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Choice of Monitoring Mechanism for Optimal
Nonparametric Functional Estimation for

Binary Data

Nicholas P. Jewell, Mark J. van der Laan, and Stephen Shiboski

Abstract

Optimal designs of dose levels in order to estimate parameters from a model for
binary response data have a long and rich history. These designs are based on
parametric models. Here we consider fully nonparametric models with interest
focused on estimation of smooth functionals using plug-in estimators based on
the nonparametric maximum likelihood estimator. An important application of
the results is the derivation of the optimal choice of the monitoring time distribu-
tion function for current status observation of a survival distribution. The optimal
choice depends in a simple way on the dose response function and the form of the
functional. The results can be extended to allow dependence of the monitoring
mechanism on covariates.



1 Introduction

A common problem in dose response experiments is estimation the relationship between the

level of a dose, C and the probability of a binary response, denoted by F (C). Suppose the

function F = Fθ is parametrically modeled by say a logistic or probit function, and that ni

observations are taken at a set of k dose levels c1, . . . , ck. A natural design question relates to

the optimal choice of c1, . . . , ck with regard to efficient estimation of all or some components

of θ. See, for example, Sitter (1992) and the references therein. Such optimization often

leads to two or three point designs and depend on the unknown value of θ.

Sitter (1992) tackles the issue that the optimal design depends on unknown values of θ

using a minimax approach over a region of possible values for θ, but does not consider that

the parametric model for Fθ is also assumed to be known in advance. Here we consider

optimal choice of the dose levels where the form of F is unspecified and interest focuses on

estimation of a single functional of F .

The results have immediate application to estimation of functionals of the distribution,

F , of a survival random variable, T , where estimation is based on current status data;

here, observation of T is restricted to knowledge of whether or not T exceeds a random

independent monitoring time C. Nonparametric estimation of the survival function, and

semi-parametric techniques for related regression models, based on current status data,

are reviewed in Jewell & van der Laan (2004). In detail, let T be the survival random

variable of interest, with associated distribution function F . Assume that the monitoring

time, C, is randomly selected from a distribution function G, independently of T . An

independent and identically distributed sample of n individuals is therefore drawn from the
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joint distribution of (T,C); however, only {(∆i, Ci : i = 1, . . . , n} is observed where ∆ =

I(T ≤ C). In this context, the design question relates to optimal choice of G for estimation

of a given functional of F , based on such current status data. In some settings, choice of

the monitoring times may not be under the control of the investigator; however, in many

applications in carcinogenecity testing and cross-sectional disease incidence estimation,

monitoring times may be pre-selected. We use current status notation in what follows

below.

2 Optimal Choice of G with F unspecified

Nonparametric maximum likelihood estimation of the distribution function, F , of T from

current status data is easily implemented using the pool-adjacent-violator algorithm (Ayer

et al, 1955). Here we wish to select the distribution function, G, of C, in terms of minimizing

the asymptotic variance of a specific functional estimate.

The properties of the nonparametric maximum likelihood estimator Fn of F , based on

current status data, were established by Groeneboom & Wellner (1992) who, in particular,

considered the efficiency of smooth functionals of Fn as estimators of the corresponding

functional of F . The estimator, Fn, is known to converge only at the rate n−1/3. However,

plug-in estimates of smooth functionals are asymptotically Gaussian, converging at the

standard rate n−1/2.

In detail, consider the parameter µ =
∫

(1 − F (u))r(u)du for some function r, and the

corresponding estimator µn =
∫

(1 − Fn(u))r(u)du. Suppose there is a constant M < ∞
so that (i) r is bounded on [0,M ], (ii) F is continuous with a density f > 0 on [0,M ]
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and zero elsewhere, and (iii) g(c) = dG/dc > 0 on [0,M ]. Huang & Wellner (1995) proved

that, for any pair (F,G) and function r that satisfy (i)–(iii), the estimator µn is regular

and asymptotically linear with the variance of its influence curve given by

V AR(IC) =

∫
r2(c)

g(c)
F (c)(1 − F (c))dc. (1)

The question we pose here is that, for a given r and F , what choice of the monitoring time

distribution G minimizes the variance of the influence function for µn? That is we seek the

G that minimizes the right hand side of (1).

To solve this optimization problem, we perform an “infinite dimensional differentiation”

of (1) with respect to the density g corresponding to G. Specifically, let h be any function in

L0
2(G), the set of all square-integrable functions with respect to the measure dG that satisfy∫
h(c)dG(c) = 0; then, for any g0 and for a small enough positive number ε, (1 + εh)g0

describes a one-dimensional family of densities that passes through g0 at ε = 0. If g0

minimizes (1), it follows that the function

ε →
∫

r2(c)

(1 + εh(c))g0(c)
F (c)(1 − F (c)dc (2)

has a minimum at ε = 0. That is,

d

dε

∫
r2(c)

(1 + εh(c))g0(c)
F (c)(1 − F (c))dc

∣∣∣∣
ε=0

= 0.

This yields
∫ r2(c)

g0(c)
F (c)(1 − F (c)h(c)dt = 0. This is equivalent to saying that∫

r2(c)

[g0(t)]
2 F (c)(1 − F (c)h(c)dG(c) = 0

Since this is true for all h in L0
2(G) , it follows that

r2(c)

[g0(c)]
2 F (c)(1 − F (c)) = K,
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for some constant K. Solving for K by normalizing then yields

g0(c) =
|r(c)|F (c)1/2(1 − F (c))1/2

K∗ , (3)

where the constant K∗ =
∫ |r(c)|F (c)1/2(1 − F (c))1/2dc. To complete this analysis, we

must show that this g0 in fact yields a minimum of (2). This is seen by taking the second

derivative of (2), and evaluating at ε = 0; this yields

2

∫
r2(c)

g0(c)
F (c)(1 − F (c)h(c)2dc = 2K∗

∫
|r(c)|F (c)1/2(1 − F (c))1/2h(c)2dc > 0,

as desired.

We have thus shown that the optimal g0 depends on the function r and F through (3).

We briefly consider two simple examples where interest focuses on (i) the mean, and

(ii) the variance of F . For the mean, take r(c) ≡ 1. Here, the optimal choice is g0 ∝
F 1/2(1−F )1/2; thus monitoring times (or doses) should be concentrated around the median

of F . Alternatively, for the variance, take r(c) = 2c − E(F ), with the subsequent optimal

choice given by g0(c) ∝ |2c − E(F )|F 1/2(1 − F )1/2. In this case, monitoring times (doses)

will be much less concentrated around the median of F with more weight given to values

in the tails of F .

For illustration, suppose the unknown F is described by an exponential distribution

with mean 1, conditional on being less than 10. Figure 1 illustrates the optimum choice

of g for estimation of the mean and variance of F , based on the nonparametric maximum

likelihood estimator.

FIGURE 1 ABOUT HERE
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3 Allowing the Optimal Choice of G to Depend on

Covariates

We extend the result of §2 to allow for monitoring designs that are allowed to depend

on a k dimensional fixed covariate Z. The assumption that C and T are independent is

now loosened to C being independent of T , given Z. In nonparametrically estimating the

functional µ, based on observed data {(∆i, Ci, Zi) : i = 1, . . . , n}, the efficient influence

curve is given by

ICeff(c) =
r(c){F (c|Z) − ∆}

g(c|Z)
+

∫ ∞

0

r(u){1 − F (u|Z)}du − µ

=
r(c){F (c|Z) − ∆}

g(c|Z)
+

∫ ∞

0

r(u){F̄ (u|Z) − F̄ (u)}du,

with F̄ = 1 − F , a special case of (4.12) in van der Laan & Robins (2003, p. 242). The

variance of this influence curve is then

E
(
ICeff

2
)

= E

[
r2(c) {F (c|Z) − ∆}2

g2(c|Z)

]
+ E

[(∫ ∞

0

r(u){F̄ (u|Z) − F̄ (u)}du

)2
]

+2E

[
r(c){F (c|Z) − ∆}

g(c|Z)

∫ ∞

0

r(u){F̄ (u|Z) − F̄ (u)}du

]

= E

[
r2(c) {F (c|Z − ∆}2

g2(c|Z)

]
+ φ(FZ),

where E(·) is the expectation with respect to the data generating distribution, and FZ

is the marginal distribution of Z, which does not depend on g. The second step in this

derivation follows from taking conditional expectations in the right order. We now seek

the optimal set of conditional densities g(c|Z) that minimizes the expectation

E

[
r2(c) {F (c|Z − ∆}2

g2(c|Z)

]
= EFZ

[∫ ∞

0

r2(c)F (c|Z) {1 − F (c|Z)}
g(c|Z)

dc

]
.
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For a fixed Z, an identical argument to §2 shows that the density that optimizes
[∫ ∞

0
r2(c)F (c|Z){1−F (c|Z)}

g(c|Z)
dc

]
is given by

g0(c|Z) =
|r(c)|F (c|Z)1/2(1 − F (c|Z))1/2

K∗(Z)
, (4)

with the normalizing constant K∗ =
∫ |r(c)|F (c|Z)1/2(1−F (c|Z))1/2dc, as before. It imme-

diately follows that the densities (4), for all Z, provide the optimal conditional monitoring

densities.

4 Further Extensions

In many examples, particularly in the presence of covariates, interest focuses on functionals

that are not merely based on the marginal distribution F . For example, if we assume a

regression model linking T with Z of the form E(T |Z) = βZ, we may wish to select a

monitoring distribution to optimize estimation of β. A simple example of this occurs in a

two group comparison of the mean of T . As before, van der Laan & Robins (2003, p. 242)

provides the relevant efficient influence curve for estimation of a smooth functional µ(FT,Z)

of the joint distribution FT,Z of (T, Z). In particular, suppose D(T, Z) is the efficient

influence curve for µ(FT,Z) in the full data world where {(Ti, Zi) : i = 1, . . . , n} is observed.

Let ag,Z be the left end point of the support of the density g(·|Z). Then, the analogous

efficient influence curve based on {(∆i, Ci, Zi) : i = 1, . . . , n} is given by

ICeff =
D′(c, Z){F (c|Z) − ∆}

g(c|Z)
+

∫ ∞

0

D′(u, Z){1 − F (u|Z)}du + D(ag,Z),

where D′(t, Z) = ∂D(t,Z)
∂t

. For simplicity, we now assume that ag,Z does not vary with g and,

in particular, agrees with the left end point of the support of F . Then, the same approach

7

http://biostats.bepress.com/ucbbiostat/paper163



as in §3 shows that the optimal conditional monitoring densities are given by

g0(c|Z) =
|D′(c, Z)|F (c|Z)1/2(1 − F (c|Z))1/2

K∗(Z)
,

with normalizing constant K∗ =
∫ |D′(c, Z)|F (c|Z)1/2(1 − F (c|Z))1/2dc.

For the results in §2–3, it is desirable to allow that some of the components of Z be time-

dependent. In this case, the efficient influence curve is the implicit solution to an integral

equation, and so it is not easy to see how optimization can proceed straightforwardly. In

practice, discrete sequential choice of future monitoring times might be based on current

values of the time dependent covariates using the results of §3.

5 Discussion

In practice, of course, F is no more known a priori than θ in the parametric setting. Thus,

an optimum design based on a presumed F may be somewhat different than the true F in

the experimental setting. We suggest therefore that a series of plausible F s be considered

along with the associated optimum design. Then, for each such F , the relevant variance of

the desired functional can be calculated from (1) over the range of possible optimal designs

under consideration. As in Sitter (1992) a minimax criterion could then be used to select a

particular design that is robust to some misspecification of F . At the very least, optimum

nonparametric and parametric designs can be compared to illuminate how much the design

depends on a particular parametric model choice. Similarly, to exploit the role of covariates

a plausible regression model for F (c|Z) must be invoked to derive the optimal monitoring

densities g(c|Z).

We have focused here on estimation of a single functional. In many examples, investi-
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gators may wish to estimate several functionals efficiently and simultaneously. In principle,

the joint influence curve can be calculated as in (1) although now we have several possible

optimality criteria, including D-, A-, and E-optimality (see Sitter, 1992). Any of these

approaches can serve as the basis of optimal choice of g.
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Figure 1: Optimal Choice of Monitoring Time Density, g0, for Nonparametric

Estimates of the Mean (dotted line), and Variance (dash-dotted line) of

the Distribution Function F (with density given by the solid line)
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