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Cross-validated Bagged Prediction of Survival

Sandra E. Sinisi, Romain Neugebauer, and Mark J. van der Laan

Abstract

In this article, we show how to apply our previously proposed Deletion/Substitution/Addition
algorithm in the context of right-censoring for the prediction of survival. Further-
more, we introduce how to incorporate bagging into the algorithm to obtain a
cross-validated bagged estimator. The method is used for predicting the survival
time of patients with diffuse large B-cell lymphoma based on gene expression
variables.
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1 Introduction

In some medical studies, data is collected on newly diagnosed cancer pa-
tients in hopes of finding significant prognostic factors. Treating cancer may
negatively lead to disease recurrence or death from disease in which case the
time to event can be measured along with many covariates. Covariates usu-
ally include epidemiological and histological variables, but now it is common
to include measurements on expression levels for thousands of genes as addi-
tional covariates. Gene expression profiling is being used in the prognosis of
breast cancer, colon cancer, ovarian cancer, and lymphoma to name a few.
For instance, there have been a number of studies using gene expression to
predict cancer survival in patients with non-Hodgkin’s lymphoma.

Non-Hodgkin’s lymphoma is a cancer of the lymphatic system. The lym-
phatic system, which is part of the body’s immune system, is a complex
system made up of lymph organs, such as the bone marrow, the thymus, the
spleen, and the lymph nodes (or lymph glands). These are connected by a
network of tiny lymphatic vessels. Lymph nodes are found all over the body.
Lymph is a colourless fluid that circulates through the lymphatic system. It
contains cells known as lymphocytes which are a type of white blood cell and
an essential part of the body’s defense against infection and disease. There
are two main types of lymphocyte: B-cells and T-cells. Most lymphocytes
start growing in the bone marrow. The B-cells continue to develop in the
bone marrow, while the T-cells go from the bone marrow to the thymus gland
and mature there. When they are mature, both B-cells and T-cells help to
fight infections.

There are more than 20 different types of non-Hodgkin’s lymphoma. Dif-
fuse large B-cell lymphoma (DLBCL) is a common type, making up about 40
percent of all cases. It is a cancer of the B-lymphocytes. With chemotherapy,
about 40 percent of patients with DLBCL can have long-term, disease-free
survival; some may even be cured. Untreated, however, it may lead to death
in one to two years (Rosenwald et al., 2002). Risk of disease recurrence and
an idea of overall survival usually is determined by an international prognos-
tic index (IPI) which takes into account age, stage of disease, general health
(also known as performance status), number of extra nodal sites, and pres-
ence or absence of an elevated serum enzyme called lactate dehydrogenase
(LDH). As an alternative to the IPI, gene expression in lymphocytes can be
used to get a sense of overall survival. In this article, we are interested in
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modeling survival time of patients with diffuse large B-cell lymphoma (DL-
BCL) by their gene expression levels. We will propose a method to predict
time to event by the measured covariates and apply it to a DLBCL data set.

1.1 Methods for Prediction of Survival

Survival analysis is concerned with the distribution of lifetimes, and the
major distinguishing feature of survival analysis is censoring. A subject may
not be observed for its entire lifetime, so that we may only know, for example,
that the subject survived to the end of the trial. At the time of a study, a
patient may have dropped out of the study, been lost to follow-up, or not had
the particular event, in which case the last date of follow-up is recorded and
referred to as the censored time to event. Let T denote a lifetime random
variable. Right-censoring occurs when the subject leaves the trial at time Ci
where we know either Ti if Ti ≤ Ci or that Ti > Ci.

Proportional hazards models (Cox regression) are commonly used to esti-
mate covariate effects in survival analysis. A number of other methods have
been proposed for nonparametric regression of survival outcomes. Kooper-
berg et al. (1995) developed an adaptive hazard regression (HARE) method-
ology for estimating the conditional log-hazard function based on (censored)
survival data with one or more covariates. Hastie and Tibshirani (1990) fit
additive proportional hazards models where covariate effects are modeled
through sums of univariate smooth functions. There are also many modifi-
cations to classification and regression trees (CART) (Breiman et al., 1984)
that are specific to censored survival data (Gordon and Olshen, 1985; Davis
and Anderson, 1989; LeBlanc and Crowley, 1992; Segal, 1988). In particular,
Molinaro et al. (2004) introduced a procedure for tree-structured estimation
of censored data based on the unified loss-based estimation methodology of
van der Laan and Dudoit (2003).

An important result of the loss-based estimation approach for right-
censored data (van der Laan and Dudoit, 2003) applied by Molinaro et al.
(2004) is the following. Suppose that we have complete (i.e., uncensored)
data. In that case, we would calculate a complete data survival predictor by
applying a particular data-driven model selection criterion to select a single
model out of a set of candidate models. We would then report the efficient
survival predictor computed under this selected model. A methodology for
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building a predictor and assessing its performance based on censored data
should satisfy the following two properties. First, the censored data method-
ology when applied to uncensored data should predict the same survival as
the complete data survival predictor. The survival tree methods (Segal, 1988;
Davis and Anderson, 1989) appear to lack this property because when ap-
plied to the complete (i.e., uncensored) data, they do not reduce to a complete
data methodology. In other words, the split functions used in survival trees
are choices that are convenient for handling censored data but do not reduce
to the choices suggested for uncensored data. Second, none of the methods
mentioned incorporate external covariate processes to allow for informative
censoring and gain in efficiency. We like to retain these two properties in our
application.

1.2 Model

In this article, we develop a new prediction algorithm by building upon
our previously proposed D/S/A algorithm (Sinisi and van der Laan, 2004)
to allow right-censoring, and we propose an aggregation scheme for bagging
the D/S/A algorithm.

Ideally, we would like to observe the true survival time for each patient.
Let the full-data structure (of interest) be X = X̄(T ) ≡ (X(t) : t ≤ T )
indexed by time t where T can denote a random survival time, and let
Z = log T . Denote the distribution of the full data structure X by FX,0.
The full-data structure incorporates covariates which may contain both time-
dependent and time-independent covariates.

However, in realistic settings the observed data structure is given by

O ≡
(
T̃ = min(T,C), ∆ = I(T ≤ C), X̄(T̃ )

)
.

We observe the full data process X(t) up to the minimum T̃ of the sur-
vival time T and a right-censoring variable C, with conditional distribution
G0(·|X) given the full data structure X. The missing, or censored, survival
data can be due to drop out or the end of follow-up, for example. By conven-
tion, if T occurs prior to C (T < C), then we set C = ∞. Thus, C is always
observed and one can rewrite the observed data structure as O = (C, X̄(C)).
The distribution, P0 = PFX,0,G0 , of the observed data structure O is indexed
by the full data distribution FX,0 and the conditional distribution G0(·|X) of
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the censoring variable C. G0(·|X) is referred to as the censoring or coarsening
mechanism. The survival function for the censoring mechanism is denoted
by Ḡ0(c|X) = Pr0(C ≥ c|X). We assume that G0 satisfies the coarsening at
random (CAR) assumption:

Pr0(C = t | C ≥ t, X̄(T )) = Pr0(C = t | C ≥ t, X̄(t)), for t < T .

If X does not include time-dependent covariates (e.g., X = (W,Z)), then
CAR is equivalent to assuming that C is conditionally independent of the
survival time T , given baseline covariates W . For details, we refer to van der
Laan and Robins (2003).

1.3 Loss Function

When observing right-censored data, we have a learning set of n indepen-
dent and identically distributed (i.i.d.) observations, O1, . . . , On, from the
right-censored data structure, Oi ∼ P0 = PFX,0,G0 . Let the empirical distri-
bution of O1, . . . , On be denoted by Pn. Our goal is to find a predictor of log
survival time Z based on covariates W , i.e., an estimator of the parameter
ψ0 defined in terms of the risk for a full data loss function L(X,ψ). The
methodology presented in van der Laan and Robins (2003) suggests replac-
ing the full (uncensored) data loss function with an observed (censored) data
loss function.

Inverse Probability of Censoring Weighted Loss Function

A way to define the observed data loss function is the application of
inverse probability of censoring weights (IPCW) (van der Laan and Robins,
2003). IPCW estimation derives its name from the fact that the full data
function is weighted by the inverse of a censoring probability. For univariate
prediction, our parameter of interest is the conditional expectation, ψ(W ) =
E(Z|W ), corresponding to the squared error loss function L(X,ψ) = (Z −
ψ(W ))2. The IPCW observed data loss function for the squared error loss is
(van der Laan and Robins, 2003):

L(O,ψ | G0) = L(X,ψ)
∆

Ḡ0(T |X)

= (Z − ψ(W ))2 ∆

Ḡ0(T |X)
(1)
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where ∆ = I(T ≤ C) and Ḡ0 is the conditional survival function for the
censoring time C given full data X. The full data loss function is weighted
by the inverse probability of being censored after time T̃ given the covariates.
Under the CAR assumption, Ḡ0(·|X) is a function of only the observed data
structure O.

Note that the conditional censoring survivor function Ḡ0 is typically un-
known and needs to be replaced by an estimate Ḡn. The simplest choice is
the Kaplan-Meier estimate, but other procedures (e.g., Cox model) are avail-
able. Other choices of the observed data loss function are possible as well,
such as the optimal doubly robust inverse probability of censoring weighted
(DR-IPCW) loss function (van der Laan and Robins, 2003). For finite sam-
ple and asymptotic results regarding the cross-validation selector based on
these loss functions, we refer to van der Laan and Dudoit (2003) and Keleş
et al. (2003). For now, we assume that Gn = Ĝ(Pn) is given, and we discuss
this in Section 2.2.

This article is organized such that it presents the D/S/A algorithm for
prediction of survival in Section 2. After having described the algorithm, we
show how to obtain a cross-validated bagged estimator in Section 3. Sec-
tion 4 provides some simulated results, and we illustrate its application to
the prediction of survival in patients with diffuse large B-cell lymphoma in
Section 5.

2 Cross-validated D/S/A Algorithm

The Deletion/Substitution/Addition algorithm, or D/S/A algorithm (Sin-
isi and van der Laan, 2004), is a data-adaptive learning methodology which
can be used to predict the conditional expectation of an outcome or response
Z given a set of inputs or explanatory variables W .

It is helpful to review our estimation road map in the context of censoring
which can be summarized in three steps. 1) Our parameter of interest is
ψ0(W ) = EP0(Z|W ) and can be defined as the risk minimizer of an observed
data loss function:

ψ0 = arg min
ψ∈Ψ

E0L(O,ψ|G0).

2) We will generate a sequence of candidate estimators by minimizing the
empirical risk over subspaces of increasing dimension approximating the com-
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plete parameter space Ψ. We define a collection of subspaces Ψs ⊂ Ψ, indexed
by s. For each choice of subspace s, we denote our candidate estimators with
Ψ̂s(Pn). 3) Select s with cross-validation.

Parameterization

Define a set of basis functions, {φ~p : ~p ∈ INd}. These basis functions
are polynomials and denoted by φ~p(W ) = W p1

1 . . .W pd
d given a d-vector ~p =

(p1, . . . , pd) ∈ I, where I is an index set, I ∈ I.

Every parameter ψ ∈ Ψ can be approximated as a linear combination of
tensor products of polynomial basis functions:

ψI,β(W ) ≡
∑
~p∈I

β~pφ~p(W ).

The complete parameter space Ψ can be written as the collection of basis
functions and represented by

Ψ ≡ {ψI,β(W ) =
∑
~p∈I

β~pφ~p(W ) : β, I ∈ I}.

Selection of Sieve

Define a collection of subspaces Ψs ⊂ Ψ of increasing dimension approx-
imating the complete parameter space Ψ, such as,

Ψs ≡

ψI,β(W ) =
∑
~p∈I

β~pφ~p(W ) : β, I, m(I) ≤ s

 .

The fine-tuning parameters, s = (s0, s1, s2, s3), define the allowed index
sets I. s1 represents the number of tensor products; s2 represents the maxi-
mal order of interaction of tensor products:

max~p∈I
d∑
j=1

I(pj 6= 0)
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(i.e., the number of non-zero components in ~p); s3 represents the maximal
sum of powers of tensor products:

max~p∈I
d∑
j=1

pj.

The dimension of W can be reduced to s0 and is described below. Now for
every s we want to find the estimator which minimizes the empirical risk
over the subspace Ψs. Define Ψ̂s(Pn) as the minimizer of the empirical mean
of the IPCW loss function in ψI,β. This minimization can be done by first
minimizing over β for a fixed I. Then it is left to minimize a function of I,
fE(I), for which we propose the D/S/A algorithm.

To summarize, for each choice of s, the algorithm computes an estimator
which is a regression with s1 terms of maximal order s2. These s-specific
estimators are referred to as candidate estimators, and cross-validation will
be used to select the fine-tuning parameters.

Estimator Construction

A set of constraints over which to search is specified: s0 = {1, 2, . . .},
s1 = {1, 2, . . .}, and s2 = {1, 2, . . .}. Assume a fixed ordering of W =
W1, . . . ,Wd. We proposed to obtain this ordering data-adaptively using or-
dered T -statistics based on marginal regressions, but other orderings (and
transformations) are possible such as dimension reduction using principal
components.

To reduce the dimension:

1. compute each T -statistic corresponding to the main effects of Wj, j =
1, . . . , d by fitting d univariate regressions

2. rank these statistics (in absolute value) in decreasing order R̂(1), . . . , R̂(d) ⊂
{1, . . . , d} yielding the ordered covariatesWR̂(1),WR̂(2), . . . ,WR̂(d) which
we will refer to as W1, . . . ,Wd

3. input the set (W1, . . . ,Ws0 : s0 ≤ d) of length s0 as the vector of search-
able covariates
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The algorithm starts by fitting a model with the main term, W1 or W2 or
. . . Ws0 , which minimizes our empirical observed loss function fE(I). Next,
the algorithm cycles through a set of deletion, substitution, and addition
moves. The process can be summarized as follows:

Algorithm: dsa

1. Perform dimension reduction

2. For s0 = 1, 2, . . .

(a) Input ordered covariates of length s0

(b) For s2 = 1, 2, . . .

i. Initiate algorithm

ii. (*) Denote current working model by an index set I0 of size
s1 = |I0|.

iii. Try to improve upon our current fit with an index set I− of
size s1−1 among all allowed deletion moves. If this provides
an improvement, then set I0 = I− and go back to (*).

iv. Otherwise, find an optimal updated index set I= of the same
size s1 as I0, among all allowed substitution moves. If this
update improves on I0, then set I0 = I= and go back to (*).

v. Otherwise, find an optimal updated index set I+ of size s1 +1
among all allowed addition moves. Set I0 = I+ and go back
to (*).

vi. Stopping rule. Run the algorithm until the current index
set size s1 = |I0| is larger than a user-supplied maximum size.

Throughout this process, the algorithm is keeping track of the best esti-
mators for all choices of s, Ψ̂s(Pn).

Deletion/Substitution/Addition moves

The deletion, substitution, and addition moves can be described with the
following notation.
Deletion moves. Simply try to remove one of the terms in the current fit

9
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and fit a regression model of size s1 − 1.
Substitution moves. Given an index set I of size s1 = |I|, define a set
SUB(I) of index sets of same size s1 by replacing individual elements ~p ∈ I
by one of the 2d vectors created by adding or subtracting 1 to any of the d
components of ~p:

SUB(I) →



(p1 + 1, p2, p3, . . . , pd)
(p1, p2 + 1, p3, . . . , pd)
...
(p1, p2, p3, . . . , pd + 1)
(p1 − 1, p2, p3, . . . , pd)
(p1, p2 − 1, p3, . . . , pd)
...
(p1, p2, p3, . . . , pd − 1)

for each ~p ∈ I.
Addition moves. Given an index set I of size s1 = |I|, define a set ADD(I)
of index sets of size s1 + 1, by adding to I an element of SUB(I) or one of
the d unit vectors ~uj, j = 1, . . . , d:

ADD(I) →



(1, 0, . . . , 0)
...
(0, . . . , 0, 1)
(p1 + 1, p2, p3, . . . , pd)
...
(p1, p2, p3, . . . , pd + 1)
(p1 − 1, p2, p3, . . . , pd)
...
(p1, p2, p3, . . . , pd − 1)

In addition, alternate-substitution moves are used when trying a term
with more than s2 non-zero components. In that case, ~p is replaced with the
s2 vectors obtained from setting one of the original non-zero components to
zero (Sinisi and van der Laan, 2004).

Cross-validation Selector

Cross-validation divides the available learning set into a training set and
a validation set. Observations in the training set are used to construct (or
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train) the estimators, and observations in the validation set are used to as-
sess the performance of (or validate) these estimators. The cross-validation
selector is chosen to have the best performance on the validation sets.

The algorithm uses v-fold cross-validation to select the fine-tuning param-
eters. To derive a general representation for cross-validation, let Bn ∈ {0, 1}n
be a random vector whose observed value defines a split of the observed data
O1, . . . , On, the learning sample, into a validation sample and a training sam-
ple. If Bn(i) = 0 then observation i is placed in the training sample and if
Bn(i) = 1, it is placed in the validation sample. With v-fold cross-validation,
we have v different Bn split vectors. The empirical distribution of the data
in the training sample and validation sample are denoted by P 0

n,Bn
and P 1

n,Bn
,

respectively. The proportion of observations in the validation sample is de-
noted by p =

∑
iBn(i)/n.

The cross-validation selector of s is now defined as

ŝ(Pn) ≡ argminsEBn

∫
L(O, Ψ̂s(P

0
n,Bn

)|Ĝ(P 0
n,Bn

))dP 1
n,Bn

(O)

= argminsEBn

1

np

n∑
i=1

I(Bn(i) = 1)L(Oi, Ψ̂s(P
0
n,Bn

)|Ĝ(P 0
n,Bn

)).

Final Estimator

The algorithm builds estimators Ψ̂s for all choices of s0, s1, and s2 on each
of the v training sets. It evaluates the cross-validated risk of these estimators
on the corresponding validation set. This results in a three-dimensional ma-
trix of cross-validated risks. The values of (s0, s1, s2) that correspond to the
minimal cross-validated risk are selected: ŝ(Pn). The algorithm is now run
on the learning set for ŝ0 and ŝ2 and the best estimator of size ŝ1 is reported.
The final estimator is denoted by Ψ̂ŝ(Pn)(Pn). A summary of this process is:

Algorithm: cv − survdsa

1. Estimate Ĝ(P 0
n,Bn

) and form weights for respective training sets; insert
into the weight argument

2. Run dsa (for all s = (s0, s1, s2)) on training sample to obtain Ψ̂s(P
0
n,Bn

)
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3. Compute empirical risk over the validation sample (repeat for all v
training/validation sets)

4. Choose the cross-validation selector, ŝ(Pn)

5. Estimate Ĝ(Pn) and form weights for learning set; insert into the
weight argument

6. Run dsa on learning sample

7. Final estimator is given by Ψ̂ŝ(Pn)(Pn)

2.1 Variable Importance Measures

In addition to reporting an optimal predictor, the algorithm produces an
importance measure for each variable. As before, let the data be n observa-
tions of (Y,W ), where Y is the outcome of interest and W is a d-dimensional
vector of covariates for which we would like a measure of importance.

We want to compute an importance measure for each variable Wj, j =
1, . . . , d. Let W−j represent all variables other than Wj. We can write
mj(w) = EW−j

E(Y |Wj = w,W−j). The variable importance measure is
given by |mj(w)−mj(0)| and can be plotted as a function of w. In the case
of binary variables, it simply is |mj(1)−mj(0)|.

2.2 Estimating the Survival Function for the Censor-
ing Mechanism

A new component of the D/S/A algorithm for predicting survival is the
need to estimate Ḡn and thus estimate the inverse probability of censoring
weights. As it is written, the user can supply any set of desired weights to be
read in by the algorithm. In the case of non-informative censoring, one can
simply use Kaplan-Meier to estimate Ḡn. Otherwise, a possible approach is
to estimate the weights with a Cox proportional hazard model.

A question that arises when estimating Ḡn is to decide which covariates
to include in the estimate. A model selection technique for hazard regression
is available from the R function hare in the polspline library (Kooperberg
et al., 1995). Hare fits a hazard regression model by using linear splines
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to model the baseline hazard, covariates, and interactions. The function
phare estimates the conditional probabilities from the fitted hazard regres-
sion model and yields an estimate of Ḡn. Recall that the observed data
structure is given by

O ≡
(
T̃ = min(T,C), ∆ = I(T ≤ C), X̄(T̃ )

)
.

Let ∆c = 1−∆. The weights are given by:

∆i

Ḡn(Ti|X̄(C))
.

The following R code will yield the weights for the learning set using hare:

hareFit <- hare(ttilde,deltac,w)

gBar <- phare(ttilde,w,hareFit)

wtsLearningSet <- delta/gBar

The estimate above is of Ĝ(Pn). Similarly, one can form weights for the
training set by first estimating Ĝ(P 0

n,Bn
). A final note is that the weights are

truncated at a user-defined truncation level. For example, in the simulations,
we used a 5% truncation level (0.05×n) so that a single observation will never
represent more than 5% of the learning sample, but for the data analysis, we
used an absolute truncation level of five.

3 Cross-validated Bagged D/S/A Algorithm

3.1 Brief Review of Bagging

Bagging, or “bootstrap aggregating”, was introduced by Breiman (1996a)
as a tool for reducing the variance of a predictor. The general idea is to gener-
ate multiple versions of a predictor and then using these to get an aggregated
predictor. The multiple predictors are obtained by using bootstrap replicates
of the data, and bagging is meant to yield gains in accuracy. The stability of
the procedure that constructs each predictor is related to whether bagging
will improve accuracy (Breiman, 1996a). Breiman (1996b) studied instabil-
ity and found that bagging works well for unstable methods such as subset
selection in linear regression.
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Several approaches have been offered to combine different classifiers (LeBlanc
and Tibshirani, 1996; Breiman, 1996c; Hothorn and Lausen, 2003). In addi-
tion, modifications of bagging have been proposed: “nice” bagging (Skurichina
and Duin, 1998), sub-bagging or sub-sample aggregating (Buhlmann and Yu,
2002), iterated bagging or de-biasing (Breiman, 2001). Friedman and Hall
(2000) show that bagging reduces variability when applied to highly non-
linear estimators such as decision trees and neural networks and can also
reduce bias for certain types of estimators. Breiman (2001) show that iter-
ated bagging is effective in reducing both bias and variance. Bagging has
been viewed from its ability to reduce instability (Buhlmann and Yu, 2002)
and its success with nonlinear features of statistical method (Friedman and
Hall, 2000; Buja and Stuetzle, 2002). Hall and Samworth (2005) address the
way its performance depends on re-sample size. Finally, ensemble methods
have been used in the presence of censoring: bagging survival trees (Hothorn
et al., 2003) and random forests for censored data (Hothorn et al., 2005).

3.2 CV-Bagged D/S/A Algorithm

van der Laan et al. (2005) proposed a general method for cross-validated
bagging such that the cross-validation is performed external to the aggrega-
tion. This is suggested in order to achieve the correct trade-off between bias
and variance for the aggregated estimators.

Our motivation for developing a cross-validated bagged (D/S/A) esti-
mator arised from data applications. For example, we were interested in
predicting viral load in a population of patients with HIV based on genotype
and treatment history. Applying the D/S/A algorithm to this data rich in
covariates resulted in a low dimensional fit. Although such an estimator is
based on a sensible trade off between bias and variance, the resulting fit is
disappointing in two respects. First, in many applications the true regression
is believed to be a function of nearly all variables where many variables make
a small contribution. Second, a clinician would like to obtain a measure of
importance for each variable considered (van der Laan et al., 2005). But
such a low dimensional fit reflects zero importance for all the variables that
do not appear in the final fit. Based on these concerns, we propose to con-
struct (D/S/A) estimators that 1) are high dimensional, so that the majority
of variables contribute to the obtained regression, and 2) maintain a sensible
trade-off between bias and variance. In this section, we will show how we
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employ “bagging” into our D/S/A algorithm and detail how cross-validation
enters our approach.

Let dsa refer to the process outlined in Section 2 used to generate s-
specific candidate estimators. We will view each bagged dsa (indexed by
s) as candidates, and use cross-validation to select amongst these candiate
bagged estimators.

Algorithm: bagged− dsa

1. For b = 1 to B

(a) Draw bootstrap sample P#
nb from the empirical probability distri-

bution Pn

(b) Run dsa (for all s) on P#
nb to obtain Ψ̂s(P

#
nb)

2. Average these estimators:

Ψ̃s(Pn) =
1

B

B∑
b=1

Ψ̂s(P
#
nb)

For each choice of s, we now have an aggregated predictor. In other
words, this results in a set of candidate bagged estimators Ψ̃s(Pn) indexed
by s. Our goal is to data-adaptively select the s which minimizes the risk of
Ψ̃s(Pn), and we need to use cross-validation appropriately to do so.

Recall that we are using Bn to define the v-fold cross-validation scheme.
P 0
n,Bn

denotes the empirical distribution of the observations in the training
set, and P 1

n,Bn
denotes the empirical distribution of the observations in the

validation set.

Algorithm: cv − bagged− dsa

1. For b = 1 to B

(a) Draw bootstrap training sample P 0#
n,Bn,b

from the training sample
P 0
n,Bn

(b) Run dsa (for all s) on P 0#
n,Bn,b

to obtain Ψ̂s(P
0#
n,Bn,b

)
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2. Average these to obtain:

Ψ̃s(P
0
n,Bn

) =
1

B

B∑
b=1

Ψ̂s(P
0#
n,Bn,b

)

3. Compute empirical risk over the validation sample (repeat for all v
training/validation sets)

4. Choose the cross-validation selector:

Ŝ(Pn) = arg min
s
EBn

∑
i,Bn(i)=1

L(Oi, Ψ̃s(P
0
n,Bn

)) (2)

5. For b = 1 to B

(a) Draw bootstrap learning sample P#
n,b from the learning sample Pn

(b) Run dsa on P#
n,b to obtain Ψ̂s(P

#
n,b)

6. Average these to obtain:

Ψ̃s(Pn) =
1

B

B∑
b=1

Ψ̂s(P
#
n,b)

The final fit is the bagged estimator corresponding to ŝ, and the cross-
validated bagged estimator is defined as:

Ψ̂(Pn) = Ψ̂Ŝ(Pn)(Pn).

This is then used to estimate the variable importance measures (VIM) de-
scribed in Section 2.1.

For the prediction of survival, two steps need to be expanded in order to
estimate the IPCW’s:

(a) Draw bootstrap training sample P 0#
n,Bn,b

from the training sample P 0
n,Bn

i. Estimate (e.g., Kaplan-Meier or hazard regression) weights using
the drawn bootstrap sample; input to weight argument

Similarly:
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(a) Draw bootstrap learning sample P#
n,b from the learning sample Pn

i. Estimate (e.g., Kaplan-Meier or hazard regression) weights using
the drawn learning sample; input to weight argument

Proceed with cv− bagged−dsa as defined above using weights estimated
from the bootstrap sample when appropriate. The process with the expanded
steps that allow for estimation of weights will be referred to as cv− bagged−
survdsa. A schematic of cv−bagged−dsa for a fixed s0 is shown in Figure 1.

4 Simulated Examples

The following illustrates the D/S/A un-bagged and bagged estimators on
simulated right-censored data sets.

The first two simulated examples are based upon the following full data
model: Z =

∑
j

1
j
Wj + ε where W and ε are independent random variables

with Wj ∼ U(0, 1), ε ∼ N(0, σ2) and σ2 = 0.25. Censoring times were
simulated using an exponential distribution: C ∼ E(λ) with λ = 0.05 and
about 18% censoring.

A learning set with 250 observations was generated from the above model
where j = 1, . . . , 10 for the first dataset and j = 1, . . . , 5 for the second
dataset such that in addition to the 5 uniform variables that form the true
model, there are 5 additional noise variables, W ∼ N(1, 1).

The fine-tuning parameters, s1 and s2, were chosen using 5-fold cross-
validation and the bagged estimate is based on 1000 bootstrap replications.
cv − bagged − survdsa was applied to each dataset with s1 ranging from 1
to 10, s2 ranging between 1 and 2, and the maximum allowed sum of powers
on each tensor product is set at 2. This yields the un-bagged estimator, the
bagged estimator, and variable importance curves based on the selected un-
bagged and bagged fits. Note that cv − bagged − survdsa specifies to form
weights on P#

n . The simulated and real data examples were run with weights
formed on Pn for simplicity.

The results are summarized in Table 1 and Figures 2 and 3. In the figures,
the true variable importance curve along the with the variable importance
curve calculated from the corresponding un-bagged or bagged estimator is
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Table 1: Simulated Data. Summary Measures; RSS, R2 and ŝ are reported
for the un-bagged (left col) and bagged (right col) estimators

RSS R2 (ŝ1, ŝ2)
sim 1 53.02 51.69 0.359 0.375 (7,1) (3,2)
sim 2 51.40 51.04 0.380 0.384 (3,1) (3,1)

displayed for the range of each variable. It is clear that the un-bagged and
bagged estimators are comparable in terms of prediction, as in each case
the bagged estimator has a slight improvement in RSS over the un-bagged
estimator. In each simulation, the cross-validation selector chooses a model
smaller than the truth. As a result, the bagged estimators are not that
high-dimensional which results in roughly similar variable importance plots
given by the un-bagged and bagged estimators. For the first simulated data
example, three of the variables (W6, W7 and W10) have an importance of
zero based on the un-bagged estimator because they were not selected (ŝ1 =
7) while the bagged estimator gives these variables a very low importance.
The un-bagged estimator for the second simulated data example has three
terms (ŝ1 = 3). Therefore, only the first three variables have an importance
measure greater than zero. For these three variables, the importance curves
are similar for both estimators, again because the bagged fit is relatively low
dimensional.

The above results were based only on a single data set. A simulation
was done using 25 data sets where the true data model is simulated in the
second manner described earlier. This yielded variable importance curves for
the un-bagged and bagged estimator. A slope was estimated by drawing a
line through each curve that passes through the intercept. These slopes were
averaged across the 25 repetitions and reported in Table 3, along with the
estimated variance, bias, and mean square error (MSE). The final column
reports the ratio of the MSE based on the un-bagged estimator to the MSE
based on the bagged estimator.

A third simulation was done where the true model involves interaction
terms. The full data model is: Z = 5W1W2W3−4W5+3W6W8+2W10W12W15+
W13W14 + ε where W and ε are independent random variables with Wj ∼
U(0, 1), ε ∼ N(0, σ2) and σ2 = 1. Censoring times were simulated using an
exponential distribution: C ∼ E(λ) with λ = 0.05 and about 14% censoring.
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A learning set with 250 observations was generated from the above model.
The fine-tuning parameters, s1 and s2, were chosen using 5-fold cross-validation
and the bagged estimate is based on 1000 bootstrap replications. cv −
bagged − survdsa was applied to each dataset with s1 ranging from 1 to
10, s2 ranging from 1 to 3, and the maximum allowed sum of powers on
each tensor product is set at 3. The un-bagged (R2 = 0.76, RSS = 241.4)
and bagged (R2 = 0.78, RSS = 214.2) estimators are again comparable in
terms of prediction. The un-bagged fit only includes two-way interactions
(ŝ1 = 5, ŝ2 = 2) while the bagged fit correctly allows for three-way interac-
tions (ŝ1 = 4, ŝ2 = 3). This resulted in a bagged fit of 239 terms.

Instead of plotting the variable importance curves, Table 2 lists the vari-
able importance at a fixed w, |mj(0.5)−mj(0)| for the true fit, the un-bagged
fit, and the bagged fit. Six of the variables have an estimated importance
measure of zero based on the un-bagged fit. This is because based on the
cross-validation selector these terms are not part of the final fit. It is not nec-
essarily a reflection of the role they played in the search algorithm. On the
other hand, the bagged estimator allows an estimate of importance measure
for every variable.

5 Real Data Example

Data Description

Diffuse large B-cell lymphoma (DLBCL) is the most common type of
lymphoma in adults (Lossos et al., 2004). Anthracycline-based chemother-
apy can successfully treat only 35 to 40 percent of patients with DLBCL
(Rosenwald et al., 2002). A well-established predictor of outcome in DLBCL
is the International Prognostic Index (IPI) which is based on five clinical
characteristics: age, tumor stage, serum lactate dehydrogenase concentra-
tion, Eastern Cooperative Oncology Group (ECOG) performance status, and
number of extranodal disease sites, but the outcome in patients with DLBCL
who have identical IPI values varies considerably (Lossos et al., 2004). As
a result, Rosenwald et al. (2002) hypothesized that gene-expression profiles
of DLBCL could be used independently of the IPI to predict survival after
chemotherapy. Alizadeh et al. (2000); Shipp et al. (2002); Nguyen and Rocke
(2002); Lossos et al. (2004); Bair and Tibshirani (2004); Li and Li (2004) also
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Table 2: Simulated Data. Data Set 3. Variable Importance Measures (VIM)
are reported for w = 0.5

W True VIM Un-bagged VIM Bagged VIM
1 1.11 1.02 0.94
2 0.62 0.38 0.59
3 0.63 0.58 0.48
4 0 0.37 0.15
5 2.00 2.20 2.08
6 0.75 0.40 0.61
7 0 0.00 0.09
8 0.71 0.51 0.49
9 0 0.00 0.01
10 0.25 0.21 0.19
11 0 0.16 0.21
12 0.25 0.00 0.14
13 0.24 0.00 0.05
14 0.24 0.00 0.11
15 0.26 0.00 0.16

considered an analysis of censored survival time based on microarray gene
expression profiles, and they found that it is possible to identify subgroups
of patients with different survival rates based on gene expression data.

The DLBCL dataset of Rosenwald et al. (2002) consists of 7399 gene
expression measures from 240 patients with untreated DLBCL who had no
previous history of lymphoma. A survival time ranging between 0 and 21.8
years was recorded for each patient, where 138 of the patients died during
the study (uncensored) and 102 patients were alive (censored) at the end of
the study. Further description of the data is in Rosenwald et al. (2002).

The data used in our analysis was obtained directly from Bair and Tibshi-
rani (2004) (see http://www-stat.stanford.edu/˜tibs/superpc/staudt.html).
Bair and Tibshirani (2004) used the R function pamr.knnimpute to impute
the missing expression data. Five of the patients had a recorded survival
time of 0.0 years. The median survival time was 2.8 years, and the mean
survival time was approximately 4.4 years.
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Gene Signatures

Alizadeh et al. (2000) designed a specialized microarray, the Lymphochip,
to answer questions in normal and malignant lymphocyte biology by select-
ing genes that are preferentially expressed in lymphoid cells and genes with
known or suspected roles in processes important in cancer or immunology.
For example, Alizadeh et al. (2000) hypothesized that DLBCL derives from
normal B cells located within the germinal centers (GCs) of lymphoid organs
and customized the Lymphochip array by enriching it with genes related to
the GCs (Shipp et al., 2002). Clusters of coordinately expressed genes from
the Lymphochip array were operationally defined as gene expression signa-
tures. A gene expression signature is a group of genes expressed in a specific
cell lineage or stage of differentiation or during a particular biologic response
(Rosenwald et al., 2002). A gene expression signature was named by either
the cell type in which its component genes were expressed (e.g., the T-cell
signature) or the biological process in which its component genes were known
to function (e.g., the proliferation signature). This allows the overall gene
expression profile of a DLBCL lymph-node biopsy to be understood, at first,
as a collection of gene expression signatures revealing different biological fea-
tures of the sample (Alizadeh et al., 2000). Some known gene-expression
signatures include the germinal-center B-cell signature, MHC class II sig-
nature, lymph-node signature, and proliferation signature (Alizadeh et al.,
2000; Shaffer et al., 2001; Rosenwald et al., 2002).

Some molecular analyses of clinical heterogeneity in DLBCL have focused
on individual genes. Examples include adhesion molecules (which influence
the trafficking of normal activated B cells and tumor cells), proteins (which
regulate apoptosis in other B cell lymphomas and normal B cell subpopula-
tions), and angiogenic peptides (which promote the development of an effec-
tive tumor vasculature) (Shipp et al., 2002). BAL (B-aggressive lymphoma)
has been identified based on its differential expression in fatal high-risk DL-
BCL and treated low-risk tumors (Shipp et al., 2002).

5.1 Previous Analyses

This section summarizes the various analyses done by four authors (Rosen-
wald et al., 2002; Bair and Tibshirani, 2004; Li and Li, 2004; Gui and Li,
2004) to analyze the DLBCL data set. Their approaches can be divided into
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two categories: methods for survival prediction and methods for identifying
subgroups. Rosenwald et al. (2002) used hierarchical clustering to group the
genes into gene-expression signatures, as described earlier. Based on those
gene clusters, they built a Cox proportional hazards model to predict time
to death in the patients with DLBCL. Bair and Tibshirani (2004) applied
various semi-supervised methods to this data. Li and Li (2004) reduced the
dimension space and then built a Cox proportional hazards model on this
reduced space. Gui and Li (2004) applied a procedure they call LARS-Lasso.
Note that Segal (2005) evaluates the methods that have been applied to this
data set. The raw data came from Rosenwald et al. (2002) where tumor-
biopsy specimens were obtained from 240 patients with untreated DLBCL
who had no previous history of lymphoma. The patients were randomly di-
vided into two groups: 160 patients in the “preliminary group” (Rosenwald
et al., 2002), or training set, and 80 patients in the validation group. For each
patient, the survival time was recorded along with the censoring indicator
and gene-expression measures for 7399 features.

5.1.1 Identifying Subgroups

The end goal of Rosenwald et al. (2002) is to construct a predictor of
survival, but their proposed method is to form subgroups with distinctive
gene-expression profiles. They applied hierarchical clustering to group genes
that were correlated with the outcome into gene-expression signatures. Many
of the genes identified fell within known gene-expression signatures: 151
features belonged to the signature that characterizes germinal-center B-cells,
37 features were in the MHC class II signature, 357 were in the lymph-node
signature, and 1333 were in the proliferation signature. The authors then
combined the genes which were significantly associated with survival within
each signature. To reduce the number of genes in the model to be fitted,
they selected 16 genes that were highly variable in expression: three germinal-
center B-cell genes, four MHC class II genes, six lymph-node genes, and three
proliferation genes, and averaged the expression values for genes belonging to
the same signature. Meanwhile, the authors looked at the univariate analysis,
based on the training group, between survival and the individual genes that
were not in the four signatures. They found that BMP6 was univariately
significant. Finally, they formed a predictor of survival and fitted a Cox
proportional hazards model combining the four gene-expression signatures
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and BMP6 (Rosenwald et al., 2002):

λ(t|w) = (0.241× proliferation signature average) + (0.310×BMP6)

−(0.290× germinal center B-cell signature average)

−(0.311×MHC class II signature average)

−(0.249× lymph-node signature average)

Bair and Tibshirani (2004) developed some procedures to identify sub-
types of cancer and applied them to the DLBCL data of Rosenwald et al.
(2002). Their goal was to identify subtypes of cancer that are clinically rel-
evant and biologically meaningful. The main idea of their method is to use
clinical data to produce a list of genes which correlate with the outcome of
interest and then apply unsupervised clustering techniques to this subset of
genes. In the DLBCL dataset for example, patients’ survival times are known
but tumor subtypes have not been formally identified. In this case, the au-
thors can calculate a Cox score which measures the correlation between the
gene expression level and patient survival, and then only consider the genes
with a Cox score exceeding a particular threshold. The authors proceed to
describe a number of different methods such as a supervised principal com-
ponents method and a semi-supervised clustering routine, and they applied
these different methods as summarized in the next paragraph.

The first approach of Bair and Tibshirani (2004) was to apply an unsu-
pervised two-means clustering procedure to the DLBCL data and compare
the survival times of the two subgroups. The subgroups identified in this
manner and by using hierarchical clustering did not differ with respect to
survival. A separate analysis was to assign the 160 patients in the training
set to a low or high risk subgroup based on survival time. They selected
a model using 249 of the genes after applying nearest shrunken centroids
with cross-validation. The next step was to use this model to assign each
patient in the test set to a low or high risk group. Their next approach
was to apply a supervised clustering procedure to the data. They ranked all
of the genes based on their univariate Cox proportional hazards score and
performed clustering using the 25 top-scoring genes. Lastly, they applied a
supervised principal components method (described in the next subsection).
Using the 160 training observations, they computed Cox scores for each gene
and kept the 17 genes with a Cox score of 2.39 or higher. They then cal-
culated the principal components of the training data using these 17 genes.
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The survival curves for the low-risk versus high-risk group obtained by each
of their methods was statistically different (p < 0.05) (Bair and Tibshirani,
2004).

In addition, Bair and Tibshirani (2004) discuss that sometimes a contin-
uous predictor of survival is desired.

5.1.2 Survival Prediction

Bair and Tibshirani (2004) used a form of principal components to predict
survival. They describe supervised principal components as a generalization
of principal components regression. The first (or first few) principal compo-
nents are the linear combinations of the features that capture the directions
of largest variation within a dataset. However, these directions may or may
not be related to an outcome variable of interest, and to find linear com-
binations that are related to an outcome variable, they compute univariate
scores (in the case of survival, these are obtained from a proportional hazards
model) for each gene and then retain only those features whose score exceeds
a threshold. A principal components analysis is carried out using only the
data from these selected features. Finally, these “supervised principal com-
ponents” are used in a regression model to predict the outcome. Refer to
Bair and Tibshirani (2004) for further description of all the methods used in
their analyses.

Li and Li (2004) also analyzed the DLBCL dataset of Rosenwald et al.
(2002) by using principal components analysis (PCA) and sliced inverse re-
gression (SIR) with a Cox proportional hazards model built on the extracted
linear combinations of genes. The first step is to reduce the dimension of the
gene-expression data to a low-dimensional space so that a predictive survival
model can be built on reduced space. Li and Li (2004) proposed to use SIR
(available in R) to reduce the dimension, but they had to modify SIR to ac-
comodate censoring. The covariance matrix of X needs to be non-singular in
order to implement SIR, however, for microarray data, the number of genes
is much larger than the number of samples n in which case the covariance
matrix of X is singular. To address this problem, Li and Li (2004) adopted
the idea of Chiaromonte and Martinelli (2002) to combine SIR with PCA.
They obtained q principal components (PCs) based on correlations among
all genes with q < n. They then applied SIR with principal components as
input which takes into account the predictor variability and correlates the
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extracted linear combinations of genes with the response. Li and Li (2004)
chose q = 40 PCs and applied SIR to these PCs. The first SIR linear com-
bination was chosen to be sufficient in capturing the response information,
and they denoted this extracted linear combination of gene expression levels
with s. They then fit the following Cox proportional hazards model with s
(on the 160 training patients):

λi(t|si) = λ0(t) exp(0.2418si − 0.0046s2
i ),

where λ0(t) is an unspecified baseline hazard function, and λi(t|si) is the
hazard function for the i-th patient. Li and Li (2004) give Kaplan-Meier
survival curves for the 160 training patients and for the 80 test patients
where their scores are computed based on the model for the training set. In
each case, the difference between the low and high risk patients is statistically
significant. This process is repeated with 5-fold cross-validation as well. The
authors conclude that their method works well in distinguishing between
patient survival risks.

Gui and Li (2004) used the L1 penalized estimation for the Cox model
to select genes that are relevant to survival and to build a predictive model.
They call their procedure LARS-Lasso. Gui and Li (2004) also used the
single data split of Rosenwald et al. (2002), 160 patients in the training
sample and 80 patients in the validation sample, to analyze this data. The
top ten features selected by the LARS-Lasso procedure based on the training
set is given by Gui and Li (2004). Seven of these features belong to either
the MHC Class II, lymph node, or germinal center signature.

Regardless of the goal, prediction of survival or identifying cancer sub-
types, the general idea in all of these methods is first to reduce the data
dimension (in a manner that takes into account right-censoring) and then
build a predictor using the reduced data. The number of features is a tun-
able parameter of the D/S/A algorithm. Like some of the other methods,
we can use principal components to transform and reduce the data instead
of using univariate regressions at the start of the algorithm. The choice of
s0 would then correspond to the cut-off of principal components used in our
search algorithm. The principles of our approach allow us to mimic other
methods. The data reduction technique can be modified, and the search
through polynomial regressions can be replaced by histogram regressions, for
example (see Molinaro and van der Laan (2004)).
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5.2 D/S/A Results

The D/S/A algorithm was used to estimate E(Z|W ) where W is the
7399-dimensional vector of gene expression measurements. The outcome in
our analysis is Z = log(T +1) because five of the 240 patients had a recorded
survival time of zero. We assumed that there was non-informative censoring
in this data and used the Kaplan-Meier estimator to compute Ḡn(T |X).
The fine-tuning parameters s = (s0, s1, s2, s3) were set at different levels and
s0, s1, and s2 were selected via 5-fold cross-validation.

• |W | ≤ s0 represents the number of initial gene features to be used as
input in the model (dimension of vector of covariates)

• |I| ≤ s1 represents the number of tensor products or the size of the
index sets

• max~p∈I
∑d
j=1 I(pj 6= 0) ≤ s2 represents the maximum order of interac-

tion of tensor products (the number of non-zero components in ~p)

• max~p∈I
∑d
j=1 pj ≤ s3 represents the maximum sum of powers of tensor

products

Instead of selecting s0 data-adaptively with our algorithm, we reduced the
7399 features based on a multiple testing procedure to control false discovery
rate (FDR), for computational considerations. We used Cox regression mod-
els to obtain the 7399 unadjusted p-values, computed the adjusted p-values
controlling FDR, and retained the 78 features with an adjusted p-value less
than 0.05. Table 4 lists the adjusted p-values for W1, . . . ,W78.

cv − bagged − survdsa was then applied using these 78 variables. The
fine-tuning parameters (s0, s1, s2, s3) were set at (78,10,3,3), where s1 and
s2 were selected via cross-validation, allowing s1 to range between 1 and 10
and s2 to range between 1 and 3. The bagged estimator was based on 100
bootstrap replications.

The following un-bagged estimator was selected: 1.045 − 0.989[W 3
46] +

0.196[W35] + 0.142[W71] (s0 = 78, ŝ1 = 3, ŝ2 = 1, s3 = 3). This fit has an
R2 of 0.59 and RSS of 67.19. The corresponding bagged estimator consisted
of the average across 100 bootstrap replications of the best predictor of size
nine (and maximum order of interactions one) in each bootstrap replication
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(ŝ1 = 9, ŝ2 = 1). As a result of the constraint on interactions, this produced
a relatively low-dimensional aggregated predictor with 137 terms. The terms
are either main terms (e.g., w1) or powers of up to three (e.g., w2

1, w
3
1) because

s3 = 3. The bagged estimator produced a fit with an R2 of 0.68 and RSS of
52.81. The cross-validated risks for the estimators corresponding to different
choices of s1 and s2 are given in Table 5 (un-bagged) and 6 (bagged). These
numbers provide a rough estimate of the standard error of the predictor, e.g.,√

0.35 = 0.6. The outcome log(T + 1) ranges from 0 to 3.13. Comparing
Table 6 to Table 5, it is clear that the bagging forms more stable estimators.
However, bagging did not result in an improvement in cross-validated risk.
In addition to using cross-validation to select the fine tuning parameters
s, we can use cross-validation to select between an un-bagged and bagged
estimator. In this case, we would select the un-bagged estimator as the
optimal estimator (0.281 versus 0.351).

The variable importance curve, based on the bagged estimator, is plotted
for W35 (Figure 4). Table 7 summarizes these by displaying the slope of the
importance curve for each respective variable. The five variables having the
highest negative slope areW46, W58, W69, W55, andW71, and the five variables
having the highest positive slope are W37, W35, W3, W54, and W21. W35, W46,
and W71 were selected by the un-bagged estimator. W35 is in the lymph node
signature; W55, W69 and W71 are in the MHC class II signature; W3 and W58

are in the proliferation signature of Rosenwald et al. (2002). W35 was one of
the top ten features selected by Segal (2005) and Gui and Li (2004). W46 has
a similar description (|U28918|H65676|Hs.119222|suppression) to a feature
found in the proliferation signature.

6 Discussion

In this paper, we presented an algorithm that extends the previously pro-
posed D/S/A algorithm (Sinisi and van der Laan, 2004) to handle censored
data problems and extended it further as an aggregation technique (bag-
ging). The proposed method is applied to the DLBCL data of Rosenwald
et al. (2002).

Inspiration for developing the D/S/A algorithm came from the loss-based
estimation methodology of van der Laan and Dudoit (2003). van der Laan
and Robins (2003) handle censored data by mapping the full (uncensored)
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data loss function into an observed (censored) data loss function. Molinaro
et al. (2004) apply these ideas to survival trees demonstrating the relationship
between full data and censored data estimators. Furthermore, the IPCW loss
function allows for informative censoring. This allowed for a straight-forward
extension of the D/S/A algorithm for the prediction of survival.

One of the options of the D/S/A algorithm is to reduce the data based on
univariate regressions to have no more than s0 candidate covariates, where
s0 can be chosen with cross-validation. When looking at other methods used
to analyze the DLBCL data, we found that often the data was reduced using
principal components (PCs) and then a hazards model was estimated with
the first (few) PCs. s0 could represent the number of PCs rather than the
number of original variables. It is easy to foresee that the dimension reduction
can be done in other ways. Our approach is general as discussed in (van der
Laan and Dudoit, 2003; Sinisi and van der Laan, 2004; Molinaro and van der
Laan, 2004; Durbin et al., 2005) and based on the choice of loss function,
basis functions, and sets of deletion, substitution, and addition moves. It
might be worthwhile to pursue more general implementations that allow the
user to decide on more options such as the strategy for dimension reduction.

van der Laan et al. (2005) introduces how to apply the cross-validation
selector external to candidate bagged estimators when selecting fine-tuning
parameters. This led to our proposal of the cross-validated bagged dsa esti-
mator. When bagging is applied to survival data, it is necessary to estimate
the conditional censoring survivor function with the observed data. We rec-
ommended estimating this for each bootstrap sample, but we did not do this
in our analyses for computational considerations. The impact of this should
be investigated with simulated experiments. A further exploration into the
comparisons of un-bagged and bagged estimators is under consideration.
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Table 3: Simulated Data. Data Set 2 (25 Repetitions). Variable Importance
Summary (mean, variance, bias, and mean square error) Measures are re-
ported for un-bagged (left col) vs. bagged (right col) estimator; ’ratio’ is the
ratio of un-bagged MSE to bagged MSE

w true mean var bias MSE ratio
1 1 0.975491 0.950232 0.034100 0.024090 -0.024509 -0.049768 0.034700 0.026566 1.31
2 0.50 0.430924 0.397433 0.017968 0.016736 -0.069076 -0.102567 0.022740 0.027256 0.83
3 0.33 0.245109 0.219208 0.032635 0.022762 -0.088224 -0.114126 0.040418 0.035786 1.13
4 0.25 0.131324 0.121650 0.029833 0.017976 -0.118676 -0.128350 0.043918 0.034450 1.27
5 0.20 0.067187 0.083951 0.015280 0.010214 -0.132813 -0.116049 0.032919 0.023681 1.39
6 0 0.004689 0.011620 0.000301 0.000222 0.004689 0.011620 0.000323 0.000357 0.91
7 0 0.000000 0.006331 0.000000 0.000093 0.000000 0.006331 0.000000 0.000133 0
8 0 0.005988 0.013254 0.000523 0.000415 0.005988 0.013254 0.000559 0.000591 0.95
9 0 0.006452 0.009928 0.000462 0.000431 0.006452 0.009928 0.000504 0.000530 0.95
10 0 0.005928 0.004478 0.000406 0.000091 0.005928 0.004478 0.000441 0.000111 3.98
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Table 4: DLBCL data analysis. Adjusted p-values for Top 78 Variables. Un-
adjusted p-values are obtained from Cox regressions, and adjusted p-values
are controlling FDR. ID refers to the unique Lymphochip identification num-
ber.

W ID Adj p-value W ID Adj p-value W ID Adj p-value
1 31242 0.0107 27 30191 0.0229 53 27872 0.0360
2 24376 0.0107 28 16832 0.0232 54 33358 0.0360
3 31981 0.0107 29 34783 0.0242 55 16988 0.0360
4 32679 0.0114 30 17591 0.0256 56 33310 0.0360
5 25116 0.0175 31 29710 0.0256 57 19255 0.0360
6 27267 0.0176 32 27612 0.0256 58 29176 0.0362
7 27774 0.0176 33 27587 0.0256 59 29222 0.0364
8 19373 0.0176 34 25054 0.0256 60 34680 0.0371
9 24396 0.0176 35 28641 0.0263 61 31681 0.0371
10 27592 0.0176 36 24220 0.0263 62 33166 0.0371
11 34805 0.0181 37 34344 0.0263 63 27718 0.0386
12 33014 0.0216 38 32238 0.0269 64 17646 0.0405
13 27573 0.0218 39 17236 0.0269 65 25092 0.0410
14 24394 0.0218 40 24725 0.0269 66 33644 0.0422
15 27585 0.0218 41 17482 0.0269 67 33585 0.0424
16 24432 0.0218 42 23872 0.0279 68 28532 0.0426
17 17259 0.0223 43 31669 0.0284 69 28197 0.0430
18 30634 0.0223 44 30272 0.0284 70 17517 0.0449
19 27766 0.0223 45 24203 0.0284 71 17273 0.0449
20 27415 0.0223 46 15937 0.0304 72 26884 0.0472
21 28328 0.0229 47 34546 0.0304 73 17154 0.0478
22 30669 0.0229 48 17241 0.0327 74 28325 0.0478
23 27731 0.0229 49 15841 0.0342 75 34500 0.0478
24 26940 0.0229 50 24377 0.0342 76 24205 0.0482
25 26528 0.0229 51 27270 0.0360 77 27218 0.0482
26 28377 0.0229 52 31806 0.0360 78 16359 0.0495
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Table 5: DLBCL data analysis. Cross-validated risks for un-bagged estima-
tors (v=5, np=48)

s1/s2 1 2 3
1 0.407 0.460 0.462
2 0.386 0.443 0.453
3 0.281 0.405 0.462
4 0.319 0.458 0.489
5 0.353 0.453 0.519
6 0.350 0.501 0.595
7 0.389 0.554 0.657
8 0.382 0.562 0.745
9 0.367 0.553 0.777
10 0.379 0.589 1.012

Table 6: DLBCL data analysis. Cross-validated risks for bagged estimators
(v=5, np=48)

s1/s2 1 2 3
1 0.370 0.395 0.400
2 0.376 0.380 0.391
3 0.366 0.379 0.399
4 0.362 0.361 0.400
5 0.360 0.370 0.401
6 0.353 0.367 0.403
7 0.353 0.361 0.409
8 0.357 0.367 0.418
9 0.351 0.378 0.402
10 0.365 0.377 0.401
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Table 7: DLBCL data analysis. Sorted Variable Importance Slopes based on
Bagged Estimator

W VIM W VIM W VIM
46 -0.1378 43 -1.38E-03 77 0.0015
58 -0.0429 76 -1.09E-03 59 0.0015
69 -0.0295 23 -1.01E-03 12 0.0018
55 -0.0197 16 -8.93E-04 2 0.0019
71 -0.0196 20 -8.75E-04 60 0.0019
73 -0.0137 39 -8.27E-04 45 0.0020
8 -0.0108 67 -4.42E-04 17 0.0024
31 -0.0104 53 -4.12E-04 56 0.0028
24 -0.0103 75 -4.07E-04 32 0.0035
34 -0.0089 9 -1.80E-04 68 0.0035
15 -0.0075 26 -1.03E-04 62 0.0037
72 -0.0061 36 -1.49E-05 10 0.0042
25 -0.0052 44 1.76E-05 40 0.0045
19 -0.0050 27 2.39E-04 6 0.0048
52 -0.0048 28 3.17E-04 63 0.0051
38 -0.0047 4 3.31E-04 11 0.0060
22 -0.0042 7 5.17E-04 5 0.0070
48 -0.0030 78 5.91E-04 49 0.0073
18 -0.0030 70 6.73E-04 50 0.0076
1 -0.0029 66 7.10E-04 47 0.0084
64 -0.0027 42 7.84E-04 29 0.0087
61 -0.0026 30 7.95E-04 21 0.0100
51 -0.0025 41 8.36E-04 54 0.0224
33 -0.0022 74 8.88E-04 3 0.0294
13 -0.0018 65 1.02E-03 35 0.0305
14 -0.0017 57 1.06E-03 37 0.0332
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Training Sample Validation sample

Learning Set

b1 b2 bB
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s2

s1

s2
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s1

s2

1. Split Data into training 
and validation samples

2. Draw 
B
bootstrap
samples

3. For each b, 
use the dsa 
to fit the best 
model for each
s1, s2

4. Average 
each element in
the matrix 
across all
bootstrap 
samples

5. Evaluate the performance of 
candidate estimators on 
independent validation set

Matrix of optimal 
regression fits 

Matrix of averaged
optimal regression
fits (candidate 
estimators)

Matrix of cross-validated 
risks on validation set
for optimal averaged 
regression fits 

6.Choose the s1, s2 =Ŝ
of the estimator with the best 
performance 

7. Using the learing set, run the boxed algorithm 
(steps 2-4) and report the corresponding estimator 
for the optimal  s1, s2 (Ŝ)

Figure 1: cv-bagged-dsa. Schematic of cross-validated bagged D/S/A algo-
rithm for s1 and s2
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Figure 2: Simulation 1. Variable Importance Measure against Range of w
for W1, . . . ,W10
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Figure 3: Simulation 2. Variable Importance Measure against Range of w
for W1, . . . ,W10
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Figure 4: DLBCL data analysis. Variable Importance Measure against Range
of w for W35 (Lymphochip unique id 28641)
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