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Covariate Adjustment in Randomized Trials
with Binary Outcomes: Targeted Maximum

Likelihood Estimation

Kelly L. Moore and Mark J. van der Laan

Abstract

Covariate adjustment using linear models for continuous outcomes in randomized
trials has been shown to increase efficiency and power over the unadjusted method
in estimating the marginal effect of treatment. However, for binary outcomes, in-
vestigators generally rely on the unadjusted estimate as the literature indicates that
covariate-adjusted estimates based on logistic regression models are less efficient.
The crucial step that has been missing when adjusting for covariates is that one
must integrate/average the adjusted estimate over those covariates in order to ob-
tain the marginal effect. We apply the method of targeted maximum likelihood
estimation (MLE), as presented in van der Laan and Rubin (2006), to obtain esti-
mators for the marginal effect using covariate adjustment for binary outcomes. We
show that the covariate adjustment in randomized trials using logistic regression
models can be mapped, by averaging over the covariate(s), to obtain a fully robust
and efficient estimator of the marginal effect, which equals the targeted maximum
likelihood estimator (MLE). We present simulation studies that show the targeted
MLE increases efficiency and power over the unadjusted method, particularly for
smaller sample sizes, even when the regression model is mis-specified.



1 Introduction

Suppose we observe n independent and identically distributed observations of
the random vector O = (W,A, Y ) ∼ p0, where W is a vector of baseline co-
variates, A is the treatment of interest and Y = {0, 1} is the binary outcome
of interest, and p0 denotes the density of O. Causal effects are based on a
hypothetical full data structure X = ((Ya : a ∈ A),W ) containing the entire
collection of counterfactual or potential outcomes Ya for a ranging over the set
of all possible treatments A. The observed data structure O only contains a sin-
gle counterfactual outcome Y = Y (A) corresponding to the treatment that the
subject received. The observed data O = (W,A, Y ≡ Y (A)) is thus a missing
data structure on X with missingness variable A. We denote the conditional
probability distribution of treatment A by g0(a|X) ≡ P (A = a|X). The ran-
domization assumption or coarsening at random assumption states that A is
conditionally independent of the full data X given W , g0(A|X) = g0(A|W ).
In a randomized trial in which treatment is assigned completely at random, we
have g0(A|X) = g0(A). For the sake of presentation, we assume the treatment A
is binary and that A is completely randomized as in a typical randomized trial,
but our methods are presented so that it is clear how our estimators generalize
to observational studies or randomized trials in which g0(A|W ) is known. In
the binary A case, g0(1) = p(A = 1) = δ0 and g0(0) = p(A = 0) = 1 − δ0

and n1 the number of subjects in treatment group 1 and n0 the number of
subjects in treatment group 0, and n = n1 + n0. The quantity of interest is
causal effect of treatment A on Y , which, for example, can be defined as the risk
difference ψ = E(Y1)−E(Y0), where Y1 and Y0 are the counterfactual outcomes
under treatments 1 and 0 respectively. This quantity is typically estimated in
randomized trials with the unadjusted estimate

ψ̂1 = µ̂1 − µ̂0

where µ̂1 = 1
n

∑n
i=1 I(Ai = 1)Yi and µ̂0 = 1

n

∑n
i=1 I(Ai = 0)Yi. An adjusted

effect is also sometimes obtained,

ψ̂W = P̂ (Y = 1|A = 1, W )− P̂ (Y = 1|A = 0,W ).

Adjusting for baseline covariates and the issues involved has been discussed in
Pocock et al. (2002). Although it has been recognized, at least for linear models,
i.e. continuous outcomes, that adjusting for covariates increases the precision
of the estimate of the marginal causal effect of treatment, investigators are still
resistant to adjusting in logistic models and often rely on the unadjusted esti-
mate. This generally appears to be due to confusion as to how to select the
covariates and and how to adjust for them (Pocock et al. 2002). In addition,
there is a concern that if data-adaptive procedures are used to select the model
for P (Y = 1|A,W ) that investigators will be tempted to select the model that
provides the most favorable results. However, we recommend that as long as
the procedure is determined a priori then we can avoid this latter issue. Thus,
a black box type data-adaptive procedure, e.g. forward selection, can still be
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applied as long as the algorithm and candidate covariates are specified a priori.
Adjusting for covariates with main terms in linear models, referred to as anal-
ysis of covariance (ANCOVA) in randomized trial literature, for the purpose of
estimation of the marginal causal effect has been limited to no interaction terms
with treatment. When there is such an interaction term, it is often not clear in
the literature on analysis of randomized trial data how one uses this conditional
model to obtain a marginal effect. However, even in the absence of the interac-
tion term, the increase in precision has not been observed for non-linear models
such as the logistic model. In fact, it has actually been reported that the esti-
mates are not in fact made more precise for logistic models. The crucial step that
has been missing when the parameter of interest is the marginal causal effect of
A on Y , is that when adjusting for covariates W , one must integrate/average
the adjusted estimate over those W in order to obtain a marginal effect estimate
that is comparable to the unadjusted effect estimate ψ̂1. This method of aver-
aging over W has been referred to as the G-computation formula and is often
applied in observational studies when the treatment or exposure has not been
assigned randomly (Robins (1986) and Robins (1987)). We show that with this
additional step of averaging over W , even when the outcome is binary, and even
if the regression model is misspecified, we obtain a more efficient estimate in the
randomized trial setting. Such an approach allows for interactions between A
and W in the model for P (Y = 1|A,W ) while still obtaining a marginal effect.
We note that the conditional effect may be the parameter of interest in some
studies, for example the effect of a drug conditional on age, and thus the inves-
tigator does not want to average over age. In this paper we focus only on the
marginal effect and using the covariates W to obtain the most efficient (precise)
estimate of this marginal causal effect in a nonparametric model. We apply
the method of targeted maximum likelihood estimation (MLE), as presented in
van der Laan and Rubin (2006), to obtain estimators for the marginal effect
using covariate adjustment for binary outcomes. This general targeted MLE
methodology applies to any estimation problem. In this article we apply it to
the risk difference, relative risk and odds ratio, in the context of a randomized
trial. Targeted MLE was purposefully named in that maximum likelihood esti-
mators aim for trade-off between bias and variance for the whole density, while
the targeted MLE carries out a bias reduction specifically taylored for the pa-
rameter of interest. Substitution estimators based on standard MLE are often
biased with respect to the parameter of interest and do not always converge at
a parametric rate. On the other hand, the targeted MLE maps a density esti-
mator (e.g., MLE) into a targeted maximum likelihood estimator (at parameter
of interest) so that the corresponding substitution estimator is double robust
and locally efficient. That is, this estimator in the randomized trial setting is
always consistent and asymptotically linear even when the initial regression es-
timator for P (Y |A,W ) is mis-specified, and is even nonparametrically efficient
if the initial estimator is consistent. The general algorithm provided in van der
Laan and Rubin (2006) is to start with initial density estimator, then create
a parametric model with parameter ε through this given initial density esti-
mator whose scores at ε = 0 include the components of the efficient influence
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curve of the parameter of interest at the given density estimator. It estimates
ε with MLE of this parametric model and finally updates the new density es-
timator as the corresponding fluctuation of the given initial density estimator.
The algorithm can be iterated until convergence. However in many examples
convergence is achieved in a single step as is the case for the examples in this
paper. We apply this approach to the estimation of marginal treatment effects
including the risk difference, relative risk and odds ratio. The targeted maxi-
mum likelihood estimator is a very practically attractive procedure since it can
be achieved by simply adding a covariate to an initial estimate of the regression
P (Y = 1|A,W ). The corresponding coefficient ε for this new covariate can be
estimated with standard software and thus has a straightforward implementa-
tion. We show that for the logistic regression model for P (Y = 1|A, W ), that
this covariate is none other than a linear combination of the treatment vari-
able A so that it follows that the targeted MLE coincides with the standard
G-computation ML estimator. This is not always true as we show that these
2 estimators differ when the treatment mechanism is estimated from the data,
which results in an additional efficiency gain. In van der Laan, Rubin (2006)
we appeal to estimating function methodology (van der Laan, Robins (2002))
and observe that since the targeted MLE solves the efficient influence curve esti-
mating equation it is double robust and (locally) efficient. That is, the targeted
MLE is always consistent and asymptotically linear (thus the standardized es-
timator is asymptotically normally distributed with specified variance), even if
the initial estimate for P (Y = 1|A,W ) is misspecified. In the case that the ini-
tial estimate for P (Y = 1|A,W ) is asymptotically consistent the targeted MLE
is asymptotically efficient for the nonparametric model. In section 2 we provide
a brief overview of methods for covariate adjustment that have been proposed in
literature. In section 3 we present the targeted maximum likelihood estimators
for three marginal variable importance parameters: the risk difference, relative
risk and odds ratio. We show that for each of these three parameters, using a
logistic regression model, the targeted MLE is achieved in a single step. We also
provide an alternative to the logistic regression model for the relative risk pa-
rameter that is the relative risk regression model and provide the corresponding
targeted MLE estimator. We also address missing data on the outcome of co-
variates, and estimation of the treatment mechanism. Section 4 provides testing
and inference for the targeted MLE. In section 5 we present simulation studies
that demonstrate the performance of the targeted MLE. Finally we conclude
with a discussion in section 6.

2 Current Methods for Obtaining Covariate-
Adjusted Estimates

Suppose we observe O = (W,A, Y ) as above except the outcome Y is now
continuous. Let the parameter of interest be the marginal effect of A on Y ,
ψ = E(Y1) − E(Y0). For a continuous outcome Y , Q(A,W ) = E(Y |A = 1,W )

3
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is typically obtained using a linear regression model such as,

Q̂(A, W ) = β̂0 + β̂1A + β̂2W.

In this setting, β̂1 coincides with and has been shown to be at least as precise
as the unadjusted estimate ψ̂1. In particular, the increase in precision occurs
when the correlation between the covariate(s) and outcome is strong (Assmann
et al. 2002). However, when Q(A,W ) is estimated as

Q̂(A,W ) = β̂0 + β̂1A + β̂2W + β̂3AW,

then β̂1 no longer coincides with ψ̂1. In this case, to obtain the marginal effect,
one must integrate out or average over the covariate(s) W . Robins (1986) and
Robins (1987) introduced the G-computation estimator that does indeed average
over W and thus give a marginal effect,

ψ̂Gcomp =
1
n

n∑

i=1

Q̂(1,Wi)− Q̂(0,Wi).

When Q̂(A,W ) is estimated with a linear model, and it does not contain any in-
teraction terms, then ψ̂Gcomp = β̂1. The G-computation estimator is not limited
to a linear model for Q(A,W ) when estimating the treatment effect, for exam-
ple, when the outcome is binary, one could use a logistic regression model to
estimate Q(A,W ) and use the G-computation formula to obtain the estimated
risk difference. However, even in the absence of interaction terms, ψ̂Gcomp is
not necessarily equivalent to the estimate obtained from the logistic regression
model. Based on estimating function methodology, the Double Robust (DR)
estimator has been provided in Robins (2000), Robins and Rotnitzky (2001)
and Neugebauer and van der Laan (2002), van der Laan and Robins (2002).
Consistency of the DR estimator relies on consistent estimation of the treatment
mechanism or the model for Q(A, W ). When the treatment is randomized, as in
a randomized trial, the treatment mechanism is always known and thus the DR
estimator is always consistent, i.e. even when Q(A,W ) is mis-specified. Scharf-
stein et al. (1999, p. 1140−1141) showed that to obtain a DR estimate, one can
update Q(A,W ) by adding the 2-dimensional covariate ( I(A=1)

g(1|W ) , I(A=0)
g(0|W ) ). Note

that in the randomized trial setting, g(1|W ) = δ and g(0|W ) = 1−δ. In section
3.4, under the framework of targeted MLE, we also propose adding these two
covariates, the first for P (Y1 = 1) and one for P (Y0 = 1) so that any function
of these two parameters is estimated in a targeted manner. The resulting esti-
mator that targets the 2-dimensional parameter equals the proposed estimator
of Scharfstein et al. (1999, p. 1140 − 1141). Bang and Robins (2005) indicate
that when the initial model for Q(A,W ) is correct, then one can obtain a more
efficient DR estimate by adding the 1-dimensional covariate I(A=1)

g(1|W ) + I(A=0)
g(0|W ) .

We derive this 1-dimensional covariate under the framework of targeted MLE
in section 3.1, targeting the parameter of interest the risk difference. Note that
this covariate differs when the parameter of interest is the relative risk or odds
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ratio as shown in sections 3.2 and 3.3. In section 3.1.1 we provide the relation
between the DR, targeted MLE and G-computation estimator and the circum-
stances in which they coincide. Tsiatis et al. (2006) applies this DR estimator
for the marginal effect where the authors recommend estimating two regression
models separately: Q1(1,W ) = E(Y |A = 1,W ) is obtained using only the sub-
population of individuals for whom A = 1 and Q2(0,W ) = E(Y |A = 0,W ) is
obtained using only the subpopulation of individuals for whom A = 0. This was
proposed so that two different analysts could independently select these models
to prevent the analysts from selecting the model providing the most favorable
results. Another possibility is to select one model Q(A,W ) = E(Y |A,W ) using
the whole sample pooled together. When the procedure for selecting Q(A,W )
is specified a priori this additional step of estimating Q1(1,W ) and Q2(0,W )
is not necessary. The method provided by Tsiatis et al. (2006) is limited to
when the parameter of interest of the marginal effect E(Y0)−E(Y1). However,
when the outcome is binary, investigators are often also interested in not only
the risk difference E(Y0) − E(Y1) = P (Y1 = 1) − P (Y0 = 1), but the relative
risk and odds ratios. Covariate adjustment in logistic regression models for bi-
nary outcomes has been studied in literature. However it does not appear that
any method for covariate adjustment has been proposed to obtain marginal
estimates for such parameters. Thus, current applications of logistic regression
models provide conditional effects. These conditional models have been shown
to reduce precision in the estimated effect. Robinson and Jewell (1991) observed
that adjusting for covariates in logistic regression models leads to an increase in
power due to the fact that estimates of the treatment effect in the conditional
logistic models are further away from the null even though standard errors were
larger for the adjusted effects. Hernández et al. (2004) also demonstrated this
fact using using simulation studies and observed that the increase in power was
related to the correlation between the covariate and the outcome. The simula-
tions included only a single covariate and no interactions between the covariate
and treatment. Assmann et al. (2000) also indicated similar results in logistic
regression models in that odds ratios were generally further away from the null
but the standard errors were larger than the unadjusted estimates. It appears
that in general, when adjusting for covariates in a logistic regression model,
the standard error provided by the software, i.e. standard maximum likelihood
procedures, is the standard error used by the investigator although it is often
not explicitly stated (van der Horst et al. (1997), Randolph et al. (2002), Belda
et al. (2005) , Frasure-Smith et al. (1997)). When adjusting for covariates in
randomized trials using logistic regression, often the investigator is interested in
a conditional effect identified by continuous covariates in which case this may
be an appropriate approach. We focus on the targeted MLE method for covari-
ate adjustment that provides inference for the marginal (unconditional) effect.
However, note that this method can be applied to different subgroups defined
by categorical or discrete valued covariates by simple stratification.

5

Hosted by The Berkeley Electronic Press



3 Targeted Maximum Likelihood Estimation of
Marginal Variable Importance: Risk Differ-
ence, Relative Risk and Odds Ratio

In this section we present the targeted MLE method for adjusting for covariates
when the outcome is binary with the following 3 parameters: risk difference,
relative risk and odds ratio.

3.1 Risk Difference

We now provide the targeted MLE for the risk difference P (Y1 = 1)−P (Y0 = 1).
Let O = (W,A, Y ) ∼ p0 and M be the class of all densities of O with respect
to an appropriate dominating measure: so M is nonparametric up to possible
smoothness conditions. Consider this non-parametric model for p0 and let

P0 → Ψ(p0) = Ep0(P (Y |A = 1,W )− P (Y |A = 0, W ))

be the parameter of interest. This parameter is pathwise differentiable at p0

with efficient influence curve,

D(p0) =
I(A = 1)

δ0
(Y −Q0(1,W ))− I(A = 0)

(1− δ0)
(Y −Q0(0,W )) +

+Q0(1,W )−Q0(0,W )−Ψ(p0)

where Q0(A,W ) = P (Y = 1|A,W ) and δ0 = P (A = 1) (see e.g., van der Laan,
Robins, 2002). Since the model is non-parametric, this is also the only influence
curve. Following the strategy of van der Laan and Rubin (2006), the efficient
influence curve D(p0) can be decomposed as,

D(p0) = D(p0)− E(D(p0)|A,W ) + E(D(p0)|A,W )− E(D(p0)|W ) +
+E(D(p0)|W )− E(D(p0))

Let, D1(p0) = D(p0)−E(D(p0)|A,W ), D2(p0) = E(D(p0)|A,W )−E(D(p0)|W )
and D3(p0) = E(D(p0)|A,W )−E(D(p0)). Then, D1(p0) is a score for p(Y |A,W ),
D2(p0) is a score for g0(A|W ) and D3(p0) is a score for the marginal prob-
ability distribution p(W ) of W . Note that in this randomized trial setting,
g0(A|W ) = g0(A) = δA

0 (1− δ0)(1−A).
Consider an initial density estimator p̂0 of the density p0 of O identified by a

regression fit Q̂0(A,W ), marginal distribution of A identified by δ̂ = 1
n

∑n
i=1 Ai,

the marginal distribution of W being the empirical probability distribution of
W1, ...,Wn, and A being independent of W . Since Y is binary, we have the
following density,

p̂0(Y |A,W ) = (Q̂0(A, W ))Y (1− Q̂0(A, W ))1−Y

6
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where,

Q̂0(A,W ) =
1

1 + exp−m̂0(A,W )

for some function m̂0. Now, consider the parametric submodel through p̂0 in-
dexed by parameter ε,

p̂0(ε)(Y |A,W ) = (Q̂0(ε)(A,W ))Y (1− Q̂0(ε)(A,W ))1−Y

where Q̂0(ε)(A,W ) is given by the logistic regression model,

Q̂0(ε)(A,W ) =
1

1 + exp−(m̂0(A,W ) + εh(A,W ))

with an extra covariate h(A,W ), which needs to be chosen so that the score of
ε at ε = 0 includes the efficient influence curve component D1(p0) (see van der
Laan, Rubin, 2006). The required choice h will be specified below. We estimate
ε with the maximum likelihood estimator ε̂ = arg maxε

∑n
i=1 log Q̂0(ε)(Ai,Wi).

The score for this logistic regression model at ε = 0 is given by,

d

dε1
log p0(ε)(A, W )

∣∣∣∣
ε=0

= h(A,W )(Y − Q̂0(A, W ))

We now set the score equal to the part of the efficient IC for p(Y |A,W ), that
is D1, at p̂0 to obtain,

h(A, W )(Y − Q̂0(A,W )) = (Y − Q̂0(A,W ))

(
I(A = 1)

δ̂
− I(A = 0)

(1− δ̂)

)
.

This equality in h(A,W ) is solved by

h(A,W ) =
I(A = 1)

δ̂
− I(A = 0)

(1− δ̂)
.

Thus, the covariate that is added to the logistic regression model Q̂0(A,W )
is none other than a linear combination of A and an intercept only. Thus, if
m̂0(A,W ) includes the main term A and the intercept, then ε̂ = 0, and the
targeted MLE for Q0(A,W ) is given by Q̂0(A,W ) itself. In other words, the
targeted MLE for ψ0 is given by the standard G-computation estimator

ψ̂RD−tMLE =
1
n

n∑

i=1

Q̂0(1, Wi)− Q̂0(0, Wi).

3.1.1 Relation between Targeted MLE, DR and G-computation Es-
timators

The efficient influence curve D(p0) can be represented as an estimating function
in ψ indexed by Q and g, D(p0) = D(Q0, g0, Ψ(p0)). In this randomized trial
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setting, g0 = δA
0 (1−δ)1−A. The DR estimate is the solution to the corresponding

estimating equation in ψ, 1
n

∑n
i=1 D(Q̂0(Ai,Wi), δ̂, ψ) = 0 and is given by,

ψ̂DR =
1
n

n∑

i=1

I(Ai = 1)

δ̂
(Yi − Q̂0(1,Wi))− 1

n

n∑

i=1

I(Ai = 0)

1− δ̂
(Yi − Q̂0(0,Wi)) +

+
1
n

n∑

i=1

Q̂0(1,Wi)− 1
n

n∑

i=1

Q̂0(0,Wi),

where δ̂ = 1
n

∑n
i=1 Ai. In the logistic regression fit, log( Q̂(A,W )

1−Q̂(A,W )
) = α̂X, where

X = (1, A, W ), the MLE α̂ solves the score equations given by,

0 =
n∑

i=1

Xij(Yi − Q̂(Ai,Wi)),

for j = 1, ..., p. The linear span of scores includes the covariate,

xj =
I(A = 1)

δ̂
− I(A = 0)

1− δ̂
,

when A and an intercept are included in X. Thus, it follows that

0 =
1
n

n∑

i=1

I(Ai = 1)

δ̂
(Yi − Q̂0(1, Wi))− 1

n

n∑

i=1

I(Ai = 0)

1− δ̂
(Yi − Q̂0(0,Wi)).

Hence,

ψ̂DR =
1
n

n∑

i=1

Q̂(1,Wi)− 1
n

n∑

i=1

Q̂(0,Wi) = ψ̂Gcomp = ψ̂RD−tMLE

Thus in this quite general scenario, we have that the double robust estimator,
the G-computation estimator, and the targeted MLE, all reduce to the same
estimator.

3.2 Relative Risk

We now consider the parameter

P0 → Ψ(p0) =
Ep0(P (Y |A = 1,W ))
Ep0(P (Y |A = 0, W )))

=
µ1

µ0

Note that under the assumptions listed above for the risk difference, this pa-
rameter can be interpreted as the causal relative risk, ψ0 = E(Y1)

E(Y0)
.

We can derive the efficient influence curve of this parameter using the delta
method since we know the efficient influence curve for µ1 and µ0. Let a = µ0

8
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and b = µ1, so ψ0 = b
a . Then, d

db

(
b
a

)
= 1

a and d
da

(
b
a

)
= − (

b
a2

)
. Thus, the

efficient influence curve is given by,

D(p0) =
1
µ0

(
I(A = 1)

δ0
(Y −Q0(1,W )) + Q0(1,W )− µ1

)
−

−µ1

µ2
0

(
I(A = 0)
(1− δ0)

(Y −Q0(0,W )) + Q0(0,W )− µ0

)

=
1
µ0

(
I(A = 1)

δ0
(Y −Q0(1,W )) + Q0(1,W )

)
−

µ1

µ2
0

(
I(A = 0)
(1− δ0)

(Y −Q0(0,W )) + Q0(0,W )
)

We consider two models for the targeted MLE of the relative risk: logistic
regression model and the relative risk regression model. In order to find the
covariate h(A,W ) that is added to the regression model, we note the following
equality given in van der Laan and Robins 2002,

V (Y, A,W ) = (V (1, A, W )− V (0, A, W ))(Y −Q(A,W )), (1)

if V is a function with conditional mean 0 given A and W . We apply this
equality to D(p0) = V (Y, A, W ) to obtain h(A,W ).

3.2.1 Submodel 1: Logistic Regression Model

Let p̂0(ε1) be the logistic regression fit with an extra covariate extension ε1h(A, W ).
Based on (1) we can immediately observe that the covariate h(A,W ) added to
the logistic regression is V (1, A,W )− V (0, A, W ) since,

d

dε
log p̂0(ε)(A,W )

∣∣∣∣
ε=0

= h(A,W )(Y − Q̂0(A,W ))

= (V (1, A, W )− V (0, A, W ))(Y − Q̂0(A,W ))

Thus, evaluating D(p̂0) at Y = 1 and Y = 0 gives,

h(A,W ) =
1
µ0

I(A = 1)

δ̂
− µ1

µ2
0

I(A = 0)

(1− δ̂)
.

Again, as in the risk difference, the covariate that is added to Q̂0(A,W ) is a
function of A only and thus ε̂ = 0 and the targeted MLE for Q0(A,W ) is given
by Q̂0(A,W ). The targeted MLE for the relative risk is given by,

ψ̂RR−tMLE =
1
n

∑n
i=1 Q̂0(1,Wi)

1
n

∑n
i=1 Q̂0(0,Wi)

.

9
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3.2.2 Submodel 2: Relative Risk Regression

As an alternative to using a logistic fit Q0(A,W ) for Q(A,W ), we can instead
use a relative risk regression fit,

log(Q̂(A,W )) = m̂(A, W ),

and find the corresponding targeted MLE. Consider now the parametric sub-
model p̂0 indexed by parameter ε,

p̂0(ε)(Y |A,W ) = (Q̂0(ε)(A,W ))Y (1− Q̂0(ε)(A,W ))1−Y

where Q̂0(ε)(A,W ) is given by the relative risk regression model,

log(Q̂0)(ε)(A,W ) = m̂0(A,W ) + εh(A,W ).

The score for this model evaluated at ε = 0 is given by,

d

dε
log p̂0(ε)(A,W )

∣∣∣∣
ε=0

=
h(A,W )

1− Q̂0(A,W )
(Y − Q̂0(A,W )),

and it follows that the covariate added to logistic regression model to obtain
the targeted MLE is given by,

h(A,W ) =

(
1
µ0

I(A = 1)

δ̂
− µ1

µ2
0

I(A = 0)

(1− δ̂)

)
(1− Q̂0(A,W )).

Now ε̂ = arg maxε

∑n
i=1 log Q̂0(ε)(Ai,Wi) can be estimated in practice by fitting

a relative risk regression in m̂0(A, W ) and h(A,W ), fixing the coefficient in front
of m̂0(A,W ) to 1 and the intercept to 0. The resulting coefficient for h(A,W )
is ε̂. In this case, the covariate is no longer simply a function of A and thus ε̂
does not necessarily equal 0 and the targeted MLE is no longer achieved in one
step but rather iteratively. Now Q̂k(A,W ) is updated as,

log(Q̂k+1(A,W )) = m̂k(A,W ) + ε̂hk(A,W ),

setting k = k + 1 and one iterates this updating step.

3.3 Odds Ratio

We now consider the parameter

P0 → Ψ(p0) =
Ep0(P (Y |A = 1, W ))/(1− Ep0(P (Y |A = 1,W )))
Ep0(P (Y |A = 0, W ))/(1− Ep0(P (Y |A = 0,W )))

=
µ1/(1− µ1)
µ0/(1− µ0)

Note that under the assumptions listed above for the risk difference, this param-
eter can be interpreted as the causal odds ratio, E(Y1)/(1−E(Y1))

E(Y0)/(1−E(Y0))
. Again, applying

the delta method we can obtain the efficient influence curve for this parameter.
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Let a = µ0 and b = µ1, so ψ = b/(1−b)
a/(1−a) . Then, d

db

(
b/(1−b)
a/(1−a)

)
= (1−a)

a(1−b)2 and
d
da

(
b/(1−b)
a/(1−a)

)
= −

(
b

a2(1−b)

)
. Thus, the efficient influence curve is given by,

D(p0) =
1− µ0

µ0(1− µ1)2

(
I(A = 1)

δ0
(Y −Q0(1,W )) + Q0(1,W )− µ1

)
−

− µ1

(µ0)2(1− µ1)

(
I(A = 0)
(1− δ0)

(Y −Q0(0,W )) + Q0(0,W )− µ0

)

Applying equality (1) to D(p̂0), we obtain,

h(A,W ) =
(1− µ0)

µ0(1− µ1)2
I(A = 1)

δ̂
− µ1

µ2
0(1− µ1)

I(A = 0)

(1− δ̂)

Again, the covariate that is added to the logistic regression model Q̂0(A,W ) is
none other than a function of A only and thus ε̂ = 0 and the targeted MLE for
Q0(A,W ) is given by Q̂0(A,W ). Thus, the targeted MLE for ψ is given by,

ψ̂OR−tMLE =

(
1
n

∑n
i=1 Q̂0(1,Wi)

)
/

(
1− 1

n

∑n
i=1 Q̂0(1,Wi)

)
(

1
n

∑n
i=1 Q̂0(0,Wi)

)
/

(
1− 1

n

∑n
i=1 Q̂0(0,Wi)

) .

3.4 Targeted MLE for the two treatment specific means,
and thereby for all parameters.

Consider the odds ratio, as an example. An alternative for targeting the odds
ratio is to simultaneously target both µ1 and µ0 and simply evaluate the odds
ratio from the targeted MLEs of µ1 and µ0. This is a straightforward approach
where 2 covariate extensions are added to the logistic fit Q̂0,

h1(A,W ) = ε1
I(A = 1)

δ̂
,

and,

h2(A,W ) = ε2
I(A = 0)

(1− δ̂)
.

Again, if the initial logistic regression fit already includes an intercept and main
term A, then ε̂ = 0 so that this targeted MLE Q̂ = Q̂0(ε̂) = Q̂0 is not updated.
This targeted MLE can now be used to map into a locally efficient estimator
of any parameter of µ0, µ1 such as the risk difference µ1 − µ0, the relative risk
µ1/µ0 and the odds ratio µ1(1−mu0)/((1− µ1)µ0).

3.5 Estimating the Treatment Mechanism as well

Even when the treatment mechanism (the way treatment was assigned) is known
as it is in a randomized trial, it has been shown that efficiency is increased when

11
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estimating it from the data (van der Laan and Robins (2002)). Estimating the
treatment mechanism does not add any benefit to the G-computation estimator
since it does not use this information. The targeted MLE can however leverage
this information to obtain a more precise estimate of the treatment effect. This
can be a particular benefit when the model for Q(A,W ) is mis-specified. The
targeted MLE is still consistent when Q(A,W ) is mis-specified, however, we can
gain efficiency when estimating the treatment mechanism in such a case. The
treatment mechanism can be estimated from the data using a logistic regression
model, for example, ĝ0(1|W ) = 1

1+exp(−(α1W1+α2W2))
, but one can also augment

an initial fit ĝ0 with a targeted direction aiming for a maximal gain in efficiency:
see van der Laan, Rubin (2006). We present the targeted MLE for the risk
difference, however, this can be immediately extended to the relative risk and
odds ratio as well. Consider the parametric submodel through p̂0 indexed by
parameter ε,

p̂0(ε)(Y |A,W ) = (Q̂0(ε)(A,W ))Y (1− Q̂0(ε)(A,W ))1−Y

where Q̂0(ε)(A,W ) is given by the logistic regression model,

Q̂0(ε)(A,W ) =
1

1 + exp−(m̂0(A,W ) + εh(A,W ))
.

Setting the score of this model equal to the part of the efficient influence curve
that corresponds with scores for P (Y |A,W ), and solving for h(A,W ) we obtain
the covariate,

h(A,W ) =
I(A = 1)
ĝ0(1|W )

− I(A = 0)
ĝ0(0|W )

,

which is added to the logistic regression Q̂0(A,W ). Again,
ε̂ = arg maxε

∑n
i=1 log Q̂0(ε)(Ai,Wi) can be estimated in practice by fitting a

logistic regression in m̂0(A,W ) and h(A,W ), fixing the coefficient in front of
m̂0(A,W ) to 1 and the intercept to 0. The resulting coefficient ε̂ for h(A,W ) is
no longer necessarily equal to 0. Let the targeted MLE for Q0(A,W ) be given
by Q̂∗(A,W ) = Q̂0(ε̂)(A, W ). The targeted MLE for ψ0 is then,

ψ̂RD−tMLE2 =
1
n

n∑

i=1

I(Ai = 1)
ĝ0(1|W )

(Yi − Q̂∗(1,Wi))−

− 1
n

n∑

i=1

I(Ai = 0)
ĝ0(0|W )

(Yi − Q̂∗(0,Wi)) +

+
1
n

n∑

i=1

Q̂∗(1,Wi)− 1
n

n∑

i=1

Q̂∗(0,Wi).

Note that Q̂0(A, W ) is now updated, contrary to the case when we were not
estimating the treatment mechanism as in previous subsections.
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3.6 Missing Data

Here we provide the targeted MLE for the case that the outcome Y is subject
to missingness that can be informed by the baseline covariates W . In such a
case the missingness cannot be ignored as it can lead to biased estimates as
treatment groups are no longer balanced with respect to the covariates. Let C
represent the indicator whether or not the outcome was observed. The observed
data can be represented as O = (W,A, C, CY ) ∼ p0 and the full data is given
by X = ((Ya : a ∈ A),W ). We assume that the conditional distribution of the
joint censoring variable (A,C) given X satisfies coarsening at random (CAR),
i.e. g0(A,C|X) = g0(A,C|W ). Let

P0 → Ψ(p0) = Ep0(P (Y |A = 1,W )− P (Y |A = 0, W ))

be the parameter of interest. We wish to estimate the risk difference with the
targeted MLE. The efficient influence curve is given by,

D(p0) =
I(A = 1)
g0(1, 1|W )

(Y −Q0(1, 1,W ))−

− I(A = 0)
(g0(0, 1|W ))

(Y −Q0(0, 1, W )) +

+Q0(1, 1,W )−Q0(0, 1,W )−Ψ(p0),

where g0(A = 1, c|W ) = δ0g(c|A = 1, W ) and g0(A = 0, c|W ) = (1− δ0)g(c|A =
0,W ). We now present the analogue to the derivation of the targeted MLE for
ψ0. Consider the parametric submodel through p̂0 indexed by parameter ε,

p̂0(ε)(Y |A,C = 1,W ) = (Q̂0(ε)(A,C = 1,W ))Y (1− Q̂0(ε)(A,C = 1, W ))1−Y

where Q̂0(ε)(A,C = 1, W ) is given by the logistic regression model,

Q̂0(ε)(A,C = 1,W ) =
1

1 + exp−(m̂0(A,C = 1, W ) + εh(A,C = 1,W ))
.

At C = 0, the likelihood of P (Y | A,C, W ) provides as contribution a factor 1,
which can thus be ignored. The score for this logistic regression model at ε = 0
is given by,

d

dε
log p0(ε)(A,C, W )

∣∣∣∣
ε=0

= I(C = 1)h(A,C = 1,W )(Y − Q̂0(A,C = 1,W ))

We now set this score equal to the component of the efficient influence curve
which equals a score for P (Y |A,C = 1,W ), at p̂0, to obtain the equality

h(A,C = 1,W )(Y − Q̂0(A,C = 1,W ))

= (Y − Q̂0(A,C = 1,W ))
(

I(A = 1)
ĝ(1, 1|W )

− I(A = 0)
ĝ(0, 1|W )

)
.
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Solving for h(A, C = 1,W ) we obtain,

h(A,C = 1,W ) =
I(A = 1)
ĝ(1, 1|W )

− I(A = 0)
ĝ(0, 1|W )

.

The estimate of ε given by ε̂ = arg maxε

∑n
i=1 I(Ci = 1) log Q̂0(ε)(Ai,Wi). Now

the logistic regression fit Q̂0(Y |A,C = 1,W ) can be updated by adding as
covariate h(A, C = 1,W ) to obtain the targeted MLE Q̂∗(Y |A,C = 1, W ) for
Q0(A,C = 1,W ) based on all observations with Ci = 1. The estimate for
P (C = 1|A = 0,W ) as required to calculate the extra covariate h(A,W ) can be
obtained by using a logistic regression model selected either data-adaptively or
using a fixed pre-specified model for C conditional on W,A = 0. The targeted
MLE for ψ0 is given by,

ψ̂RD−tMLE =
1
n

n∑

i=1

Q̂∗(1, 1, Wi)− Q̂∗(0, 1,Wi).

We note that the targeted MLE for missing covariate values is derived in exactly
the same manner.

4 Testing and Inference

Let p̂∗ represent the targeted MLE of p0. One can construct a Wald-type
0.95-confidence interval based on the estimate of the efficient influence curve,
ˆIC(O) = D(p̂∗). That is, one can estimate the asymptotic variance of

√
n(ψ̂ −

ψ0) with

σ̂2 =
1
n

n∑

i=1

ˆIC
2
(Oi).

The corresponding asymptotically conservative Wald-type 0.95-confidence in-
terval is defined as ψn± 1.96 σ̂√

n
. The null hypothesis H0 : ψ0 = 0 can be tested

with the test statistic
Tn =

ψn

σ̂√
n

,

whose asymptotic distribution is N(0, 1) under the null hypothesis. We note
that this estimate of the asymptotic variance is conservative even if Q̂0(A,W ) is
inconsistent, and it is actually asymptotically accurate if Q̂0(A,W ) is consistent
(see van der Laan and Rubin (2006) and van der Laan and Robins (2002)). An
alternative recommended approach to obtain a non-conservative estimate of
the variance is the bootstrap procedure which will provide asymptotically valid
confidence intervals.
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5 Simulation Studies

5.1 Simulation 1

In this simulation, the treatment A and outcome Y are binary and W is a
2-dimensional covariate, W = (W1,W2). The simulated data were generated
according to the following laws:

1. W1 ∼ N(2, 2)

2. W2 ∼ U(3, 8)

3. P (A = 1) = δ0 = 0.5

4. Q0(A,W ) = P (Y = 1|A,W ) = 1
(1+exp(−(kA−5W 2

1 +2W2)))

We simulated the data for 2 scenarios based on the value for k in P (Y =
1|A,W ). In the first scenario, k = 1.2 and there is a small treatment ef-
fect and in the second k = 20, and there is a larger treatment effect. The
risk difference, relative risk and odds ratio were estimated. The true values
were given by P (Y1 = 1) = 0.372, P (Y0 = 1) = 0.352 and (RD,RR,OR) =
(0.019, 1.055, 1.087) for k = 1.2, P (Y1 = 1) = 0.583, P (Y0 = 1) = 0.352 and
(RD, RR,OR) = (0.231, 1.654, 2.570) for k = 20. The parameters were es-
timated using 4 methods. The first method ”Unadjusted” is the unadjusted
method of regressing Y on A using a logistic regression model. The second
method ”Correct” is the targeted maximum likelihood method which is equiv-
alent to the standard G-computation (maximum likelihood) estimator with
Q̂(A,W ) = 1/(1+exp(−(α̂0 + α̂1A+ α̂2W

2
1 + α̂3W2))). The third method ”Mis-

spec” used a mis-specified fit given by Q̂(A,W ) = 1/(1 + exp(−(α̂0 + α̂1A +
α̂2W1))). For the fourth method ,”DSA”, the estimate Q̂(A,W ) was obtained
using Deletion/Substitution/Addition (DSA). The DSA algorithm is a data-
adaptive model selection procedure based on cross-validation that relies on dele-
tion, substitution, and addition moves to search through a large space of possible
functional forms, and is publicly available at http://www.stat.berkeley.edu/ laan/Software/
(Sinisi and van der Laan (2004)). The variable A was forced into the model and
the DSA then selects from the remaining covariates. The maximum power set in
the DSA algorithm for any term in the model was set to 2, meaning square terms
and 2-way interactions were allowed. Standard errors for the targeted MLE were
estimated using the estimated influence curve. For the odds ratio simulations,
the estimator obtained by extracting the coefficient for A and the corresponding
standard error from the logistic regression model fit is labelled ”Adjusted”. The
simulation was run 1000 times for each sample size: n = 50, 100, 250, 500, 1000.

For k = 1.2, W strongly predicts Y and thus the targeted MLE, which
adjusts for W results in a large increase in efficiency over the unadjusted method
as observed by the relative efficiencies (RE) provided in Table 1. The largest
gain in efficiency occurs as expected when Q̂(A,W ) is correctly specified followed
closely by the DSA method, which in general gives a slightly lower bias and
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slightly higher variability than the correctly specified model due to overfitting
of Q̂(A,W ). In the scenario where k = 20, A is more strongly predictive of
Y as compared to W and thus the increase in efficiency is not as marked as
when k = 1.2. The largest increase in efficiency for both values of k occurs for
the estimates of the odds ratio. When Q̂(A,W ) is mis-specified, there is still a
noticeable increase in efficiency showing that it is advised to always adjust for
covariates. This is a result of the double robustness of the estimator as discussed
in section 2. A significant result is the increase in power of the targeted MLE
as evidenced by the proportion of rejected tests. In particular when k = 1.2,
that is when the effect of A is weaker and more difficult to detect, the increase
in power is quite significant. When the sample size is greater than 100, and
k = 20 the unadjusted performs similar to the targeted MLE estimators with
respect to power. Another notable result is that the targeted MLE circumvents
the issue of singularity, i.e. Y is perfectly predicted by A and W , that occurs
when using the adjusted estimate. In this situation the adjusted estimate is
drastically inflated and for this reason, the adjusted results were not included
in the bias plots. However, this is not an issue for the targeted MLE. The
efficiency gain of the targeted MLE increases as the covariate becomes more
predictive. This becomes even more drastic when the covariate is perfectly
predictive, whereas the adjusted estimate completely breaks down. For example,
in a single run of the simulation for the odds ratio with k = 1.2, with n = 50,
the ”Adjusted” model fit gave a coefficient of 25.4 and thus an estimate odds
ratio of approximately 1011. The corresponding targeted MLE using this same
model gives an estimate of 1.083, noting that the true value is 1.087. This is
of particular importance for small sample sizes but still occurs even for large
sample sizes as shown in the RE estimates for the ”Adjusted” estimate in Table
2. We also note that the bias is almost always positive for the relative risk and
odds ratios whereas positive and negative bias occurs for the risk difference.
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Table 1: Simulation 1: k=1.2: MSE is Mean Squared Error for Unadjusted
Estimate, RE is Relative Efficiency of remaining estimators to Unadjusted
MSE and Rej is Proportion of Rejected Tests

n=50 n=100 n=250 n=500 n=1000

Risk Difference
Unadjusted MSE 1.8e-02 9.6e-03 3.5e-03 1.9e-03 8.3e-04
Correct RE 5.41 5.01 10.79 12.25 10.95
Mis-spec RE 2.01 2.31 1.95 2.16 2.10
DSA RE 3.38 7.07 10.72 11.99 10.94
Unadjusted Rej 0.06 0.06 0.06 0.08 0.08
Correct Rej 0.18 0.22 0.27 0.41 0.63
Mis-spec Rej 0.09 0.06 0.09 0.11 0.14
DSA Rej 0.09 0.12 0.27 0.42 0.64

Relative Risk
Unadj MSE 3.0e-01 1.0e-01 3.6e-02 1.5e-02 7.9e-03
Correct RE 9.08 4.07 12.76 12.55 12.34
Mis-spec RE 2.26 2.36 2.10 2.18 2.06
DSA RE 4.09 7.11 12.03 12.22 12.31
Unadjusted Rej 0.04 0.04 0.06 0.06 0.08
Correct Rej 0.10 0.15 0.22 0.37 0.65
Mis-spec Rej 0.05 0.04 0.06 0.07 0.14
DSA Rej 0.03 0.09 0.22 0.37 0.65

Odds Ratio
Unadj MSE 1.5e+00 3.1e-01 9.5e-02 4.1e-02 2.0e-02
Adjusted RE 9.4e-178 4.8e-251 5.2e-01 5.3e-01 4.2e-01
Correct RE 1.92 0.00 13.49 13.13 12.78
Mis-spec RE 2.97 2.42 2.39 2.28 1.96
DSA RE 7.07 7.05 13.3 12.72 12.57
Unadjusted Rej 0.04 0.06 0.06 0.06 0.09
Adjusted Rej 0.02 0.04 0.04 0.05 0.13
Correct Rej 0.11 0.14 0.21 0.36 0.67
Mis-spec Rej 0.06 0.04 0.04 0.05 0.14
DSA Rej 0.04 0.07 0.21 0.38 0.68
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Table 2: Simulation 1: k=20

n=50 n=100 n=250 n=500 n=1000

Risk Difference
Unadjusted MSE 2.0e-02 9.2e-03 3.9e-03 1.8e-03 9.9e-04
Correct RE 3.80 3.36 4.16 4.22 4.52
Mis-spec RE 2.25 2.45 2.59 2.49 2.50
DSA RE 2.89 3.86 4.33 4.23 4.52
Unadjusted Rej 0.38 0.68 0.95 1.00 1.00
Correct Rej 0.99 1.00 1.00 1.00 1.00
Mis-spec Rej 0.81 0.97 1.00 1.00 1.00
DSA Rej 0.92 1.00 1.00 1.00 1.00

Relative Risk
Unadj MSE 5.8e-01 2.0e-01 5.5e-02 2.7e-02 1.4e-02
Correct RE 4.76 4.24 3.63 3.98 4.10
Mis-spec RE 2.01 2.22 2.11 2.11 2.19
DSA RE 2.36 3.34 3.34 3.97 4.09
Unadjusted Rej 0.30 0.61 0.94 1.00 1.00
Correct Rej 0.96 1.00 1.00 1.00 1.00
Mis-spec Rej 0.47 0.92 1.00 1.00 1.00
DSA Rej 0.65 0.98 1.00 1.00 1.00

Odds Ratio
Unadj MSE 6.9e+00 1.9e+00 6.0e-01 2.4e-01 1.2e-01
Adjusted RE 0.00 0.00 1.7e-17 5.4e-03 4.3e-03
Correct RE 0.00 4.58 2.97 4.87 5.01
Mis-spec RE 2.81 2.79 2.63 2.38 2.58
DSA RE 4.59 4.62 5.27 4.82 5.00
Unadjusted Rej 0.33 0.65 0.96 1.00 1.00
Adjusted Rej 0.44 0.89 1.00 1.00 1.00
Correct Rej 0.94 1.00 1.00 1.00 1.00
Mis-spec Rej 0.25 0.84 1.00 1.00 1.00
DSA Rej 0.52 0.98 1.00 1.00 1.00
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(a) Risk Difference, k=1.2
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(b) Risk Difference, k=20
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(c) Relative Risk, k=1.2
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(d) Relative Risk, k=20
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(e) Odds Ratio, k=1.2
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(f) Odds Ratio, k=20

Figure 1: Simulation 1: Bias
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5.2 Simulation 2: Odds Ratio with Interaction Term

In this simulation, the treatment A and outcome Y are binary and W is a 2-
dimensional covariate, W = (W1,W2). Here the true causal odds ratio is 0.83.
The simulated data were generated according to the following laws:

1. W1 ∼ N(2, 2)

2. W2 ∼ U(3, 8)

3. P (A = 1) = δ0 = 0.5

4. Q0(A,W ) = P (Y = 1|A,W ) = 1
(1+exp(−(1.2A−5W 2

1 +2W2−5AW1)))

The true values were given by P (Y1 = 1) = 0.312, P (Y0 = 1) = 0.352
and OR = 0.833. The same methods used in simulation 1 were used here to
estimate the odds ratio. The simulation was run 1000 times for each sample size:
n = 50, 100, 250, 500, 1000. For the ”Mis-spec” targeted MLE, the mis-specified
fit was given by Q̂(A,W ) = 1/(1+exp(−(α̂0+α̂1A+α̂2W1))). Figure 2 provides
a plot of the bias for each of the estimators. The results are similar to odds ratio
for simulation 1 in that the bias is positive for all estimators, and thus the odds
ratio is over-estimated. Again, even when Q̂(A,W ) is mis-specified the bias and
MSE are reduced as compared to the unadjusted estimate (Table 3). The DSA,
which allows for interactions, shows a significant improvement in terms of bias
and MSE. A notable increase in power is again observed for the targeted MLE
over the unadjusted method.

Table 3: Odds Ratio, with Interaction

50 100 250 500 1000

Unadjusted MSE 5.6e-01 1.6e-01 5.9e-02 2.6e-02 1.2e-02
Adjusted RE 0.00 0.00 0.65 0.56 0.38
Correct RE 7.37 1.67 2.22 7.56 7.71
Mis-spec RE 2.78 2.52 2.44 2.60 2.69
DSA RE 5.30 5.69 6.65 7.26 7.68
Unadjusted Rej 0.05 0.07 0.10 0.17 0.31
Adjusted Rej 0.02 0.05 0.13 0.25 0.50
Correct Rej 0.99 0.99 1.00 1.00 1.00
Mis-spec Rej 0.96 1.00 1.00 1.00 1.00
DSA Rej 0.98 1.00 1.00 1.00 1.00
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Figure 2: Odds Ratio, Interaction

5.3 Simulation 3: Estimating the Treatment Mechanism
as well

In this simulation, the treatment mechanism, P̂ (A|W ) is estimated from the
data using a logistic regression model with covariates that are predictive of the
outcome Y . The simulated data were generated according to the following laws:

1. W1 ∼ N(1, 2)

2. W2 ∼ U(1, 4)

3. W3 ∼ U(0, 20)

4. P (A = 1) = δ0 = 0.5

5. Q0(A,W ) = P (Y = 1|A,W ) = 1
(1+exp(−(3A−2W 2

1−log(W2)+0.5W3)))

The true values were given by P (Y1 = 1) = 0.569, P (Y0 = 1) = 0.419
and RD = 0.150. The treatment mechanism was estimated with the logistic
regression model given by g(A|W ) = 1/(1+exp(−(γ0 +γ1W1 +γ2W2 +γ3W3))).
The targeted MLE estimator, represented as ”Est tx” in Table 5 and Figure
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4, with the estimated treatment mechanism is no longer equivalent to the G-
computation estimator. The mis-specified fit for Q(A,W ) = 1/(1+exp(−(α0 +
α1A + α2W1))) is used as the initial fit and the covariate h(A,W ) provided
in section 3.4 is then added to this logistic regression. The targeted MLE is
then estimated as usual. Thus, we are interested in comparing the mis-specified
targeted MLE to the estimated treatment mechanism targeted MLE. Figure 4
shows the bias is reduced and the efficiency is slightly increased when estimating
the treatment mechanism. The power was approximately equal for the mis-
specified and estimated treatment mechanism targeted MLE. The DSA targeted
MLE method again shows a large improvement in efficiency and power over the
unadjusted method.
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Figure 3: Risk Difference, Estimated Treatment Mechanism
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Table 4: Risk Difference, Estimated Tx Mechanism

50 100 250 500 1000

Unadjusted MSE 2.1e-02 9.4e-03 3.8e-03 1.9e-03 9.9e-04
Correct RE 3.22 3.51 3.91 3.95 4.08
DSA RE 2.65 3.48 3.89 3.94 4.04
Mis-spec RE 1.19 1.18 1.16 1.21 1.20
Est tx RE 1.26 1.30 1.28 1.34 1.29
Unadjusted Rej 0.22 0.34 0.67 0.92 1.00
Correct Rej 0.73 0.90 1.00 1.00 1.00
DSA Rej 0.59 0.90 1.00 1.00 1.00
Mis-spec Rej 0.26 0.42 0.76 0.96 1.00
Est tx Rej 0.23 0.40 0.75 0.96 1.00
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5.4 Efficiency Gain and R2

The gain in relative efficiency is related to the gain in the squared multiple
correlation coefficient R2. A covariate predictive of the outcome results in an
increase in R2 in the adjusted model as compared to the unadjusted model.
The increase in R2 results in an increase in efficiency in the targeted MLE.
Pocock et al. (2002) discussed the increase in efficiency when adjusting for
predictive covariates in linear models. The following simulations show that this
also applies to the targeted MLE using logistic regression models. Simulated
data were generated according to the following laws:

1.
√

W ∼ N(2, 2)

2. P (A = 1) = δ0 = 0.5

3. Q0(A,W ) = P (Y = 1|A,W ) = 1
(1+exp(−(1.2A−cW )))

A simulation of sample size n = 1000 was run for each c = {0, 0.25, 2, 10},
that is covariate W is increasingly predictive. The R2 was estimated in the
ordinary least squares sense,

R2 = 1−
∑n

i=1(Yi − Q̂(A,W ))2∑n
i=1(Yi − Ȳ )2

.

A gain in R2 was computed as the difference between R2 in the covariate ad-
justed model and the covariate unadjusted model. Figure 5 and 6 depict the
relative efficiency to the unadjusted model for the targeted MLE of the odds
ratio against the gain in R2 for the targeted MLE of the odds ratio and risk
difference respectively.
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Figure 4: Efficiency Gain and R2
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5.5 Simulations Discussion

The 4 simulations were relatively simple scenarios but were useful in demon-
strating the following points:

• The targeted MLE shows a clear increase in both efficiency and power over
the unadjusted method, even when Q(A,W ) is not correctly specified.

• The DSA method for selecting Q(A,W ) provides a significant increase in
efficiency and power over the mis-specified fixed Q(A,W ) method. The
average relative efficiencies between these two methods ranged from 1.7
to 3.6 for sample sizes n = 50 to n = 1000 in our simulations.

• The targeted MLE circumvents the singularity issue that occurs when
using the adjusted method of extracting the coefficient from the logistic
regression model Q(A, W ).

• Interaction terms in the model for Q(A,W ) fit entirely into the framework
of the targeted MLE.

• Estimating the treatment mechanism provides a further small increase in
efficiency over targeting only Q(A,W ).

6 Discussion

The targeted MLE provides a general framework that we applied to estimation of
the marginal (unadjusted) effect of treatment in randomized trials. We observed
that the traditional method of covariate adjustment in randomized trials using
logistic regression models can be mapped, by averaging over the covariate(s), to
obtain a fully robust and efficient estimator of the marginal effect, which equals
the targeted MLE. We demonstrated that the targeted MLE does just this
and results in an increase in efficiency and power over the unadjusted method,
contrary to what has been reported in the literature for covariate adjustment
for logistic regression. The simulation results showed that data-adaptive model
selection algorithms such as the DSA, which we used in this paper, or forward
selection, when specified a priori should be used. However, we showed that
even adjusting by a misspecified regression model results in gain in efficiency
and power. Thus, using an a priori specified model, even if it is mis-specified,
can increase the power, and thus reduce the sample size requirements for the
study. This is particularly important for trials with smaller sample sizes. The
targeted MLE framework can also address missing data, either in the outcome
as we demonstrated in section 3.5 for the risk difference, but also missingness in
covariates and treatment as well for any of the parameters of interest. In these
scenarios the targeted MLE covariate may not be as straightforward as those
that were presented in this paper, but its derivation is analogue. We focused
on logistic and relative risk regression, but the methodology can be extended
to any other regression models for Q(A,W ). The targeted MLE framework can
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also be applied to other parameters of interest in randomized trials such as an
adjusted effect, for example by age or biomarker, and can also handle survival
times as outcomes (see, van der Laan, Rubin (2006)).
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