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Targeted Maximum Likelihood Estimation of
Conditional Relative Risk in a

Semi-parametric Regression Model

Cathy Tuglus, Kristin E. Porter, and Mark J. van der Laan

Abstract

The conditional relative risk is an important measure in medical and epidemio-
logical studies when the outcome of interest is binary (i.e. disease vs. no dis-
ease). When the outcome is common, estimation of conditional relative risk and
related parameters can be problematic, especially when the exposure or covari-
ates are continuous. We propose a new estimation procedure based on targeted
maximum likelihood methodology that targets the parameters relating to the con-
ditional relative risk for common outcomes under a log-linear, or multiplicative,
semi-parametric model. In this paper, we present three possible targeted maxi-
mum likelihood estimators for relative risk parameters implied by such a model:
log-binomial based, Poisson-based, and a general semi-parametric approach. We
present the properties and trade-offs of each of these estimators, focusing in par-
ticular on the Poisson-based estimator, which is most practical for implementa-
tion. We show that the resulting estimator is double robust and asymptotically
linear, and inference can be obtained using the corresponding influence curve.
The robustness of our estimator is compared to alternative methods (e.g. log-
linear, Poisson regression) through simulation under model misspecification and
increasing violations of the positivity assumption. The estimation procedure is
then applied to a study of HIV genetic susceptibility scores, which aims to deter-
mine the effects of different genetic susceptibility scores on viral response. Effect
modi?cation by other covariates in the model is also explored.



1 Introduction

In medical and epidemiological studies, when an outcome of interest is binary (i.e. disease vs. no disease)
researchers are often interested in measuring the relative risk of an exposure or treatment. The conditional
relative risk (RR), which adjusts for possible confounders, can be an important measure in such studies,
because of its easy interpretation as the increase in the probability of the outcome in an exposed group
relative to an non-exposed group. This straightforward interpretation allows the researcher to communicate
results to a variety of audiences. Given a rare outcome, the conditional RR can be approximated by the
conditional odds ratio (OR) and easily estimated using logistic regression. However, when the outcome is
common, estimating the conditional RR can be problematic, especially when the exposure or covariates are
continuous(McNutt et al., 2003; Barros and Hirakata, 2003; Lumley et al., 2006). In this paper, we propose
a new approach for estimating the conditional RR and its related parameters for a common outcome based
on targeted maximum likelihood methodology (van der Laan and Rubin, 2006). This approach is developed
under a flexible multiplicative semi-parametric model and can be implemented using standard statistical
software.

In the literature, the most prevalent methods for estimating conditional relative risk parameters for a
common outcome are parametric methods based on log-linear (e.g. Wacholder (1986), Skov et al. (1998)
and Zocchett et al. (1995)), Poisson (e.g. Zou (2004) and McNutt et al. (2003)), and Cox regression models
(e.g. Lee and Chia (1993) and Lee (1994)). Overviews and comparisons of these methods can be found in
papers by McNutt et al. (2003), Barros and Hirakata (2003) and Lumley et al. (2006). These three methods
do not imply three unique estimators, however. As the above mentioned papers point out, the estimators
implied by using Poisson regression and Cox regression are equivalent. In practice, Poisson regression is
often preferred and easier to implement, therefore we focus our comparisons on Poisson regression. Some
have also suggested methods to convert the OR to the RR. However, these methods are susceptible to bias
in both their estimates, tests, and confidence intervals (Localio et al., 2007; McNutt et al., 2003).

If the regression model is correctly specified, these parametric methods will provide consistent esti-
mates of conditional relative risk parameters. Log-binomial regression estimates the conditional RR directly
using maximum likelihood estimation. However, when continuous covariates are included in the model, log-
binomial regression becomes highly susceptible to convergence issues and requires modifications to achieve
more stable parameter estimates (e.g. Wacholder (1986), SAS (2003) and Lumley et al. (2006)). Poisson
regression is not plagued by these convergence issues and provides consistent estimates of the conditional
relative risk when the model is correct (Stijnen and Van Houwelingen, 1993; Zou, 2004; Carter et al., 2005).
However, the standard errors provided by Poisson regression are overestimated, and alternative methods
such as the sandwich estimator (Zou, 2004; Carter et al., 2005) or bootstrap (Barros and Hirakata, 2003)
must be used to obtain correct inference.

Due to their dependence on the accuracy of a fully specified model, parameter estimates from the above
parametric methods are often biased in observational studies. More flexible alternatives presented in the
literature include semi-parametric counterparts to the log-linear and Poisson regression models. Typically
these are built under either generalized partial linear models or generalized additive partial linear models,
the latter being a less flexible approach where each covariate has a separate additive component in the model
(Hastie and Tibshirani, 1990). Estimation methods for the parameter under a partial linear model include
profile likelihood methods (Speckman, 1988; Severini and Wong, 1992; Severini and Staniswalis, 1994) and
backfitting algorithms (Hastie and Tibshirani, 1990). Under the additive partial linear model, estimation
methods include backfitting (Buja et al., 1989) and marginal integration (Chen et al., 1996). Though these
estimation methods are less dependent on model specification, they do not target estimation towards the
parameter of interest and can still result in biased estimates and improper inference.

In this paper, we introduce double robust (DR) targeted maximum likelihood estimators (TMLEs) of
conditional relative risk parameters. These estimators are developed under a multiplicative semi-parametric
regression model, which is also referred to as a log-link generalized partial linear model. The model only
requires specification of the model terms relating to the variable of interest (i.e. the exposure) and allows the
remaining terms to be estimated as flexibly as possible, using a data adaptive approach. Targeted maximum
likelihood estimation updates an initial estimator of the density of the data under the assumed model in
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a direction that targets estimation towards the parameter of interest (van der Laan and Rubin, 2006). In
this case, the parameter of interest is the coefficient (or coefficient vector) for the exposure variable (i.e.
variable of interest) and any effect modifier (i.e. interaction) terms. The TMLE for these coefficients can
be used to compute conditional relative risk. Previous applications of target maximum likelihood under a
semi-parametric regression model can be found in Tuglus and van der Laan (2008, 2010), and additional
applications of targeted maximum likelihood can be found in van der Laan et al. (September, 2009)

In this paper, we present three TMLE’s for the parameter of interest in the multiplicative semi-parametric
model, but focus in particular on one “practical” TMLE, which we recommend for use in practice. Each
TMLE is based on the update of a different initial density and makes different assumptions on the distribution
of the outcome. The three distributions for the TMLEs we present here are: (1) log-binomial, (2) Poisson,
and (3) overdispersed exponential. The first TMLE, based on an update of a log-binomial density, is the
natural TMLE for parameters related to the conditional relative risk. It correctly assumes a binary outcome
and the resulting TMLE is double robust, asymptotically linear, and efficient. However, estimation requires
log-binomial regression, which is often computationally unstable; therefore this TMLE is not typically feasible
in practice. The second TMLE is based on an update of a Poisson density. This TMLE assumes the outcome
follows a Poisson distribution, which is incorrect for a binary outcome; therefore, given a binary outcome,
the resulting estimator is double robust and asymptotically linear but no longer efficient. However, this
TMLE is computationally stable and straightforward to implement with correct inference. Therefore, this
TMLE is considered the most practical of the three estimators, and this paper will focus primarily on this
TMLE for implementation and application. The third TMLE makes no assumptions on the distribution of
the outcome and is based on an update of a density in the overdispersed exponential family. This TMLE is
the most general of the three, and the targeted maximum likelihood updates of the two prior methods can be
derived directly from the update for this TMLE. However, this method is not straightforward to implement
in practice using standard software.

The layout of the paper is as follows. In Section 2, we present the data structure. In Section 3, we present
the assumed multiplicative semi-parametric model, and in Section 4 we formalize the parameter of interest,
which is implied by the model. In Section 5, we present the three TMLE’s mentioned above, followed by step-
by-step implementation instructions for the more practical Poisson-based TMLE in Section 6. In Section 7,
we demonstrate the performance of this Poisson-derived TMLE with results from a variety of simulations,
and in Section 8, we apply this TMLE in an HIV viral response data set. We conclude by summarizing the
value our new approach in the discussion in Section 9.

2 Data Structure

Consider an observed point treatment data set consisting of n independent and identically distributed (i.i.d.)
observations of O = (W,A, Y ) ∼ P0 ∈M. W is a vector of baseline covariates, A is the exposure of interest,
and Y = {0, 1} is a binary outcome. P0 denotes the true distribution of O, from which all subjects are
sampled. P0 is an element of a statistical model M, which is a semi-parametric model defined below in
Section 3.

In this article, the subscript 0 (e.g. β0) will represent a parameter or function under the observed data
generating distribution, and the subscript n (e.g. βn) will represent a estimate or estimator of a parameter
or function determined from the sample population. Additionally a superscript indicates the iteration value,
where a superscript 0 designates an initial value, a superscript k designates the values at the kth iteration,
and a superscript ∗ indicates the final converged value.

Note that for causal effects, we assume that O is a missing data structure on a hypothetical full data
structure X = (W,Ya : a ∈ A), which contains all counterfactual outcomes Ya. We therefore view A as the
missingness variable, as O contains only one of all possible counterfactual outcomes, Y = YA.
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3 Multiplicative Semi-parametric Model

The likelihood of the observed data can be factorized as follows in terms of the observed data structure
defined above:

P0(O) = P0(W )P0(A|W )P0(Y |A,W ).

We make no assumptions about the distributions of P0(W ) or g0(A|W ) = P0(A|W ) and assume the
following semi-parametric multiplicative model for the mean of P0(Y |A,W ):

P0(Y = 1|A,W ) = emβ0 (A,V )P0(Y |A = 0,W ),

or
log(P0(Y = 1|A,W )) = mβ0(A, V ) + log(P0(Y = 1|A = 0,W )),

where mβ0(A, V ) is a specified function of A and effect modifiers V ⊂ W , and P0(Y = 1|A = 0,W ) is
unspecified. The model mβ0(A, V ), can be any form such that mβ0(A = 0, V ) = 0 for all values, v ∈ V .
We generally specify a linear function of A and work with the following two models (1) simple main effect:
mβ0(A, V ) = β0A or (2) V-modified mβ0(A, V ) = β0(1)A + β0(2)A : V , where the effect of exposure A
is modified by covariate V . The latter model form is represented in terms of the parameter vector β0 as
mβ0(A, V ) = βT0 [A A : V ].

Going forward, we define Q̄0(A,W ) ≡ P0(Y = 1|A,W ). For convenience, we introduce separate notation
for P0(Y = 1|0,W ) and define θ0(W ) ≡ Q̄0(0,W ). We can then rewrite the multiplicative semi-parametric
model as:

Q̄0(A,W ) = emβ0 (A,V )θ0(W ). (1)

4 Parameter of Interest

We can represent conditional relative risk (RR) in terms of the observed data and the semi-parametric model
as follows:

RR0(a) = P0(Y=1|A=a,W )
P0(Y=1|A=0,W )

= Q̄0(a,W )
θ0(W )

= emβ0 (a,V ),

or on the log scale:

log
{
Q̄0(a,W )
θ0(W )

}
= mβ0(a, V ).

The model in 2 requires that both Q̄0(A,W ) > 0 and θ0(W ) > 0. In order for this to be true, we must have
that P0(A = a|W ) > 0 for all a,w. This latter requirement is often referred to as the positivity assumption
(Robins, 1986, 1987, 1999), or the experimental treatment assignment (ETA) assumption (Neugebauer and
van der Laan, 2005). Therefore, the model in 2 is true only for a,w for which there is support in the data.
So to be more precise, we can write:

Q̄0(a,w)
θ0(w)

I(a,w ∈ A′) = emβ0 (a,v), (2)

where A′ contains the subset of a,w for which the positivity assumption is not violated (i.e. for which
P0(A = a|W ) > 0). This allows us to estimate the importance (i.e. risk) of exposure A in predicting the
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outcome Y , conditional on W , for those strata of W in which the data have sufficient support. The analyst
may want to allow for extrapolation across all a,w, but this would be unwise if the model was not true for
across all a,w.

Based on the parameterization of the conditional relative risk shown above, we can define our parameter
of interest as β0 = Ψ(P0). We note that under the model defined in Section 3, the parameter of interest
is only a function of Q̄0(A,W ) = P0(Y = 1|A,W ). Therefore we can denote, β0 = Ψ(Q̄0). If we define
mβ0(A, V ) = β0A, then the parameter of interest, β0 is the change in the log of the conditional relative risk
for a one unit increment change in A. This allows us to estimate the importance (i.e. risk) of exposure A in
predicting the outcome Y , conditional on W , for those strata of W in which the data have sufficient support.

In order for the parameter of interest to have a causal interpretation, we require that not only that O
is a missing data structure on a hypothetical full data structure X = (W,Y0, Y1), as described in Section 2,
but we also require the randomization assumption: {A⊥Y0, Y1|W}. However, even in the case where these
assumptions do not hold, the variable importance parameter defined above is a well-defined and meaningful
parameter.

We note that one motivation for using our multiplicative semi-parametric model is that regardless of
whether or not we believe our model, we can still accurately test the following strong null hypothesis:

H0 :
P0(Y = 1|A,W )

P0(Y = 1|A = 0,W )
= 1,

for all W . Under this null, the model is always correct. Therefore, we can construct valid tests of this null
hypotheses.

5 Targeted Maximum Likelihood Estimation

Targeted maximum likelihood estimation updates an initial estimator of the density in a direction that
targets estimation towards the parameter of interest. The update is achieved by regressing the outcome on
a “clever covariate” while setting the initial estimate as an offset. This update is iterated until convergence.
The “clever covariate” is derived such that the converged TMLE is also the solution to the double robust
estimating equation for the parameter of interest. The converged TMLE is an asymptotically linear estimator
of the parameter of interest, therefore inference can be based on the corresponding influence curve (van der
Laan and Rubin, 2006).

For the parameter of interest, β0, under the assumed semi-parametric multiplicative model defined in
Section 3, three different TMLE’s may be developed: (1) as an update to log-binomial density assuming the
distribution for P0(Y |A,W ) is binomial; (2) as an update to a Poisson density assuming the distribution
for P0(Y |A,W ) is Poisson; or (3) as an update to a general density of the overdispersed exponential family
independent of distributional assumptions on P0(Y |A,W ). The latter TMLE is the most general and assumes
only a semi-parametric multiplicative model of general form as presented in 1. We note that TMLE’s (1)
and (2) are examples of TMLE (3) and can be derived from method (3) under their respective distributional
assumption (see Appendix A for details).

In the case of a binary outcome, where one is interested in estimating the conditional relative risk, all
three TMLE’s are double robust and asymptotically linear estimators. However, only TMLE’s (1) and (3)
respect the binary form of the outcome and are therefore efficient. The Poisson-based TMLE (2) assumes
the outcome follows a Poisson distribution. Therefore, when the outcome is binary, the initial estimator
for TMLE (2) is always misspecified, and the corresponding influence curve is not the efficient influence
curve. Although TMLE (2) is not efficient it remains DR - that is, the efficient score estimating function
in the semi-parametric Poisson regression model is an unbiased DR estimating function for the parameter
of interest in the semi-parametric conditional mean model, which does not assume a Poisson distribution.
Consequently, the Poisson-based TMLE (2) is consistent, and we can provide correct inference using the
corresponding influence curve.

In practice, the Poisson-based TMLE (2) is more stable than the TMLE (1), which requires updating
a log-binomial regression. As mentioned previously, log-binomial regression is often unstable especially
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given continuous covariates. Although TMLE (3) is more general with no distributional assumptions on
P0(Y |A,W ), it can not be implemented using standard software and is therefore a less practical estimator.
Therefore in practice, the Poisson-based TMLE (2) is preferred and will be applied in this paper in simulation
and application.

5.1 Specifics of the TMLE’s

For each of the three TMLEs we present the form of the density, its fluctuation model, and the derived
“clever covariate.” In Appendix B we provide their respective efficient scores and estimating functions as
well as the derivation of their respective “clever covariates.”

For all three TMLEs, the initial density P 0(Y |A,W ), with mean, E0[Y |A,W ] = P 0(Y = 1|A,W ) =
Q̄0(A,W ) is defined in terms of the semi-parametric model presented above, where

log Q̄0(A,W ) = mβ0(A, V ) + log θ0(W ).

A class of submodels fluctuated with parameter ε is defined as P 0(ε)(Y |A,W ) with corresponding mean

log Q̄0(ε)(A,W ) = mβ0(ε)(A, V ) + log θ0(ε)(W ),

where mβ0(ε)(A, V ) = mβ0+ε(A, V ) and log θ0(ε)(W ) = log θ0(W ) + εrQ̄0,g0(W ). The form of rQ̄,g(W ) is
determined such that at ε = 0, Q̄0(ε = 0)(A,W )=Q̄0(A,W ) and the linear span of the score of the likelihood
for Q̄0(ε)(A,W ) with respect to ε at ε = 0 includes the efficient score (van der Laan and Rubin, 2006).

Given a model mβ(A, V ) that is linear in β, the model,

log Q̄0(ε)(A,W ) = mβ0(ε)(A, V ) + log θ0(ε)(W ),

can be rearranged as an update to the initial fit

log Q̄0(ε)(A,W ) = log Q̄0(A,W ) + εT
d

dβ0
mβ0(A, V ) + εT rQ̄0,g0(W ).

The update can be achieved by estimating ε with standard maximum likelihood estimation. For log-binomial
and Poisson methods, the update can be completed using generalized linear regression setting the initial
estimate, Q̄0(A,W ), as an offset and regressing Y onto the following “clever covariate”,

H∗Q̄0,g0(A,W ) =
d

dβ0
mβ0(A, V ) + rQ̄0,g0(W ).

In practice the update process is iterated such that βk+1 = βk + εk and log θk+1(W ) = log θk(W ) +
εkrQ̄k,gk(W ), where εk is the update parameter for the kth update (e.g. β1 = β0 + ε0). Convergence is
achieved when εk ≈ 0. The final converged estimate is the solution to the robust estimating equation
corresponding to the efficient score

1
n

n∑
i=1

[
Dh∗,Q̄∗,g(Oi)

]
= 0,

Therefore, the TMLE, β∗,inherits the DR properties of the solution to the efficient estimating equation and
the efficient influence curve can be used to estimate the correct covariance and inference.

5.1.1 TMLE (1): Log-binomial model

Assuming a log-binomial distribution, the initial density is a binomial density defined as

P 0(Y |A,W ) = Q̄0(A,W )Y (1− Q̄0(A,W ))1−Y ,

where Q̄0(A,W ) = P 0(Y = 1|A,W ) = θ0(W )emβ0 (A,V ) with the associated fluctuation

P 0(ε)(Y |A,W ) = Q̄0(ε)(A,W )Y (1− Q̄0(ε)(A,W ))1−Y ,

5
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given Q̄0(ε)(A,W ) = θ0(ε)(W )emβ0(ε)(A,V ).
The proper form of the fluctuation function rQ̄0,g0(W ) is defined as follows

rQ̄0,g0(W ) = −
E
[

Q̄0(A,W )
1−Q̄0(A,W )

d
dβ0mβ0(A, V )

∣∣∣W]
E
[

Q̄0(A,W )
1−Q̄0(A,W )

∣∣∣W] ,

The update is completed using log-binomial regression with an offset equal to the initial fit and a “clever
covariate” defined as

H∗Q̄0,g0(A,W ) =
d

dβ0
mβ0(A, V )−

E
[

Q̄0(A,W )
1−Q̄0(A,W )

d
dβ0mβ0(A, V )

∣∣∣W]
E
[

Q̄0(A,W )
1−Q̄0(A,W )

∣∣∣W] .

5.1.2 TMLE (2): Poisson

Under the Poisson distribution, the initial density is a Poisson density defined as

P 0(Y |A,W ) =
Q̄0(A,W )Y

Y !
e−Q̄

0(A,W ),

with the associated fluctuation

P 0(ε)(Y |A,W ) =
Q̄0(ε)(A,W )Y

Y !
e−Q̄

0(ε)(A,W ).

The proper form for rQ̄0,g0(W ) is

rQ̄0,g0(W ) = −

{
d

dβ0
mβ0(A, V )−

E[ d
dβ0mβ0(A, V )emβ0 (A,V )|W ]

E[emβ0 (A,V )|W ]

}
.

The update is completed using Poisson regression with an offset equal to the initial fit and “clever covariate”
defined as

H∗Q̄0,g0(A,W ) =
d

dβ0
mβ0(A, V )−

{
E[ d

dβ0mβ0(A, V )emβ0 (A,V )|W ]

E[emβ0 (A,V )|W ]

}
.

In practice, the Poisson based TMLE is recommended due to its computational stability. Therefore,
subsequent implementation instructions and applications in this chapter will be presented in terms of the
Poisson TMLE.

5.1.3 TMLE (3): Overdispersed Exponential Family

A density of the overdispersed exponential family in canonical form is represented as follows (McCullagh
and Nelder, 1989)

P 0(Y |A,W ) = hc(Y, τ) exp
{
η0Y −B(η0)

d(τ)

}
.

for this subclass of models d(τ) is the conditional residual variance, σ2
Y (A,W ), η0 = Q̄0(A,W ) = θ0(W ) exp(mβ0(A, V ))

and B′(η0) = Q̄0(A,W ). Therefore it can be rewritten as follows

P 0(Y |A,W ) = hc(Y, τ) exp
{
Q̄0(A,W )Y −B(Q̄0(A,W ))

σ2
Y (A,W )

}
.

We define a class of submodels, fluctuated by parameter ε as

P 0(ε)(Y |A,W ) = hc(Y, τ) exp
{
Q̄0(ε)(A,W )Y −B(Q̄0(ε)(A,W ))

σ2
Y (A,W )

}
,

6

http://biostats.bepress.com/ucbbiostat/paper283



where Q̄0(ε)(A,W ) = θ(ε)(W ) exp(mβ(ε)(A, V )), θ(ε)(W ) = θ(W ) exp(εrQ̄0,g0(W )) and β(ε) = β + ε.
The proper form of the fluctuation function, rQ̄0,g0(W ), is defined as follows

rQ̄0,g0(W ) = −
E
[

d
dβ0mβ0(A, V )Q

0(A,W )2

σ2
Y (A,W )

∣∣∣W]
E
[
Q0(A,W )2

σ2
Y (A,W )

∣∣∣W]
and the clever covariate is defined as

H∗Q̄0,g0(A,W ) =
d

dβ0
mβ0(A, V )−

E
[

d
dβ0mβ0(A, V )Q

0(A,W )2

σ2
Y (A,W )

∣∣∣W]
E
[
Q0(A,W )2

σ2
Y (A,W )

∣∣∣W]
5.2 Estimating the “clever covariate”

Unlike the TMLE for the additive semi-parametric regression model for a continuous outcome presented in
Tuglus and van der Laan (2008, 2010), the “clever covariate” presented here is not only a function of the
conditional mean of A, given W , but depends on P (A |W ) in a more complex way. When A is continuous,
the “clever covariate” can be directly estimated using a data-adaptive regression algorithm to estimate the
expectations in the numerator and denominator of the second term. This is the method that is used in the
following application in Section 8.

Given a binary or categorical A with L levels, the “clever covariate” can also be determined directly as
follows

H∗Q̄,g(A,W ) = A−
∑L
l=1

d
dβmβ(A = al, V )emβ(A=al,V )P (A = al|W )∑L

l=1 e
mβ(A=al,V )P (A = al|W )

.

This method requires the estimation of P (A = al|W ) for all L. It is recommended that these values are
estimated data-adaptively. This method can also be used to approximate the expectation given a continuous
A if the analyst is willing to discretize A solely for the purpose of estimating this covariate.

5.3 Inference

An important feature of targeted maximum likelihood estimators is that they solve the corresponding robust
estimating equation as presented in Section 5. Therefore, statistical inference of the converged estimate of
β0 can be based on the influence curve associated with this estimating equation. Covariance estimates based
on the influence curve are consistent if the estimator for g0(W ) = P0(A|W ) is correctly specified and the
estimator for Q̄0 is misspecified. If gn is correctly specified, the covariance is known to be asymptotically
conservative (van der Laan et al., September, 2009), except if θn is consistent or if gn = g0 is known.
Covariance may also be estimated using the bootstrap. However, this TMLE requires iteration and can be
computationally intensive.

For a parameter vector β0 of length p, an estimate of the p by p covariance matrix, Σn, can be obtained
using the influence curve defined for a single subject as

IC(O) = c−1Dh0,Q̄0,g0
(O),

given scale factor

c = −E
[
d

dβ0
Dh0,Q̄0,g0

(O)
]

where IC(O) is a 1 by p vector for a parameter vector β0 of length p.
The empirical estimate for the covariance of βn is

Σn =
1
n

∑
i

ÎCn(Oi)ÎCn(Oi)T

7
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and the normal approximation √
n(β∗n − β0) ∼ N(0,Σn),

can be used for the purpose of statistical inference.
Using the estimated covariance matrix, hypothesis tests can be performed for a single component βn(j),

where j = 1, . . . , p, under the null hypothesis H0 : β0(j) = 0 using a standard test statistic to obtain p-values,
with estimated variance Σn(j, j):

Tn(j) =
√
nβn(j)√
Σn(j, j)

∼
n→∞

N(0, 1).

Likewise the hypothesis H0 : cTβ0 = 0 can also be tested using a standard Wald test, where the covariance
of cTβn is cTΣnc. In the application presented in this paper, effect modification is tested at various levels of
V . In this situation the vector c for the Wald test is {1, Vq}, where Vq is a specific quantile of effect modifier
V .

6 Step-by-Step Implementation

In this section, we provide step-by-step instructions for implementing targeted maximum likelihood estima-
tion for β0 under the semi-parametric regression model presented in (1). Although the following steps are
presented assuming a Poisson distribution, the TMLE under the log-binomial distribution as well as the
more general TMLE based on the overdispersed exponential density can be implemented in a similar fashion
by substituting in the appropriate clever covariate and using log-binomial regression for the update.

For the following implementation steps, we assume the general linear model form mβ(A, V ) = A(βTV ).

(1) Obtain an initial estimate, Q̄0
n(A,W ) respecting the semi-parametric form logQ̄0

n = mβ0
n

+ logθ0
n,

which provides the initial estimate for the parameter of interest, β0
n. This can be accomplished by

fitting the semi-parametric model using methods such as those described in Speckman (1988); Severini
and Wong (1992); Hastie and Tibshirani (1990), or by using methods such as DSA Sinisi and van der
Laan (2004) to fix the parametric portion of the model and allow the rest to be estimated data-
adaptively. A more flexible alternative, uses an initial estimate for Q̄0(A,W ) of general model form
obtained using data-adaptive machine learning algorithms such as super learner van der Laan et al.
(2007). We estimate Q̄n(A = 0,W ) using this general model fit and then regress Y onto the model
mβ0(A,W ) and treat Q̄n(A = 0,W ) as a covariate. This results in our initial density estimate,
Q̄0(A,W ) and initial estimate, β0 under the correct model.

(2) Calculate the “clever covariate” , H∗
Q̄0
n,gn

(A,W ) = AV − E[AV e(A(β0
n
T
V )|W ]

E[e(A(β0
n
T V ))|W ]

. If A is discrete the

H∗
Q̄0
n,gn

can be calculated directly as described in Section 5.2, or by estimating the numerator and

denominator of the second term (E[AV e(A(β0
nTV )) | W ] and E[e(A(β0

nTV )) | W ] respectively) using a
flexible data-adaptive algorithm.

(3) Estimate the fluctuation parameter, ε0 using Poisson regression to project Y onto H∗
Q̄0
n,gn

, while
setting the initial fitted values, Q̄0

n(A,W ), as an offset. The estimated coefficient associated with the
“clever covariate” is the fluctuation parameter estimate, ε0n. If completed in R this is equivalent to
fitting the following regression formula Y ∼ H∗

Q̄0
n,gn

(A,W ) + offset(Q̄0
n(A,W )) − 1 using glm. Note

that there is no intercept, only the offset value.

(4) Update initial estimate by setting β1
n = β0

n + ε0n and and setting the updated fit as
log(Q̄1

n(A,W )) = log(Q̄0
n(A,W )) + ε0nH

∗
Q̄0
n,gn

(A,W ). These are the first-step updates.

(5) Iterate steps 1 through 4. At each kth iteration, set βkn = βk−1
n + εk−1

n and
log(Q̄kn(A,W )) = log(Q̄k−1

n (A,W )) + εk−1
n H∗

Q̄0
n,gn

(A,W ), until convergence (εkn ≈ 0).
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(6) Obtain standard error and inference for the final converged estimate β∗n using the influence curve
or bootstrap estimates, and then calculate standard errors, p-values and confidence intervals as de-
scribed in Section 5.3.

7 Simulations

In this section, we assess the properties of the Poisson-derived TMLE of β0 with simulations that cover a range
of scenarios seen in actual data sets. With these simulations, we demonstrate the double robustness properties
of this TMLE and differences in variability when we estimate Q̄0(A,W ) and/or g0(A|W ) consistently or with
super learner. We compare our results to those from common estimators in the literature (those obtained
from parametric log-binomial and Poisson regression models), as well as to the estimator obtained from an
original fit of the semi-parametric model, using super learner to estimate θ0. To evaluate the performance
of all estimators, we focus on bias, variance, mean squared error and confidence intervals.

We show that the relative performance of the TMLE, when compared to the other estimators, depends
partly on the level of sparsity in the data. As discussed earlier, within strata defined by W , we would like
the probability of exposure A to be bounded away from zero and one. When A is binary or categorical and
is perfectly randomized, this is guaranteed. The common methods in the literature perform well under this
scenario. However, when A is continuous and in observational studies, analysts often have the challenge that
g0(A|W ) is very small for some strata of W . In other words, we have practical violations of the positivity
assumption for all a,W .

Different estimators are affected by positivity violations in different ways. In the following simulations,
we demonstrate the relative performance the Poison-derived TMLE of β0, for both binary and continuous
A, (1) when A is perfectly randomized, (2) when the relationship between A and Y is confounded by W but
there are no positivity violations and (3) when there are extreme positivity violations.

In all simulations, the outcome variable, Y ∈ {0, 1} is an indicator, such as of of disease status. Also in
all of the simulations, W is a vector of five covariates, which were generated as follows:

W1 ∼ Binom(1, 0.3)
W2 ∼ Binom(1, 0.65)
W3 ∼ N(0, 2)
W4 ∼ N(100, 10)
W5 ∼ N(1, 0.3).

We set
Q̄0(A,W ) = e−0.1AeI+0.1W3+0.02W2W3−0.01W1W4−0.02W5 , (3)

where I takes the following values for the various simulations:

Binary A Continuous A
Simulation 1 Simulation 2 Simulation 3 Simulation 1 Simulation 2 Simulation 3

-0.8 -0.8 -1.0 -0.8 -0.4 -1.4

As (3) shows, β0 = −0.1 in all simulations. Also, (3) shows that mβ0(A) = β0A, so we have assumed
there are no effect modifiers.

7.1 Simulations for Binary A

For a binary A, we consider the following three conditional distributions for g0(A|W ):

9
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1. For the first simulation, A is perfectly randomized such that g0(A|W ) = 0.5. When g0(A|W ) is
misspecified for this simulation, gn(A|W ) = 0.6.

2. For the second simulation, A is dependent on W such that:

g0(A|W ) =
1

1 + exp(−(0.1W3))
.

With this mechanism for exposure, the correlation between A and W3 is 0.10, and values of g0(A|W )
range from 0.28 to 0.73, with a median of 0.49. Therefore, we do not have positivity violations. For
this simulation, when gn(A|W ) is misspecified, the estimator depends only on W1.

3. For the third simulation, A is again dependent on W , but now we have:

g0(A|W ) =
1

1 + exp(−(1.0W3))
.

This mechanism for exposure leads to positivity violations because g0(A|W ) ∈ [5.4 × 10−5, 1.0]. The
median value is 0.54. The correlation between A and W3 is now 0.61. Misspecification of gn(A|W )
again occurs by having the estimator only depend on W1.

7.2 Simulations for Continuous A

For continuous A, we again varied g0(A|W ) three ways:

1. For the first simulation, A is not dependent on W . It is normally distributed such that A ∼ N(1, 0.6).

2. For the second simulation, A is dependent on W such that A ∼ N(1, 0.6) + 0.1W3. In this simulation,
the correlation between A and W3 is −0.1.

3. For the third simulation, A is dependent on W such that A ∼ N(0, 0.6) − 0.8W3. The correlation
between A and W3 in this simulation is −0.6.

For all simulations, we generated 1000 samples of size 1000. All data were generated and all estimators
were implemented using R (Team, 2010).

7.3 Simulation Results

Tables 1.1 and 1.2 present results for estimating β0 when A is binary and when A is continuous. For
continuous A, we estimated the numerator and denominator of the clever covariate using the lars package
in R (Efron et al., 2003). The first column of the tables presents the initial substitution estimator, β0

n, based
on the initial estimate of Q̄0. The second column presents the TMLE, β∗n, obtained by substitution after
k iterations of updating Q̄0

n to obtain Q̄∗n. The subsequent columns provide the bias, mean squared error
(MSE) and empirical variance based on the estimates from 1000 samples. We also include the mean of the
variance estimates calculated from the empirical variance of efficient influence curve divided by the sample
size of 1000. Finally, the last column shows the coverage probability (CP), or the percentage of the time
that the 95% confidence interval contains the true value of β0 = −0.1.

Each panel in the tables corresponds to the simulations described above, and the rows in each panel
indicate the specification of the estimators of Q̄0 and g0, on which the TMLE is based. For example, “Qcgc”
indicates that the correct terms were included when estimating both Q̄0 and g0. “Qcgm” indicates that the
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Table 1: Performance of Poisson-derived TMLE, binary A, by simulation

β0
n β∗n Bias MSE Var(β∗n) Var(ICeff )/n CP

Simulation 1
Qcgc -0.102 -0.102 -0.002 0.006 0.006 0.007 0.964
Qcgw -0.102 -0.102 -0.002 0.006 0.006 0.011 0.990
Qwgc -0.101 -0.101 -0.001 0.006 0.006 0.007 0.966
Qslgsl -0.090 -0.102 -0.002 0.006 0.006 0.007 0.960

Simulation 2
Qcgc -0.103 -0.103 -0.003 0.007 0.007 0.007 0.950
Qcgw -0.103 -0.103 -0.003 0.007 0.007 0.007 0.952
Qwgc -0.057 -0.102 -0.002 0.007 0.007 0.007 0.944
Qslgsl -0.088 -0.101 -0.001 0.007 0.007 0.007 0.948

Simulation 3
Qcgc -0.111 -0.111 -0.011 0.017 0.017 0.016 0.950
Qcgw -0.111 -0.111 -0.011 0.016 0.016 0.008 0.816
Qwgc 0.169 -0.109 -0.009 0.017 0.017 0.016 0.944
Qslgsl -0.091 -0.109 -0.009 0.017 0.017 0.016 0.940

estimator of g0 was misspecified as described above, while the estimator for Q̄0 included the correct terms;
and “Qgmc” indicates that the estimator for Q̄0 was misspecified as described above, while the correct
terms were included when estimating g0. Finally “Qslgsl” indicates that the super learner was used for the
estimators for both Q̄0 and g0.

Tables 1.1 and 1.2 illustrate the properties we expect to see for the TMLE of β0:

• The TMLE is double-robust. The finite-sample bias is close to zero if the estimator for either Q̄0 or g0

is consistent. We achieve this even under substantial confounding and extreme violations of positivity
in Simulation 3.

• When the estimator for g0 is consistent, the variance estimate obtained from the empirical variance of
the efficient influence curve is approximately equal to the variance of the 1000 TMLEs and the coverage
probability is approximately 95%. When the estimator for gn is inconsistent, this variance estimate is
asymptotically conservative.

• Using the super learner to estimate both Q̄0 and g0 provides robust estimators of either Q̄0 or g0 so
that we achieve comparable bias and variance as obtained when correctly specifying the models for Q̄0

and/or g0. The one exception is when A is continuous and we have extreme positivity violations.

Tables 1.3 and 1.4 compare the performance of the TMLE of β0 to the common estimators in the literature
when the initial working model for Q̄0(A,W ) is incorrect. All of the estimators in the literature will perform
well when the parametric models on which they rely are correctly specified. However, we are very doubtful
that anyone can ever specify a parametric model correctly. Therefore, we present comparisons under a more
realistic scenario.

Within each panel for each simulation, the first two rows present results (bias, variance and MSE) for
the common methods in the literature - using log binomial and Poisson regression to estimate W-adjusted
relative risk. The third and fourth rows present results for the initial estimate of β0, β0

n, when Q̄0
n(A,W ) is

incorrectly specified and when it is estimated by super learning. The last two rows then present results for
the TMLE, β∗n when Q̄0

n(A,W ) is incorrectly specified and when it is estimated by super learning.
Figure 1.1 also compares the performance of TMLE to other relative risk estimators The following

summarizes key observations from both the tables and figure:
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Table 2: Performance of Poisson-derived TMLE, continuous A, by simulation

β0
n β∗n Bias MSE Var(β∗n) Var(ICeff )/n CP

Simulation 1
Qcgc -0.099 -0.099 0.001 0.005 0.005 0.005 0.946
Qcgw -0.099 -0.099 0.001 0.005 0.005 0.005 0.946
Qwgc -0.098 -0.098 0.002 0.005 0.005 0.005 0.950
Qslgsl -0.089 -0.099 0.001 0.005 0.005 0.005 0.950

Simulation 2
Qcgc -0.098 -0.098 0.002 0.005 0.005 0.005 0.956
Qcgw -0.098 -0.098 0.002 0.005 0.005 0.005 0.956
Qwgc 0.016 -0.099 0.001 0.005 0.005 0.005 0.956
Qslgsl -0.089 -0.099 0.001 0.005 0.005 0.005 0.958

Simulation 3
Qcgc -0.102 -0.103 -0.003 0.003 0.003 0.065 0.956
Qcgw -0.102 -0.103 -0.003 0.003 0.003 0.065 0.956
Qwgc 0.025 -0.103 -0.003 0.003 0.003 0.004 0.958
Qslgsl -0.096 -0.105 -0.005 0.003 0.003 0.003 0.948

Table 3: Relative performance of Poisson-derived TMLE, binary A

Bias Var MSE
Simulation 1

Log Binomial, incorrect -0.004 0.007 0.007
Poisson, incorrect -0.004 0.007 0.007
β0
n, incorrect -0.001 0.006 0.006
β0
n, SL 0.010 0.008 0.008
β∗n Qwgc -0.001 0.006 0.006
β∗n Qslgsl -0.002 0.006 0.006

Simulation 2
Log Binomial, incorrect 0.046 0.007 0.009
Poisson, incorrect 0.047 0.007 0.009
β0
n, incorrect 0.043 0.007 0.009
β0
n, SL 0.012 0.009 0.009
β∗n Qwgc -0.002 0.007 0.007
β∗n Qslgsl -0.001 0.007 0.007

Simulation 3
Log Binomial, incorrect 0.277 0.010 0.087
Poisson, incorrect 0.277 0.010 0.087
β0
n, incorrect 0.269 0.010 0.083
β0
n, SL 0.009 0.016 0.016
β∗n Qwgc -0.009 0.017 0.017
β∗n Qslgsl -0.009 0.017 0.017
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Table 4: Relative performance of Poisson-derived TMLE, continuous A

Bias Var MSE
Simulation 1

Log Binomial, incorrect 0.000 0.004 0.004
Poisson, incorrect -0.002 0.005 0.005
β0
n, incorrect 0.002 0.005 0.005
β0
n, SL 0.011 0.007 0.007
β∗n Qwgc 0.002 0.005 0.005
β∗n Qslgsl 0.001 0.005 0.005

Simulation 2
Log Binomial, incorrect 0.111 0.004 0.017
Poisson, incorrect 0.110 0.004 0.016
β0
n, incorrect 0.116 0.005 0.018
β0
n, SL 0.011 0.007 0.007
β∗n Qwgc 0.001 0.005 0.005
β∗n Qslgsl 0.001 0.005 0.005

Simulation 3
Log Binomial, incorrect 0.120 0.000 0.015
Poisson, incorrect 0.123 0.000 0.015
β0
n, incorrect 0.125 0.000 0.016
β0
n, SL 0.004 0.003 0.003
β∗n Qwgc -0.003 0.003 0.003
β∗n Qslgsl -0.005 0.003 0.003

• In a randomized trial, as demonstrated in Simulation 1, all estimators perform comparably well, as
expected, for both binary and continuous A.

• As the relationship between the true confounder and A increases in Simulations 2 and 3, the estimators
utilizing on log-binomial regression and Poisson regression are increasingly biased, while the variance
(of the 1000 sample estimates of β0) remains at the same or similar level (for binary A) or decreases
(for continuous A).

• The TMLE of β0 achieve the lowest MSE in both simulations with confounding (Simulations 2 and 3).
We see a small trade-off in variance for removal of bias.

• Even with positivity violations, the TMLE’s are robust.
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Figure 1: Estimates and 95% confidence intervals by method

8 Application

Genotypic resistance testing has become a powerful tool for clinicians in determining the appropriate treat-
ment regimen for people with HIV (Durant et al., 1999; Tural et al., 2002). However interpretation of the
resistance testing can be difficult. Over the years multiple interpretation algorithms have been developed
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to provide more straightforward measures of resistance Rhee et al. (2009). A study completed by Rhee
et al. (2009) assessed the predictive ability of four genotypic resistance test interpretation algorithms (ANRS
(de Recerche sur le SIDA , ANRS), HIVdb (Liu and Shafer, 2006), Rega (Van Laethem et al., 2002), and
ViroSeq (Eshleman et al., 2004)) to determine virologic response (VR), adjusting for additional baseline
covariates. In this analysis the data are reanalyzed using targeted maximum likelihood methodology to
determine the importance of each algorithm with respect to its predictive fit. In other words, we are de-
termining the importance of each genotypic algorithm (A) on VR (Y ), adjusting for all other covariates in
the original analysis (W ). Then, the genotypic algorithm with the highest importance measure is analyzed
further by estimating the modification of its effect by each of the covariates included in the original model.

8.1 Background

For individuals infected with human immunodeficiency virus (HIV) effective antiretroviral (ARV) treatments
carry the promise of a longer and more gratifying life. HIV infects the body’s immune system and progres-
sively destroys and impairs its ability to fight off infection. ARV treatments are designed to slow down
HIV reproduction and stall its debilitating effects. A properly designed and administered treatment can
prolong survival and increase overall quality of life (of Health and on Clinical Practices for Treatment of
HIV Infection A).

There are many ARV drugs available. Some of the more common classes of ARV drugs are boosted
protease inhibitors (PIs), nucleoside reverse transcriptase inhibitors (NRTIs) and non-nucleoside reverse
transcriptase inhibitors (NRTIs) (of Health and on Clinical Practices for Treatment of HIV Infection A).
Patients are generally placed on a combination of several drugs from multiple classes called a treatment
regimen. However, HIV is a rapidly evolving virus and commonly develops drug resistant mutations rendering
initially effective treatment regimens useless (of Health and on Clinical Practices for Treatment of HIV
Infection A). The rapid rate of mutation has made genotypic resistance testing essential to determining
the appropriate treatment regimen for an individual patient (Durant et al., 1999; Tural et al., 2002). To
facilitate the interpretation of these tests, interpretation algorithms have been developed. The algorithms
are drug-specific and applied to a patients baseline genotype (Rhee et al., 2009).

8.2 Data

Study subjects were selected according to the eligibility requirements outlined in Rhee et al. (2009) from
16 clinics of the Kaiser-Permanente Medical Care Program, Northern California. In the original study 734
valid treatment change episodes (TCEs) were recorded for 641 patients. In this study a valid TCE occurs
when a individual has undergone a change in treatment regimen within 24 weeks of a genotypic resistance
test and has received at least four weeks of a new salvage regimen. Though the original study uses all TCEs,
to simplify our analysis, we randomly select only one TCEs per patient.

Virologic response is measured according to plasma HIV-1 RNA levels. High plasma HIV-1 RNA levels
indicate strong viral activity. The original study classifies VR into three classes: sustained, transient, and
absent. Sustained VR is achieved when two subsequent tests show plasma RNA levels below the limit of
quantification (BLQ). Transient refers to cases where only 1 subsequent test was at BLQ level, and absent
when no subsequent test is BLQ. For this analysis sustained and transient classes are merged into a single
class (VR=1) (see Rhee et al. (2009) for more details).

The original Rhee et al. (2009) study focused on four interpretation algorithms: ANRS (de Recerche sur le
SIDA , ANRS), HIVdb (Liu and Shafer, 2006), Rega (Van Laethem et al., 2002), and ViroSeq (Eshleman
et al., 2004). Each algorithm is applied to an individual patients baseline genotype to determine the drug
specific genotypic susceptibility scores (GSSs) for each ARV. GSS measures range from 0 to 1, where a GSS
of 1 indicates full susceptibility of HIV-1 to the particular ARV and a GSS of 0 indicates full resistance. The
drug-specific GSSs are then combined into regimen specific GSSs (rGSSs) through three alternative weighing
schemes: “boosted PI weighted”, “comprehensive weighted”, and “unweighted”. The “unweighted” rGSS is
the addition of all drug-specific GSSs weighted equally with 1.0. The “boosted PI weighted” rGSS increases
the weight of the drug-specific GSSs for boosted PIs to 1.5. The “comprehensive weighted” rGSS increases
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the weight of the drug-specific GSSs for boosted PIs to 2.0 and decreases the drug-specific GSSs for NRTIs
to 0.5. This results in a total of 12 rGSSs. We standardize each rGSS by subtracting its mean and dividing
by its standard deviation to allow direct comparison of the importance measures.

Additional covariates are also included in the original prediction analysis including individual demograph-
ics (age, sex, and race), features of ARV treatment prior to the TCE (i.e. duration of therapy, number of
ARVs, etc.), and features of the salvage regimen (i.e. number of new ARVs, new ARV drug classes, etc.), as
well as plasma HIV-1 RNA level and CD4 count at baseline.

8.3 Analysis

Targeted maximum likelihood estimation is first applied to estimate the variable importance of each rGSS
with respect to its own prediction of VR. These estimates provide a measure of how much each variable
changes the probability of VR on a relative scale. As stated previously in Section 5 , TMLE for variable
importance updates an initial regression estimate to target the parameter of interest. In this case, the initial
regression estimate for a specific rGSS is the super learner estimate, predicting VR using the rGSS and
additional covariates. The covariate set is consistent across all rGSS fits and is defined using univariate
logistic regression. Covariates associated with VR with a p-value of 0.1 or less are included. This analysis
focuses on the overall effect of the rGSS, therefore the model is the simple effect model: mβ(A, V ) = βA. For
each importance measure, inference is obtained using the influence-curved based estimate of the standard
error.

8.4 Results

Results of the initial analysis show significant importance values for all rGSS algorithms as expected. Note
that though standardizing the scores allows us to directly compare the importance measures, the increment
increase in RR is now relative to an increase of one in the z-score of the rGSS or correspondingly an increase
of one standard deviation of the original rGSS measure. From Figures 2 and 3, we see that in general
weighting did have an effect on overall importance. Weighting scheme 1 seems to increase the coefficient for
each algorithm over the unweighted, and weighting scheme 2 increases it even more over that. Under any
weighting scheme, ANRS seemed to have the highest coefficient and corresponding increment RR (e.g. the
change in the probability of sustained virologic response for one unit increase in the zscore of the rGSS). Of
the twelve, the highest importance is attributed to ANRS with “comprehensive weighting” with a coefficient
β = 0.206 corresponding to an increment RR of 1.23 and associated p-value of 3.80e-06 before adjusting for
multiple testing.

8.5 Secondary analysis

As a secondary analysis the rGSS with the highest importance, comprehensively weighted ANRS, is chosen
and a V-modified variable importance analysis is performed, in which a covariate V is included as an effect
modifier of A. The model for this analysis is as follows

mβ(A, V ) = A(βA + βvV )

where the parameter of interest is now measured as a function of two parameters with respect to a particular
covariate, V . In this analysis, all other covariates are considered individually as effect modifiers for the
selected rGSS, and the V-modified importance measure is estimated. The results are shown below.

The individual coefficient values estimated using TMLE with their respective confidence intervals are
shown in Figure 4. Given only the coefficients it is difficult to interpret the results. To clarify, the increment
RR change is calculated at varying levels, Vq of each effect modifier V . This is defined as follows for value
Vq of any V as

RR = eβA+βV Vq .
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Calculating the corresponding standard error is achieved by first calculating the standard error of the linear
combination cTβ = βA + βV Vq, as cΣV cT , where β = {βA, βV }, c = {1, Vq}, and ΣV is the influence curved
based covariance estimate for {βA, βV }. Then, the delta method is used to calculate the corresponding
standard error estimate for the exponential of this linear combination. The quantiles of V (min, 25%, 50%,
75%, max) are chosen for Vq. Note that in some cases the covariate in binary and there are only two possible
values, and therefore only two points. The results are shown in Figures 5 and 6.

From the results (Figures 5 and 6), it can be seen that the increase in the risk of sustained virologic
response with respect to change in the rGSS score of ANRS under comprehensive weighting is modified by
many of the covariates. This is not surprising due to the complexity of body’s response to HIV. Virologic
response is without a doubt a combination of genetics, current viral load, as well as current and past
treatment regimens. For instance, it is logical that increased baseline viral load would result in increased
risk of virologic response, but through this type of analysis, it can also be seen that increased baseline viral
load seems to modify the effect of the genetic score on the relative risk of VR (Figures 5 and 6). This type
of analysis helps elucidate and interpret the complex set of interactions that results in the body’s virologic
response. Having a method which targets the effect and provides consistent and locally efficient estimates of
the effect with formal inference is key to further the understanding and treatment of diseases such as HIV.
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Figure 2: TMLE’s of the coefficients for 4 algorithms, ANRS, HIVdb, Rega, and ViroSeq, under three different
weighting schemes: “unweighted” (W0), “boosted PI weighted” (W1), and “comprehensive weighted” (W3). The
brackets represent the 95% confidence intervals according the influence curve based estimate of the standard error.
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Figure 3: TMLE’s of the increment RR for 4 algorithms, ANRS, HIVdb, Rega, and ViroSeq, under three different
weighting schemes: “unweighted” (W0), “boosted PI weighted” (W1), and “comprehensive weighted” (W3). The
brackets represent the 95% confidence intervals according the influence curve based estimate of the standard error
using the delta method
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Figure 4: TMLE’s of the coefficients (β) for ANRS algorithm under comprehensive weighting adjusted by the
other covariates. Left plot is the coefficient for the main effect, A, and the right plot is the coefficient of the
effect modification or interaction term, A : V . The brackets represent the 95% confidence intervals according the
influence curve based estimate of the standard error. The covariates adjusted are listed from top to bottom: history
of virologic suppression prior to baseline (prev vr suppress), number of PIs in new regimen (NumPIs), number of
regimens received prior to baseline (NumHXRegimens), number of PIs received prior to baseline (NumHXPIs),
number of NRTIs received prior to baseline (NumHXNRTIs), number of non-HAART regimens received prior to
baseline (NumHXNonHAART), number of NNRTIs received prior to baseline (NumHXNNRTIs), number of HAART
regimens received prior to baseline (NumHXHAART), number of new ARVs in new regimen (num newdr newReg),
number of ARVs received prior to baseline (num dr pastReg), number of ARVs in new regimen (num dr newReg),
number of new ARV classes in new regimen (new dr class), duration of new regimen in weeks (duration newReg),
plasma HIV-1 RNA level at baseline in log-copies/ml (bl vload), CD4 count at baseline in cells/ml (bl cd4), and age
at baseline in years (age baseline)
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Figure 5: TMLE’s of the increment RR for ANRS algorithm under comprehensive weighting modified by covariate V
at quantile levels Vq = {0%, 25%, 50%, 75%, 100%} for each covariate V . The brackets represent the 95% confidence
intervals according the influence curve based estimate of the standard error. Covariate V are as follows (left to
right, top to bottom): duration of new regimen in weeks (duration newReg), number of HAART regimens received
prior to baseline (NumHXHAART), number of NNRTIs received prior to baseline (NumHXNNRTIs), number of
non-HAART regimens received prior to baseline (NumHXNonHAART), number of NRTIs received prior to baseline
(NumHXNRTIs), number of PIs received prior to baseline (NumHXPIs), number of regimens received prior to baseline
(NumHXRegimens), and number of PIs in new regimen (NumPIs).
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Figure 6: TMLE’s of the increment RR for ANRS algorithm under comprehensive weighting modified by covariate V
at quantile levels Vq = {0%, 25%, 50%, 75%, 100%} for each covariate V . The brackets represent the 95% confidence
intervals according the influence curve based estimate of the standard error. Covariate V are as follows (left to right,
top to bottom): age at baseline in years (age baseline), CD4 count at baseline in cells/ml (bl cd4), plasma HIV-1
RNA level at baseline in log-copies/ml (bl vload), number of new ARV classes in new regimen (new dr class), number
of ARVs in new regimen (num dr newReg), number of ARVs received prior to baseline (num dr pastReg), number of
new ARVs in new regimen (num newdr newReg), history of virologic suppression prior to baseline (prev vr suppress).
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9 Discussion

In this paper, we introduced three new estimators for the parameters of the conditional relative risk developed
using targeted maximum likelihood methodology under a flexible multiplicative semi-parametric model. The
most prevalent estimators in the literature, especially in the field of epidemiology, rely on parametric models.
However, in a world where models are often incorrect, this reliance on full parametric models can result
in biased estimates and inaccurate conclusions. TMLE’s are developed to avoid reliance on these, often
incorrect, models and reduce bias by targeting estimation towards the parameter of interest.

The TMLE’s presented here are all double robust estimators for the parameter of interest, making them
more resilient to the effects of model misspecification. The double robust property states that the resulting
estimate is unbiased if either the estimator for Q̄0(A,W ) or the estimator for g0(A | W ) is consistent. In
the world clinical trials and controlled experiments, where g0(A | W ) is known, this property is especially
beneficial. However, coupled with data-adaptive methods, such as super learner (van der Laan et al., 2007),
these TMLE’s are also beneficial in the world of observational studies.

All three estimators are developed under a multiplicative semi-parametric model, which conveniently
accommodates both binary and continuous covariates and effect modifiers, while adjusting for additional
covariates flexibly using data-adaptive methods. This model, though more flexible than the fully parametric
models commonly used in these studies, still requires that the analyst specify the components of the model
relating to the variable of interest. In this paper, we discuss and implement two possible model forms,
the main effect model and single effect modification model. It is important to note that though possible
model forms are not restricted to these two models, they are restricted to models linear in the variable of
interest (A). We also allow models with additional effect modifiers, but as the dimension of the fluctuation
parameter increases, a sequential update may be required (Tuglus and van der Laan, 2010). In addition,
the corresponding targeted likelihood also provides a framework for model selection among effect modifiers
(Tuglus and van der Laan, 2011).

The three TMLE’s introduced in this paper are defined and developed according to three different initial
densities: log-binomial, Poisson, and overdispersed exponential. As mentioned previously, for parameters
of the conditional relative risk, the log-binomial density is the natural choice. However, analogous to its
parametric counterpart, the log-binomial-based TMLE is plagued by the instability inherent in log-binomial
regression. As in previous studies before us (e.g. Zou (2004) and McNutt et al. (2003)), we turn to Poisson
regression as a more reliable alternative. Although the Poisson-based TMLE does not correctly assume a
binary outcome, it still possesses the double robust property, and its corresponding influence curve provides
correct inference for the parameter of interest. We consider the Poisson-based TMLE the most practical
TMLE of the three presented and therefore focus our efforts on its implementation and recommend it for
general application.

In an effort to avoid reliance on distributional assumptions of P0(Y |A,W ), we developed the TMLE
based on the more general density from the overdispersed exponential family. This TMLE is developed
directly from the overall efficient score for the semi-parametric multiplicative regression model and makes no
assumptions on the distributional form of the residuals, Y − E[Y |A,W ]. We show in Appendix A that the
efficient scores of the log-binomial and Poisson-based TMLE can be derived directly from this more general
overall efficient score. Although, this TMLE is a more general TMLE for the parameter of interest, it is
not easily implemented using standard software packages, which makes this TMLE less practical for general
implementation and application.

In this paper, we outline implementation instructions for the Poisson-based TMLE and present a sim-
ulation study in which we verify its double robust properties. We also demonstrate its performance under
ETA violations and increases in confounding among the covariates. Similar to previously presented TMLE’s
developed under a semi-parametric model (Tuglus and van der Laan, 2008, 2010), this TMLE shows strong
resilience to ETA violations. This is attributed to its lack of dependence on inverse probability weighting
which is present in some of the previously developed TMLE’s (van der Laan et al., September, 2009). Like
its predecessors, this resilience does not nullify the positivity (or ETA) assumption from Section 4. The
resilience comes from a natural extrapolation of the P0(A|W ) mean process. When A is continuous, the
P0(A|W ) mean process is estimated given the observed values of A and W , and naturally extrapolates over
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areas of lower support. These areas of lower support rely on the accuracy of the estimator for P0(A|W ).
Therefore in practice, it is important to acknowledge this reliance when strong ETA violations are present.

In application, we demonstrated the usefulness of the TMLE for estimation of the main effect of a partic-
ular variable, in this case a genotypic score, controlling for confounding This type of analysis is particularly
useful in biomarker discovery and variable importance analyses when we want to accurately test the impor-
tance of many variables (see Tuglus and van der Laan (2008)). We also took it one step further and showed
how the model can be augmented to test modifications of an association by a single or set of covariates,
where the effect of a genotypic score on the relative risk of virologic response was modified by a variable
such as the baseline viral load. Accurate and interpretable effect modification analysis such as this can be
useful in clinical trials to test how the effect of a treatment (A) is modified by a particular gene expression,
for instance.

In summary, conditional relative risk parameters are useful and interpretable in many epidemiology and
medical studies. In this paper, we have shown that with a semi-parametric multiplicative model, one can
obtain robust estimates of relative risk parameters, even under strong confounding and ETA violations.
We introduced three possible TMLE’s of parameters in the semi-parametric multiplicative model, and we
implemented the more practical of these TMLE’s - based on a Poisson density. We demonstrated this
TMLE’s DR properties, illustrated that it achieves proper inference and showed its improved performance
over existing methods. We also illustrated the TMLE’s value in a real data analysis. This TMLE can be
applied using standard statistical software and will be useful in a wide variety of applications.
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A Efficient Influence curve for effect parameter of multiplicative
semi-parametric model

We present the efficient influence curve for the multiplicative semi-parametric model parameter, and show
that it can be represented as a score of the fluctuation in the overdispersed exponential family of canonical
form. We first present below the general form of the efficient influence curve, then present the overdispersed
exponential family of canonical form, and finally construct a submodel in this exponential family with score
equal to the efficient influence curve.
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A.1 Efficient Influence curve for effect parameter of multiplicative semi-parametric
model

Assume a multiplicative semi-parametric model of the following form
Q̄(A,W )m?

β(A, V ) = θ(W ) under the following constraints: m?(A = 0, V |β) = 1 and
0 ≤ m?

β(A, V ) : for all {a, v} ∈ {A, V }, where m?
β(A, V ) = e−mβ(A,V ). The effect parameter of interest is

defined as Ψ(P ) = β, where Ψ(P0) = β0 is the true parameter defined under the true data generating
distribution.

As presented in van der Laan (2006), the orthogonal complement of the nuisance tangent space for
estimation of β is found to be of the form.

T⊥nuis(P0) = {hQ̄0,g0
(A,W )− E0[hQ̄0,g0

(A,W )|W ]}(Y m?
β0

(A, V )− θ0(W ))

with class of estimating functions

(O, β0, Q̄0, g0)→ Dh,Q̄0,g0
(O|β0) ≡ {hQ̄0,g0

(A,W )− E0[hQ̄0,g0
(A,W )|W ]}(Y m?

β0
(A, V )− θ0(W ))

for β0 indexed by h, where θ0 = E0(Y |A = 0,W ), and g0 = P0(A|W ). The corresponding influence curve is
defined as

ICh,Q̄0,g0
(O) = −

Dh,Q̄0,g0
(O|β0)

d
dβ0

E0[Dh,Q̄0,g0
(O|β0)]

.

The optimal choice of h, hopt, is such that for any vector c,

cTCov(IChopt,Q̄0,g0
)c ≤ cTCov(ICh,Q̄0,g0

)c

for all possible hQ̄0,g0
(A,W ), thus providing the most efficient estimating function. For effect parameter β

under the presented multiplicative semi-parametric model, hopt,Q̄0,g0
is defined as follows.

Define the following terms.
H0(O|β0) ≡ Y m?

β0
(A, V )

ε(β0) ≡ H0(O|β0)− E0[H0(O|β0)|W ]

ε′(β0|A,W ) ≡ d

dβ
E0[ε(β)|A,W ]


β=β0

σ2(A,W ) ≡ E0(ε2(β0)|A,W ]

where,

hopt,Q̄0,g0
(A,W ) =

1
σ2(A,W )

ε′(β0|A,W )−

∫ ε′(β0|A,W )
σ2(A,W ) dP0(a|W )∫

1
σ2(A,W )dP0(a|W )


or

hopt,Q̄0,g0
(A,W ) =

1
σ2(A,W )

ε′(β0|A,W )−
E0

[
ε′(β0|A,W )
σ2(A,W )

∣∣∣W]
E0

[
1

σ2(A,W )

∣∣∣W]
 .

This can be rewritten as

hopt,Q̄0,g0
(A,W ) =

1
σ2(A,W )

Q̄0(A,W )
d

dβ
m?
β0

(A, V )−
E0

[
Q̄0(A,W ) d

dβm
?
β0

(A,V )

σ2(A,W )

∣∣∣∣W]
E0

[
1

σ2(A,W )

∣∣∣W]


This results in the following efficient score/efficient estimating function:

Dhopt,Q̄0,g0
(A,W |β0) = hopt,Q̄0,g0

(A,W )(Y m?
β0

(A, V )− θ0(W )).
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Note that σ2(A,W ) = m?
β0

(A, V )2σ2
Y (A,W ), where σ2

Y (A,W ) = V ar(Y |A,W ), so that the efficient
estimating function can be simplified further as

Dh,Q̄0,g0
(A,W |β0) = h∗

opt,Q̄0,g0
(A,W )(Y − Q̄0(A,W ))

h∗
opt,Q̄0,g0

(A,W ) = Q̄0(A,W )
σ2
Y (A,W )

{
d
dβmβ0(A, V )−

E0

h
d
dβmβ0 (A,V ) 1

σ2(A,W )

˛̨̨
W
i

E0

h
1

σ2(A,W )

˛̨̨
W
i

}
,

which can be rewritten as

Dhopt,Q̄0,g0
,Q̄0,g0

(A,W |β0) = h∗opt(A,W )(Y − Q̄0(A,W )) (4)

h∗
opt,Q̄0,g0

(A,W ) = Q̄0(A,W )
σ2
Y (A,W )

 d
dβmβ0(A, V )−

E0

»
d
dβmβ0 (A,V )

Q̄0(A,W )2

σ2
Y

(A,W )

˛̨̨̨
W

–
E0

»
Q̄0(A,W )2

σ2
Y

(A,W )

˛̨̨̨
W

–
 . (5)

Up until this point no distributional assumptions are made about the conditional distribution of Y .
The above efficient estimating function can be simplified further by assuming a form for σ2

Y (A,W ) =
V ar(Y |A,W ). If one assumes a bernoulli or binomial outcome, σ2

Y (A,W ) = Q̄0(A,W )(1 − Q̄0(A,W )),
and the above estimating function reduces to the estimating function used in Section 5.1.1 for the targeted
maximum likelihood update of an initial log-binomial density. If one assumes a Poisson count outcome, then
σ2
Y (A,W ) = Q̄0(A,W ), and the above estimating function reduces to the estimating function used in Section

5.1.2 for the targeted maximum likelihood update of an initial Poisson density.

A.2 Overdispersed exponential family

The density of the overdispersed exponential family in canonical form is represented as follows

P 0
η,τ (Y |A,W ) = hc(Y, τ) exp

{
ηY −B(η)

d(τ)

}
.

We define η = Q̄0(A,W ) = θ(W ) exp(mβ0(A, V )) and define a class of submodels, fluctuated by parameter
ε as

P 0
η,τ (Y |A,W ) = hc(Y, τ) exp

{
η(ε)Y −B(η(ε))

d(τ)

}
,

where η(ε) = Q̄(ε)(A,W ) = θ(ε)(W ) exp(mβ(ε)(A, V )), θ(ε)(W ) = θ(W ) exp(εrQ̄0,g0(W )) and β(ε) = β + ε.
Therefore the score of the above likelihood with respect to epsilon is as follows

d

dε
logP 0

η,τ (ε)(Y |A,W ) =
1

d(τ)

{
d

dε
η(ε)Y −B′(η(ε))

d

dε
η(ε)

}
,

which can be rearranged as

d

dε
logP 0

η,τ (ε)(Y |A,W ) =
1

d(τ)
d

dε
η(ε)(Y −B′(η(ε))).

By definition of the canonical form, B′(η(ε)) = Q̄(ε)(A,W ), so that the score can be written as

d

dε
logP 0

τ (ε)(Y |A,W ) =
1

d(τ)
d

dε
Q̄(ε)(A,W )(Y − Q̄(ε)(A,W )).

Given the form for Q̄(ε)(A,W ), it follows that

d

dε
Q̄(ε)(A,W ) = Q̄(ε)(A,W )

{
d

dβ
mβ(A, V ) + rQ̄0,g0(W )

}
,
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so that the score at ε = 0 is given by

d

dε
logP 0

τ (ε)(Y |A,W )
∣∣∣∣
ε=0

=
Q̄0(A,W )
d(τ)

{
d

dβ
mβ(A, V ) + rQ̄0,g0(W )

}
(Y − Q̄0(A,W )).

This score is equivalent to the form shown in Equation (6) when d(τ) = σ2
Y (A,W ). This proves that the

estimating function/efficient score presented above is a score of a likelihood in the overdispersed exponential
family. This provides another verification of the fact that the claimed efficient score is indeed an efficient
score.

B Derivation of TMLE’s

B.1 Log-binomial

Under the Log-binomial distribution, the initial density is a binomial density defined as

P 0(Y |A,W ) = Q̄0(A,W )Y (1− Q̄0(A,W ))1−Y ,

where Q̄0(A,W ) = P 0(Y = 1|A,W ) = θ0(W )emβ0 (A,V ) with the associated fluctuation

P 0(ε)(Y |A,W ) = Q̄0(ε)(A,W )Y (1− Q̄0(ε)(A,W ))1−Y ,

given Q̄0(ε)(A,W ) = θ0(ε)(W )emβ0(ε)(A,V )

The associated score for the above likelihood with respect to ε at ε = 0 is as follows

S(r) =
1

1− Q̄0(A,W )

{
d

dβ
mβ0(A, V ) + rQ̄0,g0(W )

}
(Y − Q̄0(A,W )).

The efficient score for effect parameter β0 under the multiplicative semi-parametric model of Section 3
assuming a log-binomial distribution is defined below under P0

Dh0,Q̄0
(O) = hQ̄0,g0

(A,W )(Y − Q̄0(A,W )),

where

hQ̄0,g0
(A,W ) =

1
1− Q̄0(A,W )

 d

dβ0
mβ0(A, V )−

E0

[
Q̄0(A,W )

1−Q̄0(A,W )
d
dβ0

mβ0(A, V )
∣∣∣W]

E0

[
Q̄0(A,W )

1−Q̄0(A,W )

∣∣∣W]
 .

This score is shown to belong to the general class of estimating functions for effect parameter β under the
multiplicative semi-parametric model in Appendix A, equals the efficient score for a binary outcome.

The proper form of the fluctuation function rQ̄0,g0(W ) is therefore as follows

rQ̄0,g0(W ) = −
E
[

Q̄0(A,W )
1−Q̄0(A,W )

d
dβ0mβ0(A, V )

∣∣∣W]
E
[

Q̄0(A,W )
1−Q̄0(A,W )

∣∣∣W] .

Given a model mβ(A, V ) that is linear in β, the model,

log Q̄0(ε)(A,W ) = mβ0(ε)(A, V ) + log θ0(ε)(W ),

can be rearranged as an update to the initial fit

log Q̄0(ε)(A,W ) = log Q̄0(A,W ) + εT
d

dβ0
mβ0(A, V ) + εT rQ̄0,g0(W ).

29

Hosted by The Berkeley Electronic Press



Therefore the update can be achieved by estimating ε with standard maximum likelihood estimation. The
update can be completed using log-binomial regression setting the initial estimate, Q̄0(A,W ), as an offset
and regressing Y onto the following “clever covariate”,

H∗Q̄0,g0(A,W ) =
d

dβ0
mβ0(A, V )−

E
[

Q̄0(A,W )
1−Q̄0(A,W )

d
dβ0mβ0(A, V )

∣∣∣W]
E
[

Q̄0(A,W )
1−Q̄0(A,W )

∣∣∣W] .

B.2 Poisson

Under the Poisson distribution, the initial density is a Poisson density defined as

P 0(Y |A,W ) =
Q̄0(A,W )Y

Y !
e−Q̄

0(A,W ),

with the associated fluctuation

P 0(ε)(Y |A,W ) =
Q̄0(ε)(A,W )Y

Y !
e−Q̄

0(ε)(A,W ).

The associated score for the above likelihood with respect to ε at ε = 0 is as follows

S(r) =
{
d

dβ
mβ0(A, V ) + rQ̄0,g0(W )

}
(Y − Q̄0(A,W )).

The efficient score associated under the multiplicative semi-parametric model of Section 3 assuming a Poisson
distribution is defined below under P0. This score is also shown to belong to the general class of estimating
functions for the effect parameter β under the multiplicative semi-parametric model in Appendix A, and is
the efficient score for this effect parameter β0 given a Poisson (i.e. count) outcome. We have

Dh0,Q̄0
(O) = hQ̄0,g0

(A,W )(Y − Q̄0(A,W )),

where

hQ̄0,g0
(A,W ) =

d

dβ0
mβ0(A, V )−

E0[ d
dβ0

mβ0(A, V )emβ0 (A,V )|W ]

E0[emβ0 (A,V )|W ]
.

It follows that the proper form for rQ̄0,g0(W ) is

rQ̄0,g0(W ) = −

{
d

dβ0
mβ0(A, V )−

E[ d
dβ0mβ0(A, V )emβ0 (A,V )|W ]

E[emβ0 (A,V )|W ]

}
.

Given a simple linear model for mβ(A, V ) = βA the above can rewritten as

rQ̄0,g0(W ) = −

{
A− E[Aeβ

0A|W ]
E[eβ0A|W ]

}
.

Similar to the log-binomial case, the update can be achieved by estimating ε with standard maximum
likelihood estimation. The update is completed using Poisson regression with an offset equal to the initial
fit and “clever covariate” defined as

H∗Q̄0,g0(A,W ) =
d

dβ0
mβ0(A, V )−

{
E[ d

dβ0mβ0(A, V )emβ0 (A,V )|W ]

E[emβ0 (A,V )|W ]

}
.
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B.3 General semi-parametric multiplicative model

Assuming only the semi-parametric multiplicative model, we define the initial density as a member of the
overdispersed exponential family as outlined in Appendix A such that

P 0
τ (Y |A,W ) = hc(Y, τ) exp

{
Q̄0Y −B(Q̄0)

d(τ)

}
.

and we define a class of submodels, fluctuated by parameter ε as

P 0
τ (ε)(Y |A,W ) = hc(Y, τ) exp

{
Q̄0(ε)Y −B(Q̄0(ε))

d(τ)

}
,

where Q̄(ε)(A,W ) = θ(ε)(W ) exp(mβ(ε)(A, V )), θ(ε)(W ) = θ(W ) exp(εrQ̄0,g0(W )) and β(ε) = β + ε. The
score of the above likelihood with respect to ε defined at ε = 0 is as follows

Sτ (r) =
Q̄0(A,W )
d(τ)

{
d

dβ
mβ(A, V ) + rQ̄0,g0(W )

}
(Y − Q̄0(A,W )).

The efficient score for the effect parameter β0 only assuming the multiplicative semi-parametric model
defined in Section 3 as shown previously in Appendix A is restated here

Dhopt,Q̄0,g0
,Q̄0,g0

(A,W |β0) = h∗opt(A,W )(Y − Q̄0(A,W )) (6)

h∗
opt,Q̄0,g0

(A,W ) = Q̄0(A,W )
σ2
Y (A,W )

 d
dβmβ0(A, V )−

E0

»
d
dβmβ0 (A,V )

Q̄0(A,W )2

σ2
Y

(A,W )

˛̨̨̨
W

–
E0

»
Q̄0(A,W )2

σ2
Y

(A,W )

˛̨̨̨
W

–
 . (7)

It follows directly that

rQ̄0,g0(W ) = −

E
[

d
dβ0mβ0(A, V ) Q̄

0(A,W )2

σ2
Y (A,W )

∣∣∣W]
E
[
Q̄0(A,W )2

σ2
Y (A,W )

∣∣∣W]
 ,

given d(τ) = σ2
Y (A,W ). Therefore the “clever covariate” can be defined as

H∗Q̄0,g0(A,W ) =
d

dβ0
mβ0(A, V )−

E
[

d
dβ0mβ0(A, V ) Q̄

0(A,W )2

σ2
Y (A,W )

∣∣∣W]
E
[
Q̄0(A,W )2

σ2
Y (A,W )

∣∣∣W] .
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