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Supervised Detection of Conserved Motifs in
DNA Sequences with cosmo

Oliver Bembom, Sunduz Keles, and Mark J. van der Laan

Abstract

A number of computational methods have been proposed for identifying tran-
scription factor binding sites from a set of unaligned sequences that are thought to
share the motif in question. We here introduce an algorithm, called cosmo, that al-
lows this search to be supervised by specifying a set of constraints that the position
weight matrix of the unknown motif must satisfy. Such constraints may be formu-
lated, for example, on the basis of prior knowledge about the structure of the tran-
scription factor in question. The algorithm is based on the same two-component
multinomial mixture model used by MEME, with stronger reliance, however, on
the likelihood principle instead of more ad-hoc criteria like the E-value. The in-
tensity parameter in the ZOOPS and TCM models, for instance, is estimated based
on a profile-likelihood approach, and the width of the unknown motif is selected
based on BIC. These changes allow cosmo to outperform MEME even in the ab-
sence of any constraints, as evidenced by 2- to 3-fold greater sensitivity in some
simulation studies. Additional improvements in performance can be achieved by
selecting the model type (OOPS, ZOOPS, or TCM) data-adaptively or by supply-
ing correctly specified constraints, especially if the motif appears only as a weak
signal in the data. The algorithm can data-adaptively choose between working
in a given constrained model or in the completely unconstrained model, guarding
against the risk of supplying mis-specified constraints. Simulation studies suggest
that this approach can offer 3 to 3.5 times greater sensitivity than MEME. The
algorithm has been implemented in the form of a stand-alone C program as well
as a web application that can be accessed at http://cosmoweb.berkeley.edu. An R
package is available through Bioconductor (http://bioconductor.org).
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1 Introduction

An important goal in contemporary biology consists of deciphering the complex network that
regulates the expression of an organism’s genome. A central role in this network is played by
transcription factors that regulate gene expression by binding to conserved short sequences
in the vicinity of their target genes (Davidson, 2001). The discovery and description of these
binding sites or motifs has therefore been at the heart of efforts aimed at understanding gene
regulatory networks.

Traditionally, experimental methods have been used for this purpose, leading to a set of
target sites from multiple genes that could then be aligned to estimate the position weight
matrix (PWM) of the motif - a 4×W matrix in which position (j, w) gives the probability
of observing nucleotide j in position w of a motif of length W . Currently, however, such
position weight matrix estimates are more commonly obtained by applying pattern discovery
algorithms to functional genomics data. Modern high-throughput methods such as cDNA
microarrays (Roth et al., 1998; Eisen et al., 1998; Bussemaker et al., 2001)or SAGE (Powell,
2000), for example, can identify sets of co-regulated genes whose promoter sequences can
then be scanned for statistically over-represented patterns that are likely transcription factor
binding sites (Lawrence et al., 1993; Bussemaker et al., 2001).

While this approach has proven fruitful for the discovery of such binding sites in yeast, its
application to metazoan genomes has met with considerable difficulty since binding sites tend
to be spread out over much larger regions of genomic sequence. Efforts at tackling this signal-
to-noise problem have concentrated mostly on phylogenetic footprinting, i.e. cross-species
sequence comparisons that remove noise by focusing on sequences under selective pressure
(Fickett and Wasserman, 2000). Sandelin and Wassermann (2004), however, recently de-
scribed an alternative approach that is based on prior knowledge about the structural class
of the mediating transcription factor of interest. Such knowledge is often available on the
basis of genetics or similarities between biological systems. Studies in Caenorhabditis ele-
gans, for example, have suggested that downstream insulin response pathways are mediated
by forkhead transcription factors (Ogg et al., 1997). For most structurally related families
of transcription factors, there are clear similarities in the sequences of the sites to which
they bind (Luscombe et al., 2000). Eisen (2005), for example, has demonstrated that motifs
bound by proteins with structurally similar DNA binding domains tend to have similar infor-
mation content profiles (Schneider et al., 1986). Prior knowledge about the structural class
of the mediating transcription factor thus often translates into constraints on the unknown
position weight matrix that can be used to enhance the sensitivity of pattern discovery al-
gorithms. Sandelin and Wassermann (2004) show that the benefit of such prior knowledge
is comparable to the specificity improvements obtained through phylogenetic footprinting.

Currently, only a few motif finding algorithms such as ANN-Spec (Workman and Stormo,
2000) or the Gibbs motif sampler (Neuwald et al., 1995; Thompson et al., 2003) are capable
of incorporating prior knowledge about the unknown motif. These algorithms generally re-
quire the user to supply an appropriate prior distribution on the entries of the corresponding
position weight matrix. van Zwet et al. (2005) recently described an algorithm that instead
allows the user to place restrictions on the order of the information content across the motif.

1
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Keleş et al. (2003) introduced a constrained motif detection algorithm - COMODE - that gen-
eralizes this approach by allowing the user to specify a set of arbitrary constraints that the
unknown position weight matrix must satisfy. Their algorithm is based on a probabilistic
model that describes the DNA sequences of interest through a two-component multinomial
mixture model as first introduced by Lawrence and Reilly (1990), with estimates of the po-
sition weight matrix entries obtained by maximizing the observed data likelihood over the
smaller parameter space corresponding to the imposed constraints.

This article focuses on a number of methodological improvements and extensions to the
algorithm developed in Keleş et al. (2003), relating mostly to the data-adaptive selection of
various model parameters. Keleş et al. propose to use likelihood-based cross-validation for
this purpose. In particular, their algorithm relies on this approach for the sake of estimating
the unknown motif width. Furthermore, the authors suggest that likelihood-based cross-
validation can be used to choose an appropriate constraint set from a whole collection of
candidate constraint sets. Keleş et al. base their advocacy for this approach primarily on
certain finite-sample optimality results derived by van der Laan et al. (2003) rather than on
simulation studies in the given setting of motif detection.

In this article, we present detailed simulation results that compare the performance of
likelihood-based cross-validation to that of a number of other model selection techniques.
Among the other techniques we consider are model selection based on the E-value of the
resulting multiple alignment, model selection by AIC or BIC, as well as cross-validation based
on the Euclidean norm between two position weight matrices. We examine the performance
of these estimators not only in the context of choosing the motif width and an appropriate
constraint set, as proposed by Keleş et al., but also in the context of choosing the appropriate
model type (OOPS, ZOOPS, or TCM).

We introduce a fast and scalable new implementation of the algorithm originally proposed
by Keleş et al. called cosmo that not only makes use of more targeted model selection
approaches but also improves on COMODE in several other ways. First, a number of changes
to the algorithm allow cosmo to outperform one of the most commonly used motif finding
algorithms, MEME (Bailey and Elkan, 1995a), even in the absence of constraints. Second,
various computational modifications now allow realistic jobs to be run in five to ten minutes,
making cosmo at least competitive with MEME in this aspect as well. Third, while COMODE

requires the user to specify constraints by supplying two C functions, one for evaluating
the constraints themselves and one for evaluating their gradient, cosmo allows them to be
defined in a simple text file according to a straightforward standard. Lastly, we make our
implementation available not only as a stand-alone program and an R package, but also in
the form of a web application that allows users to run jobs on a designated web server.

The remainder of this article is organized as follows: Section 2 describes the probabilistic
models that are commonly used in the context of motif detection. In particular it contains
a proposal for evaluating the exact likelihood function corresponding to the TCM random
process, which previously has been based on approximations to this random process. Section
3 discusses the various constraints that can be used to supervise the motif search. The
following section briefly reviews the various model selection techniques that we consider
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in later sections. After discussing the design of the simulation studies used to assess the
performance of the algorithm in section 5, we first present simulation results pertaining to
the choice of starting values, the estimation of the intensity parameter in the ZOOPS and
TCM models, and the comparison between exact and approximate methods in the TCM
model. Section 7 then describes the simulation studies we have conducted for identifying
the optimal model selection approaches for the purposes of choosing the motif width, the
model type, and the constraint set. The following section provides a detailed example to
illustrate the use of our web application. We end with a brief discussion of our methods and
the simulation studies we have conducted.

2 Probabilistic models

In this section, we formally define the observed data structure and describe three different
probabilistic models that are used to model the distribution of this data structure. We use
the following notation in describing these models. Let Xil ∈ {1 ≡ A, 2 ≡ C, 3 ≡ G, 4 ≡ T}
denote the nucleotide in position l of sequence i. Let the length of sequence i be denoted
by Li and let Xi = {Xil}Li

l=1 denote the entire sequence of nucleotides in sequence i. The
observed data are then given by N i.i.d. random variables {X1, ...,XN}.

2.1 Motifs and background

All of the models described below assume that sequences are generated according to a multi-
nomial mixture model with two components, one that describes the distribution of nucleotides
in the motif, and one that describes the distribution of nucleotides in the background.

Nucleotides that are part of the transcription factor binding site are assumed to be
generated according to the following statistical model: The nucleotide at position w, denoted
by Mw, is drawn from a multinomial distribution with parameter vector

Pw ≡ (Pw1, Pw2, Pw3, Pw4) ≡ (P (Mw = 1), P (Mw = 2), P (Mw = 3), P (Mw = 4))

such that individual positions are independent of each other and the Pw are allowed to be
different for each position. Note that the width W of the motif is usually unknown a priori.
The 4×W matrix with column w given by Pw is referred to as the position weight matrix
(PWM) of the motif.

COMODE allows the user to specify a set of constraints C that the position weight matrix
is required to satisfy. The nature of these constraints is described in detail below, but some
possible examples include constraints on the information content profile, the probabilities of
individual nucleotides, or the palindromicity of subsequences of the motif. We extend this
approach by allowing the user to specify a number of constraint sets C1, ..., Cd, leading to
the weakened assumption that the true position weight matrix only satisfy at least one of
the supplied constraint sets. We note that, in particular, it is possible to include an empty
constraint set in the collection C1, ..., Cd, which in essence protects the user from the risk of

3
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model mis-specification through the imposition of a wrong set of constraints on the position
weight matrix.

We assume that nucleotides that are not part of a motif are generated according to a
k-th order Markov model. Let X̄i(l,m) ≡ (Xil, ..., Xim) denote nucleotides l through m of
sequence i. Then a k-th order Markov model for the distribution of background nucleotides
assumes that a background nucleotide at position l is drawn from a multinomial distribution
with parameter vector P0(X̄i((l−k)∧ 1, l− 1)), i.e. the parameter vector of the multinomial
distribution is allowed to depend on the previous k nucleotides.

Let Bil be the indicator that a motif starts in position l of sequence i. Our main parameter
of interest then consists of the position weight matrix of the motif as well as the collection
K ≡ {(i, l) : Bil = 1} of true motif start sites in our data set.

2.2 OOPS

The one-occurrence-per-sequence (OOPS) model assumes that every sequence contains ex-
actly one occurrence of the motif. For a given sequence Xi, any of the Li −W + 1 eligible
motif starts are equally likely to be the start site of the motif. At a given start site, the motif
is equally likely to be present in either one of the two possible orientations. For example,
the motif ATGCCC may be present as ATGCCC or in its reverse complement orientation
as GGGCAT. Specifically, the OOPS model assumes that a given sequence Xi is generated
according to the following random process:

1. Draw a motif start site Si from a uniform discrete distribution with support {1, ..., Li−
W + 1}. Let Bi ≡ (I(Si = 1), ..., I(Si = Li)) be a vector of indicator variables whose
l-th element is 1 if the motif start site is equal to the l-th position in sequence i.

2. Set l = 1. If l < Si continue with step 3, else continue with step 4.

3. Draw Xil from the multinomial distribution with parameter vector P0(X̄i((l − k) ∧
1, l − 1)). Set l = l + 1. If l < Si continue with step 3, else continue with step 4.

4. Set w = 1. Draw Y from a Bernoulli(0.5) distribution. If Y = 1, go to step 5, else go
to step 6.

5. Draw Xil from the multinomial distributions with parameter vector Pw . Set l = l +1,
w = w + 1. If w ≤ W , continue with step 5; else if l ≤ Li continue with step 7; else
stop.

6. Draw Xil from the multinomial distributions with parameter vector PW−w+1 . Set
l = l + 1, w = w + 1. If w ≤ W , continue with step 6; else if l ≤ Li continue with step
7; else stop.

7. Draw Xil from the multinomial distribution with parameter vector P0(X̄i((l − k) ∧
1, l − 1)). Set l = l + 1. If l ≤ Li continue with step 7, else stop.

4
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Let τ(i, l, W ) ≡ {l, ..., l + W − 1} denote the sites that are part of a motif of length
W given a particular motif start site l on sequence i. Let c(j) denote the complement of
nucleotide j, j = 1, . . . , 4; thus, c(1) = 4 and c(2) = 3, for example. The likelihood P (Xi|θ)
of a given sequence Xi under the OOPS model can then be calculated as

1

Li −W + 1

Li−W+1∑
l=1

∏
k/∈τ(i,l,W )

4∏
j=1

P
I(Xik=j)
0j

1

2

[ W∏
w=1

4∏
j=1

P
I(Xi(l+w−1)=j)

wj +

W∏
w=1

4∏
j=1

P
I(Xi(l+W−w+1)=c(j))

wj

]

2.3 ZOOPS

The zero-or-one-occurrence-per-sequence (ZOOPS) model assumes that a given sequence Xi

contains one occurrence of the motif with probability π and no occurrences of the motif with
probability 1 − π. For a given sequence Xi that contains a motif, any of the Li − W + 1
eligible motif starts are equally likely to be the start site of the motif. At a given start
site, the motif is equally likely to be present in either one of the two possible orientations.
Specifically, the ZOOPS model assumes that a given sequence Xi is generated according to
the following random process:

1. Draw Vi from a Bernoulli(π) distribution. If Vi = 1, draw Xi according to the random
process of the OOPS model above. Otherwise continue with step 2.

2. Set l = 1.

3. Draw Xil from the multinomial distribution with parameter vector P0(X̄i((l − k) ∧
1, l − 1)). Set l = l + 1. If l ≤ Li continue with step 3, else stop.

The likelihood P (Xi|θ) of a given sequence Xi under the ZOOPS model can then be
calculated as

π

Li −W + 1

Li−W+1∑
l=1

∏
k/∈τ(i,l,W )

4∏
j=1

P
I(Xik=j)
0j

1

2

[ W∏
w=1

4∏
j=1

P
I(Xi(l+w−1)=j)

wj +

W∏
w=1

4∏
j=1

P
I(Xi(l+W−w+1)=c(j))

wj

]
+ (1− π)

Li∏
l=1

4∏
j=1

P
I(Xik=j)
0j

2.4 TCM

The OOPS and ZOOPS models allow at most one occurrence of the motif per sequence.
However, there are many biological examples of DNA sequences that contain multiple oc-
currences of the same transcription factor binding site. Bailey and Elkan (1995a) propose a
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two-component mixture (TCM) model for this situation that allows each sequence to contain
an arbitrary number of non-overlapping occurrences of the motif.

This model assumes that a given sequence Xi is generated by repeatedly deciding whether
to insert a background nucleotide or a motif of width W . As before, a motif is inserted in
either one of the two possible orientations with equal probability. We denote by λ the
probability that a motif is inserted at a given position rather than a background nucleotide.
Specifically, the TCM model assumes that a given sequence Xi is generated according to the
following random process:

1. Set l = 1.

2. Draw Bil from a Bernoulli(λ) distribution. If Bil = 0, go to step 3, else set w = 1 and
go to step 4.

3. Draw Xil from the multinomial distribution with parameter vector P0(X̄i((l − k) ∧
1, l− 1)). Set l = l + 1. If l ≤ Li−W + 1 continue with step 2, else continue with step
7.

4. Draw Y from a Bernoulli(0.5) distribution. If Y = 1, go to step 5, else go to step 6.

5. Draw Xil from the multinomial distribution with parameter vector Pw . Set l = l + 1,
w = w + 1. If w ≤ W , set Bil = 0 and continue with step 5; else if l ≤ Li −W + 1
continue with step 2; else continue with step 7.

6. Draw Xil from the multinomial distribution with parameter vector PW−w+1 . Set
l = l + 1, w = w + 1. If w ≤ W , set Bil = 0 and continue with step 6; else if
l ≤ Li −W + 1 continue with step 2; else continue with step 7.

7. Draw Xil from the multinomial distribution with parameter vector P0(X̄i((l − k) ∧
1, l − 1)). Set l = l + 1. If l < Li, continue with step 7, else stop.

The likelihood function for the TCM model is a sum over all possible sample paths that
could have produced the sequence at hand. The number of these sample paths for a sequence
of length L is on the order of 2L since the random process repeatedly has the choice to either
insert a motif of width W or a background nucleotide. Due to this increased computational
complexity as compared to the OOPS and ZOOPS models, exact methods based on the TCM
model have been avoided and a number of computationally more tractable approximations
have been proposed.

Bailey and Elkan (1995a) obtain a derived data set D′ from the original data set D that
consists of all overlapping subsequences of length W that are contained in the original data
set. A proportion λ′ of these derived sequences X′

i represent motifs, whereas a proportion
1− λ′ consist entirely of background nucleotides. Specifically Bailey and Elkan assume that
each derived sequence X′

i was generated by the following random process:

1. Set w = 1.

6
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2. Draw B′
i from a Bernoulli(λ′) distribution. If B′

i = 1, go to step 3, else go to step 6.

3. Draw Yi from a Bernoulli(0.5) distribution. If Yi = 1, go to step 4, else go to step 4.

4. Draw X ′
iw from the multinomial distributions with parameter vector Pw . Set w = w+1.

If w ≤ W , continue with step 4; else stop.

5. Draw X ′
iw from the multinomial distributions with parameter vector PW−w+1 . Set

w = w + 1. If w ≤ W , continue with step 5; else stop.

6. Draw X ′
iw from the multinomial distribution with parameter vector P0(X̄i((w − k) ∧

1, w − 1)). Set w = w + 1. If w ≤ W continue with step 6, else stop.

Bailey and Elkan estimate the parameters in this approximate model based on a modified
EM-algorithm that includes a smoothing step after the E-step to reduce the degree to which
any two overlapping subsequences can both be assigned to the motif component. These
estimates are then taken as estimates of the parameters in the original model, except that λ
is estimated by

λn =
1

1
λ′n
−W + 1

A drawback of this approach is that the derived sequences X′ are far from independent of
each other since they are constructed from overlapping portions of the original sequences.
The likelihood function, however, is based on a sample of i.i.d. sequences. The impact of
this violated independence assumption is not quite clear.

As shown by Keleş et al. (2003), it is computationally advantageous in the context of
constrained motif detection to maximize the observed data likelihood directly rather than to
use the EM-algorithm. Since the approximation proposed by Bailey and Elkan is based on an
additional smoothing step after each E-step of the EM-algorithm, it cannot be implemented
in a straightforward way as part of a constrained motif detection algorithm.

Keleş et al. instead propose applying the ZOOPS model to a derived data set DU that
is obtained from the original data set D by dividing each of the original sequences into
subsequences of cut length U . The authors test this method on the even skipped gene (eve)
of Drosophila for different choices of the cut parameter U and report that it is fairly robust
with respect to the choice of U .

A potential problem with this approach is that it cannot detect motif occurrences that
straddle a cut point in one of the original sequences. We consider a modified approach
that combines elements of the previous two proposals. We divide the original data set into
subsequences of length U such that each subsequence contains the first W − 1 nucleotides of
the following subsequence. The overlaps of length W − 1 ensure that any motif occurrence
that is present in the original sequences can also be detected in the new data set DU .

We compare these three approximate TCM models to an exact one that is based on
our following proposal for a computationally efficient algorithm to calculate the likelihood of
sequence i, denoted by P (Xi|θ). Let πi(l|θ) ≡ P (Xi1, ..., Xil|B((l−W +2)∧1) = 0, ..., B(l) =
0, θ) denote the likelihood of the first l nucleotides given that no motif starts at any of the

7
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last W − 1 nucleotides, i.e. given that position l + 1 has positive probability of being a motif
start site. The conditional likelihoods πi(l) are sums over all sample paths that could have
generated the observed first l nucleotides with the sole restriction that no motifs start in
positions l−W +2 through l. Suppose we have already calculated πi(k) for 1 ≤ k < l. Then
we can calculate πi(l) by conditioning on whether or not the nucleotide Xil was generated by
the motif distribution or the background distribution. In the former case, Xil must represent
the last column of a motif starting in position l−W + 1, or else the nucleotide Xi(l+1) could
not possibly be a motif start site; the probability of all sample paths that contain a motif
in positions l −W + 1, . . . , l is given by π(l −W + 1) × λ multiplied by the probability of
the last W positions under the motif distribution. In the latter case, the probability of all
sample paths that contain a background nucleotide in position l is given by π(l−1)× (1−λ)
multiplied by the probability of nucleotide Xil under the background distribution. Thus,
letting πi(l) ≡ 0 for l ≤ 0, we have that πi(l) is given by

πi(l −W + 1)× λ× 1

2

[ W∏
w=1

4∏
j=1

P
I(Xi(l+w−1)=j)

wj +
W∏

w=1

4∏
j=1

P
I(Xi(l+W−w+1)=c(j))

wj

]
+ πi(l − 1)× (1− λ)×

4∏
j=1

P
I(Xil=j)
0j

Finally, we recognize that the likelihood of sequence i under the TCM model, P (Xi|θ), is
given by πi(Li|θ) since no motif can start at any of the last W−1 nucleotides of the sequence.

This algorithm for evaluating the exact likelihood function under the TCM model allows
us to estimate the parameters of the TCM model directly, without relying on one of the
approximations described above. Furthermore, we can use it as part of the approximate
methods for calculating the posterior probability of a motif starting in each of the positions
in the N sequences, given our parameter estimates. As described in more detail below,
these posterior probabilities form the basis for predicting motif sites. It is advantageous
to base their calculation on the exact TCM likelihood rather than the likelihood under the
approximate model since we avoid, for example, the possibility of declaring two overlapping
motifs. Below, we report simulation results that compare the performance of the exact TCM
method to that of the various approximate ones.

3 Constraints

Imposing constraints on the position weight matrix, derived from prior biological knowledge,
corresponds to reducing the parameter space that is to be searched. Hence such constraints
can be viewed as part of the statistical model that is to be applied to the data at hand.
COMODE is very general in terms of the constraints that can be imposed on the position
weight matrix. However, it requires that the user supply a C function that evaluates the
constraints for a given candidate position weight matrix along with another C function that
evaluates the derivative of the constraint functions at this position weight matrix. cosmo is
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based on a more user-friendly, but still very flexible system for specifying constraints that
does not require the user to code C functions. Instead, the user supplies a description of
the constraints in a text file that follows a certain standard format. We next describe the
different types of constraints that can be imposed on the position weight matrix, while leaving
a detailed description of the format for specifying them in the constraint file to appendix A.

3.1 Motif intervals

Many motifs can be conceptually divided into separate intervals that each correspond to a
distinct set of constraints on the position weight matrix. In order to specify constraints for
cosmo, we hence first specify how the motif can be divided into separate intervals. Since the
true motif width is usually unknown, forcing cosmo to search a range of candidate values, we
have to specify how the width of each interval changes with varying motif widths. We offer
three possibilities: The length of an interval may be a fixed number of based pairs no matter
what the length of the whole motif is; alternatively, the length of an interval may always be
a fixed proportion of the length of the whole motif; finally, a motif may contain one interval
that for each motif width is assigned whatever number of base pairs is left after all intervals
of the first two kinds have been allocated.

Let Ik denote the positions of the motif that fall into interval k, Ik = {w1(k), ..., wpk
(k)}.

Once the motif has been divided into separate intervals I1, ..., Id, we can add a number of
different constraints to individual intervals or to the motif as a whole.

3.2 Bound constraints on the information content across an inter-
val

An important summary measure of a given position weight matrix is its information content
profile (Schneider et al., 1986). The information content at position w of the motif is given
by

IC(w) = log2(J) +
J∑

j=1

pwj log2(pwj) = log2(J)− entropy(w)

where J denotes the number of letters in the alphabet from which the sequences have been
derived so that here J = 4. The information content is measured in bits and, in the case
of DNA sequences, ranges from 0 to 2 bits. A position in the motif at which all nucleotides
occur with equal probability has an information content of 0 bits, while a position at which
only a single nucleotide can occur has an information content of 2 bits. The information
content at a given position can therefore be thought of as giving a measure of the tolerance
for substitutions in that position: Positions that are highly conserved and thus have a low
tolerance for substitutions correspond to high information content, while positions with a
high tolerance for substitutions correspond to low information content.

Mirny and Gelfand (2002) have shown that the information content at a given position
of a motif is proportional to the number of contacts between the protein and the base pair
at that position. We therefore expect higher information content in regions of the motif that
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are bound by the transcription factor than in the remaining regions. If the transcription
factor contains two DNA-binding domains whose target sequences in the motif are separated
by a short stretch of sequence that does not interact with the protein, we would expect that
the information content of the motif follows a high-low-high pattern. In this case, it may
be useful to give bounds IClow and ICup on the information content across an individual
interval k. This corresponds to the constraints

IClow ≤ IC(w) ≤ ICup , w ∈ Ik

3.3 Shape constraints on the information content profile across an
interval

We may want to exclude position weight matrices from consideration whose information
content profile is sharply discontinuous across a given interval k. This can be achieved by
requiring the information content profile across that interval to follow a linear or monotone
shape. Both of these functional forms are parameterized by the information content at the
left edge, IC(w1(k)), and right edge, IC(wpk

(k)), of the interval. In particular, requiring a
linear information content profile corresponds to the constraints

IC(w) = IC(w1(k)) +
w − w1(k)

wpk
(k)− w1(k)

(IC(wpk
(k))− IC(w1(k))) , w ∈ Ik

A monotone increasing information content profile corresponds to the constraints

IC(w) ≥ IC(w − 1) , w ∈ Ik \ w1(k)

A monotone decreasing information content profile corresponds to the constraints

IC(w) ≤ IC(w − 1) , w ∈ Ik \ w1(k)

In each of these cases, we may give bounds on IC(w1(k) and IC(wpk
(k)). Furthermore, we

may relax each of these constraints by specifying an error tolerance ε that gives an upper
limit on deviations from the specified shape at any given position in the interval. In the
linear case, for example, this would require

−ε ≤ IC(w)− IC(w1(k))− w − w1(k)

wpk
(k)− w1(k)

(IC(wpk
(k))− IC(w1(k))) ≤ ε , w ∈ Ik

3.4 Lower bounds on nucleotide frequencies across an interval

We may suspect that a given nucleotide occurs with high frequency across a certain interval
k. In that case, we may require that the average frequency of a given nucleotide j across all
positions in interval k is no less than some lower bound pmin:

pmin ≤
1

wpk
(k)− w1(k) + 1

∑
w∈Ik

pwj ≤ 1
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Similarly, we may require that the GC-content or AT-content across an interval is no less
than some lower bound pmin. If the length of interval k does not change with varying motif
width, we may also impose lower bounds for nucleotide frequencies at a single position wl(k)
in that interval, pwl(k)j ≥ pmin.

3.5 Palindromic intervals

If the DNA-binding domains of the transcription factor are homodimeric, the DNA stretches
that are bound by the transcription factor will be palindromes of each other. MEME includes
an option to require the entire motif to be palindromic. cosmo instead allows the user to
specify two intervals k1 and k2 that are thought to be palindromic with respect to each other.

In particular, we require that the frequency of nucleotide j at position l in interval k1

equal the frequency of the complement of nucleotide j, denoted by c(j), at position l from
the right edge of interval k2:

pwl(k1)j = p(wpk2
(k2)−l+1)c(j) , l ∈ {1, ..., pk1}, j = 1, 2, 3, 4

Again, we can relax this constraint by specifying an error tolerance ε that gives an upper
limit on deviations from the above equality:

−ε ≤ pwl(k1)j − p(wpk2
(k2)−l+1)c(j) ≤ ε , l ∈ {1, ..., pk1}, j = 1, 2, 3, 4

3.6 Submotifs

Families of transcription factors are often characterized by the occurrence of a certain submo-
tif within the motif. The exact location of the submotif within the motif, however, can vary
widely. DNA sequences bound by transcription factors with an ETS domain, for example,
all contain the stretch GGAA somewhere within the binding site.

To specify such constraints, let the nucleotides in the submotif be denoted by M =
{m1, ...,md}. Then we would like to require that, for a specified minimum nucleotide fre-
quency pmin such as pmin = 0.8,

p(w+l−1)ml
≥ pmin , l = 1, .., d

for some w ∈ {1, ...,W − l + 1}, i.e. we require that there exist a window of length d in the
motif such that the nucleotides corresponding to the submotif occur in consecutive positions
each with a frequency of at least pmin. This could be formulated as a single constraint of the
form

g(PWM) ≡ min
w∈{1,...,W−d+1}

d∑
l=1

[pmin − p(w+l−1)ml
]+ ≤ 0,

where [x]+ ≡ max(0, x) denotes truncation of x at 0. In this formulation of the constraint,
we can think of [pmin − p(w+l−1)ml

]+ as a penalty for position w + l − 1 if we consider the
window of length d starting at position w. Such a constraint requires then that there exists
a window of length d such that the sum of all such penalties across the window is 0.
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Unfortunately, such constraints do not work well in practice, presumably because the
function g is not smooth enough for the sequential quadratic programming algorithm used
to perform constrained maximization. We formulate the constraint instead as

min
w∈{1,...,W−l+1}

1

d

d∑
l=1

e−5p(w+l−1)ml ≤ e−5pmin (1)

Thus we have introduced smoother penalties given by e−5p(w+l−1)ml and only require that
there exists a window such that the average penalty across this window is no larger than the
penalty evaluated at pmin. This no longer ensures that the original constraint

p(w+l−1)ml
≥ pmin , l = 1, .., d

is satisfied, but the approximation is reasonably close and works far better in the context of
constrained maximization.

3.7 Bounds on differences of shape parameters

Sometimes we may wish to impose constraints on the shape of the information content that
cannot be specified by the shape constraints described above. For example, we may wish
to require that the information content across a certain interval k is constant, or that the
information content profile be continuous at the junction between two intervals.

Such constraints can be formulated by giving bounds on the difference between two shape
parameters. Recall that shape constraints on the information content profile across interval
k are parameterized using the information content at the left and right edge of the interval,
IC(w1(k)) and IC(wpk

(k)). Hence we may require that

0 ≤ IC(w1(k))− IC(wpk
(k)) ≤ 0

corresponding to a constant information content profile across interval k. As another exam-
ple, we might require that

0 ≤ IC(w1(k1 + 1))− IC(wp1(k1)) ≤ 0

corresponding to the constraint that the information content profile be continuous at the
junction between interval k1 and k1 + 1. As a final example, we might specify a linear
information content profile across interval k and require that

−2 ≤ IC(w1(k))− IC(wpk
(k)) ≤ 0

corresponding to the constraint that the information content be increasing across the interval.
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4 Model selection techniques for the union model

The probabilistic models described above are indexed by by following four parameters:

1. The order k of the background Markov model, k ∈ {1, 2, ...}.

2. The width of the motif W , W ∈ W = {minw, ..., maxw}.

3. The type of model used to describe the data-generating process,

M ∈M ⊂ {OOPS, ZOOPS, TCM}.

4. The set of constraints on the position weight matrix of the motif, C ∈ C = {C1, ..., Cd}.

Here minw and maxw are user-supplied bounds on the range of motif widths to consider. The
user is given the choice, for each one of these four parameters, to either make a manual
selection, presumably based on available a priori knowledge, or to have cosmo select the
appropriate index data-adaptively. This last approach corresponds to working in the larger
union model that only assumes that at least one of the models is true out of the entire
collection of models indexed by the parameters that are chosen data-adaptively.

We next review some model selection techniques that can be used to select the index in a
data-adaptive manner. As it turns out, some of the criteria described below will also feature
in the estimation process for a fixed index.

4.1 Likelihood-based validity functionals

The models indexed by k and W are nested in the sense that models with a smaller index
are special cases of models with a larger index. Likewise, the OOPS model is contained
in the ZOOPS model. Finally, any model with a non-empty constraint set is contained in
the corresponding model with an empty constraint set. In this context of a collection of
nested models, the maximum-likelihood principle invariably leads to choosing the model of
the highest dimension and can therefore not be used as a criterion for model selection.

For this reason, a number of model selection criteria have been proposed that penalize the
likelihood function by some measure of the dimension of the model. These criteria generally
take the form I = −2 log(L) + q, where q is a penalty and L denotes the likelihood func-
tion evaluated at the maximum-likelihood estimates. Two prominent examples are Akaike’s
Information Criterion AIC (Akaike, 1973) with q = 2p, where p denotes the number of pa-
rameters, and the Bayesian Information Criterion BIC (Schwarz, 1978) with q = p log(n),
where n denotes the number of observations.

AIC and BIC are aimed at different model selection scenarios and hence their performance
will depend on the particular case at hand. AIC is aimed at a situation in which the true
model is high-dimensional, requiring many, possibly infinitely many, parameters to describe
it. The goal is to find the best approximating model from a collection of lower-dimensional
models. The dimension of this approximating model will be low if the amount of available
data is small and will increase as more information becomes available. In particular, if
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the collection of candidate models contains the true model, AIC has been shown to be an
inconsistent estimator of the true dimension (Hannan, 1980; Woodroofe, 1982). In general,
models selected by AIC tend to overfit the data.

By contrast, BIC is based on the assumption that the collection of low-dimensional can-
didate models contains the true model. In this context it has been shown to be a consistent
estimator of the dimension of the model for a broad range of data-generating distributions
(Haughton, 1988; Csiszar and Shields, 2000).

4.2 E-value of the resulting multiple alignment

MEME compares different models based on a measure of the statistical significance of the
multiple alignment obtained by aligning the predicted motifs. It computes a test statistic
based on a likelihood-ratio test for comparing the null hypothesis that the aligned motifs
were generated by the background distribution to the alternative hypothesis that they were
generated by the motif distribution. The measure of statistical significance used by MEME

is then the expected number of multiple alignments with such a test statistic as great or
greater than the observed one that can be formed from a set of sequences {X1, ...,Xn}
that was generated entirely from the background distribution. This E-value also gives an
approximate p-value for the hypothesis that the given alignment was obtained from a set of
sequences {X1, ...,Xn} generated by the background distribution. We next review how MEME

arrives at a set of predicted motifs and then computes the corresponding E-value, based on
methods originally proposed by Hertz and Stormo (1999).

Given a candidate position weight matrix as well as a candidate value π̂ or λ̂ for the
intensity parameter in the ZOOPS and TCM models, respectively, we obtain a set of pre-
dicted motif start sites K̂ as follows. For each position l in a given sequence i, we calculate
the posterior probability that Bil = 1 given our parameter estimates. Denote this posterior
probability by p̃il. Now a candidate value π̂ in the ZOOPS model corresponds to an ex-
pected number of motif occurrences of E = π̂ ×N ; a candidate value λ̂ in the TCM model
corresponds to an expected number of motif occurrences of E ≈ λ̂×

∑N
i=1 Li.

For the TCM model, estimate K by K̂ = {(i, l) : p̃il ≥ p̃(E)}, i.e. by the sites with the E

highest posterior probabilities p̃il. For the OOPS model estimate K by the set K̂ = {(i, l) :
p̃il = maxl p̃il} of positions with highest posterior probabilities in the individual sequences.
Finally, for the ZOOPS model, choose the E sequences with highest posterior probabilities
from the set K̂ of estimated start sites in the corresponding OOPS model.

We next calculate a p-value p̃(MA) for the likelihood ratio test of the hypothesis H̃0(MA)
that the E aligned subsequences were generated by the background distribution. Note that
this hypothesis depends on the chosen alignment MA. We then adjust this p-value to
take into account that the E aligned subsequences were derived from the larger data set
{X1, ...,Xn}, particularly with the aim of obtaining an alignment of subsequences that are
unlikely to have been generated by the background distribution.

MEME approximates p̃(MA) as follows. It computes a set of log-likelihood ratios LLRw,
1 ≤ w ≤ W , for comparing the null hypothesis that the E nucleotides in position w of these

14

http://biostats.bepress.com/ucbbiostat/paper209



sequences were generated from the background distribution to the alternative hypothesis
that they were generated from the motif distribution. Next, it computes a set of p-values
pw for these W hypothesis tests based on an exact method proposed by Hertz and Stormo
(1999). It now uses as test statistic the product of these W p-values. MEME arrives at an
approximation to p̃(MA) based on the observation that, under the null hypothesis H̃0(MA),
this test statistic is the product of W independent random variables that each follow a
uniform distribution on [0, 1]. The authors report that this approximation behaves very
similar to the exact p-value in practice, which are computationally much more expensive to
obtain.

This p-value is now adjusted as follows to take into account the fact that the E aligned
subsequences were derived from the larger data set {X1, ...,Xn}. For each of the three models
(OOPS, ZOOPS, TCM), we can calculate the number A of possible alignments that could
have been formed from the original data set. A will differ between the three models since
sequences are allowed to contain different numbers of occurrences of the motif (see Hertz
and Stormo (1999) for details). Furthermore, A is a function of the chosen motif width W .
If each of the A alignments were independent of each of the other possible alignments, the
probability that a data set generated entirely from the background distribution would give
rise to at least one multiple alignment MA with a log-likelihood ratio L̃(MA) for H̃0(MA)
as large or larger than the observed log-likelihood ratio l̃(MA) could be computed as

P (L̃(MA) ≥ l̃(MA) ∀ MA ∈ {X1, ...,Xn}) = 1− P (L̃(MA) < l̃(MA))A

= 1− (1− p̃(MA))A

≈ 1− exp (−Ap̃(MA))

≈ Ap̃(MA)

MEME now uses the quantity Ap̃(MA) to measure the statistical significance of the aligned
motifs. It gives an approximation to the expected number of alignments to observe under
the background distribution that have log-likelihood ratios L̃(MA) as great or greater than
the observed l̃(MA), i.e. an approximation to the E-value of the multiple alignment. cosmo
uses the same algorithm for computing E-values as does MEME.

4.3 Likelihood-based cross-validation

Cross-validation is a general approach for selecting among candidate models that is based
on dividing the original data set into a training set that is used to estimate the parameters
of a given model and a validation set that is then used to evaluate the performance of
this estimated model. Likelihood-based cross-validation uses as a criterion for this second
step the value of the likelihood function, using the parameter estimates obtained from the
training sample, evaluated at the observations in the validation sample. Specifically, given
a collection of candidate models, indexed by h ∈ H, V -fold likelihood-based cross-validation
makes its choice from this collection as follows. First, the data set is split into V groups by
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drawing Gi from a uniform distribution on {1, 2, ..., V }, for i = 1, ..., N . For v = 1, ..., V , let
Tv ≡ {i : Gi 6= v} and Vv ≡ {i : Gi = v} denote the v-th training and validation samples,
respectively. Let Pv

h denote an estimate of the data-generating distribution based on training
sample v and the model with index h. The choice for the index h is then given by

ĥ = arg min
h∈H

1

V

V∑
v=1

1∑N
i=1 I(Gi = v)

∑
i∈Vv

− log Pr(Xi|Pv
h),

where Pr(Xi|Pv
h) is the likelihood of observation Xi under the estimated data-generating

distribution Pv
h .

Like AIC, likelihood-based cross-validation is aimed at situations in which the true data-
generating distribution is believed to be a member of a very large model such as the non-
parametric model. The goal is to select from a collection of lower-dimensional models the
one that, given the amount of data available, best approximates the true density. As with
AIC, the dimension of this approximating model will be low if the amount of available data
is small and will increase as more information becomes available.

van der Laan et al. (2003) recently showed that likelihood-based cross-validation performs
asymptotically as well as an optimal benchmark model selector that depends on the true
density. One of the hypotheses for this result is that the candidate density estimates are
bounded away from zero and infinity. We note that this assumption may be violated when
the estimated position weight matrix contains entries very close to zero. Especially in the
case of the OOPS model, it is then possible for the observed data likelihood to approach zero
if it so happens that all of the motif likelihoods

1

2

[ W∏
w=1

4∏
j=1

P
I(Xi(l+w−1)=j)

wj +
W∏

w=1

4∏
j=1

P
I(Xi(l+W−w+1)=c(j))

wj

]
for a given sequence are close to zero. For the TCM model as well as the ZOOPS model
with π < 1, position weight matrices with entries close to zero are less likely to lead to an
unbounded loss function since the contributions from the background will ensure a non-zero
likelihood. In the TCM model, for example, the likelihood function is a sum over all possible
sample paths, in particular the one that consists of all background nucleotides.

The potential problem of an unbounded loss function in the OOPS model may be ad-
dressed by truncation as follows. For a given parameter estimate, we can calculate say the
0.9 quantile over all N sequences of the loss function evaluated at this estimate. In estimat-
ing the expected loss by computing the empirical mean over the validation sample, we then
truncate any observed loss by this quantile to prevent sequences with likelihoods close to
zero from exerting undue influence.

4.4 Cross-validation based on the Euclidean norm

As mentioned above, likelihood-based cross-validation is aimed specifically at density estima-
tion. If the parameter of interest is only a low-dimensional functional of the density rather
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than the whole density, it is often advantageous to target the loss function directly at this
parameter, rather than estimating the density first and then obtaining the parameter esti-
mate by integrating out the components that are not of interest. While the latter approach is
asymptotically efficient in parametric models, it suffers considerably in semi-parametric and
non-parametric models. Its performance is further compromised even in parametric models
if the size of the model is large as compared to the number of observations.

In the context of constrained motif detection, the primary parameter of interest is the
position weight matrix. For selection problems in which W is fixed, notably in selecting
between candidate constraint sets, we may hence want to use the following loss function that
is targeted directly at the position weight matrix. Let P−v

wj (h) denote the estimate of the
position weight matrix based on training sample v and constraint set h. Let P v

wj(0) denote
the unconstrained estimate of the position weight matrix based on validation sample v. Then

1

V

V∑
v=1

W∑
w=1

4∑
j=1

(
P−v

wj (h)− P v
wj(0)

)2

gives an unbiased estimate of the Euclidean norm between the true position weight matrix
and the position weight matrix estimated in constraint set h. Hence its expectation is
uniquely minimized by the true position weight matrix so that it can be used as a loss
function for the sake of estimating the position weight matrix. For this method, we use
2-fold cross-validation since it relies on sensible parameter estimates from each validation
sample.

5 Simulation study design

5.1 Test data sets

We assessed the performance of different candidate versions of cosmo on six collections of
simulated data sets, which we will refer to below as dOOPS, dZOOPS1, dZOOPS2, dTCM1,
dTCM2, and dTCM3. Each of these collections contains 255 data sets, each consisting of
25 750-bp sequences. The background nucleotides of all sequences were simulated according
to a third-order Markov model whose transition matrix we estimated from the human test
sequences provided by Tompa et al. (2005). The target motifs inserted into these sequences
consist of the 51 human transcription factor binding site profiles available in the curated
JASPAR core database (Sandelin et al., 2004). This collection includes a wide spectrum of
different motifs, both in terms of width and average information content: Their widths range
from 5 to 20, with a median of 10, and their average information content ranges from 0.76 to
1.73, with a median of 1.21. For each collection of test data sets, we simulated five data sets
for each of these motifs. The data sets simulated for a given motif only contain occurrences
of that motif; no competing motifs were inserted. The dOOPS collection was generated
by inserting motifs according to the OOPS random process; dZOOPS1 and dZOOPS2 were
generated according to the ZOOPS random process with intensity parameters π = 0.25
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and π = 0.75, respectively, corresponding to an expected number of 6.25 and 18.75 motif
occurrences in the 25 sequences, respectively; dTCM1, dTCM2, and dTCM3 were generated
according to the TCM random process with intensity parameters λ = 0.00067, λ = 0.0013,
and λ = 0.004, respectively, corresponding to an expected number of 12.5, 25, and 75 motif
occurrences in the 25 sequences, respectively.

5.2 Measuring performance

The performance of a particular algorithm on a collection of test data sets is assessed through
its average sensitivity, positive predictive value (PPV), and receiver-operation characteristic
(ROC), with each of these three measures computed at the site level rather than the nu-
cleotide level. Specifically, following Tompa et al. (2005), we take a predicted site to identify
a true site if it overlaps the true site by at least one quarter of the length of the true site. For
a given data set, sensitivity is then defined as the proportion of all true sites that have been
identified, and positive predictive value is defined as the proportion of true sites among the
predicted sites. The ROC statistic is the integral of the ROC curve which plots sensitivity
against the proportion of sites not representing a motif occurrence that have been falsely
identified as a motif occurrence. To calculate this statistic, the discovered position weight
matrix was used to compute posterior probabilities for a motif occurrence for all eligible sites.
For a given true site, the overlapping predicted site with the highest posterior probability was
defined as identifying that site, with all other overlapping predicted sites defined as misses.
All sites were then ranked by posterior probability, and the integral of the ROC curve was
determined by numerical integration using the trapezoid rule.

6 Estimation of parameters for fixed index

In this section, we describe how parameter estimates are obtained for a model with a given
index. The following section then describes how this index is selected data-adaptively. As
described in more detail in the following section, the background distribution is estimated
in a preliminary, separate step. The parameters of this distribution are then fixed at their
estimated values during the estimation process targeting the actual parameters of interest.

We begin this section with a short argument for why cosmo is based on maximum-
likelihood estimates rather than Bayesian estimates as employed by MEME, followed by a
description of how starting values for the constrained maximization of the likelihood function
are created from the original data set. Next we discuss different approaches to estimating
the intensity parameter in the ZOOPS and TCM models. Finally, we compare the exact
TCM model to the various approximate models described above.

6.1 Maximum-likelihood vs. Bayes estimates

The current implementation of MEME is based on a modified EM-algorithm that finds the
mean posterior probability estimates of the entries of the position weight matrix during the
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M-step rather than the maximum-likelihood estimates (Bailey and Elkan, 1995b). For DNA
sequences, it uses a Dirichlet prior distribution for the entries of the position weight matrix
with parameter vector β equal to the average letter frequencies in the data set.

This deviation from the classical EM-algorithm is based on the following two problems
in the context of motif detection. First, if any entry of the position weight matrix is ever
estimated to be zero during an iteration of the EM-algorithm, it remains zero. Second,
maximum-likelihood estimates tend to have a high variance in the presence of a weak signal
or a small data set. MEME addresses both of these issues by using a prior distribution on
the entries of the position weight matrix.

cosmo is not based on Bayesian estimation for a number of reasons. First, it does not
use the EM-algorithm so that the first problem does not apply. Second, prior knowledge
about the position weight matrix is incorporated explicitly through the use of constraints,
which can be hoped to reduce the variance of the corresponding estimates. Third, applying
Bayesian estimation in a fashion analogous to the one used by MEME in the context of an
algorithm that directly maximizes the observed data likelihood without resorting to the
EM-algorithm is likely to lead to final estimates that do in fact not satisfy the constraints
originally imposed on the position weight matrix. Lastly, a few simulation studies showed
that, even in the context of unconstrained motif detection with cosmo, there appears to be
little or no benefit in postulating a prior distribution. This is in agreement with observations
by Bailey and Elkan (1995b) who report that prior distributions are mostly of use for the
detection of motifs in protein sequences, rather than DNA sequences. Maximum-likelihood
estimates, on the other hand, can be expected to be asymptotically efficient since the models
considered here are parametric.

For these reasons, cosmo estimates the parameters of interest by performing a constrained
maximization of the likelihood function. As shown by Keleş et al. (2003), it is computa-
tionally advantageous to maximize this likelihood function directly rather than to use the
EM-algorithm with a constrained maximization during each M-step. cosmo performs this
maximization using the C function donlp2() by Spellucci (1996) (see appendix B.1).

6.2 Choice of starting values

Starting values for the entries of the position weight matrix are often created from a nu-
cleotide sequence S = (S1, ..., SW ) of length W by the mapping

PWMij(S) =

{
pc if Si = j

(1− pc)/3 if Si 6= j

where common choices for pc are pc = 0.5 or pc = 0.7. Keleş et al. propose to obtain
starting values for the constrained maximization routine by evaluating the model likelihood
for all 4W candidate position weight matrices that can be generated by the above mapping
from the set of all possible length W sequences and choosing the k candidates that yield the
highest likelihood values. The authors show that starting values obtained in this manner
perform well in practice. However, the usefulness of this approach is limited by its enormous
computational time and space requirements, especially for larger candidate values of W .
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Bailey and Elkan (1995a) propose to choose starting values only from the set of candidate
position weight matrices that can be generated by the above mapping from the set of all
length W subsequences that actually occur in the observed sequences X1, ...,XN . This
proposal is based on the reasoning that the sequences are likely to contain a number of
length W subsequences that are close to the consensus sequence of the common motif so
that the position weight matrix derived from these subsequences is likely to be close to the
position weight matrix of that motif.

A possible modification of the proposal by Keleş et al. thus consists of choosing the k

candidate position weight matrices that yield the largest likelihood values among the set of
all candidate position weight matrices that can be derived from the original sequences. The
current implementation of MEME instead performs a single E-step for each derived position
weight matrix, aligns the predicted motifs, and chooses as starting value for the position
weight matrix the empirical distribution of the alignment with the smallest E-value.

We examine the performance of these two different approaches on the six collections of
test data sets described in section 5.1. For both approaches, a range of different candidate
values are considered for the number of starting values k to use for each optimization. For
the sake of simplicity, we treat the motif width W and the model type as known in these
simulations. cosmo is run without any constraints on the position weight matrix.

Table 1: Mean performance statistics for different choices of starting values.

Starts dOOPS dZOOPS1 dZOOPS2
Sens PPV ROC Sens PPV ROC Sens PPV ROC

MEME
1 0.34 0.34 0.92 0.10 0.09 0.90 0.25 0.26 0.91

E-value
1 0.54 0.54 0.96 0.20 0.15 0.94 0.40 0.39 0.96
3 0.56 0.56 0.96 0.22 0.15 0.94 0.42 0.40 0.96
5 0.57 0.57 0.97 0.23 0.16 0.95 0.43 0.40 0.96
10 0.59 0.59 0.97 0.24 0.17 0.95 0.46 0.42 0.96
25 0.61 0.61 0.97 0.26 0.17 0.95 0.50 0.44 0.97

Likelihood
1 0.18 0.18 0.94 0.06 0.04 0.94 0.09 0.09 0.94
3 0.26 0.26 0.95 0.09 0.06 0.94 0.15 0.14 0.95
5 0.32 0.32 0.95 0.10 0.06 0.94 0.19 0.18 0.95
10 0.39 0.39 0.96 0.13 0.08 0.95 0.26 0.23 0.95
25 0.51 0.51 0.97 0.16 0.10 0.95 0.37 0.34 0.96

Tables 1 and 2 summarize the results of this simulation study. We note that E-value
based starting values lead to consistently better performance than can be achieved with
likelihood-based starting values. As is to be expected, the performance of cosmo improves
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Table 2: Mean performance statistics for different choices of starting values.

Starts dTCM1 dTCM2 dTCM3
Sens PPV ROC Sens PPV ROC Sens PPV ROC

MEME
1 0.14 0.13 0.89 0.29 0.33 0.90 0.42 0.68 0.93

E-value
1 0.29 0.19 0.95 0.47 0.41 0.96 0.52 0.76 0.98
3 0.31 0.20 0.95 0.51 0.44 0.97 0.53 0.77 0.98
5 0.33 0.22 0.96 0.51 0.44 0.97 0.54 0.79 0.98
10 0.34 0.22 0.96 0.53 0.46 0.97 0.55 0.79 0.99
25 0.36 0.23 0.96 0.54 0.47 0.97 0.56 0.80 0.99

Likelihood
1 0.12 0.06 0.95 0.24 0.21 0.95 0.35 0.56 0.97
3 0.20 0.11 0.95 0.32 0.28 0.96 0.43 0.68 0.98
5 0.22 0.13 0.95 0.39 0.33 0.96 0.47 0.72 0.98
10 0.27 0.14 0.95 0.46 0.39 0.97 0.52 0.76 0.99
25 0.33 0.19 0.96 0.52 0.44 0.97 0.55 0.78 0.99

somewhat as the number of starting values k is increased. Using 25 starting values instead of
a single starting value improves the sensitivity of the algorithm by 7 to 29%; improvements
in positive predictive value lie in the range from 4 to 20%. In both cases, the algorithm is
most sensitive to the number of starting values used when the data set contains a relatively
weak signal, as in the dZOOPS1 and dTCM1 data sets. Since the time requirement of the
algorithm scales linearly in the number of starting values used, a reasonable trade-off between
performance and computing time is needed. The default setting of cosmo therefore uses five
starting values. We note, however, that users may wish to increase this number for smaller
jobs to achieve better performance, or decrease it if reductions in computing time are needed.

The default setting of five starting values allows cosmo to achieve mean sensitivities that
are 1.3 to 2.4 times greater than those achieved by MEME, with simultaneous mean positive
predictive value improvements in the range from 1.2- to 1.7-fold. In fact, even a version of
cosmo based on a single starting value outperforms MEME on all test cases considered here.
A possible explanation for this somewhat surprising performance differential might be that,
while both algorithms are based on the same two-component multinomial mixture model,
only cosmo reports true maximum-likelihood estimates which are known to be asymptotically
efficient in this parametric model. MEME deviates from the maximum-likelihood principle, for
instance, in using an M-step that is based on mean posterior probability estimates (see 6.1)
as well as in estimating the intensity parameter in the ZOOPS and TCM models based on
the E-value criterion (see 6.3).
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6.3 Estimation of the intensity parameter in the ZOOPS and
TCM model

COMODE estimates the intensity parameters π and λ in the ZOOPS and TCM model by
maximum likelihood. Bailey and Elkan (1995a) propose instead to estimate these intensity
parameters based on the E-value of the aligned predicted motifs. We next describe a number
of different approaches incorporating aspects of these two ideas for estimating the intensity
parameter λ in the TCM model; estimation of π in the ZOOPS model is carried out in an
analogous fashion.

We first choose a small number of candidate values for the expected number of motif
occurrences over the whole data set. By default, the lowest number of expected motif oc-
currences to consider, minSites, is set to two, and the highest number of expected motif
occurrences to consider, maxSites, is set to the minimum of 50 and five times the num-
ber of sequences. Candidate values for the expected number of motif occurrences are then
generated as a geometric progression from minSites to maxSites, with each following can-
didate value being twice as large as the current one. Next, we map these expected numbers
of motif occurrences into a set Λ1 = {λ1, ..., λd} of candidate values for λ. Let Λ2 ⊃ Λ1

denote the larger set of candidate values for λ obtained from the set of all integer candi-
date values for the expected number of motif occurrences between minSites and maxSites,
{minSites, minSites + 1, ..., maxSites}.

MEME now obtains an estimate ˆPWMk of the position weight matrix for each candidate
value λk, holding λ fixed at λk. It then selects from the collection of estimates {( ˆPWMk, λk) :
k} that pair which minimizes the E-value criterion. In a last step, MEME arrives at final
estimates ( ˆPWM, λ̂) by holding the selected estimate of the position weight matrix fixed and
selecting that λ̂ ∈ Λ2 that minimizes the E-value for the corresponding multiple alignment.
The E-value based estimator we study here modifies the algorithm used by MEME only slightly
in that it carries out this last update step for the estimate of λ for each pair ( ˆPWMk, λk),
before selecting a pair based on the E-value criterion, rather than only once at the end
of the algorithm. We observed that this modification lead to a moderate improvement in
performance of the estimator.

Other estimators may be defined by following the approach taken by MEME of holding λ
constant while estimating the position weight matrix, but then selecting the final estimates
based on criteria other than the E-value of the corresponding multiple alignment. If we use
the value of the likelihood function for this purpose, we obtain a profile-likelihood estimator
of the intensity parameter. Alternatively, we may use likelihood-based cross-validation or
truncated likelihood-based cross-validation.

The full maximum-likelihood estimator (MLE), lastly, obtains maximum-likelihood esti-
mates ( ˆPWMk, λ̂k) of the position weight matrix as well as of λ for each candidate value
λk ∈ Λ1, with Λ1 now representing no more than a set of possible starting values for the
optimization routine. The final estimates ( ˆPWM, λ̂) are then given by that pair in the
collection {( ˆPWMk, λ̂k) : k} that achieves the greatest value of the likelihood function.

We examine the performance of these different approaches for estimating λ on the collec-
tions of test data sets dTCM1, dTCM2, and dTCM3. The same approaches for estimating π
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Table 3: Mean performance statistics for different approaches to estimating the intensity
parameter.

dOOPS dZOOPS1 dZOOPS2
Sens PPV ROC Sens PPV ROC Sens PPV ROC

MEME 0.37 0.43 0.92 0.10 0.09 0.90 0.25 0.26 0.91
MLE 0.58 0.59 0.97 0.22 0.15 0.94 0.41 0.41 0.96
Eval 0.57 0.58 0.96 0.18 0.15 0.93 0.41 0.38 0.94
Lik 0.59 0.59 0.97 0.23 0.16 0.95 0.43 0.40 0.96
likCV 0.39 0.60 0.96 0.16 0.20 0.93 0.37 0.45 0.95
trCV 0.44 0.60 0.96 0.18 0.19 0.94 0.37 0.44 0.95

Table 4: Mean performance statistics for different approaches to estimating the intensity
parameter.

dTCM1 dTCM2 dTCM3
Sens PPV ROC Sens PPV ROC Sens PPV ROC

MEME 0.14 0.13 0.89 0.29 0.33 0.90 0.42 0.68 0.93
MLE 0.26 0.24 0.94 0.43 0.46 0.95 0.50 0.76 0.97
Eval 0.22 0.19 0.93 0.46 0.44 0.95 0.51 0.74 0.97
Lik 0.33 0.22 0.96 0.51 0.44 0.97 0.54 0.79 0.98
likCV 0.22 0.24 0.94 0.40 0.49 0.96 0.52 0.78 0.98
trCV 0.23 0.24 0.94 0.40 0.48 0.96 0.52 0.78 0.98
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in the ZOOPS model are evaluated on dOOPS, dZOOPS1, and dZOOPS2. For the sake of
simplicity, we treat the motif width W as known and run cosmo without any constraints on
the position weight matrix. Tables 3 and 4 summarize the results of this simulation study.

Since the ZOOPS and TCM models are parametric, the MLE is asymptotically efficient
for estimating the position weight matrix and the intensity parameter. Its finite-sample
performance on the test data sets considered here also compares favorably to more ad-hoc
estimators like the one based on the E-value criterion. Somewhat surprisingly, the profile-
likelihood estimator, performs even better than the MLE. The two estimators are based on
the same maximum-likelihood principle and differ only in the algorithmic approach taken
to identify the parameter estimates that maximize the likelihood of the observed data. We
speculate that holding the intensity parameter fixed while estimating the entries of the
position weight matrix helps to improve the finite-sample performance of the MLE in the
presence of a weak signal. In other simulations, we have seen that the full MLE tends to
overestimate the intensity parameter in such instances, leading to the identification of a
spurious high-abundance motif, so that holding the intensity parameter fixed may help the
chances of finding the true low-abundance motif.

The estimators that are based on cross-validation tend to select smaller values for the
intensity parameter and thus predict fewer motif occurrences than the other estimators.
Hence they tend to achieve a greater positive predictive value, but a smaller sensitivity
than the other two likelihood-based estimators. This more conservative trade-off between
sensitivity and specificity makes sense since each candidate estimator is evaluated on an
independent validation sample rather than on the same data set that was used to obtain the
estimates. The ROC statistics suggest that the performance of these estimators is overall
comparable to that of the MLE.

Based on these simulation results, cosmo defaults to the profile-likelihood approach for
estimating the intensity parameter.

6.4 Exact vs. approximate methods in the TCM model

Above we described three approximations to the exact TCM likelihood: The approximation
used by MEME is based on applying a slightly modified ZOOPS likelihood to overlapping
subsequences with length equal to the candidate motif width under consideration. The
proposal by Keleş et al. (2003) more generally applies the ZOOPS likelihood to subsequences
of length U . Finally, we proposed to derive subsequences of length U + W − 1 that overlap
each other by W − 1 nucleotides to ensure that each possible motif start site in the original
data set remains a possible motif start in the derived data set. In this section, we assess the
performance of these three approximations relative to the exact approach.

We note that cosmo only makes use of an approximation to the TCM likelihood for
the purpose of maximizing the likelihood function. Starting values as well as posterior
probabilities calculated for declaring motif sites are always based on the exact TCM likelihood
since these two steps are computationally inexpensive.

We compare the performance of the three approximations to the TCM likelihood to that
of the exact method on the three collections of test data sets dTCM1, dTCM2, and dTCM3.
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For the sake of simplicity, we treat the motif width W as well as the model type as known
and run cosmo without any constraints on the position weight matrix.

Table 5: Mean performance statistics for different approaches to evaluating the TCM like-
lihood function. Keleş refers to the proposal in Keleş et al. (2003). Bembom refers to the
proposal made here.

dTCM1 dTCM2 dTCM3
Sens PPV ROC Sens PPV ROC Sens PPV ROC

MEME 0.14 0.13 0.89 0.29 0.33 0.90 0.42 0.68 0.93
Keleş 0.31 0.21 0.95 0.50 0.44 0.97 0.54 0.78 0.99
Bembom 0.33 0.22 0.96 0.51 0.44 0.97 0.54 0.79 0.98
Exact 0.34 0.22 0.95 0.52 0.44 0.97 0.55 0.78 0.99

Table 5 shows the result of this simulations study. In all three test cases, the estimator
based on the exact TCM likelihood achieves marginally greater mean sensitivities than the
other estimators. The three cosmo variants behave very similarly in terms of positive pre-
dictive value and the ROC statistic. This suggests that any possible benefit of working with
the exact TCM likelihood is too limited to warrant the increased computational burden. A
possible explanation for this observation lies in the considerable sensitivity of the algorithm
to the starting values used as well as the posterior probabilities calculated at the end to
declare motif sites, two steps that, as mentioned above, are always based on the exact like-
lihood function. Among the two approximate cosmo variants, the one based on overlapping
subsequences performs slightly better than the one based on the proposal by Keleş et al.
(2003). cosmo therefore defaults to this estimator for the TCM model.

7 Data-adaptive selection of the index

In this section, we describe how cosmo chooses the various indices of the union model in
a data-adaptive manner. The background distribution is estimated in a preliminary step
by likelihood-based cross-validation. For the remaining parameters, we report simulation
results for comparing a range of possible model selection techniques. Finally, we describe
the approach we use when different parameters are to be chosen simultaneously based on
different model selection techniques.

7.1 Background model

It is often desirable to estimate the parameters of the background Markov model from a
larger, independent data set such as the entire set of intergenic regions of the organism of
interest. Hence we estimate these parameters in a separate, preliminary step and fix them
at their estimated values during the estimation process targeting the remaining parameters.
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Of course, it is still possible to specify that the background parameters be estimated from
the original set of input sequences.

Csiszar and Shields (2000) have shown that BIC is a consistent estimator of the order
of a Markov model. In the present context, however, we do not assume that background
nucleotides are actually generated according to a k-th order Markov model. Rather, we view
these models as imperfect approximations to a true data-generating process that is allowed
to be more complex. Hence it is more appropriate to select the order k of the background
Markov model by AIC or likelihood-based cross-validation. Since the computational burden
of this preliminary step is minimal, cosmo uses likelihood-based cross-validation.

7.2 Estimating the motif width W

The true width of the motif to be identified is generally not known a priori. The ability
to choose this motif width in a data-adaptive manner is therefore of great importance for
any motif detection algorithm. In this section, we report simulation results for comparing
a number of model selection techniques that one might consider for this purpose, namely
selection by maximum likelihood, AIC, BIC, the E-value of the aligned predicted motifs,
likelihood-based cross-validation, and truncated likelihood-based cross-validation.

All candidate estimators are evaluated on the six different collections of test data sets
described in section 5.1. For each data set, the candidate motif widths that are considered
range from W0 − 3 to W0 + 3 base pairs, where W0 is the true width of the inserted motif.
For the sake of simplicity, the model type is treated as known, and cosmo is run without any
constraints on the position weight matrix.

For each simulation, we also include results obtained from MEME, which are based on the
following algorithm. First, candidate values of W are generated according to a geometric
progression from minw to maxw. MEME chooses the model that minimizes the E-value of the
aligned predicted motifs. This multiple alignment is then trimmed to produce the longest
g-alignment of width at least minw, where a g-alignment is an alignment with no more than g
gapped sequences per column. Values of g in {0, 1, ...} are tried until an alignment of width
at least minw is found. The number of motif occurrences is then adjusted to minimize the
E-value of the alignment, followed by a final trimming step aimed at optimizing the E-value
further.

Tables 6 and 7 summarize the results of this simulation study. First we note that there
does not appear to be a significant price for having to select the motif width W data-
adaptively. For the sake of comparison, we have included a version of cosmo for which W
is fixed at the true value. In many cases, data-adaptive estimators in fact outperform this
reference estimator in terms of mean sensitivity, positive predictive value, and ROC statistic.
We note that this observation is likely tied to the decision of only requiring a predicted site
to overlap the true site by one quarter the length of the true site in order to be considered
a hit. Thus, an algorithm may perform well even if the selected motif width does not match
the true motif width.

Among all data-adaptive candidate versions of cosmo, the estimator that selects W based
on BIC leads to the most favorable overall performance. It achieves the highest mean sensi-
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Table 6: Mean performance statistics for different approaches to selecting the motif width.

dOOPS dZOOPS1 dZOOPS2
Sens PPV ROC Sens PPV ROC Sens PPV ROC

MEME 0.35 0.35 0.92 0.08 0.08 0.90 0.23 0.23 0.91
known 0.57 0.57 0.97 0.23 0.16 0.95 0.43 0.40 0.96
Lik 0.58 0.58 0.97 0.20 0.14 0.94 0.42 0.39 0.96
AIC 0.59 0.59 0.97 0.23 0.15 0.94 0.47 0.42 0.96
BIC 0.60 0.60 0.97 0.25 0.17 0.95 0.48 0.43 0.97
Eval 0.58 0.58 0.96 0.20 0.14 0.94 0.42 0.37 0.95
likCV 0.54 0.54 0.97 0.26 0.21 0.95 0.44 0.47 0.96
trCV 0.58 0.58 0.97 0.25 0.21 0.95 0.45 0.46 0.96

Table 7: Mean performance statistics for different approaches to selecting the motif width.

dTCM1 dTCM2 dTCM3
Sens PPV ROC Sens PPV ROC Sens PPV ROC

MEME 0.13 0.12 0.89 0.28 0.32 0.91 0.41 0.67 0.93
known 0.33 0.22 0.96 0.51 0.44 0.97 0.54 0.79 0.98
Lik 0.28 0.18 0.95 0.49 0.44 0.96 0.53 0.76 0.98
AIC 0.34 0.21 0.95 0.53 0.46 0.97 0.55 0.79 0.98
BIC 0.36 0.23 0.96 0.54 0.47 0.97 0.54 0.77 0.98
Eval 0.32 0.26 0.95 0.51 0.49 0.97 0.53 0.78 0.98
likCV 0.34 0.27 0.96 0.51 0.50 0.97 0.54 0.78 0.98
trCV 0.34 0.26 0.96 0.52 0.49 0.97 0.54 0.78 0.98

Table 8: Mean error in selected width.

dOOPS dZOOPS1 dZOOPS2 dTCM1 dTCM2 dTCM3
MEME 0.26 0.52 0.57 0.37 0.63 0.10
Lik 2.55 2.72 2.57 2.74 2.60 2.29
AIC 0.98 1.33 0.96 1.37 1.04 0.88
BIC -0.84 -1.37 -1.23 -1.44 -0.96 -0.25
Eval 0.40 1.03 0.68 0.65 0.48 0.31
likCV -1.44 -0.71 -0.62 -0.58 -0.37 0.18
trCV -0.87 -0.41 -0.36 -0.09 -0.17 0.33
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tivity in all test cases except for dZOOPS1 and dTCM3, where it comes in a close second.
The cross-validation based estimators perform somewhat better in terms of mean positive
predictive value, which, as before in section 6.3, can be attributed to a more conservative
trade-off between sensitivity and specificity. The slight advantage of the BIC-based estima-
tor in terms of mean ROC statistic, however, indicates that this latter estimator behaves
somewhat better on the whole. In the dOOPS, dZOOPS1, and dZOOPS2 test cases, this
estimator outperforms the E-value based estimator on all three measures of performance con-
sidered here. In the three TCM test cases, the E-value based estimator achieves a slightly
higher mean positive predictive value, but does not match the performance of the BIC-based
estimator in terms of mean sensitivity and ROC statistic.

The mean errors in the selected widths, reported in table 8, help to illustrate the behavior
of the different estimators. As expected, maximum likelihood tends very strongly to select
motif widths that are too large. In fact it is somewhat surprising that it does not select
the largest width in all simulations. Perhaps this results from the constrained maximization
routine failing to identify the true maximum-likelihood estimates, at least in a small number
of instances. AIC likewise tends to overestimate the width of the unknown motif, although
to a smaller extent. BIC and likelihood-based cross-validation, on the other hand, tend to
underestimate the motif width somewhat. This behavior appears to be mostly attributable to
those test data sets that contain a very weak signal and thus do not give the algorithm enough
information to identify the unknown motif. In such instances, BIC as well as likelihood-based
cross-validation err on the more conservative side of predicting shorter rather than longer
motifs. On the whole, we would expect BIC to be a consistent estimator of the unknown
motif width since this is a problem of selecting the correct dimension of the model.

We note that, in the dOOPS test case, likelihood-based cross-validation tends to under-
estimate the unknown motif width quite dramatically. Since the truncated version of this
estimator selects motif widths closer to the truth and also achieves a better performance
in terms of sensitivity, positive predictive value, and ROC statistics, this behavior is most
likely due to the problem of a likelihood function that is not bounded away from zero, as
described above. We conjecture that the problem of an unbounded loss function increases
with increasing W since there are more possibilities for entries close to zero. As expected,
truncating the loss function has minimal impact on likelihood-based cross-validation in the
ZOOPS and TCM models.

Based on the results described in this section, cosmo defaults to selecting the motif
width W based on BIC. The comparison of this estimator to MEME is even more favorable
than in the case of a known motif width, with mean sensitivity and positive predictive
value improvements consistently around two-fold. In the presence of weak signals, as in the
dZOOPS1 and dTCM1 test cases, cosmo in fact achieves a three-fold greater mean sensitivity
than MEME. Finally, we note that cosmo’s performance at selecting W can be expected to
benefit significantly from constraints that the user may have imposed on the structure of the
position weight matrix.
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7.3 Selecting a model type

The distribution of motif occurrences among the sequences at hand may not be known a
priori. In particular, one may often not be comfortable with the assumption that each
sequence contains at most one occurrence of the motif. As a consequence, one would be
forced, in such instances, to resort to the largest, most general model, the TCM model.
However, one would expect an increase in performance associated with working in the smaller
OOPS and ZOOPS models if their assumptions do happen to hold. Hence we are interested
in model selection techniques that allow us to choose between the three different model types
in a data-adaptive fashion.

In this section, we report simulation results for comparing a number of model selection
techniques that one might consider for this purpose, namely model selection by maximum
likelihood, AIC, BIC, the E-value of the aligned predicted motifs, likelihood-based cross-
validation, and truncated likelihood-based cross-validation. Each candidate estimator was
asked to select from among the three different model types on the six collections of test data
sets described in section 5.1. We compare the performance of these estimators to that of
MEME in the TCM model to examine the advantages and disadvantages of working in the
larger union model. For the sake of simplicity, the motif width W is treated as known and
cosmo is run without any constraints on the position weight matrix.

Table 9: Mean performance statistics for different approaches to selecting the model type.

dOOPS dZOOPS1 dZOOPS2
Sens PPV ROC Sens PPV ROC Sens PPV ROC

MEME 0.31 0.36 0.90 0.09 0.09 0.88 0.23 0.23 0.89
OOPS 0.57 0.57 0.97 0.16 0.07 0.94 0.40 0.28 0.95
ZOOPS 0.59 0.59 0.97 0.23 0.16 0.95 0.43 0.40 0.96
TCM 0.56 0.47 0.97 0.29 0.16 0.95 0.44 0.37 0.96
Lik 0.61 0.60 0.97 0.28 0.16 0.95 0.47 0.42 0.96
AIC 0.60 0.60 0.97 0.27 0.15 0.95 0.47 0.41 0.96
BIC 0.60 0.60 0.97 0.27 0.15 0.95 0.47 0.40 0.96
Eval 0.58 0.58 0.97 0.21 0.15 0.94 0.43 0.37 0.96
likCV 0.56 0.48 0.97 0.29 0.18 0.95 0.44 0.41 0.96
trCV 0.58 0.53 0.97 0.28 0.17 0.95 0.45 0.41 0.96

The results of this simulation are summarized in tables 9 and 10. For the sake of com-
parison, we have included three estimators that work within the smaller models in which the
model type is set a priori rather than chosen data-adaptively. Somewhat surprisingly, the
dOOPS, dZOOPS1, and dZOOPS2 test cases show that there is only a small price, if any,
to be paid for working in the larger TCM model if in fact the OOPS or ZOOPS assumptions
are satisfied. For dZOOPS1, the TCM model in fact leads to slightly better performance
than the ZOOPS model, with the two models achieving comparable results for dZOOPS2.
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Table 10: Mean performance statistics for different approaches to selecting the model type.

dTCM1 dTCM2 dTCM3
Sens PPV ROC Sens PPV ROC Sens PPV ROC

MEME 0.14 0.13 0.89 0.29 0.33 0.90 0.42 0.68 0.93
OOPS 0.14 0.07 0.94 0.28 0.28 0.95 0.26 0.72 0.98
ZOOPS 0.21 0.18 0.95 0.32 0.43 0.96 0.25 0.73 0.98
TCM 0.33 0.22 0.96 0.51 0.44 0.97 0.54 0.79 0.98
Lik 0.32 0.22 0.95 0.52 0.46 0.97 0.54 0.79 0.99
AIC 0.31 0.21 0.95 0.51 0.46 0.97 0.54 0.79 0.99
BIC 0.30 0.21 0.95 0.51 0.46 0.97 0.54 0.79 0.99
Eval 0.22 0.18 0.94 0.43 0.42 0.96 0.52 0.77 0.98
likCV 0.31 0.23 0.96 0.50 0.47 0.97 0.53 0.78 0.98
trCV 0.30 0.23 0.96 0.50 0.47 0.97 0.53 0.78 0.98

On dOOPS, the TCM model performs only slightly worse than the OOPS or ZOOPS model.
The data-adaptive estimators we consider here appear to be able to capitalize on the favor-
able performance of the TCM estimator in some of these instances, allowing them in fact
to outperform the OOPS and ZOOPS estimators on data sets satisfying their respective
assumptions. The TCM test cases illustrate that the OOPS and ZOOPS estimators perform
considerably worse than the TCM estimator if the ZOOPS assumption does not hold. The
poor performance of these estimators, however, appears to have only a minimal effect on the
data-adaptive estimators, which still achieve mean sensitivities, positive predictive values,
and ROC statistics close to those of the TCM estimator in these cases. These observa-
tions show that data-adaptive estimators offer an improvement in performance over a priori
estimators if the OOPS or ZOOPS assumptions are satisfied, with no appreciable drop in
performance relative to the TCM estimator if these assumptions are violated.

The different data-adaptive estimators we consider achieve largely comparable levels of
performance, with maximum likelihood enjoying perhaps a slight edge. Since this approach
is also computationally attractive, we have made it the default criterion employed by cosmo

for selecting between different model types. If the OOPS or ZOOPS assumptions hold, this
estimator achieves 2- to 3-fold greater mean sensitivity than the MEME TCM estimator, with
improvements for the TCM test cases in the range from 1.30 to 2.35.

7.4 Selecting a constraint set

The main distinguishing feature of cosmo is the ability to supervise the motif detection by
incorporating prior knowledge in the form of constraints on the position weight matrix of the
motif to be discovered. Since such constraints may not always be easy to define with certainty,
we would like to allow the user to give a number of different constraint sets C1, ..., Cd and to
choose the appropriate constraint set in a data-adaptive manner. This would correspond to
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Figure 1: Sequence logo of one of the inserted motifs.

working in a larger model that only assumes that the true position weight matrix satisfies
at least one of the supplied constraint sets. In particular, the user may wish to include
an empty constraint set in the collection C1, ..., Cd to be protected from the risk of model
mis-specification through the imposition of a wrong set of constraints on the position weight
matrix.

In this section, we report simulation results for comparing a number of model selection
techniques for the purpose of selecting between such different constraint sets. Apart from the
model selection techniques used in previous sections, we also consider cross-validation based
on the Euclidean norm between two position weight matrices. We do not, however, consider
the penalized likelihood approaches based on AIC and BIC since there is no straightforward
way to identify the dimension of a constrained model. In most cases, these methods can be
expected to give results that are very similar to the unpenalized likelihood approach.

We evaluated each of these candidate estimators on the test data sets dOOPS, dZOOPS1,
and dTCM1. For the sake of simplicity, the motif width W and the model type were treated
as known. We examined the behavior of the different model selection approaches in two dif-
ferent scenarios. In both scenarios, cosmo is asked to choose between a non-trivial submotif
constraint and the empty constraint set. In the first scenario, the non-trivial constraint set
is correctly specified, with the submotif constraint based on the longest submotif contained
in the inserted motif whose letters each roughly appear with frequency 0.9; specifically, we
required that the value of the penalty function (1) be less than or equal to e−5×0.9 for the se-
lected submotif. In the second scenario, the non-trivial constraint set is incorrectly specified,
based on the submotif of length four base pairs whose letters appear least frequently in the
inserted motif; more precisely, we selected the submotif that maximizes the penalty function
(1) for this purpose. For the motif shown in figure 1, for example, the correct constraint set
requires that the identified motif contain the submotif “GCC”, while the incorrect constraint
set is based on the submotif “ATTT”.

Tables 11-13 summarize the results of this simulation study. For the sake of comparison,

31

Hosted by The Berkeley Electronic Press



Table 11: Mean performance statistics for different approaches to selecting among constraint
sets in the presence of a correctly specified constraint set.

dOOPS dZOOPS1 dTCM1
Sens PPV ROC Sens PPV ROC Sens PPV ROC

MEME 0.34 0.34 0.92 0.10 0.09 0.90 0.14 0.13 0.89
Uncon 0.57 0.57 0.97 0.23 0.16 0.95 0.33 0.22 0.96
Con 0.65 0.65 0.98 0.39 0.25 0.97 0.47 0.31 0.98
Lik 0.62 0.62 0.97 0.29 0.19 0.95 0.37 0.23 0.96
Eval 0.60 0.60 0.97 0.29 0.21 0.96 0.44 0.31 0.97
likCV 0.62 0.62 0.98 0.36 0.25 0.97 0.43 0.31 0.97
trCV 0.63 0.63 0.98 0.34 0.24 0.96 0.43 0.30 0.97
pwmCV 0.57 0.57 0.97 0.24 0.17 0.95 0.37 0.25 0.97

Table 12: Mean performance statistics for different approaches to selecting among constraint
sets in the presence of an incorrectly specified constraint set.

dOOPS dZOOPS1 dTCM1
Sens PPV ROC Sens PPV ROC Sens PPV ROC

MEME 0.34 0.34 0.92 0.10 0.09 0.90 0.14 0.13 0.89
Uncon 0.57 0.57 0.97 0.23 0.16 0.95 0.33 0.22 0.96
Con 0.27 0.27 0.92 0.13 0.11 0.94 0.16 0.13 0.94
Lik 0.57 0.57 0.97 0.23 0.16 0.95 0.33 0.22 0.96
Eval 0.57 0.57 0.96 0.21 0.16 0.94 0.29 0.22 0.95
likCV 0.48 0.48 0.96 0.21 0.16 0.94 0.32 0.23 0.95
trCV 0.55 0.55 0.96 0.22 0.16 0.94 0.31 0.22 0.95
pwmCV 0.57 0.57 0.97 0.22 0.16 0.95 0.31 0.21 0.95

Table 13: Proportion of times constraint set is chosen.

dOOPS dZOOPS1 dTCM1
Good Bad Good Bad Good Bad

Lik 0.18 0.02 0.22 0.04 0.18 0.02
Eval 0.18 0.18 0.33 0.28 0.58 0.58
likCV 0.51 0.44 0.67 0.58 0.63 0.43
trCV 0.42 0.27 0.58 0.49 0.56 0.38
pwmCV 0.15 0.02 0.08 0.06 0.30 0.28
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we have included three estimators that do not choose a constraint set data-adaptively, namely
MEME, an unconstrained version of cosmo, and a version of cosmo that works only within
the given non-trivial constraint set. The dZOOPS1 and dTCM1 test cases show that this
latter estimator outperforms the unconstrained estimator considerably if the number of motif
occurrences is small and the constraint set is correctly specified. The dOOPS test case shows
that differences in performance are far less pronounced if the number of motif occurrences
is large. As is to be expected, the constrained algorithm performs worse if the constraint
set is incorrectly specified. These initial observations underscore the potential benefits of a
constrained motif search and the need for a data-adaptive methodology for choosing between
different constraint sets. On the whole, the methods we investigate for this purpose perform
quite well in that they almost rise to the level of the constrained estimator if the constraint set
is correctly specified while not sinking too far below the level of the unconstrained estimator
if this is not the case. At the same time, no single method clearly outperforms all other
methods on the test cases we consider.

The usefulness of the maximum-likelihood criterion in selecting between the constrained
and unconstrained algorithm should be limited since its value in the larger, unconstrained
model is guaranteed to be no less than in the smaller, constrained model. As seen in table
13, this selector is therefore heavily biased toward the unconstrained model. However, it
still performs somewhat better than the unconstrained estimator if the constraint set is
specified correctly. Presumably this is due to the numerical optimization routine succeeding
more frequently in identifying the true maximum of the likelihood function in the smaller
parameter space corresponding to the constrained search. This behavior makes the likelihood
criterion a sensible conservative choice for instances in which the user suspects that the
constraint set is mis-specified.

Truncated likelihood-based cross-validation offers perhaps the most appealing properties
of all data-adaptive estimators we consider. It selects the constrained algorithm a con-
siderable proportion of the time, allowing it to achieve levels of mean sensitivity, positive
predictive value, and ROC statistic that are close to that of the constrained algorithm if
the constraint set is correctly specified. At the same time it performs competitively in the
presence of an incorrect constraint set, outperformed in the dZOOPS1 and dTCM1 test cases
only by the conservative likelihood-based estimator. The E-value based estimator performs
slightly better in the dTCM1 test case in the presence of a correct constraint set as well as in
the dOOPS test case in the presence of an incorrect constraint set, but lags considerably in
some of the other test cases. Truncated likelihood-based cross-validation also appears best
able to distinguish between a correctly specified constraint set and an incorrectly specified
one, especially if the data contain a fairly strong signal as in the dOOPS test case (table 13).

Truncation of the log-likelihood loss function greatly improves the performance of likeli-
hood-based cross-validation in the dOOPS test case, cutting almost in half the proportion of
times the incorrectly specified constraint set is selected. As before, this observation can be
explained by the possibility of an unbounded loss function in the OOPS model. At the same
time, truncation impacts the performance of the estimator only slightly in the dZOOPS1
and dTCM1 test cases.
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Somewhat surprisingly, cross-validation based on the Euclidean norm between two posi-
tion weight matrices offers in some ways the least desirable properties of all data-adaptive
estimators we consider. Overall, it very rarely selects the constrained algorithm over the un-
constrained algorithm, even if the constraint set is correctly specified. For test cases based
on correct constraint sets, it thus consistently takes the last or second to last place, gener-
ally offering even less improvement than the very conservative likelihood-based estimator.
At the same time, it does not even achieve this latter estimator’s level of performance if
the constraint set is mis-specified. The poor performance of this estimator as compared to
likelihood-based cross-validation is somewhat surprising since it is based on a loss function
that is directly targeted at the parameter of interest - the position weight matrix.

Based on these observations, cosmo chooses between different constraint sets by truncated
likelihood-based cross-validation. In the presence of a weak signal, the mean sensitivity of
this estimator is 3 to 3.5 times greater than that achieved by MEME when allowed to select
between a correct constraint set and the empty constraint set. When asked to select between
an incorrect constraint set and the empty constraint set, its mean sensitivity is still more
than twice as great as that of MEME.

7.5 Separate model selection criteria for different parameters

In the previous sections, we examined the performance of various model selection techniques
for the purpose of selecting a single fine-tuning parameter, with the remaining parameters
fixed. In practice, the desired union model will generally be indexed by several choices for
the motif width as well as for the model type and constraint set to use, making it necessary
to simultaneously select a number of fine-tuning parameters. We do not want to require
that all fine-tuning parameters are selected based on the same model selection criterion, but
rather want to allow the user to specify a separate criterion for each parameter.

Thus suppose that the constraint set, model type, and motif width are to be chosen based
on the respective criteria fC , fM , and fW , with better choices in each case corresponding to
smaller values of the criterion. Furthermore, recall that the corresponding sets of candidate
parameter values are denoted by C, M, and W . cosmo now selects these fine-tuning param-
eters as follows. For each given candidate constraint set C and model type M , it selects the
optimal motif width Ŵ (C, M) by minimizing fW :

Ŵ (C, M) = arg min
W∈W

fW (C, M, W )

In the next step, cosmo selects the optimal model type M̂(C) for each given constraint set
C by minimizing fM at the chosen value of W = Ŵ (C, M):

M̂(C) = arg min
M∈M

fM(C, M, Ŵ (C, M))

Finally, the optimal constraint set Ĉ is chosen by minimizing fC at the chosen values of
M = M̂(C) and W = Ŵ (C, M̂(C)):

Ĉ = arg min
C∈C

fC(C, M̂(C), Ŵ (C, M̂(C)))
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This profiling approach allows for any combination of criteria for the different fine-tuning
parameters. Furthermore, it is computationally advantageous since fM and fC need to be
evaluated only for a subset of the candidate models. Specifically, fM only needs to be
evaluated for the candidate models

KM = {(C, M, W ) : C ∈ C, M ∈M, W = Ŵ (C, M)}

with | KM |=| C || M |, and fC only needs to be evaluated for the candidate models

KC = {(C, M, W ) : C ∈ C, M = M̂(C), W = Ŵ (C, M̂(C))}

with | KC |=| C |.
The order in which the different model parameters are selected is in large part motivated

by computational considerations. Since the selection among different constraint sets is com-
putationally expensive due to the default reliance on likelihood-based cross-validation, this
operation is best carried out once all other model parameters have already been identified.
Such considerations suggest no particular order for selecting the motif width and model type
since BIC as well as the likelihood are computationally easy to evaluate. Future research
will investigate the impact of choosing a different order on the performance of the overall
algorithm.

8 Software

A stand-alone version of cosmo can be downloaded at http://cosmoweb.berkeley.edu/

software.html. An R package implementing this algorithm is available through Biocon-
ductor (http://bioconductor.org). We furthermore created a web application cosmoweb,
accessible at http://cosmoweb.berkeley.edu, that allows users to submit jobs through a
simple web interface. Their jobs are then processed on a UC Berkeley server, with results
posted in both HTML and XML format on a temporary web page. In addition to the detailed
output obtained from the stand-alone version of cosmo, these results contain a sequence logo
of the discovered motif as well as a plot of posterior probabilities along the entire sequences.

We next illustrate the use of cosmoweb through a simple example. The data set consists
of 20 sequences that are each 200 nucleotides long and that each contain one occurrence of the
motif with sequence logo given in figure 2. The motif is eight base pairs long, with high in-
formation content toward the edges and low information content in the middle. Furthermore
we note that the two outer portions of the motif are palindromes of each other.

The first step of submitting our request to cosmoweb consists of pasting these input
sequences, which are accessible at http://cosmoweb.berkeley.edu/sample.seqs, into the
text box entitled ’actual sequences’. Alternatively, we might specify the name of a file in
which the sequences have been saved.

Suppose we knew a priori that the unknown motif represented the binding site of a
homodimeric transcription factor. Then we might suspect a structure along the lines of
what we described above and specify the following constraint set:
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Figure 2: Sequence logo of inserted motif.

>IntervalSetup

Length: 3 bp

Length: variable

Length: 3 bp

>IcBounds

Interval: 1

Bounds: 1.0 to 2.0

>IcBounds

Interval: 2

Bounds: 0 to 0.8

>Pal

Intervals: 1 and 3

ErrorTol: 0.05

We paste this constraint set into the text box entitled ’actual constraint definitions’.
Alternatively, we might give the name of a file in which we have saved these definitions. To
protect ourselves from the risk of specifying an incorrect constraint set, we will let cosmo

choose between this constraint set and an unconstrained search by checking the option ’Add
unconstrained case to given constraints’.

Suppose we have no prior knowledge about the distribution of sites among the individual
sequences. We are thus forced to let cosmo select the appropriate distribution data-adaptively
by checking both the ’ZOOPS’ and ’TCM’ options. Since there is generally no penalty for
using the ’ZOOPS’ model if in fact the ’OOPS’ model is true, we need not check the ’OOPS’
option. Suppose we have no prior knowledge about the total number of sites in the input
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Figure 3: Interface for submitting jobs to cosmoweb.

sequences so that we are forced to leave the corresponding fields blank. Finally we may
know that the width of the motif lies somewhere between 7 and 12, which we specify in the
appropriate fields in the lower right-hand corner of the screen. Figure 3 shows the web page
with all relevant information entered.

After submitting the job, we are given the name of a temporary web page on which
the results will be posted on completion of the job. We are also given some summary
statistics of the sequences we submitted as well as the option to check the progress of our
job. The job described here takes about five minutes to be processed. Figure 4 now shows
part of the output created by cosmoweb, consisting of the estimated position weight matrix,
its sequence logo, as well as the alignment of predicted motif occurrences. The output
furthermore contains information about the estimated background model, the considered
candidate models, as well as a plot of posterior probabilities along the entire sequences. The
output web page can be accessed at http://cosmoweb.berkeley.edu/sample.

Using the stand-along C version of cosmo, we would run this job using the command

cosmo sample.seqs -con confile -addfree -zoops -tcm -minw 7 -maxw 12

where sample.seqs is a file containing the input sequences and confile is a file containing
the constraint definitions. The -addfree flag adds the unconstrained case to the collection
of candidate constraint sets. The R package cosmo would use the command

cosmo(‘sample.seqs’, ‘confile’, minW=7, maxW=12, models=c(‘ZOOPS’,‘TCM’))

37

Hosted by The Berkeley Electronic Press



Figure 4: Output created by cosmoweb.

9 Discussion

In this article we present a motif detection algorithm that expands on existing methodology in
that it is capable of working within a larger statistical model that encompasses the models
used by previous approaches as submodels. Estimation within this larger model is made
possible by allowing a number of model parameters to be chosen data-adaptively rather
than having to be specified a priori. As a consequence of working in this larger model, our
algorithm is able to rely on fewer assumptions than are necessary for previous algorithms.

We introduce a new model parameter by allowing the user to specify a collection of
constraint sets for the position weight matrix to be discovered. As shown in the various
simulation studies in this article as well as in Keleş et al. (2003), such constraint sets can
considerably improve the performance of the algorithm in situations of low motif abundance.
We furthermore demonstrate how the risk of model mis-specification can be controlled by
including an empty constraint set in the collection of candidate constraint sets and allowing
cosmo to choose the appropriate constraint set in a data-adaptive manner. By doing so, the
algorithm is working within the larger unconstrained model in which it then aims to identify
viable submodels. The data-adaptive selection of a constraint set is carried out by truncated
likelihood-based cross-validation.

We are currently investigating to what extent the representative transcription factor fa-
milial binding profiles derived by Sandelin and Wassermann (2004) can be used to obtain
corresponding representative constraint sets for the different structural classes of transcrip-
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tion factors. The availability of such representative constraint sets would further improve
the user-friendliness of cosmo.

The algorithm we present does not require the user to have prior knowledge about the dis-
tribution of motif occurrences among the input sequences. Rather, the maximum-likelihood
principle can be used to select the appropriate model type data-adaptively. We show in
simulation studies that this data-adaptive estimator outperforms the OOPS and ZOOPS
estimators if their respective assumptions hold, while performing on the same level as the
TCM estimator if these assumptions are violated.

Finally, unlike other current algorithms, cosmo does not require the order of the back-
ground Markov model to be specified a priori, but rather selects it data-adaptively by
likelihood-based cross-validation. This approach optimizes the bias-variance trade-off such
that more complex models are chosen as the amount of available data increases.

While cosmo is similar to MEME in many regards, the two algorithms differ in a number
of important points. Instead of using the E-value criterion for estimating the intensity
parameters in the ZOOPS and TCM models, cosmo employs a profile likelihood for this
purpose, an approach that also leads to a moderate improvement in finite-sample performance
over the asymptotically efficient maximum-likelihood estimator originally proposed by Keleş
et al. (2003). cosmo furthermore employs a different approximation to the TCM likelihood
that is shown to perform as well as an algorithm for evaluating this likelihood exactly. While
MEME selects the width of the unknown motif based on the E-value criterion, cosmo here
relies on the Bayesian Information Criterion, which has been shown to be consistent for
selecting the dimension of a model. In addition, cosmo does not sample candidate widths in
a geometric progression, but rather considers every candidate width between a lower and an
upper bound.

The performance of cosmo compares favorably to that of MEME, even if the user supplies
no constraints on the unknown position weight matrix. Our simulation studies demonstrate
that cosmo achieves mean sensitivities in such cases that can be 2 to 3 times greater than
those achieved by MEME, with simultaneous, albeit somewhat smaller improvements in mean
positive predictive value. If the user supplies correctly specified constraints for data sets
containing only a weak signal, we observed mean sensitivities that were 3 to 3.5 times greater
than those achieved by MEME, even if cosmo is asked to select between the supplied constraint
set and an unconstrained version of the algorithm in order to guard against the risk of model
mis-specification.

We have implemented our algorithm in the form of a web application and a stand-alone C
program, both accessible at http://cosmoweb.berkeley.edu, as well as in the form of an R

package which is available through Bioconductor (http://bioconductor.org). As described
in some detail in section B of the appendix, we have modified the original algorithm proposed
by Keleş et al. (2003) in a number of places to achieve considerable speed improvements.
Furthermore, we have introduced a more user-friendly way to specify a set of constraints on
the position weight matrix that no longer requires the user to code these constraints up in
the form of C functions.

Unlike other motif detection programs like MEME or BioProspector (Liu et al., 2001) that
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can handle both DNA and protein sequences, cosmo is limited to DNA sequences. We are
currently working on a version of cosmo that can be applied to sequences derived from a
general alphabet, with DNA and protein sequences of course representing important special
cases.
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A Format of the constraint file

In this section we describe the format that is used for specifying the constraints on the
position weight matrix of the unknown motif.

A.1 Motif intervals

The division of the motif into separate intervals is specified in the constraint file by an entry
like

>IntervalSetup

Length: 3 bp

Length: 30%

Length: variable

The entry has to start with the line >IntervalSetup. Each following line begins with the
token Length: and sets up a new interval. The different interval types are then specified in
the way shown above. In general, entries in the constraint file follow the above pattern in
that they start with a line that gives the name of the action to be performed or the type of
constraint to be added, followed by lines that are required to start with certain tokens of the
form Length: that then specify the details of that action or constraint.

A.2 Bound constraints on the information content across an in-
terval

A bound constraint on the information content profile across a given intervals is specified in
the constraint file by an entry like

>IcBounds

Interval: 2

Bounds: 0 to 0.8

The entry has to start with the line >IcBounds or >ICBounds. The next line specifies which
interval the bound constraint applies to. The last line gives the lower and upper bounds
IClow and ICup, respectively.

A.3 Shape constraints on the information content profile across
an interval

Shape constraints are specified in the constraint file by an entry like the following:

>IcShape

Interval: 1

Shape: Linear
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LeftBounds: 1.0 to 2.0

RightBounds: 1.0 to 2.0

ErrorTol: 0.0

The entry has to start with the line >IcShape or >ICShape. The next line specifies which
interval the shape constraint applies to. The following line specifies the functional form
of the information content across that interval, with possible entries given by Linear,
MonotoneIncreasing, and MonotoneDecreasing. The next two lines give bounds on IC(w1(k)
and IC(wpk

(k)), respectively. The last line sets the error tolerance ε.

A.4 Lower bounds on nucleotide frequencies across an interval

Nucleotide frequency constraints are specified in the constraint file by an entry like

>NucFreq

Interval: 2

Pos: all

Nuc: GC

LowerBound: 0.7

The entry has to start with the line >NucFreq or >NucProb. The next line specifies which
interval the constraint applies to. The following line specifies a position in that interval,
with the choice all or avg corresponding to requiring that the average nucleotide frequency
across that interval be no less than the given lower bound. The following line specifies the
nucleotides whose frequency is to be bounded from below, with possible entries given by A,
C, G, T, AT, and GC. The last line finally gives the lower bound on the nucleotide frequency.

A.5 Palindromic intervals

A palindromic constraint is specified in the constraint file by an entry like

>Palindrome

Intervals: 1 and 3

ErrorTol: 0.1

The entry has to start with the line >Palindrome or >Pal. The next line gives the two
intervals that are required to be palindromes of each other, and the last line defines the error
tolerance ε.

A.6 Submotifs

A submotif constraint is specified in the constraint file by an entry like

>Submotif

Motif: GGAA

MinFreq: 0.90
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The entry has to start with the line >Submotif or >Sub. The next two lines give the nucleotide
sequence of the submotif and the approximate minimum probability pmin.

A.7 Bounds on differences of shape parameters

Constraints giving bounds on the difference between two shape parameters are specified in
the constraint file by an entry like

>ParmDiff

Parameters: 2a - 1b

Bounds: -2 to 0

The entry has to start with the line >ParmDiff or >ParameterDifference. The next line
defines the particular difference of shape parameters that we want to bound. Parameters are
specified by the interval number followed by the letter a or b, denoting the left and right edge
of the interval, respectively. The last line defines the bounds on this parameter difference.

A.8 Constraint file structure

A constraint file may contain the specifications for more than one constraint set. The
beginning of a new constraint set is indicated through a line that starts with the char-
acter @. All commands that are encountered until the next line beginning with an @
are applied to the current constraint set. The only requirement on such constraint set
sections is that they must contain the command >IntervalSetup to define the break-
down of the motif into intervals. Examples of valid constraint files can be found at http:

//cosmoweb.berkeley.edu/constraints.html.

B Computational improvements

In this appendix, we provide details on the computational improvements we made to the
constrained motif search algorithm. These modifications lead to dramatically increased speed
as compared to COMODE, with various test cases suggesting improvements on the order of 700-
fold

B.1 Constrained maximization of the likelihood using donlp2()

COMODE relies on the proprietary NAG routine E04UCF for the constrained maximization of
the likelihood function. We use the non-proprietary C function donlp2() written by Peter
Spellucci (Spellucci, 1996) instead, allowing us to distribute the software freely for academic
purposes. The function donlp2() is suited for the optimization of a non-linear, differentiable,
real-valued function f subject to non-linear inequality and equality constraints. Specifically,
it finds x∗ such that

f(x∗) = min{f(x) : x ∈ S ⊂ Rn}
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where

S = {x ∈ Rn : xl ≤ x ≤ xu,

bl ≤ Ax ≤ bu,

cl ≤ c(x) ≤ cu},

A is a matrix of dimension nlin× n, and c is a vector-valued function Rn → Rnonlin. This
function solves the nonlinear constrained maximization problem with the same generality
and efficiency as the NAG routine originally employed for this purpose.

B.2 Starting values

Both E-value based starting values and likelihood-based starting values require the calcu-
lation of the likelihood of a given subsequence Xi(l, l + W − 1) ≡ (Xil, ..., Xil+W−1) under
a candidate position weight matrix PWM(i∗, l∗, W ) ≡ (P1, ...,PW )(i∗, l∗, W ) that was de-
rived from the subsequence Xi∗(l

∗, l∗ + W − 1) according to the mapping given above. Such
a likelihood can be calculated as

P (Xi(l, l + W − 1)|PWM(i∗, l∗, W )) =
W∏

w=1

4∏
j=1

P
I(Xi(l+w−1)=j)

wj (i∗, j∗, W )

Bailey (1995) uses a dynamic programming approach to calculate this likelihood for all
subsequences Xi(l, l + W − 1) contained in the original data and all candidate position
weight matrices PWM(i∗, l∗, W ). Their algorithm reuses the computations for P (Xi(l, l +
W − 1)|PWM(i∗, l∗, W )) when calculating P (Xi(l + 1, l + W )|PWM(i∗, l∗ + 1, W )) based
on the recursion relation

P (Xi(l + 1, l + W )|PWM(i∗, l∗ + 1, W )) =

P (Xi(l, l + W − 1)|PWM(i∗, l∗, W ))
∏4

j=1 P
I(Xi(l+W )=j)

Wj (i∗, l∗ + 1, W )∏4
j=1 P

I(Xil=j)
1j (i∗, l∗, W )

This calculation takes only two floating-point operations as opposed to the W −1 that would
be required to calculate P (Xi(l+1, l+W )|PWM(i∗, l∗+1, W )) from scratch as the product
of W terms given above. The recursion is based on the observation that

Pwj(i
∗, l∗ + 1, W ) = P(w−1)j(i

∗, l∗, W ) =

{
pc if Xi∗(l∗+w) = j

(1− pc)/3 if Xi∗(l∗+w) 6= j

for w = 2, ...,W , i.e. PWM(i∗, l∗ + 1, W ) is a shifted version of PWM(i∗, l∗, W ). The first
column of P1(i

∗, l∗, W ) is dropped, and the last column of PWM(i∗, l∗ + 1, W ) is given by

PWj(i
∗, l∗ + 1, W ) =

{
pc if Xi∗(l∗+W ) = j

(1− pc)/3 if Xi∗(l∗+W ) 6= j

Specifically, MEME calculates these partial likelihoods according to the following algorithm:
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for W = minw to maxw do
for i∗ = 1 to N do

for l∗ = 1 to Li −W + 1 do
for i = 1 to N do

for l = 1 to Li −W + 1 do
if (l∗ = 1) calculate P (Xi(l, l + W − 1)|PWM(i∗, l∗, W )) from scratch as

∏W
w=1

∏4
j=1 P

I(Xi(l+w−1)=j)

wj (i∗, j∗, W )

else calculate P (Xi(l, l + W − 1)|PWM(i∗, l∗, W )) as

P (Xi(l,l+W−1)|PWM(i∗,l∗,W ))
Q4

j=1 P
I(Xi(l+W )=j)

Wj (i∗,l∗+1,W )Q4
j=1 P

I(Xil=j)

1j (i∗,l∗,W )

end
end

end
end

end
end

COMODE does not employ this dynamic approach, causing it to be very slow since the cal-
culation of starting values comprises a considerable part of the algorithm. cosmo not only
employs this dynamic programming approach, but also extends it by using recursion relations
that hold between partial likelihoods for neighboring values of W . These recursion relations
are not available to MEME since it only samples candidate widths in a geometric progression.
To be specific, cosmo uses the following algorithm:

for i∗ = 1 to N do
for l∗ = 1 to Li∗ − minw do

if (l∗ = 1) do
for i = 1 to N do

for l = 1 to Li − minw + 1 do
calculate P (Xi(l, l + minw− 1)|PWM(i∗, l∗, minw)) from scratch as

∏minw

w=1

∏4
j=1 P

I(Xi(l+w−1)=j)

wj (i∗, j∗, minw)

end
end

else do
for i = 1 to N do

for l = 2 to Li − minw + 1 do
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calculate P (Xi(l, l + minw− 1)|PWM(i∗, l∗, minw)) as

P (Xi(l,l+minw−1)|PWM(i∗,l∗−1,minw+1))Q4
j=1 P

I(Xi(l−1)=j)

1j (i∗,l∗−1,minw+1)

end
calculate P (Xi(1, minw)|PWM(i∗, l∗, minw)) from scratch as∏minw

w=1

∏4
j=1 P

I(Xiw=j)
wj (i∗, j∗, minw)

end
end
for W = minw + 1 to maxw do

for i = 1 to N do
for l = 1 to Li −W + 1 do

calculate P (Xi(l, l + W − 1)|PWM(i∗, l∗, W )) as

P (Xi(l, l + W − 1)|PWM(i∗, l∗, W − 1))
∏4

j=1 P
I(Xi(l+W )=j)

Wj (i∗, l∗, W )

end
end

end
end

end

The two recursion relations each only require one floating-point operation as opposed to
the W − 1 that would be necessary to calculate the corresponding partial likelihoods from
scratch. This modification to the original COMODE implementation hence leads to an immense
gain in computational efficiency.

B.3 Preventing underflow

Recall that the likelihood of sequence i under the OOPS model is given by

P (Xi|θ) =
1

Li −W + 1

Li−W+1∑
l=1

∏
k/∈τ(i,l,W )

4∏
j=1

P
I(Xik=j)
0j

1

2

[ W∏
w=1

4∏
j=1

P
I(Xi(l+w−1)=j)

wj +

W∏
w=1

4∏
j=1

P
I(Xi(l+W−w+1)=j)

wj

]
Let

B(i, l, W ) ≡
∏

k/∈τ(i,l,W )

4∏
j=1

P
I(Xik=j)
0j
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denote the likelihood of the nucleotides in sequence i contributing to the background given
that a motif of width W starts in position l of sequence i. Let

M(i, l, W ) ≡
W∏

w=1

4∏
j=1

P
I(Xi(l+w−1)=j)

wj

M∗(i, l, W ) ≡
W∏

w=1

4∏
j=1

P
I(Xi(l+W−w+1)=j)

wj

denote the likelihoods of the subsequence Xi(l, l + W − 1) under the position weight matrix
in the two different orientations. Then we can write the likelihood of sequence i under the
OOPS model as

P (Xi|θ) =
1

Li −W + 1

Li−W+1∑
l=1

B(i, l, W )
M(i, l, W ) + M∗(i, l, W )

2

For long sequences the terms 0.5B(i, l, W )[M(i, l, W )+M∗(i, l, W )] can become very close to
zero. To avoid underflow problems, we may choose some N(i) ≈ 0.5B(i, l, W )[M(i, l, W ) +
M∗(i, l, W )] and write the log-likelihood of sequence i as

log P (Xi|θ) = log N(i) + log
[ 1

Li −W + 1

Li−W+1∑
l=1

B(i, l, W )

N(i)

M(i, l, W ) + M∗(i, l, W )

2

]
Here we choose

N(i) =

Li∏
l=1

4∏
j=1

P
I(Xil=j)
0j

as the likelihood of sequence i under the background model. COMODE now calculates the
log-likelihood of sequence i as

seqProb = 0
for l = 1 to Li −W + 1 do

logMotProb1 = 0
for w = 1 to W do

logMotProb1 += log(PWM[Xi(l+w−1),w])
end
logMotProb2 = 0
for w = 1 to W do

logMotProb2 += log(PWM[Xi(l+W−w),w])
end
logMotProb = 0.5 exp(logMotProb1 + logMotProb2)
seqProb += exp(log(B(i,l,W) + logMotProb - log(N(i))))

end
logLik = log(N(i)) + log(seqProb)
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The logarithm inside the innermost loops is taken to prevent underflow of M(i, l, W ) and
M∗(i, l, W ), forcing us then to exponentiate these logarithms outside the loop to obtain
an average of probabilities on the original scale. The new implementation is based on two
observations regarding this likelihood computation. First, M(i, l, W ) and M∗(i, l, W ) are
unlikely to cause underflow problems since the product is only taken over W terms, with W
usually no bigger than 15. Second, maximizing

l(θ|X1, ...,XN) =
N∑

i=1

log N(i)+log
[ 1

Li −W + 1

Li−W+1∑
l=1

B(i, l, W )

N(i)

M(i, l, W ) + M∗(i, l, W )

2

]
is equivalent to maximizing

llr(θ|X1, ...,XN) =
N∑

i=1

log
[ 1

Li −W + 1

Li−W+1∑
l=1

B(i, l, W )

N(i)

M(i, l, W ) + M∗(i, l, W )

2

]
since the terms N(i) do not involve θ. The quantity llr(θ|X1, ...,XN) represents the log-
likelihood ratio for comparing the null hypothesis that the entire sequence was generated
under the background model to the alternative hypothesis that it was generated under the
OOPS model. Unlike the likelihood of the data, this quantity is unlikely to cause underflow
problems so that we can calculate it more efficiently than the actual likelihood-based on the
following algorithm:

seqLR = 0
for l = 1 to Li −W + 1 do

motProb1 = 1
for w = 1 to W do

motProb1 *= PWM[Xi(l+w−1),w]
end
motProb2 = 1
for w = 1 to W do

motProb2 *= PWM[Xi(l+W−w),w]
end
motProb = 0.5*(motProb1 + motProb2)
seqLR += B’(i,l,W) * motProb

end

where B′(i, l, W ) = B(i, l, W )/N(i). This approach saves us a few calls to the computation-
ally expensive functions log() and exp() and thus leads to further gains in computational
efficiency. Extensive tests revealed no risk of incurring underflow problems.
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