribution
case with a and b > 0 suitably chosen).

This correspondence between survival time and binary outcome regression models has
been heavily exploited in the analysis of current status data. Current status observation
refers to a form of incompleteness in that the data consists of independent observations on
the random variable (C,∆ = I(T < C),Z) instead of (T,Z). Here, C can be random or
deterministic, and is usually referred to as the monitoring time; it is typically assumed that
C is independent of T and is uninformative. The variable ∆ indicates the current status
of an individual at time C, namely whether T < C or not. A review of various forms and
examples of current status data is given in Jewell and van der Laan [14] and the references
contained therein.

As follows from the work of Doksum and Gasko [6], a regression model for the (unob-
served) T immediately leads to a binary regression model for the observed binary outcome
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∆ with C included as an additional covariate along with Z. For example, with the propor-
tional odds model for T in (1.1), the model for ∆ is given by the logistic regression

log
pc;z

1 − pc;z
= α(c) + βz, (2)

where pc;z = Pr(∆ = 1|C = c,Z = z), and α(c) is necessarily non-decreasing in c with
α(0) = −∞ and α(∞) = ∞.

There are two primary properties of this correspondence of regression models for current
status data that make it particularly useful. First, for many standard survival models, the
effects of C and Z are additive in the binary regression setting when the appropriate link
function is used. This is illustrated by the proportional odds model when a logistic link is
used for ∆ as shown in (1.2). A similar property holds for the proportional hazards model
with the complimentary log-log link for ∆ (see Jewell and van der Laan [14]). Second,
the parameter β in the binary regression model for the observed ∆ has an immediate
interpretation in the survival regression model for the unobserved T . For example, in the
logistic regression model (1.2), the regression coefficient βk is nothing more than the log

odds ratio of failure by time t, associated with a unit increase in the kth component of Z
(holding other component variables constant), as given by the original proportional odds
model (1.1). Although this assumes no interaction terms in Z, the ideas and interpretations
immediately generalize to more complex models. For more detail on the application of the
proportional odds model in the context of current status data see Rossini and Tsiatis [20].

The purpose of this article is to examine analogous correspondences between regression
models for more complex survival data and their current status counterparts. We pay
specific attention to two settings: (i) competing risks survival models which naturally
lead to unordered polytomous current status outcomes (Section 2), and (ii) progressive
multi-state survival models, corresponding to ordinal categorical current status outcomes
(Section 3). While such correspondences naturally extend to these more complex settings,
we show that the attractive features of additivity in C and Z, and interpretability of
regression coefficients, only can be guaranteed with additional assumptions, at least in
the models considered here. In Section 4, we therefore briefly discuss the advantages (and
disadvantages) of modeling marginal distributions separately using the simpler survival and
binary regression connections for standard current status data.

2
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2 Competing Risks Survival Models and Polytomous

Regression Models

Competing risks survival data arise in situations where, in addition to observations on the
failure time T , there is also information on a categorical variable J which takes on the values
1, . . . ,m, and represents the cause or type of failure at time T . It is standard to assume
that all failures are associated with one and only one value of J . The joint distribution of
the random variable (T, J) is of primary interest. See Crowder [4] for a recent treatment
of the topic.

The cause-specific hazard function for cause J = 1, . . . ,m, (Kalbfleisch and Prentice
[15]) is defined by

λj(t) = lim
h→0

h−1Pr[t ≤ T < t + h, J = j|T ≥ t].

Related to these cause-specific hazards are the sub-distribution functions of primary interest
given by

Fj(t) = Pr(T < t, J = j), j = 1, . . . ,m

with the overall survival function then

S(t) = 1 −
m∑

j=1

Fj(t).

Note that the cause-specific density function

fj(t) = lim
h→0

h−1Pr[t ≤ T < t + h, J = j],

is the derivative of Fj. Finally, these functions are related through

fj(t) = λj(t)F (t)

where F (t) = 1 − S(t) = F1(t) + · · · + Fm(t).

We now introduce the covariate Z into the notation, writing for example

Fj(t; z) = Pr(T < t, J = j|Z = z),

for j = 1, . . . ,m, with
F0(t; z) = Pr(T ≥ t|Z = z) = S(t|z).

Before further discussion of regression models, it will be helpful to introduce an alter-
native description of the joint distribution of (T, J). For each j, let αj be a non-decreasing
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function on [0,∞) for which αj(0) = −∞ and αj(∞) = ∞. Further, assume that these m
functions are commensurate in the sense that the functions

eαj(t)

1 +
∑m

k=1 eαk(t)
(3)

are non-decreasing, for j = 1, . . . ,m. Then

Fj(t) =
eαj(t)

1 +
∑m

k=1 eαk(t)
(4)

define sub-distribution functions for m competing risks. Note that solving (2.2) yields the
inverse relationships

αj(t) = log

[
Fj(t)

S(t)

]
. (5)

for j = 1, . . . ,m. We can thus characterize the joint distribution of (T, J) equally well in
terms of either {α1, . . . , αm} or {F1, . . . , Fm}, with the appropriate constraints on either
set of functions.

We are now in a position to describe a natural regression model for F1, . . . , Fm. For
each j = 1, . . . ,m and each covariate value z we write

Fj(t; z) =
eαj(t)+βjz

1 +
∑m

k=1 eαk(t)+βkz
, (6)

where βj is a 1 × p vector of regression coefficients. This model introduces the key addi-
tive separation of the effects of t and z on the sub-distribution functions that we noted
was valuable in the standard setting. We refer to this model as the proportional odds
model with competing risks as it generalizes the model of the same name in the single risk
setting (Bennett [2]). Before proceeding further, however, for (2.4) to describe a set of
sub-distribution functions, we need the functions {α∗

j = αj(t) + βjz : j = 1, . . . ,m} to
satisfy the constraints, described by (2.1), assuming that {αj : j = 1, . . . ,m} do. Trivially
{α∗

j ; j = 1, . . . ,m} possess the same limits as {αj; j = 1, . . . , αm} at both 0 and ∞. In
considering the constraints (2.1), we consider the case where m = 2 for simplicity.

Differentiating (2.1) with respect to t shows that (2.1) is equivalent to

α′
1(t) + eα2(t)[α′

1(t) − α′
2(t)] ≥ 0,

α′
2(t) + eα1(t)[α′

2(t) − α′
1(t)] ≥ 0,

for all t. Therefore, for (2.4) to correspond to a survival model for competing risks for any
value of β and z, we need

α′
1(t) + ea2eα2(t)[α′

1(t) − α′
2(t)] ≥ 0,

α′
2(t) + ea1eα1(t)[α′

2(t) − α′
1(t)] ≥ 0,
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for all t and any value of a1 = β1z and a2 = β2z. Without further restrictions on α1 and
α2, this holds if and only if α′

1(t) − α′
2(t) = 0 for all t. Noting that α′

1(t) = [F1S]−1[f1 −
f1F2 +f2F1] (where F1(t) = F1(t;0), etc), with an analogous expression for α′

2(t), it follows
that

α′
1(t) − α′

2(t) =
f1

F1
− f2

F2
=

(
log

F1

F2

)′
.

Thus α′
1(t) − α′

2(t) = 0 is equivalent to F1 and F2 being proportional, in turn, equivalent
to proportionality of the two cause-specific hazard functions λ1 and λ2.

In sum, we have shown that the proportional odds regression model (2.4) only yields
proper sub-distribution functions Fj for all values of β and z if the cause-specific hazards
are proportional for all values of z, a very restrictive condition. With this assumption,
however, the parameters αj and βj have specific interpretations as follows. First, it follows
from (2.3) that, for individuals at the baseline level of Z = 0, αj(t) is just the log odds,
at time t, that a failure of type j has occurred as against no failure. Further, from (2.4) it
follows that

Fj(t; z)

S(t; z)
= eαj(t)+βjz,

so that the kth component of the regression coefficient βj is the log odds of failure by time t,

due to cause j, as against no failure, associated with a unit increase in the kth component
of Z (holding other component variables constant). This is the case at all values of t.
Similarly, note that

Fj(t; z)

Fk(t; z)
= eαj(t)−αk(t)e(βj−βk)z,

showing that the log odds of failure by time t due to cause j, as against failure by time t
due to cause k, is linear in z with slope βj − βk, again true for all t.

Given the restriction of proportional cause-specific hazards, why is the model (2.4)
appealing in the first place? The answer is in its relationship to a regression model for
a polytomous outcome generated by a current status observation scheme. Specifically,
suppose that, for each individual, information on survival status, and, if relevant, cause of
failure, is available only at a single time C. Thus, the observed data can be represented as
(C,∆), where ∆ = 0 if T ≥ C, ∆ = j if T < C with J = j, for 1 ≤ j ≤ m. It is therefore
assumed that if an individual is known to have failed at the observation time C, the cause
of failure is also available. As before, we assume that the monitoring time C is independent
of T and is uninformative.

Note first that the distribution of ∆ is related to that of (T, J) simply as follows:

Pr(∆ = j|C) = Fj(C), (7)

5
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for j = 1, . . . ,m with Pr(∆ = 0|C) = S(C).

For a fixed C, it is natural to consider a regression model which links the distribution
of ∆ to covariates Z. A natural model is the multinomial logistic model which describes the
dependence of Pr(∆ = j|C,Z = z) on the explanatory variables. In particular, the model
states that

Pr(∆ = j|C,Z = z) =
eαj+βjz

1 +
∑m

k=1 eαk+βkz
, j = 1, . . . ,m, (8)

with necessarily

Pr(∆ = 0|C,Z = z) =
1

1 +
∑m

k=1 eαk+βkz
.

See, for example, McCullagh and Nelder [18], Chapter 5.2.4.

Extending this model to allow for varying C, while ensuring additivity of effects of C
and Z, immediately suggests replacing αj with αj(C) in (2.6), where the functions αj satisfy
the constraints given in (2.1) along with appropriate limits. Through (2.5) and (2.6), this
immediately corresponds to the proportional odds model (2.4) for (T, J). As a consequence
of our analysis of (2.4), this shows that we can only ‘properly’ use the multinomial logistic
model for current status competing risks data, with additive effects of C and the covariates,
if we are willing to assume that the underlying cause-specific hazards are proportional.
Even in this restrictive case, it is important to note that practical issues remain for joint
estimation of α and β1, . . . , βm, particularly when α is treated nonparametrically.

2.1 The Proportional Hazards Model

Extending the ubiquitous Cox proportional hazards model (Cox [3]), the proportional haz-
ards model for competing risks (Crowder [4], Chapter 1.4.1; Kalbfleisch and Prentice [15],
Chapter 8.12) specifies that the conditional cause-specific hazard functions satisfy

λj(t; z) = λ0j(t)e
βjz, (9)

for j = 1, . . . ,m, where λ0j is the baseline cause-specific hazard function for cause j for
individuals with z = 0. This should not be confused with the assumption of proportional
cause-specific hazards, at any fixed value of Z, that we discussed earlier in Section 2, and
that we return to briefly below.

It is of interest to determine the form of polytomous regression model that the pro-
portional hazards model for (T, J), given in (2.7), induces on current status observations

6
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(C,∆). First, without covariates, note that

Pr(∆ = j|C) =

∫ C

0

λj(u) exp

[
−
∫ u

0

(
m∑

k=1

λk(t)

)
dt

]
du.

Now introducing the covariates Z, under (2.7), we have

Pr(∆ = j|C,Z = z) =

∫ C

0

λ0j(u)eβjz

m∏
k=1

exp

[
−
∫ u

0

λ0k(u)eβkzdt

]
du. (10)

This explicitly links the proportional hazards model for (T, J) to a multinomial regression
model for the current status observation (C,∆), albeit a rather cumbersome one. In par-
ticular, there appears to be no convenient link function which separates the right hand side
of (2.8) into additive effects for C and z. It is plausible that further assumptions might
lead to a simpler relation than (2.8). Suppose, for example, we now additionally assume
proportional cause-specific hazard functions, so that, in particular, λ0j(t) = ajλ0(t) for all
t and j = 1, . . . ,m, where the aj’s are positive constants and λ0 is an unspecified hazard
function. Then (2.8) simplifies to

Pr(∆ = j|C,Z = z) = aje
βjz

∫ C

0

λ0(u)

m∏
k=1

exp

[
e−akeβkz

∫ u

0

λ0(t)dt

]
du

=
aje

βjz∑m
k=1 akeβkz

×[
1 − exp

{(
−

m∑
k=1

ake
βkz

)∫ C

0

λ0(t)dt

}]
. (11)

Note that, for simplicity, we can absorb the constants a1, . . . , am into the regression terms
so long as a constant is included in Z, yielding

Pr(∆ = j|C,Z = z) =
eβjz∑m

k=1 eβkz

[
1 − exp

{(
−

m∑
k=1

eβkz

)∫ C

0

λ0(t)dt

}]
,

where we adjust our definition and interpretation of β1, . . . , βm. However, the main point is
that the effects of C and z remain inextricably linked in (2.9), even when further restrictions
are placed on the shape of λ0. The closest analogue, arising from (2.9), to the univariate
correspondence of the proportional hazards model to a complementary log-log regression
model for ∆, is that

log [− log {Pr(T > C|J = j, C, z)}] = log

[
− log

{
1 − Fj(C; z)

Fj(∞; z)

}]

= log

(
m∑

k=1

eβkz

)
+ log Λ0(C), (12)

7
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where Λ0 is the integrated hazard function associated with λ0. Unfortunately, Pr(T >
C|J = j, C, z), in the left hand side of (2.10), does not obviously correspond to any (con-
ditional) expectation of an observable random variable with current status data (except
where the cause of failure is also observed for those for whom the failure event has not
occurred at time C). Even then, the right hand side, while showing additivity of the effects
for C and z, does not yield a simple linear term in z when m > 1.

In sum, although the proportional hazards model for competing risks data necessarily
induces a multinomial regression model for the categorical data produced by current status
observation, the resulting model does not simply correspond to a recognizable multino-
mial regression model which might allow the use of existing software (possibly adapted to
allow for monotonicity constraints in the nonparametric case). Similarly, application of
a ‘standard’ generalized linear model for nominal multinomial outcomes to current status
observations of competing risks data cannot be simply interpreted in terms of an underlying
proportional hazards model even with additional restrictive assumptions.

2.2 Mixture Models for Competing Risks

Larson and Dinse [17] suggested a mixture model for competing risks data which, in its
simplest form, is as follows. First, a multinomial logistic regression model is assumed for
Fj(∞; z), the fraction of all eventual events from cause j, so that

Fj(∞; z) =
eαjz∑m

k=1 eαkz
,

for some set of regression coefficients α1, . . . , αm, where a constant term is included in Z,
and for identifiability we assume, for example, α1 = 0. The second part of the model
specifies regression relationships for the conditional distribution functions H(T |J) that
determine properties of event times associated with each specific cause. In particular, a
proportional hazards model for these distribution functions yields 1−H(t|J = j;Z = z) =
exp

(
Λj(t)e

βjz
)

for some set of integrated hazard functions Λj, j = 1, . . . ,m, so that

Pr(∆ = j|C,Z = z) =
eαjz∑m

k=1 eαkz

[
1 − exp

(
−eβjz

∫ C

0

λ0(t)dt

)]
. (13)

Note the similarity with (2.9). Again we can rewrite (2.11) to obtain the analogue of (2.10),
namely

log [− log {Pr(T > C|J = j, C, z)}] = log

[
− log

{
1 − Fj(C; z)

Fj(∞; z)

}]
= βjz + log Λ0(C).

8
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This yields additive effects for C and z, and now a linear term in z on the right hand side,
but, of course, suffers from the same drawback as (2.10) in that the left hand side does not
correspond to the (conditional) expectation of an observable random variable with current
status data.

3 Progressive Multi-State Survival Models and Ordi-

nal Polytomous Regression Models

We now turn to generalizations of a simple survival random variable in a quite different
direction. Suppose interest focuses on a finite state survival process where individuals
have to successively progress through each of m + 1 states over time. The illness-death
model is a special case of this scenario with m = 2. Specifically, let X(t) be a counting
process with m jump times denoted by the random variables T1, . . . , Tm, where necessarily
T1 ≤ T2 ≤ · · · ≤ Tm. We wish to understand the joint distribution, F , of (T1, . . . , Tm) and
the influence of explanatory variables on its properties. We focus here solely on models
for the marginal distributions of F , denoted by F1, . . . , Fm since only these marginals
are identifiable from current status data. One immediate consequence of this is that the
constraint Pr(T1 ≤ · · · ≤ Tm) = 1 does not imply a stronger constraint on the marginals
other than that F1 ≥ · · · ≥ Fm. This follows, since for any set of marginal distributions
F1, . . . , Fm with F1 ≥ · · · ≥ Fm, there exists an m-dimensional distribution with Pr(T1 ≤
· · · ≤ Tm) = 1 that has marginals F1, . . . , Fm. To keep things simple, we also assume
throughout that F1, . . . , Fm are all continuous.

As in Section 2 we first consider the scenario absent covariates, and introduce a useful
parameterization of F . For j = 1, let α1(t) be defined by

α1(t) = log

[
1 − F1(t)

F1(t)

]
. (14)

Now consider the conditional probabilities of Tj, given Tj−1, for j > 1. In particular, define

αj(t) = log

[
Gj(t)

(1 − Gj(t))

]
, (15)

where

Gj(t) = Pr(Tj ≥ t|Tj−1 < t) =
Fj−1(t) − Fj(t)

Fj−1(t)
= 1 − Fj(t)

Fj−1(t)
, (16)

9
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for 1 < j ≤ m. We can solve (3.1–3.3) for Fj, giving

Fj =

j∏
k=1

1

1 + eαk
. (17)

The functions αj re-express the marginal distributions F1, . . . , Fm, and necessarily have to
satisfy appropriate conditions for (3.4) to yield proper distribution functions. The condi-
tions for α1 are straightforward in that α1(0) = ∞, α1(∞) = −∞ and α1 is non-increasing.
For αj with j > 1, the constraints are more complex. Formally, αj(∞) = −∞, and the
αjs possess the mutual properties that the functions

∏j
k=1

1
1+eαk

are all non-decreasing for
j = 1, . . . ,m. For example, with j = 2, this requires that

α1
′eα1 + α2

′eα2 + (α1
′ + α2

′)eα1+α2 ≤ 0, (18)

with analogous conditions for the other αjs for j > 2. Note that, along with the conditions
on α1, α2 being non-increasing is a sufficient condition for (3.5); in general, αj being non-
increasing for all j implies proper distribution functions Fj (along with the appropriate
limit conditions). However, it is not necessary that αj be non-increasing. For example,
with m = 2—the standard nonparametric illness-death model—α2 being non-increasing is
equivalent to F2/F1 being non-decreasing. However, suppose that, for small t, progression
to illness (the first transition) is immediately followed by the second transition (to death),
but for large t, there is a much longer gap between the two transitions. Then, initially
F2/F1 is close to 1 and then decreases as t gets larger.

We now introduce regression effects of Z on each of T1, . . . , Tm. In principal, we cannot
simply postulate separate unlinked regression models for each of T1, . . . , Tm in turn, as
this may lead to violations of the stochastic ordering of T1, . . . , Tm for certain values of
regression coefficients and/or Z. Suppose, alternatively, that we focus on the effects of Z
on the functions α1, . . . , αm, and assume that these are linear,

αj(t|Z = z) = αj(t|Z = 0) + βjz, (19)

or equivalently,

Fj(t|Z = z) =

j∏
k=1

1

1 + eαk(t|z) =

j∏
k=1

1

1 + eαk(t|Z=0)+βkz
, (20)

for j = 1, . . . ,m. For (3.7) to correspond to proper distribution functions, it is necessary
that the constraining conditions, exemplified by (3.5)—when Z = 0—imply that the same
conditions hold for αj(t|Z = z) in (3.6). However, this is not guaranteed for all values of
βj and z except in particular circumstances. One such is the additional assumption that
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αj(t|Z = 0) is non-increasing for all j, or equivalently that Fj(t|Z = 0)/Fj−1(t|Z = 0) is
non-decreasing in t for j > 1. This additional condition implies that the regression model
(3.7) always yields a set of proper distribution functions Fj(t|Z) for all j, βj, and any value
of Z.

We call the model (3.7) a proportional odds model for T1, . . . , Tm because of the in-

terpretation of the regression coefficient vectors βj. Note that a unit increase in the kth

component of Z (holding other components fixed) increases the log odds of being in state

j, conditional on being in state j or higher, by βjk, the kth component of βj. As in the
other cases we have studied, the functions αj(t|Z = 0) determine the shape of the baseline
distribution functions Fj(t|Z) for Z = 0, j = 1, . . . ,m.

We now relate these ideas to current status observation on T1, . . . , Tm, at a monitoring
time C. Here, the observed data can be represented as Y = (C,Φ), where Φ = j if
Tj−1 < C ≤ Tj for j = 1, . . . ,m + 1, where T0 ≡ 0 and Tm+1 ≡ ∞. As before, we assume
that observation times are independent of T1, . . . , Tm, and are uninformative.

For a fixed C, we again focus on models for pj,z = Pr(Φ = j|Z = z). Note that,
suppressing the dependence on z for the moment, p1 = Pr(T1 ≥ C) = 1 − F1(C), pm+1 =
Pr(Tm < C) = Fm(C), and

pj(C) = Pr(Tj−1 < C ≤ Tj) = Fj−1(C) − Fj(C), (21)

for j = 2, . . . ,m. Note that pj+1(C) + · · · + pm+1(C) = Fj(C) for j = 1, . . . ,m.

A natural regression model here is the so-called sequential logit model for ordinal cat-
egorical data that is defined by logistic regression models for the sequential probabilities
pj,z/(pj,z + · · · + pm+1,z). In terms of log odds, this yields

log
pj,z

pj+1,z + · · · + pm+1,z

= αj + βjz, (22)

for j = 1, . . . ,m. This is also referred to as the continuation ratio logit model; see, for
example, Agresti ([1], Chapter 7.4.3).

We now want to incorporate varying monitoring times C, again with the idea of as-
suming that the effects of C are additive to those of the covariates. This is achieved by
assuming that only the intercept terms αj depend on C, and not the slope coefficients βj,
in (3.9). The final model is therefore

log
pj,z(C)

pj+1,z(C) + · · · + pm+1,z(C)
= αj(C) + βjz. (23)
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Using (3.8), the model (3.10) therefore corresponds exactly with the proportional odds
model (3.7). The consequence again is that the sequential logistic model for ordered multi-
state current status data, with additive effects of C and the covariates, corresponds with
the proposed proportional odds model for T1, . . . , Tm so long as the intercept functions in C
satisfy the constraints induced by the functions in (3.7) being non-decreasing, as discussed
earlier, and the associated limit conditions.

The situation is therefore somewhat more satisfying than in the competing risks situ-
ation where the multinomial logistic model for current status data, with additive effects,
implied that the underlying competing risks model is only proper if the intercept func-
tions have identical derivatives (corresponding to the restrictive condition of proportional
cause-specific hazards). With ordered multi-state current status data, the sequential lo-
gistic model (3.10) corresponds to any set of marginal distributions for T1, . . . , Tm, albeit
with cumbersome monotonicity conditions on the intercept functions. As previously noted,
the simple conditions that αj be non-increasing for all j may be more useful in practice,
but requires the additional assumption that the distribution functions Fj(t|z)/Fj−1(t|z) are
non-decreasing in t for j = 2, . . . ,m.

The regression model (3.7) has been previously suggested in an example concerning
transitions of women from a disease-free state, to onset of pre-clinical fibroids, to diagnosis
of fibroids (i.e. m = 2) in Dunson and Baird [7], as part of a richer data structure where
T2 is often observed directly (for the single group setting for such data, see van der Laan,
Jewell and Petersen [23]). Although Dunson and Baird [7] developed the model in an ad
hoc fashion, they also invoked the assumption that F2/F1 be non-decreasing to simplify
semiparametric estimation strategies, arguing that this assumption is reasonable in the
fibroid example. For previous work on current status data for multi-state stochastic pro-
cesses in the single group setting, see Jewell and van der Laan [10, 11] and van der Laan
and Jewell [22].

We note here that there is an obvious alternative sequential logistic model which focuses
on conditional probabilities in the alternative ‘direction’ from (3.10). Specifically, we could
sequentially use a logistic model for the probabilities pj,z/(p1,z+· · ·+pj,z) for j = 1, . . . ,m+1
which is linear in z with an additive term in C. In analogous fashion this leads to the
regression model

Sj(t|Z = z) =
m∏

k=j

1

1 + eγk(t|Z=0)+βkz
, (24)

where the new intercept functions γk(t|Z = 0) again determine the shape of the baseline
distribution functions Fj(t|Z). This proportional odds model again requires appropriate
constraints on the functions γ1, . . . , γm for (3.11) to yield proper survival functions. Al-
though the model (3.11) differs from (3.7) there is no a priori reason to prefer one over the
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other.

4 Unlinked Regression Models for Current Status Data

In the competing risks and multi-state survival scenarios of Sections 2–3, we avoided the use
of simple unlinked regression models for the sub-distribution functions in the former case,
and the marginal distribution functions in the latter, since the use of such may not lead to
a proper joint distribution function. However, as we have now explored, correspondences
between a full data regression model and a multivariate binary regression model for incom-
plete current status observations are not as straightforward as in the univariate setting,
at least when additive effects of the monitoring time and covariates are desired. Further,
Jewell, van der Laan and Henneman [13] show that, in the competing risks setting, smooth
functionals of the sub-distribution functions can be efficiently estimated—asymptotically—
using separate unlinked nonparametric maximum likelihood estimators of the individual
sub-distribution functions. The advantage of this approach is that the unlinked estimators
are much simpler than the full nonparametric maximum likelihood estimator while they
retain consistency. A similar result was established for nonparametric estimators of the
marginal distributions for finite multi-state counting processes in van der Laan and Jewell
[22]. This suggests that there may be little or no asymptotic precision gained by estimating
regression relationships jointly rather than separately, and that the simpler estimators may,
in fact, outperform, the more complex simultaneous modeling investigated in Sections 2–3
with small or moderate sample sizes. While this opinion is speculative and remains to be
more fully addressed elsewhere, both in theory and simulations, we give a brief outline of
this strategy here.

4.1 Competing Risks Models

We continue to use the notation of Section 2. Recall that current status data is represented
by (C,∆), where ∆ = 0 if T ≥ C, ∆ = j if T < C with J = j, for 1 ≤ j ≤ m. Define the
observed binary random variables Ψj = 1 if ∆ = j and Ψj = 0 otherwise. Note that

E(Ψj|C,Z = z) = Fj(C; z), (25)

for 1 ≤ j ≤ m. Thus, taking each j separately, (4.1) allows construction of a regression
model for Fj(t; z) in correspondence with a binary regression model for Ψj as for standard
univariate current status data. For example, a logistic regression model for Ψj with co-
variates Z leads to a proportional odds relationship between Z and Fj(t; z) as in (1.1), the
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only difference being that Fj(∞; z) may be less than 1 so that the corresponding incidence
function αj(t) potentially has a finite limit at ∞.

The advantage to using these separate models is their simplicity, with the consequence
that they can be fit using standard software for univariate current status data, leading to
semi-parametric estimators F̂j(t; z) for j = 1, . . . ,m and any t and z. The disadvantage, as

previously noted, is that, even though F̂j(t; z) is non-decreasing in t for any fixed value of z

as desired,
∑m

j=1 F̂j(t; z) may exceed 1 for some values of t and z, violating the requirement
that F (t; z) =

∑m
j=1 Fj(t; z) is a distribution function. This, however, may not be a major

drawback in large samples as the estimator
∑m

j=1 F̂j(t; z) will consistently estimate the
true F (t; z) so long as appropriate semiparametric estimation procedures are used for the
separate regression models.

A slight variant on this strategy can be described as follows. First, we use standard
univariate current status regression methods to yield an estimator F̂ (t; z), based on the
observations (Ci, (Ψ)i) where Ψ =

∑m
j=1 Ψj indicates only whether the outcome event has

occurred by time C without regard to failure type.

Now, for each j, consider the constructed variable Wj = F (C)Ψj, and note that
E(Wj|C,Ψ = 1) = Fj(C). This suggests using current status type regression techniques
(that is, isotonic dependence on C and additive linear dependence on Z with an appropriate
link function) for the constructed outcomes (Wj)i = F̂ (Ci; zi)(Ψj)i against Ci, using only
observations with (Ψ)i = 1, that is, observations where an event of any type has occurred
by the monitoring time. This yields estimators F̂j(t; z) for each j.

While this approach still does not guarantee estimators F̂j(t; z) which sum to less than
1, this may be somewhat less likely than the first unlinked method since, for each j, the
constructed outcomes (Wj)i are smaller than the respective outcomes (Ψj)i for the previous
estimators. In the single sample setting, this approach is related to the full nonparametric
maximum likelihood estimator of F1, . . . , Fm—see Jewell et al. [13].

4.2 Multi-State Survival Models

With the notation of Section 3, current status data is given by (C,Φ), where Φ = j if
Tj−1 < C ≤ Tj for j = 1, . . . ,m + 1, where T0 ≡ 0 and Tm+1 ≡ ∞. In this setting define
Ψj = 1 if Φ > j, and Ψj = 0 otherwise. Note that

E(Ψj|C,Z = z) = Fj(C|z), (26)
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for 1 ≤ j ≤ m. Thus, we can separately estimate marginal regression models for Fj(t|z) for
each j using univariate current status methods on the data (C,Ψj). Again, the advantages
of this approach are simplicity, use of standard current status methods only, and direct
regression modeling of the marginal distributions, presumably the primary relationships
of interest. But once more, although estimates of Fj(t|z) obtained in this way are each
distribution functions they are not guaranteed to be stochastically ordered, as required by
the structure of the data. Again, this is unlikely to be a serious problem in large samples
for similar reasons to those discussed with competing risks data.

Finally, there are variants to this approach similar to that suggested in Section 4.1 for
competing risks data. For example, suppose we obtain the estimator F̂1(t; z) using the
data on Ψ1 as described. Now, consider the constructed variable W2 = F1(C)Ψ2, where
again it immediately follows that E(W2|C,Ψ1 = 1) = F2(C). As before, this suggests using
current status regression techniques for the constructed outcomes (W2)i = F̂1(Ci|zi)(Ψ2)i,
against Ci, using only observations with (Ψ1)i = 1, thereby yielding an estimator F̂2(t; z).
This process then is repeated to yield estimators F̂3(t; z), F̂4(t; z), and so on. Again this
approach does not guarantee stochastic ordering of the estimated marginals of F , although
it may be more likely since, for each j, the constructed outcomes (Wj)i are smaller than

the respective outcomes (Ψj)i for the previous estimators (and smaller than F̂j−1(Ci; zi)).

5 Motivating Examples

We briefly describe illustrations of competing risks and multi-state survival data where the
need for practical regression models for current status data motivated the development in
the earlier sections. In the competing risks case, Krailo and Pike [16] discuss data from the
National Center for Health Statistics’ Health Examination Survey, originally analysed by
McMahon and Worcester [19]. In particular, they focus on the menopausal history of 3,581
female respondents from 1960-1962 who provided cross-sectional information on their age
and their menopausal status. For those who had experienced menopause, further retrospec-
tive information on the exact age when their periods stopped was deemed unreliable by
McMahon and Worcester because of extreme digit preference. Thus, Krailo and Pike [16]
concentrated on the simple current status information on menopausal status, in addition
to the response on whether menopause had occurred due to an operation or not. Thus
natural and operative menopause provide the two causes of ’failure’ (here, menopause) in
the context of competing risks. Jewell et al. [13] analyze this current status data with a
nanparametric model. To extend these ‘one-sample’ models to allow for regression effects
requires the kinds of models introduced in Section 2.
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This example suggests interesting extensions to simple current status observation of
competing risks data. According to MacMahon and Worcester [19], the original data from
the Health Examination Survey contained reliable information about the exact age at oper-
ative menopause, despite the concerns about information about age at natural menopause.
This raises the problem of estimation of regression models for the subdistribution functions
F1 and F2 in the case where exact times of failures are observed when a failure due to the
first risk has occurred before the observation time but where only current status informa-
tion is available regarding failures due to the second risk. Jewell et al. [13] consider this
problem in the ‘one sample’ case.

We now turn briefly to examples of regression based on current status observation of
a multi-state survival process, namely the onset and diagnosis of uterine fibroids. The
compound 2,3,7,8-tetrachlorodibenzo-p-dioxin, commonly known as TCDD or dioxin, is a
toxic hydrocarbon and environmental contaminant. It has a half-life of approximately 8
years in humans and, in addition to being a carcinogen, has been shown to disrupt endocrine
pathways. On July 10, 1976, an explosion at a chemical plant in Seveso, Italy, exposed
local residents to the highest known environmental dioxin levels in a residential area of
about 18 km2 around the plant. A number of health assessments were launched soon after
the explosion and many blood samples were collected from residents with sera stored for
subsequent analyses. The Seveso Women’s Health Study (SWHS) was initiated in 1996,
assembling a historical cohort of more than 500 women who were under 40 years of age at
the time of the explosion, who were resident in the most heavily exposed areas, and who
had sufficient stored sera from the period 1976–1980 available for analysis. Individual level
of dioxin exposure was evluated using the stored sera. For a detailed description of the
study see Eskenazi et al. [9].

Uterine fibroids are noncancerous growths in the uterus, commonly referred to as fi-
broids. Although uterine fibroids may be present in up to 75% of all women, about a half
of these women do not have symptoms. Symptoms, leading to a diagnosis, may develop
slowly over a period of several years or rapidly over a period of several months and may
include abnormal menstrual bleeding, pelvic pain and pressure and urinary problems. Dur-
ing the period 1996–98 eligible women—still menstruating—in the SWHS were interviewed
and received a transvaginal ultrasound, a screening instrument that can detect the pres-
ence of fibroids in women without symptoms. Prior diagnosis of fibroids was determined
at interview and medical records used to calculate the age at diagnosis. With age as the
time scale of interest, all women included in the analysis contributed curent status data
on onset of the disease with medical records potentially providing exact ages at diagnosis
where this had occurred. If only the prior existence of a diagnosis of fibroids is known,
then the data structure corresponds with what is envisioned in Section 3 where the moni-
toring time corresponds with age at screening. Here, regression effects may focus on dioxin
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exposure information although other covaraite effects may also be of sunstantial interest.
As in the case of the competing risks example, right-censored information on the age at
diagnosis at the time of screening provides an interesting variant to the ’pure’ current sta-
tus form of data structure considered in Section 3. van der Laan et al. [23] consider a ‘one
sample’ version of this kind of data structure. Dunson and Baird [7] consider a regression
model in this context, with their appropach also applied to the analysis of fibroids data
arising from a National Institute of Environmental Health Sciences cross-sectional study of
the premenopausal incidence of uterine fibroids. The primary covariate of interest in their
regression analysis was race. Young and Jewell [25] compare Dunson and Baird’s [7] model
to an extension of the approach of van der Laan et al. [23] to the regression setting using
data examples and simulations.

Multi-state examples occur in quite different contexts than disease progression. For
example, in cross-sectional life/sexual history surveys questions are often asked about the
number of distinct sexual partners experienced by the respondent by their age at survey.
Similarly, employment history questionaires may focus on the number of distint employment
(or unemployment) experiences of the respondent. Often, with such data, there may be
little or no information on the exact ages where a respondent transitions between ’states’
that describe the current cumulative number of partners or experiences. This therefore
produces current status data of exactly the sort considered in Section 3. Although such
data precludes sudy of association bretween the time spent in various states, there is often
still considerable interest in investigating and comparing marginal regression models for
times until specified transitions.

6 Discussion

We have considered correspondences between regression models for multinomial outcomes
and various multivariate survival models that extend those developed by Doksum and Gasko
[6] in a univariate setting. While this suggests some useful regression survival models that
can be identified from current status observation, the correspondences are not generally
straightforward. This motivates the simpler approach of examining several unlinked uni-
variate regression models as suggested in Section 4. However, there are a wider range of
multinomial models that can be considered here so that this should only be considered as a
preliminary investigation. Doksum and Gasko [6] also consider correspondences with linear
transformation models. It is natural to consider extensions of these ideas to the multivariate
setting in which multivariate survival regression models correspond to multivariate binary
anlaogues. Space does not permit further discussion of results in this area and details will
appear elsewhare. It is important to note that several approaches to multivariate current
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status data wityh a common monitoring time have already appeared (Wang and Ding [24],
Dunson and Dinse [8], Ding and Wang [5], Jewell, van der Laan and Lei [12]).
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