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Abstract
Many research studies aim to draw causal inferences using data from large, na-

tionally representative survey samples, and many of these studies use propensity score
matching to make those causal inferences as rigorous as possible given the non-experimental
nature of the data. However, very few applied studies are careful about incorporating
the survey design with the propensity score analysis, which may mean that the results
don’t generate population inferences. This may be because few methodological studies
examine how to best combine these methods. Furthermore, even fewer of the method-
ological studies incorporate different non-response mechanisms in their analysis. This
study examines methods for how to handle survey weights in propensity score match-
ing analyses of survey data, under different non-response mechanisms. Based on the
results from Monte Carlo simulations implemented on synthetic data as well as a data
based application we developed suggestions regarding the implementation of propensity
score methods to make causal inferences relevant to the target population of a sample
survey. Our main conclusions are: (1) whether the survey weights are incorporated in
the estimation of the propensity score does not impact estimation of the population
treatment effect, as long as good population balance is achieved across confounders, (2)
survey weights must be taken into account in the outcome analysis and (3) transfer of
survey weights (i.e., matched comparison units are assigned the sampling weight of the
treated unit they have been matched to) can be beneficial under certain non-response
mechanisms.
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1 Introduction

1.1 Background

Much education research aims to make statements regarding the effects of interventions,
such as a new reading program or being held back in kindergarten, on students’ outcomes.
Although randomized trials are seen as the gold standard for estimating causal effects, they
are often infeasible, especially if interest is in the effects for a broad, representative sample
of students, such as all kindergarteners across the U.S. Answering causal questions and
obtaining population causal effect estimates that generalize nationally often requires existing
non-experimental data, as well as statistical methods to ensure the inferences are as accurate
as possible. Two tools that are available to help with these answers are large-scale nationally-
representative datasets and propensity score methods, which help control for differences
between those who do and do not receive some intervention or exposure of interest.

Large scale, complex survey designs are widely used in educational research. A paradig-
matic example is the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99
(ECLS-K). Surveys such as this usually have a well-defined target population and sampling
framework. In such large-scale surveys, the sampling framework may be complicated, and
the sampling probabilities (and resulting survey weights) vary depending on the sampling of
sub-populations (these survey weights may then also be adjusted to account for non-response
or to post-stratify to known population totals). When attempting to make inferences to the
target population, the survey design (e.g., survey weights and design elements) should be
correctly used in data analysis; otherwise, the parameter estimates may not be relevant to the
original target population of the survey (see, e.g., Hansen et al. [1983], Korn and Graubard
[1995a], Korn and Graubard [1995b] and Little [2003]).

In addition to descriptive and correlational analyses, it is often of interest to draw causal
inferences using data from complex surveys. One of the main contributions of the field of
causal inference is that has provided a number of tools and a clear conceptual framework
in which causal effects can be estimated. Furthermore, the development of causal methods
has had an important impact in the design of clinical trials, but also, the causal inference
framework has been extended to non-experimental studies where formal randomization is
not possible. One milestone in the causal inference framework was the definition and im-
plementation of propensity score based methods. The propensity score is defined as the
probability of receiving treatment given a set of observed covariates and it was first intro-
duced by Rosenbaum and Rubin [1983]. Since then, a wide range of propensity score based
methods have been developed to estimate treatment effects in non-experimental studies, in-
cluding matching, weighting, and subclassification (Stuart [2010]). These methods are often
implemented to help make causal statements when a randomized experiment is infeasible.

In particular, matching estimators have been widely used in the context of non-experimental
studies. They help reduce bias in the estimation of causal effects (seeRubin [1973], and are
intuitive and relatively easy to implement. One approach is to match observations (i.e.,
comparison to treated units) on a set of observed covariates. The main goal of this matching
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approach is to generate a new sample (i.e., the matched sample), such that for every treated
unit there is (at least) one comparison unit with similar values of observed covariates. The
outcome of interest is then compared between the matched treated and matched comparison
subjects to estimate the causal effect. One main disadvantage of this procedure resides in
the fact that as the number of variables on which units are matched on increases, the chances
of finding matched pairs with similar observed characteristics decreases exponentially (this
issue is often referenced as “the curse of dimensionality”). Thus, matching directly on a set of
covariates is only feasible in large samples and/or if a small set of covariates are used in the
matching procedure. Nevertheless, one of the main contributions of Rosenbaum and Rubin
[1983] was to show that a similar (or balanced) distribution of the observed characteristics
can also be achieved when the matching procedure is based on the propensity score instead
of the entire set of observed covariates.

Nonetheless, standard application of propensity score matching methods doesn’t give
guidance on how to incorporate survey weights and it is conceptually unclear how to do so
(i.e., whether the survey weights need to be incorporated in the estimation of the propensity
score model and whether they should be used in the outcome analysis). As results, often
researchers using propensity score matching methods don’t incorporate the complex survey
design. This paper aims to provide guidance, to ensure that the results apply to the target
population.

1.2 Previous Research in this Area

There has been extensive work in each of the two areas to be investigated in this article
(complex surveys and propensity scores), but only limited work on how to combine them.

Although propensity methods have been developed under the assumption of a simple
random sample (SRS), this sampling scheme is hardly ever used. On one hand a SRS requires
that the survey team has access to a full list of the units that compose the population of
interest, which in most situation is not available. On the other hand, SRS may lead to skewed
representation of some population features and therefore additional sampling techniques may
be required. To guarantee representation of all relevant features in the population, complex
survey techniques may be implemented. Some of such techniques divide the population in
groups such strata and clusters and sample from them. Both strata and cluster divide the
population into mutually exclusive and exhaustive groups. The main difference between
stratum and cluster resides on the fact that every strata is sampled (i.e., represented in the
final sample) but not every cluster is. The sampling design in addition to certain adjustments
(e.g., non-response or post-stratification) define the survey weights that should be used to
scale the sample back to the population.

There is a generalized consensus that ignoring survey weights leads mainly to external
validity bias, where inferences about the sampled population are based on a unrepresentative
analytic sample. Thus, survey weights and the sampling design should be incorporated in the
estimation process. It has been widely documented how to incorporate the survey weights
in the estimation of means, totals and ratios (see Cochran [1977] and Groves et al. [2009]),
nonetheless there is still some controversy on how to incorporate survey weights in more
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complex statistical methods (see Gelman [2007]), and propensity score methods are not an
exemption.

Propensity score methods, include two key stages: (1) estimating propensity scores, and
(2) using those propensity scores (e.g., through matching, weighting, or subclassification)
to estimate causal effects. And in each of these two stages it is unclear how (or if) survey
weights should be included.

When estimating the propensity score, Brunell and DiNardo [2004] and Heckman and
Todd [2009] argue that misspecified estimates of propensity scores (e.g., using unweighted
propensity score models) do not cause problems in causal inference because “the odds ratio
of the propensity score estimated using misspecified weights is monotonically related to the
odds ratio of the true propensity scores” (Heckman and Todd [2009] p.3), “and therefore does
not change the relative weighting of the data” (Brunell and DiNardo [2004], p.32). However,
it is not clear how broadly applicable these results are and the theoretical results in these
papers have not been empirically validated. Others like Ridgeway et al. [2015] argue (in the
context of propensity score weighting) that survey weights should be incorporated in the
estimation of the propensity score, and failure to do so may lead to inconsistent estimators.
Work by Little [2003] discussed both weighted and unweighted models in the context of non-
response adjustment (which uses similar methods to propensity scores in non-experimental
data). Little and Vartivarian [2003] argued that although the weighted response rate is an
unbiased estimate of the population parameter, this does not ensure unbiased estimates of
the variables of interest. Grau et al. [2006] and Potter et al. [2006] empirically examined
Little and Vartivarian’s assertion by evaluating the use of weighted and unweighted logistic
regression models to estimate propensity scores for survey nonresponse adjustment. Grau
et al. [2006] and Potter et al. [2006] did not find significant differences in the parameter
estimates between the two options. Thus, there has been some initial investigation of the
use of weighted versus unweighted models for estimating the propensity score, at least in the
survey nonresponse context, but no clear consensus. Nevertheless, little work has addressed
how to combine propensity scores and complex survey data in a causal inference framework.
Until recently, most of the existing work (as limited as it is) has been done in the context
of subclassification (see Hong and Raudenbush [2005]) or weighting (see Ridgeway et al.
[2015]), but little work has investigated the performance for propensity score matching in
particular (see Austin et al. [2016]).

The use of the propensity score, unsurprisingly, also raises questions regarding how the
survey weights should used. For example, after implementing a propensity score matching
procedure, do survey weights need to be incorporated to asses the balance of the covariates?
or in the context of propensity score weighting: how should the final weights be constructed?.
Authors like Ridgeway et al. [2015] argue that survey weights should not only be used in the
estimation of the propensity score, but they should be combined with the propensity score
weights when executing the outcome analysis.

To be more specific, with respect to survey weights in particular, our review of the
education literature that uses propensity score methods to estimate causal effects using
complex surveys has found at least five approaches to handling survey weights:
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• ignoring survey weights entirely in both propensity score estimation and use (e.g.,
Hallberg et al. [2011], Hong and Raudenbush [2005], Morgan et al. [2008]),

• using survey weights as a covariate when estimating propensity scores (Stage 1; e.g.,
Korenman et al. [2013]) and in the matching (Stage 2; e.g., Rubin [2001]),

• a complex method that uses matching on the propensity scores (but no discussion
of the weights in estimating those propensity scores) and then makes the sum of the
sample weights equal for the matched treated and matched comparison groups, while
also keeping the modified weights proportional to the original weights (Reardon et al.
[2009]),

• estimating the propensity score using an unweighted model (Stage 1), and then in
Stage 2 stratifying on the propensity score and estimating causal effects within each
subclass using a survey-weighted regression of the outcome (e.g., Hahs-Vaughn and
Onwuegbuzie [2006], Zanutto et al. [2005]; Zanutto [2006]), and

• multiplying the original survey weights by the propensity score weights and using those
combined weights in the outcome analysis (Stage 2), with no discussion of whether
the propensity score estimation (Stage 1) accounted for the complex survey design
(’Zanutto et al. [2005], Schonlau et al. [2004]).

There is thus a broad array of approaches used in the literature, and until recently there
was almost no methodological work on the best ways to use propensity scores with complex
surveys, with the exception of Zanutto [2006], Ridgeway et al. [2015] and Austin et al. [2016].
Austin et al. [2016] explores the implementation of propensity score matching in the context
of complex survey data. The authors explore three alternative ways to incorporate the survey
weights in the estimation of the propensity score (i.e., using the weights as a covariate in the
propensity score model, using them as weights in a weighted propensity score model, and not
using the survey weights at all in the estimation of the propensity score). They also explore
whether or not weights should be transferred between treated and the comparison units that
they have been matched to. In general terms, their simulation results indicate that there
is not a specific way to incorporate the survey weights that results in a better performance
(measured in terms of bias, mean squared error and coverage of a 95% confidence interval).

In this article we extend the scope of the analysis of previous research to incorporate dif-
ferent non-response mechanisms. Non-response is a phenomenon by which is not possible to
collect the desire information for some observations and tends to be rule rather the exception
in complex survey data. To our knowledge, previous research in this area has not addressed
the consequences associated with this common phenomenon. The reason why this extension
is relevant is two-fold: (1) it will allow to evaluate the performance of different matching
estimators in a more realistic fashion and (2) it will allow to identify if features of the non-
response mechanism can impact the performance of the matching estimators. Furthermore,
this extension allows us to incorporate in our analysis the fact that most of survey weights
include adjustments for non-response. In this way, the main goal of this article is to identify
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ways that the survey weights should be incorporated when using propensity score matching
to estimate causal effects, under different non-response mechanisms.

The rest of this article is organized as follows: in Section 2 we discuss the definitions
and assumptions involved in the estimation of the average causal effect and also how sur-
vey weights should be incorporated in the estimation procedure. Section 3 describes the
simulation study implemented and summarizes our main findings. Section 4 compares the
performance of the different estimation procedure in an application using the Early Child-
hood Longitudinal Study, Kindergarten Class of 1998-99 (ESCL-K) and in Section 5 we
present our main conclusions and discussion.

2 Definitions, Assumptions, Propensity Score and Sur-
vey Weights

2.1 Definitions and Assumptions

The Causal Inference Framework

Traditionally, causal treatment effects are defined in the context of the Rubin Causal Model
(RCM) (see Rubin [1974]). In the RCM an individual treatment effect, associated with
a binary treatment assignment T (that takes the value 1 if the sample unit receives the
treatment of interest and 0 otherwise), is defined in terms of potential outcomes. For each
unit i, Yi(t) with t = 0, 1 represents the outcome that would have been observed if unit
i received the treatment t. Thus, the treatment effect associated with unit i is defined
as Yi(1) − Yi(0). Nevertheless, notice that for any given unit i the pair (Yi(0), Yi(1)) is
not observable, we only observe one of the two potential outcome. Explicitly the observed
outcome, Yi, is defined as:

Yi = Yi(1)× Ti + Yi(0)× (1− Ti) (1)

Equation (1) is referred as the "consistency of the observed outcome assumption" (see Hernán
and Robins [2017]). Given that the unit level treatment effects cannot be estimated, we are
often interested in estimating average treatment effects. At the population level, the most
commonly defined average effects are: (1) the population average treatment effect (PATE)
and (2) the population average treatment effect on the treated (PATT).

The PATE is defined as average effect across the population. Explicitly:

PATE = E [Yi(1)− Yi(0)] (2)

Under randomization of the treatment, units in the treated group and the units in the
control group have similar distributions of covariates (observed and unobserved) and poten-
tial outcomes. In this way, the average outcome computed among the units in the treated
groups serves as a good counterfactual for the average outcome computed among the units
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in the control group. The differences between these two averages is an estimator of the
population average treatment effect (PATE).

Another treatment effect that traditionally is considered in the causal inference literature
is the average treatment effect on the treated (ATT). The ATT is defined as the average
gain, in the population, from the treatment computed among those units who were actually
treated. In symbols:

PATT = E [Yi(1)− Yi(0)|Ti = 1] (3)

When the treatment is randomized and the treatment effect is homogeneous (the treat-
ment effect is the same for all units in the sample), it holds that the PATE is equal to the
PATT. Nevertheless, when the treatment effect is not homogeneous the PATT and the PATE
can be quite different.

When randomization is not feasible, additional assumptions are required to identify and
estimate treatment effects. In particular, a crucial assumption in the estimation of treat-
ment effects is the one referred to as "ignorability" (see Hernán and Robins [2017]). To
further describe the implications of this assumption, define for all i, Xi as q−dimensional
vector of covariates, i.e., Xi = (X1,i, . . . , Xq,i). Ignorability assumes that X contains all
possible confounders. In other words, given the set of observed covariates X, the treatment
assignment is independent of the potential outcomes. The ignorability assumption means
that the treatment assignment can be assumed to be random, conditionally on observable
characteristics of the units in the sample. This implies that:

(Yi(0);Yi(1)) ⊥⊥ Ti|Xi (4)

Another key assumption of the RCM is the Stable Unit Treatment Value Assumption
(or SUTVA). The implication of this assumption is twofold: (1) the treatment assignment
of any unit does not affect the potential outcomes of other units (often referred to as non-
interference) and (2) there is only one version of the treatment, this implies that the treatment
is comparable across units (see Hernán and Robins [2017]).

PATT vs. SATT

Ideally, we would like to estimate population causal effects but the instances where data
on the full target population is available are quite unusual. In reality, causal effects are
estimated using data from a sample. For example, the sample ATE (or SATE) represents
the difference in average outcomes if everyone in the survey sample received the treatment
versus everyone in the survey sample receiving the control condition. When does the SATE
and the sample ATT (or SATT) correctly estimates the PATE and the PATT? The answer to
this question depends on two key factors: (1) the sampling design and (2) the non-response
mechanism.

The SATE (SATT) will correctly estimate the PATE (PATT) only when the sample
distribution of the relevant variables is similar to its population counterpart. One sampling
design that guarantees this is a simple random sample (SRS), but this kind of sampling
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technique is hardly ever used. In general, most of available samples are the result of complex
sampling designs. Therefore, unless survey weights are used to weight the sample back to the
population, using sample information to estimate a treatment effect will result in a consistent
estimator for the SATE (SATT) but not for the PATE (PATT).

In addition to the sampling design, the nature of the non-response mechanism, can poten-
tially impact the estimation of the PATE (PATT). Non-response is a common phenomenon
in the context of survey data and occurs when it is not possible to collect the desired in-
formation for some of the primary sampling units. In other words, for some units, some
information is missing. Traditionally, missing data mechanisms are grouped in three cate-
gories: (1) Missing Completely at Random (MCAR), (2) Missing and Random (MAR) and
(3) Missing not at Random (MNAR). Under a MCAR mechanism, the probability that one
observation will have missing information, is completely random. In other words, there is no
relationship between the propensity of the data to be missing and the values of the variables
in the data set. When the non-response follows a MAR mechanism, the propensity of the
data to be missing is random, conditional on the set of observed variables. In other words
the observed values of the available data, can predict the probability of one observation
to have missing information. Finally when the non-response is MNAR, the probability of
having missing information depends on unobserved variables. That is, even after accounting
for the observed variables available in the data, the propensity of the data to be missing is
not random. Notice that even if the sampling design is such that the SATE (SATT) can
be use to estimate the PATE (PATT), if the non-response mechanism is either MAR or
MNAR the SATE (SATT) and the PATE (PATT) can be drastically different. Since most of
survey weights include a non-response adjustment, failure to include them in the estimation
procedure may result in misleading estimation results.

2.2 Survey Weights and the Propensity Score

In this section we formalize the the non-response mechanisms and the propensity score model.
Consider a binary indicator Si that takes the value 1 if the ith unit has been selected into
the survey sample and 0 otherwise. Additionally consider a response indicator, Ri, which
takes the value 1 if unit i responds to the survey. We assume that at the population level
each Oi = (Xi, Ti, Yi, Si, Ri) is independent and identically distributed with a joint density
function f with f : Rq+1 × {0, 1}3 → R+. We represent the marginal distribution for a
subset of covariates Z (i.e., Z ⊂ X) with fZ. We assume that the survey sample has finite
size of n =

∑N
i=1 SRi, where N represents the population size, and for every i = 1, 2, ..., n

SRi = Si×Ri. Notice that SRi constitutes a indicator variable that takes the value 1 if the
sample unit i is selected into the survey and such unit responds. We consider the case where
the probability for unit i of being observed in the sample (i.e., SRi = 1) is function of a
q−dimensional vector of covariates X and potentially the treatment indicator (T ). Explicitly
we assume that

p = fSR|(X,Y ) (SR = 1|X, T ) (5)
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where fSR|(X,T ) : Rq+1 → (0, 1) and p is represents the probability for unit i of being in the
final sample. We assume that p ∈ (0, 1) (i.e., there is not a set of values of the covariates X
and T for which the probability of being in the sample is exactly 1 or exactly 0). Furthermore
we assume that the survey weights, ω, are equal to the inverse of the probability of being
observed in the sample, formally:

ω =
1

p
=

1

fSR|(X,T ) (SR = 1|X, T )
(6)

Notice that this definition allows for a non-response rate different from 0 and differ-
ent non-response mechanisms. To see this, consider the case where S and R are inde-
pendent conditional on (X, T ). Then it holds that fSR|(X,T ) (SR = 1|X, T ) it’s equal to
fS|(X,T ) (S = 1|X, T ) times fR|(X,T ) (R = 1|X, T ), this last term models the non-response
mechanism. Notice that if fR|(X,T ) (R = 1|X, T ) = 1 for all (x, t) in (X, T ) then the non-
response rate is 0. If fR|(X,T ) (R = 1|X, T ) = fR (R = 1) the non-respond mechanism is
MCAR. Finally, the non response could be MAR and NMAR depending on whether the
all the elements in (X, T ) are observed. If every element in (X, T ) is available to estimate
the probability of non-response, then the non-response mechanism is MAR, otherwise the
non-response process is NMAR. In this way, ω (the final observed sampling weight) is a com-
bination of the survey weights associated with the sampling design itself but also incorporates
corrections associated with non-response.

We define the propensity score as:

π = fT |X (T = 1|X) (7)

which represents the probability of receiving treatment, conditional on X, with fT |X :
Rq → (0, 1). Notice that π represents the probability of receiving treatment computed at
a population level, furthermore the same set of regressors are used in calculating ps and
π. This implies that all the information used in the construction of the survey weights is
available in the survey sample. Notice that, in principle, π can be estimated in two ways:
(1) incorporating the survey weights in the estimation procedure or by (2) computing πS

(the probability of receiving treatment computed among the units that compose the survey
sample) with πS = fT |(X,RS) (T = 1|X, RS = 1), with fT |X,RS : Rq+1 → (0, 1). Thus, πS

can be estimated using the sample units without incorporating the survey weights in the
estimation procedure.

2.3 Survey weights after matching

Traditionally, matching procedures are implemented to estimate the causal effects among the
units who received treatment, work by Abadie and Imbens [2006] and Abadie and Imbens
[2016] show that the average causal effects can also be estimated using matching procedures.
Throughout this article, we focus on estimating causal effects among the treated.

As we stated previously, one of the main issues regarding the computation of causal ef-
fects using a propensity score matching procedure in the context of complex survey data, is
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how, when or even if the survey weights should be incorporated. In this section we argue
that survey weights may not need to be incorporated in the estimation of the propensity
score model (stage 1), and show that the weights of the treated units should be transferred
to the comparison unit to which they have been matched to, before estimating the outcome
model. To see this, consider the following strategy: in a first step we implemented a match-
ing procedure using the predicted propensity score (either the π̂S or π̂ can be used in the
matching procedure, furthermore the survey weights could even be incorporated as an ad-
ditional covariate). We assume that k comparison units were matched without replacement
to each treated observation. Now, in order to identify the weights for the treated (wt) and
comparison units (wc) to use in the outcome analysis, we note that under a successful im-
plementation of the matching procedure it should hold that for every x in X, the following
equations hold:

fX|T (X = x|T = 1) = wc(x)× fx|(T,M)(X = x|T = 1,M = 1) (8)
fX|T (X = x|T = 1) = wt(x)× fX|(T,M)(X = x|T = 0,M = 1) (9)

In other words, after weighting, we want the distribution of the covariates among treated
and comparison units in the matched sample (M = 1), to be the similar to the distribution
of the covariates among the treated at the population level (recall that we are interested in
estimating the PATT).

From (9) we obtain that

wt(x) =
fX|T (X = x|T = 1)

fX|(T,M)(X = x|T = 1,M = 1)

=
f(X,T )(X = x, T = 1)

fT (T = 1)
×

f(T,M)(T = 1,M = 1)

f(X,T,M)(X = x, T = 1,M = 1)

=
fM |T (M = 1|T )

fM |(X,T )(M = 1|X = x, T = 1)
(10)

Now, without trimming the treated units in the survey sample we have that (in the
context of propensity score matching, often we find situations where the overlap of the
predicted propensity score between treated and comparison units is poor, therefore is not
always possible in to match every treated unit to k comparison observations. A common
practice in this situations, is to drop such treated units from the analysis. See Frölich [2004]):

fM |T (M = 1|T = 1) = fSR|T (SR = 1|T = 1)

fM |(X,T )(M = 1|X = x, T = 1) = fSR|(X,T )(SR = 1|X = x, T = 1)

Thus (10) can be expressed as:
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wt(x) =
1

fSR|(X,T )(SR = 1|X = x, T = 1)

= ω (11)

Therefore we can conclude that units in the treated groups should be weighted using the
survey weights assigned by the survey design.

Combining (8) , (9) and (11) allows us find the expression for the weights of the compar-
ison units:

wc(x) = ωt(x)×
fX|(T,M)(X = x|T = 1,M = 1)

fX|(T,M)(X = x|T = 0,M = 1)

= ωt(x)×
f(X,T,M)(X = x, T = 1,M = 1)

f(T,M)(T = 1,M = 1)
×

f(T,M)(T = 0,M = 1)

f(X,T,M)(X = x, T = 0,M = 1)

= ωt(x)×
f(T |X,M)(T = 1|X = x,M = 1)

f(T |X,M)(T = 0|X = x,M = 1)
×
f(T,M)(T = 0,M = 1)

f(T,M)(T = 1,M = 1)

= ωt(x)×
f(T |X,M)(T = 1|X = x,M = 1)

1− f(T |X,M)(T = 1|X = x,M = 1)
×
f(T |M)(T = 0|M = 1)

f(T |M)(T = 1|M = 1)
(12)

Where fT |(X,M)(T = 1|X = x,M = 1) is the value of the propensity score computed
among the matched observations. Since we implemented a k : 1 matching it holds that
f(T |M)(T=0|M=1)

f(T |M)(T=1|M=1)
=

k/(k+1)

1/(k+1)
= k, thus we can write (12) as

wc
i (x) = ωt

i(x)×
f(T |X,M)(T = 1|X = x,M = 1)

1− f(T |X,M)(T = 1|X = x,M = 1)
× k

Also notice that for large matched sample it should hold that

f(T |X,M)(T = 1|X = x,M = 1)

1− f(T |X,M)(T = 1|X = x,M)
=

1

k

Thus we can conclude that

ωc
i (x) = ωt

i(x)

Therefore the weights that the units in the comparison group should be assigned for
the outcome analysis are the same weight as the treated unit they have been matched to.
Therefore the weights of the units in the comparison group are different from their original
survey weights. Interestingly, when this weight transfer is implemented and then the PATT
is estimated, we find that the estimation procedure assigns to each unit of the comparison
group a final weight that is proportional to the final weight received by the treated unit to
which they have been matched to. Such proportion is defined by the number of comparison
units used to matched each treated unit. Notice that a similar result is obtained when
considering simple random samples, see Stuart [2010].
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3 Simulation Study

As we mentioned, the main goal of this article is to explore different methods used in the lit-
erature to estimate the PATT and compare their performance, under different non-response
mechanisms. In the previous sections we argue that survey weights do not need to be incor-
porated in the estimation of the propensity score model and showed that survey weights of
the units in the treated group should be transferred to the comparison units they have been
matched to. In order to explore the empirical implications of these results we implement
a simulation study in order to asses whether: (1) the performance of the propensity score
matching estimator is affected by how (or if) the survey weights are incorporated in the esti-
mation of the propensity score model, (2) the implementation of the weight transfer presented
in Section 2.3 translates in a better performance of the propensity score matching estimator,
and (3) our conclusions depend on the assumed non-response mechanism considered and on
the difference between the SATT and the PATT

Our simulation set-up follows closely the one used by Austin et al. [2016], nevertheless we
introduce some modifications that will be explicitly mentioned. As in Austin et al. [2016],
we consider the case of a population of size N = 1, 000, 000. There are ten strata in the
population, each stratum has a total of 100, 000 observations. Within each strata there are 20
clusters, each of is composed of 5, 000 units. There are six covariatesXl with l = 1, ..., 6 and
the data generating mechanism for the baseline covariates is such that: (1) the probability
density function is normal, (2) the covariates are independent (i.e., correlation between any
pair of covariates is set equal to 0), (3) the standard deviation, across all the covariates, is
equal to 1 and (4) the means vary across strata and cluster. More explicitly, for each strata
(j), the mean of the covariates deviates in µlj from 0, where µlj are obtained assuming
that µlj ∼ N (0, τ stratum). Within each strata, the mean of each cluster (k) deviates from
the strata specific mean by µlk, with µlk ∼ N

(
0, τ cluster

)
. Thus the distribution of the lth

variable, in the jth stratum, among the units of the kth cluster is Xl,ijk ∼ N (µlj + µlk, 1).
We set τ stratum = 0.35 and τ cluster = 0.25, 0.15, 0.05. Each value of τ cluster defines a different
scenario. Unless otherwise specified, values of the population coefficients are the ones used
by Austin et al. [2016]

The treatment assignment (Ti) model is defined as a Bernoulli random variable Ti ∼
Be (pi) with logit (pi) = α0 +

∑6
l=1 αlXl,i with α0 = log

(
0.3290
0.9671

)
, α1 = log(1.10), α2 =

log(1.25), α3 = log(1.50), α4 = log(1.75), α5 = log(2.00) and α6 = log(2.50).
The potential outcomes models are defined as Yi (0) = β0 +

∑6
l=1 βlX1,i + ε with

ε ∼ N(0, 1) and β0 = 0, β1 = 2.50, β1 = −2.00, β3 = 1.75, β4 = −1.25, and β6 = 1.10. The
potential outcome under treatment is defined by

Yi (1) = Yi (0) + δ0 + δ1

3∑
l=1

βlXl,i +
10∑
j=1

ηjSTRj,i

with δ0 = 1 and δ1 = 0.2. The term
∑10

j=1 ηjSTRj,i is the first departure form the simulation
set-up design by Austin et al. [2016]. This additional term allows us to control how different
the PATT and the SATT are. The variable STRj,i is a categorical variable that takes the
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value 1 if the sample unit i belongs to the jth stratum. For each of the three scenarios we
consider six different values for the vector of parameters (η1, ..., η10) such that

(
SATT
PATT

− 1
)
×

100 takes roughly the values −50%,−40%,−30%,−20%,−10% and 0% . In addition to
a continuous outcome Austin et al. [2016] also considered a dichotomous outcome; in our
article, we restrict our attention to continuous outcomes.

In theirs simulation set-up,Austin et al. [2016] assumed that non-response rate was 0%.
We extend the original simulation study and we consider 4 non-response scenarios. We
define an indicator variable Rm with m = 1, 2, 3, 4 which takes the value 1 is the unit
responded and 0 otherwise.

• No-missing data (NM): R1i = 1 for all i.

• Missing at Random (MAR): the non-response rate depends on the six baseline co-
variates. Explicitly we assume that R3i ∼ Be(p3i) with logit (p3i) = γ0 +

∑6
l=1 γlXl,i

and γ0 = −log(0.030), γ1 = −log(1.10), γ2 = −log(1.25), γ3 = −log(1.50), γ4 =
−log(1.75), γ5 = −log(2.00), γ6 = −log(2.50).

• Missing at Random with an additional covariate X7 (MARX): the non-response rate
depends on the baseline covariates but additionally, depends on a covariate X7 that
is not observed in the final sample, but affect the response rate. Formally,R3i ∼
Be(p3i) with logit (p3i) = γ0 +

∑7
l=1 γlXl,i where γ7 = −log(2.50). This non-response

mechanism, aims to model the situation in which the survey weights can are constructed
using information that is only available to the survey team (i.e., X7), but not available
to the final user (e.g., number of contact attempts). The data generating mechanism
for the covariate X7 is the same as the one for the baseline covariates (i.e., X1, ..., X6)

• Missing at Random where the non-response depends on the baseline covariates and
the treatment assignment (MART). Explicitly R4i ∼ Be(p4i) with logit (p3i) = γ0 +∑6

l=1 γlXl,i + ∆Ti and ∆ = −2.

The final survey weights are defined as the number of individuals each person represents
times the inverse of the probability of responding (we follow Little and Vartivarian [2003]).
The average response rate across the MAR, MARX and MART models is close to 90%.
We are aware that this response rate is high, nevertheless this allows us to compare the
performance of the different PATT estimators without incurring in sample size adjustments.
In general, samples sizes are increased by the inverse of the average response rate. By
considering a relatively high respond rate, we don’t need to implement such adjustments.
We believe that increasing the non-response rate will only exacerbate the results that we
observe in this article.

For each scenario and for each value of
(
SATT
PATT

− 1
)
× 100, we ran 1000 iterations, and

compare the performance of different estimators. Throughout this article, performance is
quantified by three metrics: (1) bias (in absolute value), (2) root mean square error (RMSE,
which is defined as the sum of the squared bias and the variance associated with the estima-
tor) and (3) empirical coverage of the 95% confidence interval.
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3.1 Estimators of the PATT

The estimators of the PATT considered in our article are grouped based on: (1) how the
survey weights are used in the estimation of the propensity score and (2) whether the weights
transfer described in Section 2.3 is implemented.

Regarding the estimation of the propensity score, there are three alternatives to consider
regarding the use of the survey weights: (1) not incorporate the weights in the estimation
(UPS), (2) incorporate the weights in a weighted estimation (WPS), and (3) incorporate
the survey weights as a covariate in the estimation of the propensity score model (CPS).
Once the propensity score is estimated, a 1 to 1 matching will be implemented. We limit
our attention to matching without replacement. After the matching procedure is executed,
the survey weights of the treated can be transferred to the comparison units they have
been matched to (WT) or each observation can retain their original survey weights (OW).
Therefore, the estimator labeled as "CPS|WT" is the estimator of the PATT in which the
survey weights are used as a covariate in the estimation of the propensity score model and
the weight transfer described in Section 2.3 is implemented.

In addition to the 6 estimators previously described, we also consider a "Naïve" estimator
of the PATT. The Naïve estimator uses propensity score matching but ignores the sampling
design all together. That is, it does not incorporate the survey weights in the estimation
of the propensity score nor uses them to weight the observed outcome, in other words the
Naïve estimator is a valid estimator of the SATT.

Finally, following Ridgeway et al. [2015] we consider two outcome models: (1) an "un-
adjusted" model that has the treatment assignment (T ) as the only regressor and (2) an
"adjusted" model that in addition to the treatment assignment, includes the baselines co-
variates as regressors, but it does not include interaction terms. Is worth noticing that since
simulated data using models with heterogeneous treatment effects, both outcome models
considered are misspecified.

3.2 Results

Diagnostics

First we evaluate how balanced the distribution of the survey weights and the baseline
covariates (i.e., X1, ..., X6) is between the treated and comparison groups as a result of im-
plementing the matching procedures described in Section 3.1. Balance is defined in terms of
the standardized mean difference (SMD). To facilitate comparisons in the ability to generate
balanced samples across methods, we use a common standard deviation across all matching
procedures. Notice that the SMD under the Naive estimation approach, provides a measure
of balance achieved in the sample (not in the population) since it does not incorporate the
survey weights. Since the other methods do incorporate survey weights in their estimation
of causal effects, the calculation of the SMD associated with these estimators uses the survey
weights, therefore we consider them measures of balance at the population level. Table 1,
shows the SMD in the population, before any matching procedure was implemented.
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Figures 1, 2 and 3 summarize our main findings for scenarios 1, 2 and 3, respectively. In
these figures, the vertical axis displays the values of SMD computed in the matched sample.
Each row of plots represent a different non-response scenarios described in Section 3.1. Each
color represents the different procedure used in the estimation of the propensity score model:
(1) purple is associated with the estimators that do not incorporate the survey weights in the
estimation of the propensity score model, but the sample weights are used in the computation
of the SMD after matching, (2) green bars represent the SMD after matching when the survey
weights were incorporated in a weighted estimation of the propensity score model and (3)
blue bars show the balance achieved after the matching procedure when the weights were
used as a covariate in the estimation of the propensity score model. Darker shaded bars are
associated with the implementation of the weight transfer described in Section2.3, lighter
shades show the balance achieved (in terms of SMD) when the each sample unit kept its
original sampling weight. We also display the SMD achieved by the Naive estimator in
orange. The red line in Figure 1, shows the threshold value of 0.20 (see Rosenbaum and
Rubin [1985]), if after matching the obtained SMD is greater than 0.20 we can conclude that
the matching procedure was not effective in balancing the baseline covariates between the
treated and comparison groups.

The patterns that we observe in Figure 1 are consistent across all scenarios (see Figures
2 and 3). First we observe that, in general, good balance is achieved by all matching pro-
cedures (there are some exceptions, the SMD for covariate X6 is not always below 0.20 for
some of the matching procedures when the non-response mechanism is MART). Secondly,
when the non-response mechanism is either MAR, MARX or No Missing, the weight trans-
fer described in Section 2.3 may translate into worse balance (this is particularly clear for
covariate X3 and in multiple covariates in Scenario 3). Nevertheless, notice that this situa-
tion is reversed when the non-response mechanism is MART. In fact, failure to implement
the weight transfer described in Section 2.3 can generate improper balance in some of the
covariates. Interestingly we observe that when the non-response mechanism is different from
MART, balance in the covariates translates into balance of the survey weights.

Finally note that for most of the baseline covariates and across non-response mechanisms
the Naive method achieves better balance that any other of the matching procedures imple-
mented. Nevertheless, it is important to notice that the fact that the Naive method achieves
good balance in the sample, does not imply the good balance is achieved by this procedure
at the population level.

Treatment Effect Estimation Results

The estimators that only used the treatment indicator (T ) as a covariate in the outcome
model estimation are labeled as "Y ∼ T", whereas the estimators that additionally adjust
for the vector of covariates X are labeled as "Y ∼ T + X"

Figure 4 displays our findings for Scenario 1. Each column in the plot shows one of
the metrics (bias in absolute value, empirical coverage of the 95% confidence interval and
RMSE) chosen to asses the performance of the different matching estimators. Each row of
plots represent a different non-response scenarios described in Section 3.1. We keep the same
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color scheme used to asses the balance. The type of line is associated with how the survey
weights we incorporated in the outcome estimation. Solid, darker lines are associated with
the implementation of the weight transfer described in Section2.3, whereas dashed lighter
lines show the performance achieved when each sample unit kept its original sampling weight.
We also display the performance achieved by the Naive estimator in solid orange lines.

Differences in the performance of the estimators are more pronounced when we consider
the "unadjusted" estimators. Notice that using the unadjusted outcome model to estimate
the PATT is essentially the same procedure as the one described in Appendix A. As ex-
pected, as the percentage difference between the SATT and the PATT increases in absolute
value, the naive estimator performance worsens. Notice that this results hold, even after
adjusting for relevant covariates. As survey weights are incorporated in the analysis we
find that keeping the original weights translates to reduction of bias (this is true for most
of non-response mechanisms considered with the exception of MART). Adjusting for rele-
vant covariates translates into better performance (across the three metrics considered). In
general we observe that how the survey weights are incorporated in the estimation of the
propensity score does not translate to a significant improvement in the performance of the
estimators. When the non-response model is MART we observe that the weight transfer
described in Section 2.3 reduces bias associated with the estimation of the PATT, this is
true even after adjusting for relevant covariates (although is more explicit among the "un-
adjusted" estimators of the PATT). Furthermore, among the "unadjusted" estimators, we
observe that the weight transfer is not only associated with better balance but also better
coverage and better RMSE. Among the "unadjusted" estimators and when the non-response
mechanisms is MART, we also observe that a weighted estimation of the propensity score
models translates into gains of efficiency (reduction of the RMSE). Nevertheless, this gains
do not seem to be significant when other relevant covariates are incorporated in the outcome
model. We believe that the reason why the weight transfer described in Section 2.3 do not
improve the performance of the estimators in other non-responses mechanisms (i.e., MAR,
MARX and No-Missing) is due to the fact that if the matching procedure is successful, then
balance in the covariates, will translate in balance of the survey weights and therefore the
weight transfer is implicitly implemented. This hypothesis seems to be confirmed by Figures
1, 2 and 3, where we can observe that when that non-response mechanism is different from
MART (i.e., the non-response is not a function of the treatment indicator), balance in the
covariates translates into balance of the survey weights. Furthermore, notice that when the
non-response is MART good balance of the baseline covariates does not translate into good
balance of the survey weights, and therefore the weight transfer improves the performance
of the estimators. Another key feature of the results depicted in Figure 4 (and also true in
Figures 5 and 6), is that even when the percentage difference between the SATT and the
PATT is as high as 50%, incorporating the survey weights translate into significant reduc-
tion of bias. It is also important to notice that the percentage difference between the SATT
and the PATT gets close to 0, no significant differences in the performance of the naive and
the rest of the estimators is observed (this is the default scenario of the simulation set-up
implemented by Austin et al. [2016]).
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Analyzing the balance achieved and the performance of each method, we can conclude
that when estimating the PATT using complex survey data, the population balance (mea-
sured as SMD that incorporates the survey weights in its computation) helps to predict the
performance of the different estimators (therefore the balance achieved by the naive method
can be misleading). This can be seen in Figure 6 where the ability of estimator labeled
"CPS|WT", to achieve a better balance across all the covariates considered (when the non-
response mechanism is MART) translates into a better performance in terms of bias. In
general we conclude that the survey weights need to be included (at least) in the computa-
tion of balance measures and the outcome analysis when estimating the PATT using complex
survey data.

4 Application

In this section we use The Early Childhood Longitudinal Study, Kindergarten class 1998-
1999 (ECLS-K) (see [Tourangeau et al., 2009]) to estimate the effect of special education
services in math skills. Furthermore, we try to replicate the results by Keller and Tipton
[2016]. Keller and Tipton [2016] provide an excellent guide on how to implement different
R packages to estimate causal effects by implementing different matching procedures. The
authors illustrate how different packages work by replicating the work of Morgan et al. [2008].
We follow closely the work by Keller and Tipton [2016] since they provide a comprehensive
list of the variables used in their analysis. It is worth noticing that Morgan et al. [2008]
does not explicitly mention how the survey weights are incorporated in the estimation of the
propensity score matching estimators and neither does Keller and Tipton [2016] (although
Keller and Tipton [2016] explicitly state that the purpose of their article is to illustrate how
different software can be use to implement propensity score matching and their results should
not be interpreted in a causal context).

The ECLS-K is a longitudinal study that examines child early school experiences be-
ginning with kindergarten until eight grade. The ECLS-K is a nationally representative
sample that collects information: (1) at the child level (including academic information, cog-
nitive, emotional, physical and social development, etc), (2) at the household level (socio-
economical status, household composition, parents education, etc) and (3) at the school level
(educational practices, school socio-demographics, curriculum, teachers’ qualifications, etc).
Throughout this application we use as survey weights the variable labeled as "C1_6FC0" in the
ECLS-K data set. By design, the ECLS-K sample did not follow students who transfer from
their original school. Thus the final sample has been re-weighted such that the reminder of
the observations are representative of the kindergarten population (see Reardon et al. [2009]).
The data was accessed through ResearchConnections.org (see U.S. Department of Education.
Institute of Education Sciences. National Center for Education Statistics. [2011])

Since our goal is to illustrate the methods we do not assess the plausibility of the key
assumptions that would be needed to interpret the results as causal in this particular ap-
plication, and thus the results should not be treated as definitive causal effects regarding
the effect of special of education services on learning skills.Morgan et al. [2008], evaluate

17

Hosted by The Berkeley Electronic Press

<http://www.researchconnections.org/childcare/studies/28023>


the effectiveness of special education services on: (1) math and reading skills, (2) learning
related behaviors and (3) behavioral problems. For the sake of simplicity we follow Keller
and Tipton [2016] and focus only on the average effect of elementary school special education
services (i.e., the exposure) on math achievement in fifth grade (i.e., the observed outcome).
We use the of variables listed in Keller and Tipton [2016] to estimate the propensity score
model. We consider 39 covariates in the propensity score model (which include demographic,
socio-economical, academic, household and school level variables). A codebook of the vari-
ables used in this application is available as supplementary material. We fit an unadjusted
outcome model, that is we regress the observed outcome (i.e., math skills) on the treatment
or exposure (i.e., whether or not the child in question, receives special education services)
without incorporating other covariates. Additionally, we also fit an outcome model adjusting
for the same set of covariates considered in the propensity score model. The first column in
Table 2 shows the SMD computed without using the survey weights (either in the estimation
of the propensity score model or in the computation of the SMD). Overall we observe that
most of the matching procedures were effective in increasing the balance for this set of co-
variates. Nevertheless, some of the methods were not able to improve the balance enough to
generate SMDs smaller than 0.20 in some of the covariates (see the highlighted cells in Table
2). Notice that WPS|WT is the only method that has achieved SMDs smaller that 0.20
in 38 of the 39 covariates considered. The last row in Table 2 show the SMD of the survey
weights after the matching procedure. Notice that the good balance in the covariates does
translate into good balance in the survey weights, this result seems to indicate that the sur-
vey weights may not be affected by the treatment indicator, therefore weight transfer derived
in Section 2.3 may not improve the performance of the matching estimator. Furthermore we
observe more volatility among those estimators that implement such transfer.

The next table (Table 3), shows the estimated PATT. The first column displays the esti-
mation result of implementing an unadjusted regression model and the second column shows
the associated 95% confidence interval. The third column, shows the results of estimating
the PATT adjusting for the set of covariates considered in Table 2, and the last column
shows the associated 95% confidence interval. As expected most of the estimators produce
similar estimators with the exception of the Naive estimator.

5 Discussion

In this article we explore how different ways of utilizing survey weights can affect the per-
formance of propensity score matching estimators of the PATT in the context of complex
survey data, when different non-response mechanism are considered. We hope that this ar-
ticle provides some insight about what are the best practices when it comes to estimate the
PATT with complex survey data. There has been only limited work to extend propensity
score matching techniques in the context complex survey data, we hope that this article will
help to reduce such gap.

To our knowledge, this is the first article that explores the how different non-response
mechanisms can affect the performance of different propensity score matching estimators.
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This a key extension, since non-response tends to be the rule rather the exception in the
context of complex survey data.

We have also evaluated how differences in that SATT and the PATT affect the perfor-
mance of different propensity score matching estimators. We were able to address this issue
by extending the outcome model proposed by Austin et al. [2016] in their simulation study,
by adding strata specific effects. The rationale to incorporate this additional terms, is based
on the fact that when we first replicated the simulation study designed by Austin et al. [2016]
we found that the naïve estimator of the PATT (i.e., an estimator that does not incorporate
the survey weights in the estimation of the propensity score nor as weights of the observed
outcome) performed as well as any of the other estimators considered by Austin et al. [2016].
The reason why the naïve estimator had such a good performance was due to the fact that
the PATT and the SATT where practically identical, in fact the percentage difference be-
tween that PATT and that SATT (defined as the average of

(
SATT
PATT

− 1
)
× 100) was less

that 1%. Therefore it was not possible to assess whether the observed performance of the
different estimators considered by Austin et al. [2016] was due to the fact that the SATT
and PATT where so similar or to the fact that it did not matter how the survey weights
were used in the estimation of the propensity score. We hope that hour extension will help
to elucidate how survey weights should be incorporated even in situation where the SATT
and the PATT are drastically different.

Based on the data motivated application using the ECLS-K data set and results of the
simulation study we conclude that:

• How the survey weights are incorporated in the estimation of the propensity
score, does not affect the performance of the matching estimators. In our
simulation study we used the survey weights in three different ways: (1) the weights
were incorporated as a covariate in the estimation of the propensity score model,(2)
they were incorporated as weights in a weighted regression analysis, and (3) they were
not used at all in the estimation of the propensity score. We found that how the
survey weights were incorporated in the estimation of the propensity score did not
help to predict the performance of the estimators. This result holds true across for all
non-response mechanisms, although we found evidence that a weighted estimation of
the propensity score model can increase the efficiency of the PATT estimator when an
unadjusted outcome model is estimated and the missing data pattern is MART. Some
of these results are consistent with those from Austin et al. [2016]

• Adjusting for relevant covariates in the outcome model improves the per-
formance of the estimators. We found that adjusting for relevant covariates in the
outcome analysis translates into better performance of the estimators in general. This
results are consistent with the ones found by Ridgeway et al. [2015]. In the literature
there are multiple resources that explore the consequences of misspecified models (ei-
ther the propensity score or the outcome model) when estimating causal effects. See
Drake [1993], McCaffrey et al. [2004], Frölich [2007], Robins et al. [2007], Lee et al.
[2011] and Imai and Ratkovic [2014], among others.
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• survey weights should be incorporated in the outcome analysis. When survey
weights are incorporated in the outcome analysis we find that performance of estimators
that include relevant covariates and include the survey weights in the outcome analysis
have the best performance. Our results indicate that not including survey weights in
the estimation procedure may lead to substantial bias, specially when the SATT and
the PATT are different.

• Weight transfer improves the performance of the matching estimators under
certain non-response mechanisms. We find that the weight transfer described in
Section 2.3 helps to improve the performance of the estimators specially when the
missing data mechanism is MART (i.e., depends on the treatment status) greater
reduction in bias are observed when the PATT is estimated using a unadjusted outcome
model.

• Balance is crucial to correctly estimate treatment effects using propensity
score matching. We found that the key element to obtain estimators of the PATT
that have a good performance, is to achieve good population balance in the observed
covariates. That is, survey weights need to be incorporated in the computation of the
measure of balance. Balance was the best predictor of the performance of the PATT
estimator. In fact, from our simulation study we observe that the average correlation
(across the covariates) between bias and SMD achieved by the estimators that include
survey weights in their estimation (that is, excluding the naive estimator) is 0.77. And
the correlations (also excluding the naive estimator) between Coverage and RMSE are
−0.66 and 0.62 respectively. We also computed the correlation between the different
metrics of performance (i.e., Bias, Coverage and RMSE) and the SMD achieved by
Naive estimator. The correlation between bias and SMD for the naive estimator is
0.00, between coverage and SMD is −0.15 and between RMSE and SMD is −0.1.
Therefore we can conclude that good sample balance does not, necessarily translate
into good performance of the propensity score matching estimator.

• The balance achieved in the survey weights after the matching procedure,
could potentially help identify the nature of the non-response mechanism.
From our simulation study and under the assumption of no unmeasured confounders,
we noticed that when the non-response is different from MART good balance in the
baseline covariates translates into good balance of the survey weights, thus the weight
transfer described in Section 2.3 is implicitly implemented (hence we observe similar
performances of the different propensity score matching estimators). Nevertheless,
when the non-response mechanism is MART, good balance in the confounders does
not imply balance of the survey weights, and thus the weight transfer improves the
performance of the estimators considered.

Given our results we recommend that, before estimating the PATT, population balance
of the relevant covariates should be evaluated. In other words, survey weights should be
incorporated in the computation of the selected balance measures. We suggest that if proper
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balance is not achieved, the propensity score model should be refined until satisfactory
balance among the observed covariates is attained. Nevertheless, notice that this refinement
procedure will be hard to incorporate in the final inference.

It is important to note that the confidence intervals presented in this article were con-
structed using the ’survey’ package in R (see Lumley [2016]). There has been little work to
evaluate the asymptotic properties of matching estimators, with the exception of significant
contributions made by Abadie and Imbens [2006], Abadie and Imbens [2008] and Abadie and
Imbens [2016]. In these articles the authors not only evaluate consistency of the matching es-
timator, but evaluate the performance of common practices (i.e., estimating standard errors
of matching estimators by implementing bootstrap) and derive the asymptotic distribution
of matching estimators when the estimated propensity score is used to create the matched
sample. Abadie and Imbens [2016] derive the asymptotic distribution of the matching es-
timator in the context of simple random sampling. Future work will focus on generalizing
those results to the context of complex survey data.

In our article we have restricted our attention to matching estimators of the PATT, where
the matching procedure was implemented without replacement. In the context of simple
random samples, when matching is estimated with replacement weights should created to
guarantee that the matched treated and comparison groups are weighted up to be similar
(see Ho et al. [2011]), future work will consist in extending the computation of such weights
in the context of complex survey data.

Lastly, in our simulation study we have implicitly assume that the propensity score model
was correctly specified. Future work will evaluate how the performance of propensity score
matching estimators is affected by the degree of misspecification of both, the propensity
score model and the outcome model.
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Figure 1: Diagnostics. SMD computed in the matched samples in Scenario 1. The Naive method
represents balance in the sample (since it does not involve the survey weights in its computation).
The other methods incorporate survey weights in the computation of the SMD, thus are considered
measures of balance in the population.
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Figure 2: Diagnostics. SMD computed in the matched samples in Scenario 2. The Naive method
represents balance in the sample (since it does not involve the survey weights in its computation).
The other methods incorporate survey weights in the computation of the SMD, thus are considered
measures of balance in the population.
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Figure 3: Diagnostics. SMD computed in the matched samples in Scenario 3. The Naive method
represents balance in the sample (since it does not involve the survey weights in its computation).
The other methods incorporate survey weights in the computation of the SMD, thus are considered
measures of balance in the population.
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Figure 4: Scenario 1 Bias in absolute value, coverage and root mean squared error (RMSE) as
functions of the % difference between the SATT and PATT (simulation study).
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Figure 5: Scenario 2 Bias in absolute value, coverage and root mean squared error (RMSE) as
functions of the % difference between the SATT and PATT (simulation study).

30

http://biostats.bepress.com/jhubiostat/paper284



Y~T

|Bias|

Y~T

Coverage

Y~T

RMSE

Y~T+X

|Bias|

Y~T+X

Coverage

Y~T+X

RMSE

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.0

0.3

0.6

0.9

I −
 N

o M
issing

II −
 M

A
R

III −
 M

A
R

X
IV

 −
 M

A
R

T

−
50

−
40

−
30

−
20

−
10

−
50

−
40

−
30

−
20

−
10

−
50

−
40

−
30

−
20

−
10

−
50

−
40

−
30

−
20

−
10

−
50

−
40

−
30

−
20

−
10

−
50

−
40

−
30

−
20

−
10

UPS|OW

UPS|WT

WPS|OW

WPS|WT

CPS|OW

CPS|WT

Naive

Figure 6: Scenario 3 Bias in absolute value, coverage and root mean squared error (RMSE) as
functions of the % difference between the SATT and PATT (simulation study).
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Table 1: Standardized Mean Differences (Population level)

Scenario X1 X2 X3 X4 X5 X6

1 0.11 0.28 0.43 0.49 0.69 0.81

2 0.03 0.16 0.34 0.59 0.57 0.91

3 0.09 0.22 0.33 0.48 0.60 0.81

Table 2: SMD achieved by the different estimation procedures.

Variable Naive UPS|OW UPS|WT CPS|OW CPS|WT WPS|OW WPS|WT

FEMALE 0.08 0.08 0.06 0.08 0.06 0.03 0.01

WHITE 0.05 0.05 0.05 0.05 0.05 0.10 0.14

WKSESL 0.04 0.04 0.06 0.04 0.06 0.05 0.09

C1R4RSCL 0.04 0.04 0.03 0.04 0.03 0.06 0.04

C1R4MSCL 0.13 0.13 0.24 0.13 0.24 0.00 0.04

S2KPUPRI 0.25 0.25 0.15 0.25 0.15 0.01 0.02

P1ELHS 0.02 0.02 0.04 0.02 0.04 0.02 0.10

P1EHS 0.06 0.06 0.09 0.06 0.09 0.05 0.03

P1ESC 0.10 0.10 0.08 0.10 0.08 0.02 0.00

P1EC 0.15 0.15 0.09 0.15 0.09 0.13 0.04

P1EMS 0.00 0.00 0.07 0.00 0.07 0.08 0.04

P1EPHD 0.04 0.04 0.00 0.04 0.00 0.10 0.05

P1FIRKDG 0.16 0.16 0.14 0.16 0.14 0.20 0.17

P1AGEENT 0.12 0.12 0.07 0.12 0.07 0.06 0.06

T1LEARN 0.01 0.01 0.05 0.01 0.05 0.05 0.10

P1HSEVER 0.03 0.03 0.03 0.03 0.03 0.03 0.16

FKCHGSCH 0.00 0.00 0.09 0.00 0.09 0.05 0.12

S2KMINOR 0.10 0.10 0.09 0.10 0.09 0.21 0.12

P1FSTAMP 0.02 0.02 0.13 0.02 0.13 0.05 0.14

SGLPAR 0.05 0.05 0.07 0.05 0.07 0.04 0.17

Continued on next page
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Table 2 – continued from previous page

Variable Naive UPS|OW UPS|WT CPS|OW CPS|WT WPS|OW WPS|WT

TWOPAR 0.05 0.05 0.07 0.05 0.07 0.04 0.17

P1NUMSIB 0.06 0.06 0.01 0.06 0.01 0.07 0.12

P1HMAFB 0.04 0.04 0.17 0.04 0.17 0.03 0.19

WKCAREPK 0.03 0.03 0.14 0.03 0.14 0.06 0.06

P1EARLY 0.07 0.07 0.09 0.07 0.09 0.05 0.09

P1WEIGHO 0.06 0.06 0.11 0.06 0.11 0.05 0.09

C1FMOTOR 0.14 0.14 0.29 0.14 0.29 0.13 0.11

C1GMOTOR 0.15 0.15 0.20 0.15 0.20 0.06 0.07

P1HSCALE 0.12 0.12 0.08 0.12 0.08 0.04 0.05

P1SADLON 0.04 0.04 0.22 0.04 0.22 0.02 0.01

P1IMPULS 0.09 0.09 0.17 0.09 0.17 0.02 0.06

P1ATTENI 0.14 0.14 0.23 0.14 0.23 0.10 0.04

P1SOLVE 0.26 0.26 0.38 0.26 0.38 0.20 0.14

P1PRONOU 0.03 0.03 0.10 0.03 0.10 0.28 0.26

P1DISABL 0.13 0.13 0.08 0.13 0.08 0.12 0.04

AVG4RSCL 0.03 0.03 0.04 0.03 0.04 0.15 0.03

AVG4MSCL 0.01 0.01 0.04 0.01 0.04 0.19 0.02

AVGWKSES 0.03 0.03 0.06 0.03 0.06 0.14 0.03

C1_6FC0 0.11 0.11 0.00 0.11 0.00 0.08 0.00
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Table 3: PATT estimation. Unadjusted vs. Adjusted

Unadjusted 95% CI Adjusted 95% CI

Naive -2.62 (-4.44; -0.81) -3.30 (-5.98; -0.61)

UPS|OW -5.25 (-8.55; -1.94) -7.86 (-13.42; -2.30)

UPS|WT -4.33 (-7.24; -1.42) -9.92 (-14.98; -4.86)

CPS|OW -5.79 (-8.98; -2.61) -6.63 (-12.18; -1.08)

CPS|WT -5.31 (-8.39; -2.24) -7.59 (-12.89; -2.29)

WPS|OW -4.62 (-8.05; -1.19) -6.39 (-11.90; -0.88)

WPS|WT -2.80 (-6.13; 0.53) -5.97 (-11.34; -0.61)

34

http://biostats.bepress.com/jhubiostat/paper284



Appendix A Estimating the PATT

Here we incorporate the weight transfer derived in the previous Section 2.3 to estimate the
PATT. The PATT will be estimated as the difference of the weighted mean of the observed
outcomes of the treated and their matched comparison units. This estimator of the PATT
makes the use of the weights explicit, nevertheless it is important to recall that a outcome
model can be defined and the weights can be incorporated in its estimation. Under the
assumption that a k : 1 matching procedure was implemented it holds that for every treated
unit j with j = 1, 2, . . . , nT =

∑N
i=1 SRi × Ti , we have h(j) = 1, 2, . . . k comparison units.

Thus the PATT can be computed by

P̂ATT =

∑nT

j=1 yj × ωt
j(x)∑nT

j=1 ω
t
j(x)

−
∑nT

j=1

∑k
h(j)=1 yh(j) × ωt

j(x)∑nT

j=1

∑k
h(j)=1 ω

t
j(x)

=

∑nT

j=1 yj × ωt
j(x)∑nT

j=1 ω
t
j(x)

−
∑nT

j=1

∑k
h(j)=1 yh(j) × ωt

j(x)∑k
h(1)=1 ω

t
1(x) +

∑k
h(2)=1 ω

t
2(x) + ...+

∑k
h(nT )=1 ω

t
nT

(x)

=

∑nT

j=1 yj × ωt
j(x)∑nT

j=1 ω
t
j(x)

−
∑nT

j=1

∑k
h(j)=1 yh(j) × ωt

j(x)

kωt
1(x) + kωt

2(x) + ...+ kωt
nT

(x)

=

∑nT

j=1 yj × ωt
j(x)∑nT

j=1 ω
t
j(x)

−
∑nT

j=1

∑k
h(j)=1 yh(j) × ωt

j(x)

k
∑nT

j=1 ω
t
j(x)

=

nT∑
j=1

[
yj ×

ωt
j(x)∑nT

j=1 ω
t
j(x)

]
−

nT∑
j=1

k∑
h(j)=1

[
yh(j) ×

ωt
j(x)

k
∑nT

j=1 ω
t
j(x)

]

=

nT∑
j=1

yj ×W t
j −

nT∑
j=1

k∑
h(j)=1

yh(j) ×W c
j

Defining

W t
j =

ωt
j(x)∑nT

j=1 ω
t
j(x)

W c
j =

ωt
j(x)

k
∑nT

j=1 ω
t
j(x)

We can conclude that

W c
j =

1

k
W t

j

Notice that each of the nT treated units receives a weight of W t
j and each of the compar-

ison units a weight of 1
k
W t

j .
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