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IBD Configuration Transition Matrices and
Linkage Score Tests for Unilineal Relative

Pairs

Sandrine Dudoit

Abstract

Properties of transition matrices between IBD configurations are derived for four
general classes of unilineal relative pairs obtained from the grand-parent/ grand-
child, half-sib, avuncular, and cousin relationships. In this setting, IBD config-
urations are defined as orbits of groups acting on a set of inheritance vectors.
Properties of the transition matrix between IBD configurations at two linked loci
are derived by relating its infinitesimal generator to the adjacency matrix of a
quotient graph. The second largest eigenvalue of the infinitesimal generator and
its multiplicity are key in determining the form of the transition matrix and of
likelihood-based linkage tests such as score tests.



1 Introduction

Genetic mapping is concerned with identifying genes that predispose to given
phenotypes in humans and model organisms. The general approach to ge-
netic mapping involves identifying loci at which genotypes are associated
with phenotypes. Genotype-phenotype associations are viewed as suggesting
linkage, or “closeness”, of a genetic locus to a gene influencing the pheno-
type. Since the seminal work of Haseman and Elston (1972) on the link-
age analysis of quantitative traits, identity by descent (IBD) genotypes have
been widely used in genetic mapping studies. Reviews of IBD-based linkage
analysis methods are given in Elston and Cordell (2001) and Shih and Whit-
temore (2001). Likelihood-based methods for studying associations between
phenotypes and IBD configurations at marker loci typically involve comput-
ing transition probabilities between IBD configurations at two linked loci.
Properties of IBD configuration transition matrices are therefore important
in terms of understanding statistical properties of linkage test statistics and,
more generally, for studying patterns of transmission of DNA in families.

Focusing on sibships, Dudoit (1999), Dudoit and Speed (1999), and Du-
doit and Speed (2000) proposed a unified likelihood-based approach for the
genetic mapping of complex human traits, qualitative and quantitative, using
IBD data from small pedigrees. The unified approach considers the likeli-
hood of IBD data conditional on phenotypes, and tests for linkage between a
marker locus and a gene influencing the trait using a score test. For a given
pedigree type, the form of the linkage score statistic is determined by the
second largest eigenvalue and corresponding eigenvector(s) of the transition
matrix for IBD configurations. The simulations studies of Dudoit and Speed
(2000), Goldstein et al. (2000), and Goldstein et al. (2001) demonstrated that
the linkage score test for quantitative traits had good power and robustness
properties compared to alternative genetic mapping methods based on IBD
data from unilineal relative pairs and sib-pairs.

The present article derives theoretical properties of transition matrices
between IBD configurations at two linked loci for four general classes of uni-
lineal relative pairs, obtained from the grand-parent/grand-child, half-sib,
avuncular (uncle/nephew), and cousin relationships. In this setting, IBD
configurations are defined as orbits of groups acting on a set of inheritance
vectors (Donnelly, 1983). Section 2 describes general properties of transi-
tions matrices for IBD configurations. We show that the transition matrix
satisfies a semi-group property (Proposition 1, p. 5) and derive a spectral
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representation of the matrix in terms of the eigenvalues and eigenvectors of
its infinitesimal generator (Proposition 2, p. 7). Properties of the eigenvalues
of the infinitesimal generator are obtained by relating it to the adjacency
matrix of a quotient graph (Proposition 4, p. 9). The second largest eigen-
value of the infinitesimal generator and its multiplicity are key in determining
the form of the transition matrix. Sections 3 – 6 describe specific properties
of the transition matrices for the four general classes of unilineal relative
pairs. Based on these properties, Section 7 derives linkage score statistics,
for qualitative and quantitative traits, for the different types of relative pairs.
Table 1 summarizes the main properties of the transition matrices and score
statistics for the four classes of unilineal relative pairs.

2 General properties of transition matrices

for IBD configurations

2.1 Inheritance vectors and IBD configurations

DNA at the same locus on two homologous chromosomes is said to be iden-
tical by descent (IBD) if it originated from the same ancestral chromosome.
Identity by descent (IBD) patterns within a pedigree may be summarized at
any locus by inheritance vectors which indicate the outcome of meioses giving
rise to the non-founders. For a pedigree with n non-founders, Kruglyak et al.
(1996) and Lander and Green (1987) define the inheritance vector at a partic-
ular locus to be a binary 2n-vector whose coordinates describe the outcome
of the 2n paternal and maternal meioses giving rise to the n non-founders.
The (2i − 1)st coordinate is 0 or 1 according to whether grand-paternal or
grand-maternal DNA was transmitted in the paternal meiosis giving rise to
the ith non-founder, i = 1, . . . , n. The (2i)th coordinate contains the same
information for the maternal meiosis. Thus, for a pedigree with f founders,
the inheritance vector completely specifies which of the 2f founder DNA
variants are inherited by each non-founder at the locus of interest.

In many cases, only a subset of meioses are relevant. For instance, when
considering IBD for unilineal relative pairs, the only relevant meioses are
those intervening between the two relatives and their common ancestor(s)
(see Donnelly (1983) and Sections 3 – 6 below for specific definitions).

Note that inheritance vectors as defined above summarize IBD within a
pedigree. In other words, inheritance vectors follow the transmission of the

2

http://biostats.bepress.com/ucbbiostat/paper128



founders’ DNA within the pedigree, ignoring any IBD already present among
these founders. Thus, in general, we allow the possibility of inbreeding in the
population of interest and the founders could in principle be related.

For d meioses, let X denote the set of all 2d inheritance vectors. This
set is highly redundant, as subsets of inheritance vectors correspond to the
same amount of IBD sharing among relatives. Inheritance vectors may be
partitioned into a smaller number of IBD configurations. For instance, for
sib-pairs, it is common practice to collapse the 24 = 16 inheritance vectors
into three IBD configurations corresponding to the number j = 0, 1, 2 of
chromosomes sharing DNA IBD at a given locus.

In this article, unless otherwise indicated, we consider a general definition
of IBD configurations as orbits of groups acting on the set of inheritance vec-
tors X . The group definitions for IBD configurations depend on the pedigree
type. Dudoit and Speed (1999) consider IBD configurations for sibships of
arbitrary size. In particular, it is shown that the usual 0, 1, 2 IBD configura-
tions for sib-pairs correspond to the orbits of S2 ×D4, the direct product of
the symmetric group S2 on 2 letters and the dihedral group D4 of the square.
In Sections 3 – 6, we consider the group definitions of Donnelly (1983) for
the four general classes of unilineal relative pairs. Working with IBD con-
figurations rather than inheritance vectors serves at least two purposes: (i)
practical convenience achieved from data reduction and (ii) mathematical
symmetry for the transition matrices between IBD configurations, as shown
below.

2.2 Transition matrices for inheritance vectors

Because of crossovers, the IBD configuration of a given pedigree varies along
a chromosome. In this section, we summarize general properties of transition
matrices between IBD configurations at two linked loci. Proofs of the general
results in Propositions 1 – 4 are given in Dudoit (1999) and Dudoit and Speed
(1999). Consider two loci L1 and L2 with recombination fraction θ ∈ [0, 1/2],
and denote inheritance vectors (for d meioses) at the two loci by x and y,
respectively. If these two inheritance vectors differ at a particular entry,
this indicates the occurrence of a recombination between L1 and L2 in the
corresponding meiosis. Let ∆(x, y) denote the number of coordinates at
which the inheritance vectors x and y differ (Hamming distance), i.e., the
number of recombination events between the two loci. Recombination events
are assumed to be independent across meioses and to occur with probability
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θ in each meiosis. Thus, the probability rxy(θ) of a transition from x to y
is the probability of ∆(x, y) recombination events in the d meioses under
consideration

rxy(θ) = θ∆(x,y)(1− θ)d−∆(x,y).

The transition matrix R(θ) =
(
rxy(θ)

)
between inheritance vectors at

loci with recombination fraction θ may be expressed as the Kronecker power
of 2 × 2 transition matrices corresponding to transitions in each of the d
coordinates

R(θ) =

[
1− θ θ
θ 1− θ

]⊗d

. (1)

In the extreme case of fully linked loci (θ = 0), the transition matrix simplifies
to R(0) = I2d , the 2d × 2d identity matrix. In the other extreme of unlinked
loci (θ = 1/2), all the entries ofR(1/2) are equal to 2−d. Thus, the inheritance
vectors at two unlinked loci are independent. This corresponds to Mendel’s
Second Law.

Note that we are assuming equal male and female recombination fractions;
otherwise, we would have a 2×2 transition matrix for paternal meioses and a
2×2 transition matrix for maternal meioses. If θm and θf denote respectively
the male and female recombination fractions between L1 and L2, then the
transition matrix is

R(θm, θf ) =

[
1− θm θm

θm 1− θm

]⊗dm

⊗
[

1− θf θf

θf 1− θf

]⊗df

, (2)

where dm and df denote, respectively, the number of paternal and maternal
meioses among the d meioses.

2.3 Transition matrices for IBD configurations

The transition matrix R(θ) for inheritance vectors has the same form for any
pedigree structure, however, the transition matrix for IBD configurations
depends on the type of pedigree under consideration and the type of group
action defining these IBD configurations. Suppose that for a given pedigree
structure, IBD configurations are defined as orbits of a group G acting on the
set of inheritance vectors X . Denote the m IBD configurations by Cj, j =
1, . . . ,m. The transition matrix T (θ) =

(
tij(θ)

)
between IBD configurations
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at loci with recombination fraction θ is the m×m matrix with entries

tij(θ) =
1

|Ci|
∑
x∈Ci

∑
y∈Cj

rxy(θ) =
1

|Ci|
∑
x∈Ci

∑
y∈Cj

θ∆(x,y)(1− θ)d−∆(x,y)

Note that these entries are polynomials in θ of degree d, the number of
meioses.

Dudoit (1999) and Dudoit and Speed (1999) showed that these conditional
probabilities simplify to

tij(θ) =
∑
y∈Cj

θ∆(x,y)(1− θ)d−∆(x,y), where x is any x ∈ Ci (3)

=
|Cj|
|Ci|

∑
x∈Ci

θ∆(x,y)(1− θ)d−∆(x,y), where y is any y ∈ Cj.

In the extreme case of fully linked loci (θ = 0), the transition matrix simplifies
to T (0) = Im, the m×m identity matrix. In the other extreme of unlinked
loci (θ = 1/2), tij(1/2) = |Cj|/2d.

The next two propositions relate the transition matrix T (θ) to the adja-
cency matrix of a quotient graph whose eigenvalues and their multiplicities
are key in determining properties of T (θ) and its derivatives.

Proposition 1 Semi-group property for T (θ).
Let T (θ) denote the transition matrix between IBD configurations {Cj : j =
1, . . . ,m} defined as orbits of a group G acting on the set X of inheritance
vectors. Define a binary operation ∗ as θ1∗θ2 = θ1(1−θ2)+θ2(1−θ1). Then,
T (θ) satisfies the semi-group property

T (θ1 ∗ θ2) = T (θ1)T (θ2). (4)

Thus, T (θ) may be written as

T (θ) = ed(θ)Q, (5)

where d(θ) = − ln(1− 2θ)/2 is the inverse of the Haldane map function and
Q = T ′(0) is the infinitesimal generator. The infinitesimal generator Q has
the form

Q = T ′(0) = B − dI, (6)
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where B is the m×m matrix with entries

bij =
∑
y∈Cj

I(∆(x, y) = 1), for any x ∈ Ci, (7)

∆(x, y) denotes Hamming distance, i.e., the number of coordinates at which
the inheritance vectors x and y differ, and I( ) denotes the indicator function.
The transition matrix T (θ) has stationary distribution

α = (α1, . . . , αm) =
1

2d

(
|C1|, . . . , |Cm|

)
(8)

and T (θ) is reversible, that is,

αitij(θ) = αjtji(θ).

Hence, for one meiosis, the crossover process is embeddable in a continuous-
time random walk on {0, 1}, where 0 and 1 denote respectively the transmis-
sion of paternal and maternal DNA to one’s child, and the time parameter is
d(θ) = − ln(1− 2θ)/2, the inverse of the Haldane map function. Jointly, the
d crossover processes are independent and identically distributed (i.i.d.) and
so embeddable in a continuous-time random walk on the vertices of the hy-
percube {0, 1}d (Donnelly, 1983). The random walk model for the crossover
process is widely used and is referred to in the genetics literature as the no
interference model. Under the no interference model, the crossover process
on individual meiotic products is a Poisson process with intensity 1. The
Haldane map function M(d) = (1 − e−2d)/2 relates recombination fractions
to genetic map distances d (measured in Morgans, M) under the no interfer-
ence model (Speed, 1996). Note that if we have three ordered loci, and θ1

and θ2 are the recombination fractions between the first and second loci and
second and third loci, respectively, then θ1 ∗ θ2 is the recombination fraction
between the first and third loci under the assumption that recombination
events in disjoint intervals are independent, i.e., no crossover interference.
Also note that we do not need to assume no crossover interference to de-
rive the semi-group property in Proposition 1. If however we do assume no
crossover interference, then the inheritance vectors along a chromosome form
a continuous-time Markov chain with time parameter the genetic map dis-
tance along a chromosome. From condition (15) p. 63 in Rosenblatt (1974),
it follows that the IBD configurations also form a continuous-time Markov
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chain.

In order to compute linkage score statistics as in Dudoit and Speed (1999),
one needs derivatives of the transition matrix T (θ) at θ = 1/2. These may
be computed by direct differentiation of the polynomial entries of T (θ), but
one gains more knowledge on the transition matrix and on the form of the
score statistic by using the following spectral decomposition of T (θ).

Proposition 2 Spectral decomposition for T (θ).
Let T (θ) denote the transition matrix between IBD configurations {Cj : j =
1, . . . ,m} defined as orbits of a group G acting on the set X of inheritance
vectors. Then T (θ) may be written as

T (θ) =
∑

h

eλhd(θ) Ph =
∑

h

(1− 2θ)−λh/2 Ph, (9)

where λh are the distinct real eigenvalues of the infinitesimal generator Q,
and Ph are projection matrices satisfying P 2

h = Ph = P ∗
h , PhPl = 0, h 6= l,

and
∑

h Ph = I. The matrix P ∗
h is the adjoint of Ph with respect to the inner

product < x, y >α=
∑

i αixiyi. The ijth entry of Ph is αjvihvjh, where vih is
the ith entry of the right eigenvector vh of Q corresponding to λh, and the
eigenvectors vh are orthonormal with respect to the inner product <,>α.

Thus, eigenvalues of Q and their multiplicities give us information regard-
ing the derivatives of the transition matrix T (θ) and hence the form of the
score statistic in θ. We relate the infinitesimal generator Q to the adjacency
matrix of a quotient graph in order to derive properties of its eigenvalues
and corresponding eigenvectors. Consider the graph X with vertex set the
set of all inheritance vectors of length d and adjacency matrix A(X ) = A,
with (x, y)-entry

axy =

{
1, if ∆(x, y) = 1,

0, otherwise.

X is the graph defined by the first associates in the Hamming scheme H(d, 2)
(van Lint and Wilson (1992), Chapter 30). Consider any group G acting on
the set X of inheritance vectors. The matrix B, defined in Proposition 1, is
the adjacency matrix of the quotient graph X/G, which is the multi-digraph
with the orbits of G as its vertices and with bij arcs going from Ci to Cj.
Recall that Q = B − dI, consequently, one may work with B to derive the
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eigenvalues of Q; the eigenvalues of Q are simply the eigenvalues of B minus
the number of meioses d.

In order to derive the eigenvalues of B, we rely on the following gen-
eral properties of the eigenvalues of the adjacency matrix A. To describe
the eigenvectors of A it is convenient to code the inheritance vectors x =
(x1, x2, . . . , xd) as in a 2d factorial experiment, where xi = 1 when factor i
is absent and 0 when it is present. The eigenvectors of A have the following
patterns.

Proposition 3 Eigenvalues and eigenvectors of adjacency matrix A.

The eigenvalues of A belong to the set
{
d − 2i(d

i)
: i = 0, . . . , d

}
, where

(
d
i

)
is the multiplicity of the eigenvalue d− 2i. The eigenvector corresponding to
the eigenvalue λ = d is the grand mean term, V0 = (1, 1, . . . , 1)T .
The eigenvectors corresponding to the eigenvalue λ = d − 2 are the d main
effect terms, V1, V2, . . . , Vd, where

Vi(x) = I(xi = 1)− I(xi = 0). (10)

The eigenvectors corresponding to the eigenvalue λ = d − 4 are the
(

d
2

)
2-

factor interactions, Vij, 1 ≤ i < j ≤ d, where

Vij(x) = Vi(x)Vj(x).

In general, the eigenvectors corresponding to the eigenvalue λ = d − 2i,
i = 0, . . . , d, are the

(
d
i

)
i-factor interactions, Vj1,j2,...,ji

, 1 ≤ j1 < j2 < . . . <
ji ≤ d, where

Vj1,j2,...,ji
(x) = Vj1(x)Vj2(x) . . . Vji

(x). (11)

Let H denote the matrix with rows the 2d eigenvectors of A described above.
Then, H is an Hadamard matrix, i.e., its entries are 1 and -1 and HHT =
2dI2d.

In addition, we make use of the following general facts concerning adjacency
matrices of quotient graphs (Godsil (1993), Chapter 5).

Lemma 1 (based on Lemma 2.2 in Godsil (1993))
The eigenvalues of B are a subset of the eigenvalues of A.
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Lemma 2 (based on Lemma 2.2 in Godsil (1993))
Let C denote the characteristic matrix for the partition {Cj : j = 1, . . . ,m};
C is a 2d×m matrix, with ijth entry 1 or 0 according as the ith vertex of X
is contained in the orbit Cj or not. If v is an eigenvector of B, then V = Cv
is an eigenvector of A which is constant over the orbits of G, with entry
V (x) = vi for x ∈ Ci.

Lemma 3 (Proof in Dudoit and Speed (1999))
If V is an eigenvector of A which is constant over the orbits of G, with
V (x) = vi ∀x ∈ Ci, then the vector v, with ith entry vi, is an eigenvector of
B.

Proposition 4 Eigenvalues of the infinitesimal generator Q.
The eigenvalues of the infinitesimal generator Q, for IBD configurations de-
fined as orbits of a group G acting on the set X of inheritance vectors, belong

to the set
{
−2i(d

i)
: i = 0, . . . , d

}
, where

(
d
i

)
is the largest possible multiplicity

of the eigenvalue −2i.

Since the matrix R(θ) has the same form for any type of pedigree, Propo-
sitions 1 – 4 apply to arbitrary pedigrees and IBD configurations. The ith
derivative, i = 0, . . . , d, of T (θ) is therefore given by

T (i)(θ) =
∑

h

{i−1∏
j=0

(λh + 2j)
}
(1− 2θ)−(λh+2i)/2Ph. (12)

Note that the projection matrix for the largest eigenvalue of Q, λ1 = 0, is
P1 = T (1/2), the matrix whose rows are equal to the stationary distribu-
tion α. The first non-zero derivative of T (θ) at θ = 1/2 and its rank are
determined by the second largest eigenvalue of Q, λ2, and its multiplicity. If
λ2 = −2κ, the first non-zero derivative is the κth derivative

U = T (κ)
(1

2

)
= (−2)κκ!P2, (13)

where P2 is the projection matrix for λ2 = −2κ, with rank the multiplicity of
λ2. Furthermore, the rate of convergence to T (1/2) as θ → 1/2 is determined
by the second largest eigenvalue

T (θ) = T
(1

2

)
+ (1− 2θ)κP2 + o((1− 2θ)κ). (14)

9
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The smaller the second largest eigenvalue, the faster the convergence to
T (1/2). Dudoit and Speed (1999) showed that for sibships of any size k,
the second largest eigenvalue of the infinitesimal generator is λ2 = −4. How-
ever, this is not the case for all types of relatives. Below, we consider various
types of unilineal relative pairs for which the second largest eigenvalue is −2.

In the next four sections, the four main types of unilineal relative pairs
are studied in detail. Unilineal relative pairs share DNA IBD on either 0 or
1 chromosome at any given locus, and are of four general types, derived from
the grand-parent/grand-child, half-sib, avuncular, and cousin relationships.
In general, the usual 0/1 IBD configurations are not orbits of groups acting
on the set of inheritance vectors and the 2 × 2 transition matrix T (θ) does
not satisfy the semi-property of Proposition 1. To get around this problem,
we follow the work of Donnelly (1983) and define augmented IBD configu-
rations which are orbits of groups acting on the set of inheritance vectors
for relevant meioses. Propositions 1 – 4 can then be applied to obtain the
infinitesimal generator Q for the augmented IBD configurations, its second
largest eigenvalue and corresponding eigenvectors. In turn, these are used to
derive linkage score statistics for the usual 0/1 IBD configurations.

3 Grand-parent-type relationship

3.1 Augmented IBD configurations

Suppose person A is a direct ancestor of person B, d generations removed,
and assume without loss of generality that the relationship is always through
the paternal line. For example, when d = 0, A is the father of B, and when
d = 1, A is the paternal grand-father of B.

When studying IBD between A and B there are only d relevant meioses,
namely, the paternal meioses giving rise to individuals A2, A3, ...Ad, Ad+1 =
B, where Ai is the ith descendant of A. The case when d = 0 is trivial,
as a child and his father always share DNA IBD on 1 chromosome. For
d > 0, the relevant inheritance vector is x = (x1, . . . , xd), where xi = 0 if
grand-paternal DNA was transmitted in the paternal meiosis giving rise to
Ai+1, 1 otherwise. The d = 2 case (great-grand-parent/great-grand-child) is
depicted in Figure 1. Individuals A and B share DNA IBD on 1 chromosome
if the inheritance vector is x0 = (0, 0, . . . , 0), otherwise, they share DNA IBD
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A

A_1

A_2

B

Figure 1: Grand-parent-type relationship, d = 2. A is the great-grand-father
of B. The relevant paternal meioses are indicated by arrows.

on 0 chromosome.
Following Donnelly (1983), IBD configurations are defined to be the orbits

of the symmetric group Sd on d letters acting on the set X of all 2d inheritance
vectors. There are d+1 orbits, where the ith orbit is the set of all inheritance
vectors with i coordinates equal to 1, that is, for i = 0, . . . , d,

Ci = {x ∈ X : ∆(x, x0) = i} and |Ci| =
(
d

i

)
,

where ∆(x, x0) is the Hamming distance, i.e., the number of coordinates at
which x and x0 differ.

Proposition 5 Transition matrix for grand-parent-type relationship.
The (d+1)× (d+1) transition matrix for the augmented IBD configurations
has the form T (θ) =

∑
h(1−2θ)−λh/2 Ph, where λh are the real eigenvalues of

the infinitesimal generator Q = T ′(0) and Ph are the corresponding projec-
tion matrices. The ijth entry, i, j = 0, . . . , d, of the infinitesimal generator
is

qij =


−d, if i = j,

d− i, if j = i+ 1,

i, if j = i− 1,

0, otherwise,

11
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that is, Q has the tridiagonal form

Q =



−d d 0 0 . . . 0 0 0
1 −d d− 1 0 . . . 0 0 0
0 2 −d d− 2 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . d− 1 −d 1
0 0 0 0 . . . 0 d −d


.

The stationary distribution α has entries

αi =

(
d
i

)
2d
, i = 0, . . . , d.

The second largest eigenvalue of Q is λ2 = −2, with multiplicity one, and the
corresponding eigenvector is v with entries

vi =
2i− d√

d
,

and with unit norm with respect to the inner product <,>α. Consequently,
the first derivative U of the transition matrix T (θ) at θ = 1/2 has rank 1 and
entries

uij = −2αjvivj = −2

(
d
j

)
2d

(2i− d)(2j − d)

d
.

Proof. The proof relies on Propositions 1 – 4 and follows closely the methods
used in Appendix C of Dudoit and Speed (1999). Thus, only the main steps
are presented.

From Proposition 1, the entries of Q are given by qij =
∑

y∈Cj
I(∆(x, y) =

1)−dI(i = j), where x ∈ Ci. From Proposition 3 and Lemma 1, the eigenval-

ues of B = Q+dI belong to the set
{

(d−2i)(d
i)

: i = 0, . . . , d
}

. Furthermore,

from Proposition 3, the d eigenvectors of the adjacency matrix A correspond-
ing to the eigenvalue d− 2 are given by Vi(x) = 2I(xi = 1)− 1, i = 1, . . . , d.
Let V =

∑d
i=1 Vi. Then

V (x) = 2
d∑

i=1

I(xi = 1)− d = 2j − d, if x ∈ Cj,
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and V is an eigenvector of A which is constant over the IBD configurations.
Thus, by Lemma 3, V yields an eigenvector of B corresponding to the eigen-
value d− 2. It remains to show that d− 2 has multiplicity one for B, that is,
V is the only eigenvector of A for λ = d− 2 that is constant over the orbits.
We may follow a similar argument as in the proof of Proposition 4 in Dudoit
and Speed (1999). The orthogonal complement of V in the eigenspace of A
for λ = d− 2 is spanned by the following d vectors

Wi = Vi −
< Vi, V >

|V |2
V = Vi −

|Vi|2

|V |2
V = Vi −

1

d
V, 1 ≤ i ≤ d.

For any orbit C

∑
x∈C

Wi(x) =
∑
x∈C

Vi(x)−
1

d

d∑
i=1

∑
x∈C

Vi(x) = 0,

where we use the fact that ∀ i, j = 1, . . . , d,
∑

x∈C Vi(x) =
∑

x∈C Vj(x). Hence,
no eigenvector in the orthogonal complement of V in the eigenspace of A for
λ = d− 2 is constant over the orbits of Sd. Consequently, by Lemma 2, d− 2
is an eigenvalue of B with multiplicity 1.

3.2 0/1 IBD configurations

For grand-parent-type relationships, the d+1 augmented IBD configurations
are collapsed into the usual two configurations, C̃1 = C0 and C̃0 = ∪d

i=1Ci, cor-
responding to sharing 1 and 0 IBD, respectively. The stationary distribution
for these two configurations (in the order 0, 1) is

α̃ =
(
1− 1

2d
,

1

2d

)
.

The first derivative of the collapsed transition matrix at θ = 0 is

Q̃ = d

[
− 1

2d−1
1

2d−1

1 −1

]
,

and at θ = 1/2 is

Ũ =
d

2d−1

[
− 1

2d−1
1

2d−1

1 −1

]
.
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Hosted by The Berkeley Electronic Press



In general, the collapsed transition matrix T̃ (θ) for the usual 0/1 IBD con-
figurations does not satisfy the semi-group property T̃ (θ1∗θ2) = T̃ (θ1)T̃ (θ2) of
Proposition 1. The semi-group property holds for grand-parent/grand-child
pairs (d = 1, Section 3.3), but not for the great-grand-parent/great-grand-
child case (d = 2, Section 3.4).

3.3 Grand-parent/grand-child pair

If A is the grand-father of B, d = 1 and there are only two augmented IBD
configurations, the usual configurations corresponding to sharing DNA IBD
on 0 and 1 chromosome. The infinitesimal generator is

Q =

[
−1 1
1 −1

]
,

with eigenvalues λ1 = 0 and λ2 = −2. The stationary distribution is

α =
(1

2
,
1

2

)
,

and the transition matrix, satisfying the semi-group property, is

T (θ) =

[
1− θ θ
θ 1− θ

]
.

3.4 Great-grand-parent/great-grand-child pair

If A is the great-grand-father of B, d = 2 and there are three augmented
IBD configurations, C0 = {(0, 0)}, C1 = {(0, 1), (1, 0)}, and C2 = {(1, 1)}.
The infinitesimal generator is

Q =

 −2 2 0
1 −2 1
0 2 −2

 ,
with eigenvalues λ1 = 0, λ2 = −2, and λ3 = −4 and corresponding eigen-
vectors (1, 1, 1), (−

√
2, 0,

√
2), and (1,−1, 1), with unit norm with respect to

the inner product <,>α. The stationary distribution is

α =
(1

4
,
1

2
,
1

4

)
,
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and the transition matrix is

T (θ) = T
(1

2

)
+ (1− 2θ)P2 + (1− 2θ)2P3

=
1

4

 1 2 1
1 2 1
1 2 1

 + (1− 2θ)

 −
√

2
0√
2

[
−
√

2

4
0

√
2

4

]

+ (1− 2θ)2

 1
−1
1

[
1

4
− 1

2

1

4

]

=

 1− 2θ + θ2 2θ − 2θ2 θ2

θ − θ2 1− 2θ + 2θ2 θ − θ2

θ2 2θ − 2θ2 1− 2θ + θ2

 .
The collapsed transition matrix for the 0/1 IBD configurations is

T̃ (θ) =

[
1
3
(3− 2θ + θ2) 1

3
(2θ − θ2)

2θ − θ2 1− 2θ + θ2

]
,

with stationary distribution

α̃ =
(3

4
,
1

4

)
,

and matrix of first derivatives at θ = 1/2

Ũ =

[
−1

3
1
3

1 −1

]
.

Note that the collapsed 2 × 2 transition matrix T̃ (θ) does not satisfy the
semi-group property T̃ (θ1 ∗ θ2) = T̃ (θ1)T̃ (θ2).

4 Half-sib-type relationship

4.1 Augmented IBD configurations

In the half-sib-type relationship, person A, or some ancestor of A, is the half-
sib of B, or of some ancestor of B. In other words, A and B are the nAth and
nBth generation descendants, respectively, of a pair of half-sibs. To simplify
notation, assume without loss of generality that the relationship is through
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A

B

Figure 2: Half-sib-type relationship, d = 4 (nA = 0, nB = 2). The relevant
meioses are indicated by arrows.

the paternal line. Then, there are d = 2 +nA +nB relevant meioses, and the
corresponding inheritance vector is x = (x1, . . . , xd), where x1 and x2 refer
to the meioses giving rise to the half-sibs, x3, . . . , xnA+2 refer to the meioses
giving rise to A and his ancestors and xnA+3, . . . , xd refer to the meioses
giving rise to B and her ancestors. The first two entries of the inheritance
vector are specific to the half-sib relationship, while the remaining entries are
like in the grand-parent-type relationship. Individuals A and B share DNA
IBD on 1 chromosome if x = (0, 0, 0, . . . , 0) or (1, 1, 0, . . . , 0), otherwise they
share DNA IBD on 0 chromosome.

Following Donnelly (1983), there are 2(d− 1) IBD configurations, which
correspond to the orbits of the cyclic group of order 2, C2, acting on the
first 2 coordinates of the inheritance vectors and of the symmetric group on
d − 2 letters, Sd−2, acting on the remaining d − 2 coordinates. The IBD
configurations are labeled CAi and CBi, i = 0, . . . , d − 2, where CAi refers
to the set of inheritance vectors with first two coordinates (0, 0) or (1, 1),
and i 1’s among the last d − 2 coordinates. Likewise, for CBi, the first two
coordinates are (0, 1) or (1, 0).

|CAi| = |CBi| = 2

(
d− 2

i

)
.

Proposition 6 Transition matrix for half-sib-type relationship.
The 2(d − 1) × 2(d − 1) transition matrix for the augmented IBD config-
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urations has the form T (θ) =
∑

h(1 − 2θ)−λh/2 Ph, where λh are the real
eigenvalues of the infinitesimal generator Q = T ′(0) and Ph are the corre-
sponding projection matrices. When the IBD configurations are ordered as
CA0, CB0, CA1, CB1, . . ., CA(d−2), CB(d−2), the infinitesimal generator has the
following block-tridiagonal form

Q =



B2 − dI (d− 2)I . . .
I B2 − dI (d− 3)I . . .

2I B2 − dI (d− 4)I . . .
...

...
...

...
. . .

...
...

...
. . . (d− 3)I B2 − dI I
. . . (d− 2)I B2 − dI


,

where B2 is the adjacency matrix for the d = 2 quotient graph, that is, the
infinitesimal generator Q for the d = 2 case plus twice the identity matrix

B2 =

[
0 2
2 0

]
.

The stationary distribution α has entries

αAi = αBi =
2
(

d−2
i

)
2d

, i = 0, . . . , d− 2.

For half-sibs (d = 2), the 2 eigenvalues of Q are λ1 = 0 and λ2 = −4, and
the first derivative of the transition matrix vanishes at θ = 1/2. However, for
more distant half-sibs (d > 2), the second largest eigenvalue of Q is λ2 = −2,
with multiplicity one, and the corresponding eigenvector is v with entries

vAi = vBi =
2i− (d− 2)√

d− 2
,

and with unit norm with respect to the inner product <,>α. Consequently,
for d > 2, the first derivative U of the transition matrix T (θ) at θ = 1/2 has
rank 1 and entries

uAi,Aj = uAi,Bj = uBi,Bj = uBi,Aj = −2

(
d−2

j

)
2d−1

(2i− (d− 2))(2j − (d− 2))

d− 2
.
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Proof. Again, the proof relies on Propositions 1 – 4 and follows closely the
methods used in Appendix C of Dudoit and Speed (1999). We only sketch
the main steps.

When d = 2,

Q =

[
−2 2
2 −2

]
,

with eigenvalues λ1 = 0 and λ2 = −4.
Consider now the case when d > 2. From Proposition 3 and Lemma 1,

the eigenvalues of B = Q+ dI belong to the set
{

(d− 2i)(d
i)

: i = 0, . . . , d
}

.

Furthermore, from Proposition 3, the d eigenvectors of the adjacency matrix
A corresponding to the eigenvalue d− 2 are given by Vi(x) = 2I(xi = 1)− 1,
i = 1, . . . , d. Let V =

∑d
i=3 Vi. Then

V (x) = 2
d∑

i=3

I(xi = 1)− (d− 2) = 2j − (d− 2), if x ∈ CAj or CBj,

and V is an eigenvector of A which is constant over the IBD configurations.
Thus, by Lemma 3, V yields an eigenvector of B corresponding to the eigen-
value d − 2. It remains to show that d − 2 has multiplicity one for B. We
may follow a similar argument as in the proof of Proposition 5, using the
facts that for any orbit C and ∀ i, j ≥ 3∑

x∈C

Vi(x) =
∑
x∈C

Vj(x),

and for any C ∑
x∈C

V1(x) =
∑
x∈C

V2(x) = 0.

4.2 0/1 IBD configurations

For distant half-sibs with d > 2 (see Section 4.3 for the special case d = 2),
the 2(d− 1) augmented IBD configurations are collapsed into the usual two
configurations, C̃1 = CA0 and C̃0 = CB0 ∪ ∪d−2

i=1

(
CAi ∪ CBi

)
, corresponding to

sharing 1 and 0 IBD, respectively. The stationary distribution for these two
configurations (in the order 0, 1) is

α̃ =
(
1− 1

2d−1
,

1

2d−1

)
.
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The first derivative of the collapsed transition matrix at θ = 0 is

Q̃ = d

[
− 1

2d−1−1
1

2d−1−1

1 −1

]
,

and at θ = 1/2 is

Ũ =
d− 2

2d−2

[
− 1

2d−1−1
1

2d−1−1

1 −1

]
.

4.3 Half-sibs

If A is the half-sib of B, d = 2 and there are only two IBD configurations,
the usual configurations corresponding to sharing DNA IBD on 0 and 1
chromosome. The infinitesimal generator is

Q =

[
−2 2
2 −2

]
,

with eigenvalues λ1 = 0 and λ2 = −4. The stationary distribution is

α =
(1

2
,
1

2

)
,

and the transition matrix is

T (θ) =

[
ψ 1− ψ

1− ψ ψ

]
,

where ψ = θ2 + (1 − θ)2. The first derivative at θ = 1/2 vanishes and the
second derivative is given by

U = T ′′
(1

2

)
=

[
4 −4
−4 4

]
.

4.4 Half-sibs once removed

If A is the half-sib once removed of B, d = 3 and there are four IBD
configurations, CA0 = {(0, 0, 0), (1, 1, 0)}, CB0 = {(0, 1, 0), (1, 0, 0)}, CA1 =
{(0, 0, 1), (1, 1, 1)}, and CB1 = {(0, 1, 1), (1, 0, 1)}. The infinitesimal genera-
tor is

Q =


−3 2 1 0
2 −3 0 1
1 0 −3 2
0 1 2 −3

 ,
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with eigenvalues λ1 = 0, λ2 = −2, λ3 = −4, and λ4 = −6, and correspond-
ing eigenvectors (1, 1, 1, 1), (−1,−1, 1, 1), (−1, 1,−1, 1), and (−1, 1, 1,−1),
with unit norm with respect to the inner product <,>α. The stationary
distribution is

α =
(1

4
,
1

4
,
1

4
,
1

4

)
,

and the transition matrix is

T (θ) = T
(1

2

)
+ (1− 2θ)P2 + (1− 2θ)2P3 + (1− 2θ)3P4

=
1

4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 +
1

4
(1− 2θ)


1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1



+
1

4
(1− 2θ)2


1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

 +
1

4
(1− 2θ)3


1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

 .
The matrix of first derivatives at θ = 1/2 is

U =
−1

2


1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

 .
The collapsed transition matrix for the 0/1 IBD configurations is

T̃ (θ) =

[
1
3
(3− 3θ + 4θ2 − 2θ3) 1

3
(3θ − 4θ2 + 2θ3)

3θ − 4θ2 + 2θ3 1− 3θ + 4θ2 − 2θ3

]
,

with stationary distribution

α̃ =
(3

4
,
1

4

)
,

and matrix of first derivatives at θ = 1/2

Ũ =

[
−1

6
1
6

1
2

−1
2

]
.
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1

2 3
4 5

B

A

Figure 3: Uncle/nephew, d = 5. The relevant meioses are indicated by arrows
and numbered.

5 Avuncular relationship

5.1 Uncle/nephew pair

In the special case when A is the uncle of B, there are d = 5 relevant
meioses, namely the 2 meioses giving rise to A (meioses 4 and 5 in Figure
3), the 2 meioses giving rise to the mother of B (meioses 2 and 3) and the
maternal meiosis giving rise to B (meiosis 1). The relevant inheritance vector
is x = (x1, . . . , x5), where xi = 0 if grand-paternal DNA was transmitted in
the ith meiosis, 1 otherwise. Individuals A and B share DNA IBD on 1
chromosome if the inheritance vector is one of the following 16 inheritance
vectors (0, 0, ∗, 0, ∗), (0, 1, ∗, 1, ∗), (1, ∗, 0, ∗, 0), or (1, ∗, 1, ∗, 1), where ∗ is
either 0 or 1. Otherwise they share DNA IBD on 0 chromosome.

As in Donnelly (1983), consider the following four IBD configurations

C1 =


00000 10000
01111 11111
00101 11010
01010 10101

 , C2 =


00001 10010
01110 11101
00100 11000
01011 10111

 ,

C3 =


00011 10011
01100 11100
00110 11001
01001 10110

 , C4 =


00010 10001
01101 11110
00111 11011
01000 10100

 .
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The first two IBD configurations correspond to sharing DNA IBD on 1 chro-
mosome. The infinitesimal generator is

Q =


−4 2 0 2
2 −5 2 1
0 2 −4 2
2 1 2 −5


and the stationary distribution is

α =
(1

4
,
1

4
,
1

4
,
1

4

)
.

The infinitesimal generator has eigenvalues λ1 = 0, λ2 = −4, λ3 = −6, and
λ4 = −8. The eigenvector corresponding to λ2 = −4 is v =

√
2(1, 0,−1, 0).

Thus, the first derivative of the transition matrix vanishes at θ = 1/2 and
the second derivative is

U =
(
8αjvivj

)
=


4 0 −4 0
0 0 0 0
−4 0 4 0
0 0 0 0

 .
The 4 augmented IBD configurations are collapsed into the usual two

configurations, C̃1 = C1∪C2 and C̃0 = C3∪C4, corresponding to sharing 1 and
0 IBD, respectively. The transition matrix for these two configurations (in
the order 0,1) is

T̃ (θ) =

[
ψ(1− θ) + 1

2
θ 1− ψ(1− θ)− 1

2
θ

1− ψ(1− θ)− 1
2
θ ψ(1− θ) + 1

2
θ

]
.

This matrix is given in Campbell and Elston (1971) and Thompson (1986).
Note that the collapsed transition matrix T̃ (θ) does not satisfy the semi-
group property T̃ (θ1 ∗ θ2) = T̃ (θ1)T̃ (θ2). The stationary distribution is α̃ =
(1/2, 1/2), the first derivative of the collapsed transition matrix at θ = 0 is

Q̃ =
5

2

[
−1 1
1 −1

]
,

and the second derivative of the collapsed transition matrix at θ = 1/2 is

Ũ =

[
2 −2
−2 2

]
.
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5.2 Augmented IBD configurations

In the general avuncular relationship, personAmay be the uncle, great-uncle,
or great-great-uncle etc., of person B. The number d of relevant meioses is
6 for great-uncles, 7 for great-great-uncles, and so on. The corresponding
inheritance vector is x = (x1, . . . , xd), where x1, . . . , x5 refer to the meioses
giving rise to A, his sibling and his nephew who are the ancestors of B,
and x6, . . . , xd refer to the (d − 5) meioses giving rise to B and his (d − 6)
ancestors. The first 5 entries of the inheritance vector are specific to the
avuncular relationship, while the remaining entries are like in the grand-
parent-type relationship. The 4(d − 4) IBD configurations for the general
case are based on the 4 IBD configurations Cj of the simplest avuncular case
(d = 5) and are labeled Cji, i = 0, . . . , d− 5 and j = 1, 2, 3, 4. Configuration
Cji consists of all inheritance vectors with first 5 coordinates belonging to Cj

and with i 1’s among the last d− 5 coordinates.

Proposition 7 Transition matrix for avuncular relationship.
The 4(d−4)×4(d−4) transition matrix for the augmented IBD configurations
has the form T (θ) =

∑
h(1−2θ)−λh/2 Ph, where λh are the real eigenvalues of

the infinitesimal generator Q = T ′(0) and Ph are the corresponding projection
matrices. The infinitesimal generator Q has the following block-tridiagonal
form

Q =



B5 − dI (d− 5)I . . .
I B5 − dI (d− 6)I . . .

2I B5 − dI (d− 7)I . . .
...

...
...

...
. . .

...
...

...
. . . (d− 6)I B5 − dI I
. . . (d− 5)I B5 − dI


,

where B5 is the adjacency matrix for the d = 5 quotient graph, that is, the
infinitesimal generator Q for the d = 5 case plus 5 times the identity matrix

B5 =


1 2 0 2
2 0 2 1
0 2 1 2
2 1 2 0

 .
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The stationary distribution α also has a block form, with ijth entry

αji =

(
d−5

i

)
2d−3

, i = 0, . . . , d− 5, j = 1, 2, 3, 4.

For d > 5, the second largest eigenvalue of Q is λ2 = −2, with multiplicity
one, and the corresponding eigenvector is v with entries

vji =
2i− (d− 5)√

d− 5
,

and with unit norm with respect to the inner product <,>α. Consequently,
the first derivative U of the transition matrix T (θ) at θ = 1/2 has rank 1 and
entries

uji,lk = −2αlkvjivlk = −2

(
d−5
k

)
2d−3

(2i− (d− 5))(2k − (d− 5))

d− 5
.

The proof is similar to that for the half-sib-type relationship and considers
the first 5 coordinates of the inheritance vectors separately from the last d−5.

5.3 0/1 IBD configurations

Individuals A and B share DNA IBD on 1 chromosome if x ∈ C̃1 = C10 ∪C20,
otherwise they share DNA IBD on 0 chromosome. The stationary distribu-
tion for these two configurations (in the order 0, 1) is

α̃ =
(
1− 1

2d−4
,

1

2d−4

)
.

The first derivative of the collapsed transition matrix at θ = 0 is

Q̃ = (d− 5/2)

[
− 1

2d−4−1
1

2d−4−1

1 −1

]
,

and at θ = 1/2 is

Ũ =
d− 5

2d−5

[
− 1

2d−4−1
1

2d−4−1

1 −1

]
.
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5 6

Figure 4: First-cousins, d = 6. The relevant meioses are indicated by arrows.

6 Cousin-type relationship

6.1 First-cousin pair

In the special case when A and B are first-cousins, there are d = 6 relevant
meioses, namely the two paternal meioses giving rise to A and B, and the
four meioses giving rise to the fathers of A and B (Figure 4). The relevant
inheritance vector is x = (x1, . . . , x6), where xi = 0 if grand-paternal DNA
was transmitted in the ith meiosis, 1 otherwise. Individuals A and B share
DNA IBD on 1 chromosome if the inheritance vector is one of the follow-
ing 16 inheritance vectors (0, 0, ∗, 0, 0, ∗), (0, 1, ∗, 0, 1, ∗), (1, ∗, 0, 1, ∗, 0), or
(1, ∗, 1, 1, ∗, 1), where ∗ is either 0 or 1. Otherwise they share DNA IBD on
0 chromosome. We consider the 7 IBD configurations defined by Donnelly
(1983) p. 52–53. The first two IBD configurations correspond to sharing
DNA IBD on 1 chromosome.

The infinitesimal generator is

Q =



−6 2 2 0 2 0 0
2 −6 0 2 0 2 0
2 0 −6 2 0 2 0
0 2 2 −6 0 0 2
2 0 0 0 −6 4 0
0 1 1 0 2 −6 2
0 0 0 2 0 4 −6
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and the stationary distribution is

α =
1

8

(
1, 1, 1, 1, 1, 2, 1

)
.

The infinitesimal generator has eigenvalues λ1 = 0, λ2 = −4 (multiplic-
ity 2), λ3 = −6, λ4 = −8 (multiplicity 2), λ5 = −12. The two eigen-
vectors corresponding to λ2 = −4 are v = (3, 1, 1,−1, 1,−1,−3)/

√
3 and

ṽ =
√

2/3(0,−1,−1,−2, 2, 1, 0), and < v, ṽ >α= 0. Thus, the first deriva-
tive of the transition matrix vanishes at θ = 1/2 and the second derivative
is

U =
(
8αj(vivj + ṽiṽj)

)
=



3 1 1 −1 1 −2 −3
1 1 1 1 −1 −2 −1
1 1 1 1 −1 −2 −1
−1 1 1 3 −3 −2 1
1 −1 −1 −3 3 2 −1
−1 −1 −1 −1 1 2 1
−3 −1 −1 1 −1 2 3


.

The 7 augmented IBD configurations are collapsed into the usual two
configurations, C̃1 = C1∪C2 and C̃0 = C3∪ . . .∪C7, corresponding to sharing 1
and 0 IBD, respectively. The transition matrix for these two configurations
(in the order 0,1) is

T̃ (θ) =

[
1
3
(2 + 1

2
θ2 + ψ(1− θ)2) 1

3
(1− 1

2
θ2 − ψ(1− θ)2)

1− 1
2
θ2 − ψ(1− θ)2 1

2
θ2 + ψ(1− θ)2

]
.

This matrix is given in Campbell and Elston (1971) and Thompson (1986).
Note that the collapsed transition matrix does not satisfy the semi-group
property T̃ (θ1∗θ2) = T̃ (θ1)T̃ (θ2). The stationary distribution is α̃ = (3/4, 1/4),
the first derivative of the collapsed transition matrix at θ = 0 is

Q̃ = 4

[
−1

3
1
3

1 −1

]
,

and the second derivative of the collapsed transition matrix at θ = 1/2 is

Ũ =

[
1 −1
−3 3

]
.
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6.2 Augmented IBD configurations

In the general cousin-type relationship, persons A and B are sth cousins t
times removed. The number of relevant meioses is d = 4 + 2s + t and the
corresponding inheritance vector is x = (x1, . . . , xd), where x1, . . . , x6 refer
to the meioses giving rise to the two first-cousins who are ancestors of A and
B, and x7, . . . , xd refer to the meioses giving rise to descendants of the two
first-cousins. The first 6 entries of the inheritance vector are specific to the
cousin relationship, while the remaining entries are like in the grand-parent-
type relationship. The 7(d − 5) IBD configurations for the general case are
based on the 7 IBD configurations Cj of the first-cousin case (d = 6) and are
labeled Cji, i = 0, . . . , d − 6 and j = 1, . . . , 7. Configuration Cji consists of
all inheritance vectors with first 6 coordinates belonging to Cj and with i 1’s
among the last d− 6 coordinates.

Proposition 8 Transition matrix for cousin-type relationship.
The 7(d−5)×7(d−5) transition matrix for the augmented IBD configurations
has the form T (θ) =

∑
h(1−2θ)−λh/2 Ph, where λh are the real eigenvalues of

the infinitesimal generator Q = T ′(0) and Ph are the corresponding projection
matrices. The infinitesimal generator Q has the following block-tridiagonal
form

Q =



B6 − dI (d− 6)I . . .
I B6 − dI (d− 7)I . . .

2I B6 − dI (d− 8)I . . .
...

...
...

...
. . .

...
...

...
. . . (d− 7)I B6 − dI I
. . . (d− 6)I B6 − dI


,

where B6 is the adjacency matrix for the d = 6 quotient graph, that is, the
infinitesimal generator Q for the d = 6 case plus 6 times the identity matrix

B6 =



0 2 2 0 2 0 0
2 0 0 2 0 2 0
2 0 0 2 0 2 0
0 2 2 0 0 0 2
2 0 0 0 0 4 0
0 1 1 0 2 0 2
0 0 0 2 0 4 0


.
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The stationary distribution α also has a block form, with ijth entry

αji =

(
d−6

i

)
2d−3

, j 6= 6, and α6i =

(
d−6

i

)
2d−4

, i = 0, . . . , d− 6.

For d > 6, the second largest eigenvalue of Q is λ2 = −2, with multiplicity
one, and the corresponding eigenvector is v with entries

vji =
2i− (d− 6)√

d− 6
,

and with unit norm with respect to the inner product <,>α. Consequently,
the first derivative U of the transition matrix T (θ) at θ = 1/2 has rank 1 and
entries

uji,lk = −2αlkvjivlk.

The proof is similar to that for the half-sib-type relationship and considers
the first 6 coordinates of the inheritance vectors separately from the last d−6.

6.3 0/1 IBD configurations

Individuals A and B share DNA IBD on 1 chromosome if x ∈ C̃1 = C10 ∪C20,
otherwise they share DNA IBD on 0 chromosome. The stationary distribu-
tion for these two configurations (in the order 0, 1) is

α̃ =
(
1− 1

2d−4
,

1

2d−4

)
.

The first derivative of the collapsed transition matrix at θ = 0 is

Q̃ = (d− 2)

[
− 1

2d−4−1
1

2d−4−1

1 −1

]
,

and at θ = 1/2 is

Ũ =
d− 6

2d−5

[
− 1

2d−4−1
1

2d−4−1

1 −1

]
.
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7 Linkage score statistics for unilineal rela-

tive pairs

7.1 Conditional IBD probabilities at a marker

Genetic mapping involves identifying loci at which genotypes are associated
with phenotypes. Genotype-phenotype associations are viewed as suggesting
linkage, or “closeness”, of a genetic locus to a gene influencing the phenotype.
In general, phenotypes and IBD configurations of related individuals at loci
linked to genes influencing the phenotype (trait loci) are dependent, while
phenotypes and IBD configurations at loci unlinked to genes are independent.

Consider a marker locus M linked to a gene D, and let θ denote the
recombination fraction between these two loci. The gene D could be one of
several genes, unlinked to each other, influencing a quantitative or a quali-
tative phenotype. Let πj = πj(φ1, φ2; ν) and ρj = ρj(φ1, φ2; θ, ν) denote the
conditional probabilities that a relative pair with phenotypes (φ1, φ2) shares
DNA IBD on j = 0, 1 chromosome at the gene D and at the marker locus M,
respectively. Here, ν denotes parameters of the genetic model for the trait,
such as genotype frequencies at the gene(s) and penetrances (i.e., conditional
distribution of phenotypes given genotypes at the gene(s)). Then,

[ρ0, ρ1] = [π0, π1]T (θ), (15)

where, for unilineal relative pairs, T (θ) is a 2× 2 transition matrix

T (θ) =

[
t00(θ) t01(θ)
t10(θ) t11(θ)

]
,

with entries the probabilities of sharing DNA IBD (or not) at one locus,
given sharing (or not) at another locus separated by a recombination frac-
tion θ. Thus, the IBD probabilities at a marker locus M linked to a gene
D have two components: one component T (θ) involving the recombination
fraction θ between the two loci, and the other involving the conditional IBD
probabilities πj at the gene D. The later depend on typically unknown and
numerous parameters ν of the genetic model for the trait. Thompson (1997)
refers to these two components as the scale of the genetic distance of interest
and the specificity of the gene, respectively. Both the scale and specificity
components affect the strength of the association between phenotypes and
IBD configurations at the marker locus M, and hence the power to detect
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linkage. The strength of the association at the gene D depends on the mode
of inheritance, the genotype frequencies at the gene(s), and the phenotypes
of the pair of relatives. As θ increases from 0 to 1/2, this association is atten-
uated by recombination between the gene and the marker locus. The rate of
convergence, as θ → 1/2, of the IBD probabilities ρ to the stationary distri-
bution α is determined by the second largest eigenvalue of the infinitesimal
generator Q (cf. equation (14) in Section 2).

7.2 General form of linkage score statistic

We are interested in testing the null hypothesis of no linkage between the
marker M and the gene D, H0 : θ = 1/2. Suppose we have phenotype
and IBD data for n unilineal relative pairs of a given type (e.g., n cousin
pairs), in the form of phenotype pairs (φ1i, φ2i) and indicators Nji for the
number j = 0, 1 of chromosomes sharing DNA IBD at the marker locus M
for the ith relative pair, i = 1, . . . , n. Let πji = πj(φ1i, φ2i; ν) and ρji =
ρj(φ1i, φ2i; θ, ν) denote the conditional probabilities that a relative pair with
phenotypes (φ1i, φ2i) shares DNA IBD on j = 0, 1 chromosome at the gene
D and at the marker locus M, respectively.

Dudoit and Speed (2000) show that, under the following two general sam-
pling assumptions, the different relative pairs make multiplicative contribu-
tions to the likelihood function for the IBD data conditional on phenotypes.

Assumption S1. For a given relative pair, phenotypes are conditionally
independent of any phenotype and marker genotype data from other
pairs, given the genotypes at the gene(s) for this pair.

Assumption S2. For a given relative pair, genotypes at the gene(s) are
independent of any phenotype and marker genotype data from other
pairs.

Assumption S1 rules out the influence on phenotypes of environmental factors
shared by groups of families. Accommodating between family environmental
factors would require conditioning on the environment from which the fami-
lies are sampled. Note that Assumption S1 does not however rule out within
family environmental factors. Assumption S2 rules out related pairs.

30

http://biostats.bepress.com/ucbbiostat/paper128



Under Assumptions S1 and S2, the log-likelihood of the IBD data condi-
tional on phenotypes is

l(θ, ν) =
n∑

i=1

1∑
j=0

Nji ln ρji. (16)

Score tests are locally most powerful tests, based on the first non-zero
derivative in the Taylor series expansion of the log-likelihood about the null
parameter θ = 1/2 (Cox and Hinkley, 1974; Rao, 1973). Derivatives of the
log-likelihood are based on derivatives of the transition matrix T (θ) via the
IBD sharing probabilities ρ.

Proposition 9 Linkage score statistic for unilineal relative pairs.
When the first non-zero derivative of the transition matrix T (θ) at θ = 1/2
is its κth derivative, U = (uij) = T κ

(
1/2

)
, the score statistic for the null

hypothesis H0 : θ = 1/2 of no linkage is the κth derivative of the log-likelihood
evaluated at θ = 1/2 and is given by

ST (ν) =
u11

α1

n∑
i=1

(
π1i −

α1

α0

π0i

)(
N1i −

α1

α0

N0i

)
, (17)

where α = (α0, α1), the vector of unconditional probabilities of sharing DNA
IBD on 0 and 1 chromosome, is the stationary distribution of T (θ). The null
hypothesis of no linkage is rejected for large values of ST (ν) when κ is even
and for small values of ST (ν) when κ is odd.

Proof. Using the fact that T (θ) is a 2× 2 stochastic matrix with stationary
distribution α = (α0, α1), the unconditional probabilities of sharing DNA
IBD on 0 and 1 chromosome, we obtain the following identities satisfied by
the first derivative Q = T ′(0) and the first non-zero derivative U = T κ

(
1/2

)
of T (θ) evaluated at θ = 1/2.

q01 = −q00, q10 = −q11, α1q11 = α0q00,

and
u01 = −u00, u10 = −u11, α1u11 = α0u00.

Since the first κ−1 derivatives of T (θ) vanish at θ = 1/2, then so do the first
κ−1 derivatives of the IBD probabilities ρ and of the log-likelihood l(θ, ν) in
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equation (16). Thus, the linkage score statistic is based on the κth derivative
of the log-likelihood and given by

ST (ν) =
∂κl(θ, ν)

∂θκ

∣∣∣∣
θ= 1

2

=
n∑

i=1

1∑
j=0

Nji
∂κρji

∂θκ

1

ρji

∣∣∣∣
θ= 1

2

=
n∑

i=1

(
N0iπ0i

u00

α0

+N0iπ1i
u10

α0

+N1iπ0i
u01

α1

+N1iπ1i
u11

α1

)
=

n∑
i=1

(
u11π1i − u00π0i

)(N1i

α1

− N0i

α0

)
=

u11

α1

n∑
i=1

(
π1i −

α1

α0

π0i

)(
N1i −

α1

α0

N0i

)
.

The direction of rejection is determined by considering the Taylor series ex-
pansion of the log-likelihood about θ = 1/2.

It is important to note that Proposition 9 holds for qualitative and quan-
titative phenotypes and whether or not IBD configurations are defined as
orbits of groups acting on the set of inheritance vectors, i.e., whether or not
T (θ) satisfies the semi-group property of Proposition 1.

The linkage score statistic consists of two components: a component
(N1i−α1N0i/α0) involving the IBD indicators Nji and a similar component,
(π1i−α1π0i/α0), involving the IBD sharing probabilities πji at the gene. For
complex traits, the genetic model for the trait is typically unknown and hence
so are the weights (π1i−α1π0i/α0) in the score statistic. The simulation stud-
ies of Dudoit and Speed (2000), Goldstein et al. (2000), and Goldstein et al.
(2001) for sib-pairs, half-sibs, avuncular pairs, and grand-parent/grand-child
pairs showed that the weights are primarily driven by phenotypes, rather
than by parameters ν of the genetic model, and that the linkage score test is
generally robust to misspecification of the genetic model.

For IBD configurations defined as orbits of groups acting on the set of
inheritance vectors X (e.g., augmented IBD configurations in Sections 3 –
6), the results of Section 2 show that the first non-zero derivative of T (θ)
at θ = 1/2 and its rank are determined by the second largest eigenvalue of
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the infinitesimal generator Q, λ2, and its multiplicity. If this second largest
eigenvalue is λ2 = −2κ, then the first non-zero derivative of T (θ) is its
κth derivative. Note that if the κth derivative of the transition matrix for
augmented IBD configurations vanishes, then so does the κth derivative of
the transition matrix for collapsed 0/1 IBD configurations. So, if λ2 = −2κ
for the infinitesimal generator of the augmented IBD configurations, then the
score statistic for both the augmented IBD configurations and collapsed 0/1
IBD configurations is based on the κth derivative of the log-likelihood.

Sections 3 – 6 demonstrate that the infinitesimal generators for different
types of relative pairs have different second largest eigenvalues, and thus
linkage score tests based on different types of relative pairs have different
power properties at the null. In particular, linkage score tests for pairs with
λ2 = −2 (i.e., grand-parent/grand-child, distant half-sibs with d > 2, distant
avuncular pairs with d > 5, distant cousin pairs with d > 6) are infinitely
more powerful near the null than score tests for pairs with λ2 = −4 (i.e., half-
sibs with d = 2, avuncular pairs with d = 5, cousin pairs with d = 6). For the
latter, the slope of the power function is zero at the null. The linkage score
statistic based on IBD data from different types of relative pairs with the
same second largest eigenvalue (e.g., avuncular and cousin pairs) is simply
the sum of the score statistics for each type of relative pairs. In Section 7.4,
below, we consider the different types of relative pairs of Sections 3 – 6 and
use properties of their infinitesimal generator Q to derive the specific form
of the linkage score statistic for each type of pair. Results are summarized
in Table 1.

Under the null hypothesis of no linkage between the marker locus M and
the gene D, the first two moments of ST (ν) are

E0[ST (ν)|φ] = 0,

and

V ar0[ST (ν)|φ] =
(u11

α1

)2
n∑

i=1

(
π1i −

α1

α0

π0i

)2(
α0α1

(
1 +

α1

α0

)2
)

=
u2

11

α0α1

n∑
i=1

(
π1i −

α1

α0

π0i

)2

.
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Thus, the standardized linkage score statistic (up to the sign of u11) is

SST (ν) =

√
α0

α1

∑n
i=1

(
π1i − α1

α0
π0i

)(
N1i − α1

α0
N0i

)√∑n
i=1

(
π1i − α1

α0
π0i

)2
. (18)

So far, we have assumed full IBD information for the marker locus M.
In practice, this is usually not the case, as founders may not be available
for typing or they may not exhibit sufficient polymorphism to establish IBD
unambiguously. Several statistical methods are available to infer IBD status
from marker genotype data. Common approaches rely on hidden Markov
models to estimate the inheritance distribution, that is, the conditional dis-
tribution of IBD configurations given observed multipoint marker genotypes
(Abecasis et al., 2002; Kruglyak and Lander, 1995a; Kruglyak et al., 1996;
Lander and Green, 1987). An incomplete data linkage statistic may be de-
fined as

S̃T (ν) = E0[ST (ν)|M,φ] =
u11

α1

n∑
i=1

(
π1i −

α1

α0

π0i

)(
r1i −

α1

α0

r0i

)
, (19)

where Mi denotes the multipoint marker genotype data for relative pair i and
the IBD indicators Nji have been replaced by their expected values given the
multipoint marker genotypes, rji = pr(Relative pair has IBD configuration Cj atM|Mi)
(see Dudoit (1999) and Dudoit and Speed (2000) for greater details).

7.3 Auto-correlation function for linkage score statis-
tic

Dense maps of genetic markers are currently available and, in practice, link-
age tests are performed simultaneously at a large number of chromosomal loci
(e.g., every 10 centiMorgans (cM) or more in a genome scan). Assessments
of the statistical significance of mapping results should therefore be adjusted
for multiples testing. Let SST (s; ν) denote the standardized linkage score
statistic at a locus Ls for a given type of unilineal relative pair. Feingold et al.
(1993), followed by Kruglyak and Lander (1995b) and Lander and Kruglyak
(1995), used extreme value theory for the distribution of Ornstein-Uhlenbeck
processes to derive an approximation for the genome-wide probability that a
linkage statistic exceeds a particular threshold. One of the key ingredients in
this approximation is the auto-correlation function for the linkage statistics.
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Proposition 10 Auto-correlation function of linkage score statistic
for unilineal relative pairs - general case.
Consider loci Lt and Lt+s located |s| Morgans (M) apart on a given chro-
mosome. Under the null hypothesis of no genes on the chromosome, the
auto-correlation function for linkage score statistics computed at loci Lt and
Lt+s is given by

C(t, t+ s) =
t11(θt,t+s)− α1

α0

, (20)

where θt,t+s denotes the recombination fraction between loci Lt and Lt+s. For
a stationary crossover process, with map function M(s) satisfying M(0) = 0,
M ′(0) = 1, and θt,t+s = M(|s|), then

C(s) ≡ C(t, t+ s) =
t11(M(|s|))− α1

α0

. (21)

The first derivative of the auto-correlation function at s = 0, taken as the
limit from the right, is given by

C ′(0) =
M ′(0)t′11(M(0))

α0

=
q11
α0

. (22)

Proof. Let Nji(t) denote the IBD indicators at locus Lt, i = 1, . . . , n,
j = 0, 1. Then,

C(t, t+ s) = E0[SST (t; ν)SST (t+ s; ν)|φ]

=
α0/α1∑n

i=1

(
π1i − α1

α0
π0i

)2

×
n∑

i,i′=1

(
π1i −

α1

α0

π0i

)(
π1i′ −

α1

α0

π0i′
)
E0

[(
N1i(t)−

α1

α0

N0i(t)
)(
N1i′(t+ s)− α1

α0

N0i′(t+ s)
)
|φ

]

=
α0/α1∑n

i=1

(
π1i − α1

α0
π0i

)2

n∑
i=1

(
π1i −

α1

α0

π0i

)2

×
(
α1t11(θt,t+s)−

α1

α0

α1t10(θt,t+s)−
α1

α0

α0t01(θt,t+s) +
(α1

α0

)2
α0t00(θt,t+s)

)
=

α0

α1

(
α1t11(θt,t+s)−

α2
1

α0

(1− t11(θt,t+s))− α1(1− t00(θt,t+s)) +
α2

1

α0

t00(θt,t+s)
)

= t00(θt,t+s) + t11(θt,t+s)− 1

=
t11(θt,t+s)− α1

α0

,
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where we use the facts that IBD data from different relative pairs are condi-
tionally independent given phenotypes, α0t01(θt,t+s) +α1t11(θt,t+s) = α1, and
t00(θt,t+s) = 1− t01(θt,t+s).

Note that the above results hold even when T (θ) does not satisfy the semi-
group property. Next, we derive further properties of the auto-correlation
function C(s) by assuming that the 0/1 IBD configurations are defined as
orbits of groups acting on the set of inheritance vectors.

Proposition 11 Auto-correlation function of linkage score statistic
for unilineal relative pairs - semi-group.
Suppose the 0/1 IBD configurations are defined as orbits of groups acting on
the set X of inheritance vectors. Consider loci Lt and Lt+s located |s| Mor-
gans (M) apart on a given chromosome. Under the null hypothesis of no genes
on the chromosome, the auto-correlation function for linkage score statistics
computed at loci Lt and Lt+s is given by

C(t, t+ s) = (1− 2θt,t+s)
−λ2/2 = e(λ2d(θt,t+s)), (23)

where λ2 denotes the second largest eigenvalue of the infinitesimal generator
Q (Propositions 1 – 4), θt,t+s denotes the recombination fraction between loci
Lt and Lt+s, and d(θ) = − ln(1 − 2θ)/2 is the inverse of the Haldane map
function. In particular, under the no interference model, θt,t+s = M(|s|) =
(1− e−2|s|)/2,

C(s) = eλ2|s|, (24)

and the first derivative of the auto-correlation function at s = 0, taken as the
limit from the right, is given by

C ′(0) = λ2. (25)

Proof. When the 0/1 IBD configurations are defined as orbits of groups
acting on the set X of inheritance vectors, then, by Propositions 1 – 4, T (θ)
may be written as

T (θ) = T
(1

2

)
+ (1− 2θ)κP2,

where λ2 = −2κ is the second largest eigenvalue of the infinitesimal generator

Q, with corresponding right eigenvector v =
(√

α1

α0
,−

√
α0

α1

)
and projection

matrix

P2 =

[
α1 −α1

−α0 α0

]
.
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Thus
t11(θ) = α1 + α0(1− 2θ)κ

and
C(t, t+ s) = (1− 2θt,t+s)

κ.

Note that as the second largest eigenvalue λ2 decreases, correlations be-
tween score statistics at linked loci are attenuated. The auto-correlation
function is not affected by the multiplicity of the second largest eigenvalue.

In order to compute genome-wide significance levels, we may approxi-
mate the asymptotic distribution of the process SST (s; ν) by the distribu-
tion of a standard Ornstein-Uhlenbeck process with auto-correlation function
e(C

′(0)|s|) = e(q11|s|/α0) (Aldous, 1989; Feingold et al., 1993; Kruglyak and Lan-
der, 1995b; Lander and Kruglyak, 1995; Leadbetter et al., 1983). The error in
this approximation for the auto-correlation function is o(|s|) as s→ 0. Under
the null hypothesis of no gene influencing the phenotype, the genome-wide
probability that SST (s; ν) exceeds the threshold T is approximated by

pr0(SST (s; ν) exceeds T somewhere in the genome|φ)

≈ pr0(SST (s; ν) ≥ T |φ)
(
C − C ′(0)GT 2

)
, (26)

where, for the human genome, C = 23 chromosome pairs andG = total genome length ≈
33 M.

Expression (26) is based on three approximations: (i) an asymptotic ap-
proximation for the number n of relative pairs; (ii) an approximation of the
crossover process by a Poisson process (no interference model); and (iii) a
Markov approximation for the IBD configuration process. Although T (θ)
does not in general satisfy the semi-group property, Feingold (1993) found
this third approximation to be adequate for avuncular and cousin pairs. Rela-
tive pairs with skewed IBD distribution, i.e., small α1, require a larger sample
size in order to apply this asymptotic result.

7.4 Linkage score statistic for unilineal relative pairs

7.4.1 Linkage score statistic for grand-parent-type relationship

From Proposition 5, the second largest eigenvalue of the infinitesimal gener-
ator Q for the augmented IBD configurations is λ2 = −2. Thus, the linkage
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score statistic is based on the first derivative of the log-likelihood. From
Proposition 9 and derivations in Section 3.2, the score statistic for general
grand-parent/grand-child pairs is given by

ST (ν) = −2d
∑

i

(
π1i −

1

2d − 1
π0i

)(
N1i −

1

2d − 1
N0i

)
.

Note that for this type of relationship, the null hypothesis of no linkage is
rejected for small values of the score statistic.

In the special case of grand-parent/grand-child pairs (d = 1), the score
statistic is

ST (ν) = −2
∑

i

(π1i − π0i)(N1i −N0i)

and for great-grand-parent/great-grand-child pairs (d = 2) it is

ST (ν) = −4
∑

i

(π1i − π0i/3)(N1i −N0i/3).

7.4.2 Linkage score statistic for half-sib-type relationship

From Proposition 6, one needs to distinguish between two main cases, half-
sibs (d = 2) and distant half-sibs (d > 2).

Half-sibs (d = 2). For half-sibs, the second largest eigenvalue of the in-
finitesimal generator Q for the IBD configurations is λ2 = −4. Thus,
from results in Proposition 9 and Section 4.3, the linkage score statistic
is based on the second derivative of the log-likelihood and is given by

ST (ν) = 8
∑

i

(π1i − π0i)(N1i −N0i).

In this case, the null hypothesis of no linkage is rejected for large values
of the score statistic.

Distant half-sibs (d > 2). For more distant half-sibs (d > 2), the second
largest eigenvalue of the infinitesimal generator Q for the augmented
IBD configurations is λ2 = −2. Thus, unlike the half-sib case with
d = 2, results in Proposition 9 and Section 4.2 imply that the linkage
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score statistic is based on the first derivative of the log-likelihood and
is given by

ST (ν) = −2(d− 2)
∑

i

(
π1i −

1

2d−1 − 1
π0i

)(
N1i −

1

2d−1 − 1
N0i

)
.

Note that in this case, the null hypothesis of no linkage is rejected for
small values of the score statistic.

7.4.3 Linkage score statistic for avuncular relationship

From Proposition 7, one needs to distinguish between two main cases, avun-
cular pairs (d = 5) and distant avuncular pairs (d > 5).

Avuncular pairs (d = 5). For the simplest avuncular relationship (d = 5),
the results of Section 5.1 show that the second largest eigenvalue of
the infinitesimal generator Q for the augmented IBD configurations
is λ2 = −4. Thus, from results in Proposition 9 and Section 5.1,
the linkage score statistic is based on the second derivative of the log-
likelihood and is given by

ST (ν) = 4
∑

i

(π1i − π0i)(N1i −N0i).

In this case, the null hypothesis of no linkage is rejected for large values
of the score statistic.

Distant avuncular pairs (d > 5). For more distant avuncular pairs (d >
5), the second largest eigenvalue of the infinitesimal generator Q for the
augmented IBD configurations is λ2 = −2. Thus, unlike the avuncular
case with d = 5, results in Proposition 9 and Section 5.3 imply that
the linkage score statistic is based on the first derivative of the log-
likelihood and is given by

ST (ν) = −2(d− 5)
∑

i

(
π1i −

1

2d−4 − 1
π0i

)(
N1i −

1

2d−4 − 1
N0i

)
.

Note that in this case, the null hypothesis of no linkage is rejected for
small values of the score statistic.
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In the simple avuncular case (d = 5), the transition matrix T (θ) for the
usual 0/1 IBD configurations does not satisfy the semi-group property. Also,
the auto-correlation function for the linkage score statistic does not have the
exponential form of Proposition 11. Under the no interference model, the
auto-correlation function is, for s > 0,

C(s) =
1

α0

(
t11

(1

2
(1− e−2s)

)
− α1

)
=

1

2
e−4s(1 + e−2s).

7.4.4 Linkage score statistic for cousin-type relationship

From Proposition 8, one needs to distinguish between two main cases, first-
cousins (d = 6) and distant cousin pairs (d > 6).

First-cousins (d = 6). For the simplest cousin relationship (d = 6), the
results of Section 6.1 show that the second largest eigenvalue of the
infinitesimal generator Q for the augmented IBD configurations is λ2 =
−4. Thus, from results in Proposition 9 and Section 6.1, the linkage
score statistic is based on the second derivative of the log-likelihood
and is given by

ST (ν) = 12
∑

i

(π1i −
1

3
π0i)(N1i −

1

3
N0i).

In this case, the null hypothesis of no linkage is rejected for large values
of the score statistic.

Distant cousin pairs (d > 6). For more distant cousin pairs (d > 6), the
second largest eigenvalue of the infinitesimal generator Q for the aug-
mented IBD configurations is λ2 = −2. Thus, unlike the first-cousins
case with d = 6, results in Proposition 9 and Section 6.3 imply that
the linkage score statistic is based on the first derivative of the log-
likelihood and is given by

ST (ν) = −2(d− 6)
∑

i

(
π1i −

1

2d−4 − 1
π0i

)(
N1i −

1

2d−4 − 1
N0i

)
.

Note that in this case, the null hypothesis of no linkage is rejected for
small values of the score statistic.
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8 Conclusions

In this article, we have derived theoretical properties of transition matri-
ces for IBD configurations in four general classes of unilineal relative pairs
obtained from the grand-parent/grand-child, half-sib, avuncular, and cousin
relationships. The sibship case was studied in detail in Dudoit and Speed
(1999) and Dudoit and Speed (2000). Instead of working directly with the
usual 0/1 IBD configurations, general properties of the transitions matrices
were obtained by considering augmented IBD configurations defined as orbits
of groups acting on the set of inheritance vectors. In this setting, the transi-
tion matrix satisfies a semi-group property (Proposition 1, p. 5) and one can
derive a spectral representation of the matrix in terms of the eigenvalues and
eigenvectors of its infinitesimal generator Q (Proposition 2, p. 7). Properties
of the eigenvalues of the infinitesimal generator were obtained by relating it
to the adjacency matrix of a quotient graph (Proposition 4, p. 9). The sec-
ond largest eigenvalue of the infinitesimal generator Q and its multiplicity are
key in determining the form of the transition matrix and of likelihood-based
linkage tests such as score tests. In general, if the second largest eigenvalue
of Q is λ2 = −2κ, then the transition matrix has the form

T (θ) = T
(1

2

)
+ (1− 2θ)κP2 + o((1− 2θ)κ),

where T
(
1/2

)
is the matrix with rows equal to the stationary distribution, α,

and P2 is the projection matrix for λ2, with rank the multiplicity of λ2. As
shown in Proposition 9, the linkage score test is based on the κth derivative
of the log-likelihood evaluated at the null θ = 1/2. The second largest
eigenvalue not only determines the form of the linkage score statistic, but also
the auto-correlation function between score statistics computed at different
locations in the genome (Section 7.3). This property can be used to derive
approximations for genome-wide significance levels of linkage score tests.

Table 1 summarizes the main properties of the transition matrices and
linkage score statistics for the four different types of unilineal relative pairs.
Relative pairs fall into two main categories, according to the second largest
eigenvalue λ2 of the infinitesimal generator Q for the augmented IBD config-
urations.

λ2 = −2. The second largest eigenvalue of the infinitesimal generator Q is
λ2 = −2 for grand-parent/grand-child pairs (any d), distant half-sib
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pairs (d > 2), distant avuncular pairs (d > 5), and distant cousin pairs
(d > 6). In this case, the rate of convergence of the transition matrix
T (θ) to the stationary distribution is O(1 − 2θ) as θ → 1/2 and the
linkage score test is based on the first derivative of the log-likelihood.
Linkage score tests for relative pairs with λ2 = −2 are infinitely more
powerful for local alternatives than score tests for pairs with λ2 = −4.

λ2 = −4. The second largest eigenvalue of the infinitesimal generator is λ2 =
−4 for half-sibs (d = 2), avuncular pairs (d = 5), and first-cousins
(d = 6). In this case, the rate of convergence of the transition matrix
T (θ) to the stationary distribution is O(1 − 2θ)2 as θ → 1/2 and the
linkage score test is based on the second derivative of the log-likelihood.
Linkage score tests based on these types of relative pairs are less efficient
for local alternatives, the first derivative of the power function at the
null being zero.

Linkage score tests as described in Section 7 provide a unified likelihood-
based framework for the genetic mapping of complex human traits, qualita-
tive and quantitative, using IBD data from small pedigrees. A more detailed
discussion of such tests is given in Dudoit and Speed (1999) in the context
of sibships. Dudoit and Speed (2000), Goldstein et al. (2000), and Goldstein
et al. (2001) performed extensive simulation studies to investigate power and
robustness properties of linkage score statistics. These studies showed that
the linkage score test for quantitative traits had good power and robustness
properties compared to alternative genetic mapping methods based on IBD
data from unilineal relative pairs and sib-pairs.

The present article demonstrated that properties of IBD configuration
transition matrices are important in terms of understanding the behavior of
linkage test statistics. These matrices are relevant more broadly for studying
patterns of transmission of DNA in families. Note that the general properties
described in Section 2 hold for any type of pedigree, so long as IBD configu-
rations are defined as orbits of groups acting on the set of inheritance vectors.
The linkage score test approach may be extended to other types of relative
pairs (e.g., double first-cousins) and small pedigrees (e.g., two sibs and a
cousin) by defining suitable IBD configurations and deriving the transition
matrices for these IBD configurations.
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Table 1: Summary of properties of transition matrices and linkage score
statistics for unilineal relative pairs. d is the number of relevant meioses; the
column “semi-group” indicates whether or not the 2 × 2 transition matrix
T (θ) for the usual 0/1 IBD configurations satisfies the semi-group property of
Proposition 1; λ2 = −2κ is the second largest eigenvalue of the infinitesimal
generator Q for the augmented IBD configurations (subscript indicates its
multiplicity); for the usual 0/1 IBD configurations, α = (α0, α1) are the
unconditional (null) IBD probabilities; U = (uij){i,j=0,1} = T κ(1/2), Q =
(qij){i,j=0,1} = T ′(0); C(s) is the auto-correlation function for score statistics
computed at loci s Morgans apart.

Type of pair d Semi-group λ2 α1 q11 u11 C ′(0)

Grand-parent/grand-child 1 YES −21
1
2 −1 −1 −2

> 1 NO −21
1
2d −d − d

2d−1 − d2d

2d−1

Half-sibs 2 YES −41
1
2 −2 4 −4

> 2 NO −21
1

2d−1 −d − d−2
2d−2 − d2d−1

2d−1−1

Avuncular 5 NO −41
1
2 −5

2 2 −5
> 5 NO −21

1
2d−4

5−2d
2 − d−5

2d−5
(5−2d)2d−5

2d−4−1

Cousins 6 NO −42
1
4 −4 3 −16

3

> 6 NO −21
1

2d−4 2− d − d−6
2d−5

(2−d)2d−4

2d−4−1

α1u11 = α0u00, u01 = −u00, u10 = −u11 α1q11 = α0q00, q01 = −q00, q10 = −q11

ST (ν) = u11
α1

∑
i(π1i − α1

α0
π0i)(N1i − α1

α0
N0i) C ′(0) = q11

α0
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