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Application of a Multiple Testing Procedure
Controlling the Proportion of False Positives

to Protein and Bacterial Data

Merrill D. Birkner, Alan E. Hubbard, and Mark J. van der Laan

Abstract

Simultaneously testing multiple hypotheses is important in high-dimensional bio-
logical studies. In these situations, one is often interested in controlling the Type-I
error rate, such as the proportion of false positives to total rejections (TPPFP) at a
specific level, alpha. This article will present an application of the E-Bayes/Bootstrap
TPPFP procedure, presented in van der Laan et al. (2005), which controls the
tail probability of the proportion of false positives (TPPFP), on two biological
datasets. The two data applications include firstly, the application to a mass-
spectrometry dataset of two leukemia subtypes, AML and ALL. The protein data
measurements include intensity and mass-to-charge (m/z) ratios of bone marrow
samples, with two replicates per sample. We apply techniques to preprocess the
data; i.e. correct for baseline shift of the data as well as appropriately smooth the
intensity profiles over the m/z values. After preprocessing the data we show an
application of a TPPFP multiple testing techniques (van der Laan et al. (2005))
to test the difference between two groups of patients (AML/ALL) with respect to
their intensity values over various m/z ratios, thus indicative of testing proteins of
different sizes. Secondly, we will show an illustration of the E-Bayes/Bootstrap
TPPFP procedure on a bacterial data set. In this application we are interested
in finding bacteria whose mean difference over time points is differentially ex-
pressed between two U.S. cities. With both of these data applications, we also
show comparisons to the van der Laan et al. (2004b) tppfp augmentation method,
and discover the E-Bayes/Bootstrap TPPFP method is less conservative, therefore
rejecting more tests at a specific alpha level



1 Introduction

1.1 Motivation

Simultaneous hypothesis testing is present in various biological applications.
Methods have been proposed to address situations of many simultaneous sta-
tistical tests (multiple testing). These methods control Type-I error rates in
various manners. Original methods, such as the Bonferroni adjustment are
extremely conservative, especially as the number of tests increases, which
is the case in many genomic settings. Methods have been developed, us-
ing either the marginal or joint distribution of the test statistics, to control
various Type-I error rates at a specific α level. Multiple testing revolves
around developing a procedure which controls the Type-I error rate close to
the nominal α level, therefore correctly rejecting the alternative hypotheses.

Multiple testing procedures are based on a variety of Type-I error rates.
Some of the popular Type-I error rates include the family wise error rate
(FWER), which controls the probability of rejecting more than one false
positive; generalized family wise error rate (gFWER), which controls the
probability of rejecting more than a user defined number, k, false positives;
tail probability of the proportion of false positives (TPPFP), which controls
the proportion of false positives to total rejections at a user defined value q,
q ∈ (0, 1); False Discovery Rate (FDR), or controlling the mean of the propor-
tion of false positives to total rejections. FWER is an extremely conservative
method (e.g. Bonferroni), and often too conservative for most biological ap-
plications, therefore leading scientists to be interested in methods which will
allow some false positives, but at a given number or proportion. A method
controlling the TPPFP is attractive especially since it deals with the pro-
portion of false positives to total rejections, instead of an absolute number
of false rejections. It will allow some false positives as long as the probabil-
ity of the proportion of false positives to total rejections is small. Also, as
compared to the FDR methods, TPPFP controls the actual proportion of
false positives to total rejections, whereas the FDR controls that proportion
on average, therefore making a method controlling the TPPFP favorable in
some settings, particularly since the expected number of false positives can
be highly variable (e.g. when the test statistics are highly dependent).

This article presents two data applications of the E-Bayes/Bootstrap
TPPFP approach, outlines in detail in van der Laan et al. (2005). This
approach controls the TPPFP at a user defined level q, with probability
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1− α. van der Laan et al. (2005) outlines this procedure and provides finite
and asymptotic rational of the proposed procedure, as well as simulations
showing the method is more powerful and less conservative in the finite set-
ting, relative to competing TPPFP procedures. Since this method is less
conservative, we are apt to properly reject more null hypotheses at a nomi-
nal α level as compared to other more conservative methods. In this article,
this technique will be applied to two separate datasets, which are described
in detail in section 3.

The first application is to an AML/ALL leukemia dataset, in which we
are interested in finding proteins which are present (with greater intensity)
in one leukemia subtype as compared to the other (AML versus ALL). Mass-
spectrometry profiles are often analyzed to determine the differences in the
protein profiles (intensity) between the samples. The spectrums display the
mass to charge ratio (m/z) versus intensity for each sample and the peaks of
the spectrums are compared; the m/z values correspond to different proteins
(e.g. depending on their size).

Preprocessing of mass-spectrometry data is necessary in order to correct
for phenomenons such as baseline shift and other sources of experimental
error. After preprocessing the data, we are interested in applying a multiple
testing method to this data in order to determine which m/z ratios are differ-
entially expressed with respect to intensity, between AML and ALL samples.
In addition, we want to employ a technique that gives accurate (and not
overly conservative) control if these ratios are highly dependent. Thus, we
applied the E-Bayes/Bootstrap TPPFP technique which controls the proba-
bility that the proportion of false positives, among the rejections, exceeds a
user supplied q (e.g. q = 0.1), at an α level.

The second application was to bacteria microarray data, which is used to
catalog the relative abundance of thousands of types of bacteria in various
U.S. cities. Comparing these geographic-specific arrays will therefore allow
researches to distinguish between natural occurring bacteria and anomalies
occurring in the various cities. We are interested in comparing the mean
expression difference over various time points between Austin, TX versus
San Antonio, TX. A multiple testing procedure is used to determine which
bacterial agents are differentially expressed between the two cites.
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2 Methods

2.1 Multiple Testing Methodology

The E-Bayes/Bootstrap TPPFP method aims to control the proportion of
false positives to total rejections at a user defined level q, with probability
1 − α. As discussed in van der Laan et al. (2005), the recently developed,
resampling based E-Bayes/Bootstrap TPPFP approach has proven to be
less conservative and thus more powerful, as compared to other methods
such as the augmentation approach outlined in van der Laan et al. (2004b),
and the Lehmann and Romano (2003) tppfp techniques. The procedure
involves 1) specifying a conditional distribution for a guessed set of true
nulls, given the data, which asymptotically is degenerate at the true set of
nulls, and 2) specifying a generally valid null distribution for the vector of
test-statistics proposed in Pollard and van der Laan (2003), and generalized
in subsequent articles Dudoit et al. (2004), van der Laan et al. (2004a),
and van der Laan et al. (2004b). The finite and asymptotic results are
outlined in the van der Laan et al. (2005) as well as relevant simulations,
which illustrate comparisons of the power and error rate of this procedure in
various situations. We will briefly outline the procedure before applying it
to the actual datasets, but refer the reader to van der Laan et al. (2005) for
a more detailed description of the procedure.

Let X1, ...Xn be i.i.d. observations and X ∼ P . We will define H0j, j =
1, ...,m as the m null hypotheses about P , H0j : P ∈ Mj. We will de-
fine Tn = (Tn(1), . . . , Tn(m)) as the test-statistics corresponding to null hy-
potheses H1, ..., Hm for each m/z value or bacterial species, in the respective
datasets, with m corresponding to the number of tests performed. This vec-
tor of test statistics has an unknown distribution Qn Given a user supplied
q and α ∈ (0, 1), the procedure selects a common cut-off cn such that,

Pr

(∑m
j=1 I(Tn(j) > cn, j ∈ S0)∑m

j=1 I(Tn(j) > cn)
> q

)
≤ α,

where j ∈ S0 indicates a null hypothesis, and Tn(j) > cn indicates a
rejection of H0j.
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2.1.1 E-Bayes/Bootstrap TPPFP Approach

Our method for choosing c involves controlling the tail probability of a ran-
dom variable r̃n(c) defined as:

r̃n(c) =

∑
j I(T̃n(j) > c, j ∈ S0n)

∑
j I(T̃n(j) > c, j ∈ S0n) +

∑
j I(Tn(j) > c, j %∈ S0n)

.

r̃n(c) represents a guessed proportion of false positives among rejections,
defined by drawing a random set S0n (a guessed set of true null hypotheses
S0) and a draw T̃n from a null distribution for the test-statistic vector. We
want r̃n(c) to dominate in distribution the true proportion of false positives:

I(Tn(j)>c,j∈S0)
I(Tn(j)>c) . Clearly the random variable r̃n(c) is defined by the proposed

definition of T̃n(j) and S0n.

Derivation of T̃n(j):

In order to estimate T̃n, we bootstrap the data (X#
1 , . . . , X#

n ) B∗ times
(e.g. B∗ = 10, 000). Each iteration, we recalculate the m test-statistics. This
m × B∗ matrix, T̃ ∗

n , represents a draw from the test-statistic vector under
the empirical distribution Pn. We then calculate the row-specific means and
center the T̃ ∗

n matrix at its null value. Each column of this matrix specifies
a draw of T̃n = (T̃n(j) : j = 1, . . . ,m).

Derivation of Bn(j) = I(j ∈ S0n):

We will define the distribution of our guessed set of nulls S0n, and de-
scribe how this random set is drawn. This random set is defined by draw-
ing a null or alternative status for each of the test statistics. The work-
ing model for defining the distribution of the guessed set S̃0n will assume
Tn(j) ∼ p0f0 + (1 − p0)f1, a mixture of a null density f0 and alternative
density f1. Let B(j) represent the underlying Bernoulli random variable,
such that f0 ∼ (Tn(j)|B(j) = 0), is the density of Tn(j) if H0(j) is true, and
f1 ∼ (Tn(j)|B(j) = 1) is the density of Tn(j) if H0(j) is false.

Under this working model, the posterior probability defined as the prob-
ability that Tn(j) came from a true H0j, given its observed value Tn(j), can
now be calculated:

P (B(j) = 0|Tn(j)) = p0
f0(Tn(j))

f(Tn(j))
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We will use this posterior probability as the Bernoulli probability on H0j

being true, given the test statistic, where we have to specify or estimate
p0, f0 and f . Since f0 plays the roll of the density of test-statistics under the
null hypothesis, in some situations f0 is simply known: e.g., f0 ∼ N(0, 1).
However, in cases where the marginal distribution of Tn(j) is not known if
H0j is true, one can use a kernel density (density() in R with a given kernel
and bandwidth) on the mean centered elements in the matrix representing
B draws of T̃n. The elements from this matrix are pooled into a vector of
length m∗B∗ in the kernel density function. In order to estimate the density
f , we can again apply a kernel smoother on the bootstrapped test statistics,
before they are mean centered. Again, the elements of the matrix are pooled
into a vector of length m ∗B∗ in the kernel density function.

Finally, p0 represents the proportion of nulls | S0 | /m and typically the
user might use a conservative p∗0 for this true proportion of nulls. The most
conservative prior, p∗0 = 1, will be used throughout this paper. Now, given
Tn, we can define the random set

S0n = {j : C(j) = 1}, C(j) ∼ Bernoulli

(
min

(
1, p∗0

f0(Tn(j))

f(Tn(j))

))
.

Given the data X1, . . . , Xn (i.e., Pn), S0n and T̃n are drawn independently.
We will now draw (S0n, (T̃n(j)) B∗ times, and each time calculate the

corresponding realization of r̃n(c), where Tn is fixed at the true original test
statistics. This provides us with a sample of B∗ realizations of (r̃b

n(c) : c ≥ 0),
b = 1, . . . , B∗, conditional on the data Pn (and thus, conditional on Tn as
well).

The cut-off c is set so that the tail probability, at a user supplied level q,
of the random variable, r̃n(c), equals α. To do so, we will then choose c such
that average over B∗ draws of both T̃n(j) and S0n(j) equals α.

Specifically, we set

cn = inf

{
c :

1

B∗

B∗∑

b=1

I(r̃b
n(c) > q) ≤ α

}
.

2.1.2 Augmentation Technique

An augmentation TPPFP procedure was also applied the multiple testing
procedure outlined in Pollard and van der Laan (2003). This augmentation
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corresponds to merely adding the [ q
1−qr0] most significant rejections to the

rejection set of the FWER method, where r0 is the set of initial rejections
form the FWER procedure. As the FWER procedure, we use the single-step
maxT based on the resampling-based null distribution T̃n described above.
Further detail of this method can be found in Pollard and van der Laan
(2003).

2.2 Adjusted p-values

Both the E-Bayes/Bootstrap TPPFP and Augmentation techniques provide
adjusted p-values as a summary measure for each test. Adjusted p-values
provide a measure of the probability of making a Type-I error taking into
account that one made multiple tests. The jth adjusted p-value can be inter-
preted as the nominal alpha level one would use to just reject the jth specific
test-statistic. Displaying these adjusted p-values provide a summary measure
of the tests and therefore make them easier to compare.

3 Data Applications

In the following section, the leukemia and bacteria datasets will be presented,
as well as outline the leukemia preprocessing steps. We will then present
the application of the E-Bayes/Bootstrap TPPFP approach, as well as the
van der Laan et al. (2004b) augmentation technique. Firstly we will describe
the datasets, followed by the results of the multiple testing application.

3.1 Leukemia: AML/ALL Data

3.1.1 Motivation

Leukemia is a form of cancer that originates in the cells in the bone marrow.
Leukemia occurs as a result of an excess of abnormal white blood cells in the
blood, which are known as leukocytes. The healthy version of these cells are
used by the body to defend the body against infectious agents such as viruses
and bacteria. But in the case of leukemia, these damaged cells become poor
at fighting infection and the abnormal cells multiply excessively and do not
die off as they should.

There are more than a dozen varieties of leukemia, and AML and ALL are
two of the main varieties. Acute myelogenous leukemia (AML) develops when
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there is a defect in the immature cells in the bone marrow. The exact cause of
acute leukemias is unknown, but some environmental factors are linked with
AML, including exposure to radiation and organic solvents, such as benzene
(Greaves, 1997; Bunin, 2004). AML occurs in all ages but are more often
prevalent in older adults (Bunin, 2004). Acute lymphocytic leukemia (ALL)
symptoms result from the body not producing enough healthy blood cells.
An ALL patient’s bone marrow makes too many immature white blood cells.
Normal blast cells turn into a type of white blood cell called granulocytes,
but the leukemia blast cells do not. At the same time, the marrow cannot
grow enough normal red blood cells, white blood cells and platelets (Greaves,
2002). Again, a few environmental factors are linked with ALL (Greaves,
1997; Pui et al., 2001).

Researchers are interested in determining the differences between these
two types of leukemia varieties, in order to facilitate the treatment of this
disease. Proteins have been found to be linked to cancers and especially to
leukemia. Researchers can now develop drugs to target the specific protein,
thus disabling it’s function. We are therefore interested in finding potential
biomarkers (proteins) which are of different intensities between the two types
of leukemia.

The data which is used in this section is mass-spectrometry data, which
consists of mass/charge and intensity values. Mass spectrometry has been
a popular tool in the field of proteomics. This field is centered around the
identification of proteins in the body and determining their role in processes,
such as the transmission of disease. Mass spectrometry is used to identify
and quantify proteins from biological samples. The process labels the mass
and charge of potential proteins, and their relative abundance in a sample.

3.1.2 Data Structure

The data structure consists of two replicates each for 7 samples of AML
and 13 samples of ALL. Each sample contained approximately 100 different
m/z values and respective intensity values. We are interested in obtaining
an intensity value for a specific number of unique m/z values, averaged over
the replicates. After preprocessing the data, a test is predetermined for each
unique m/z value across the two leukemia samples intensity measurements.
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3.1.3 Preprocessing

Before the data can be analyzed, preprocessing steps including correcting for
the baseline shift, smoothing the mass-intensity profiles, and choosing unique
mass values at which to measure the intensity level, are applied. A multiple
testing procedure is then applied to the data to determine which mass levels
have differentially expressed intensity levels between AML and ALL patients.
Note: Examples of the preprocessing steps (in one sample, two replicates) is
illustrated in the plots at the end of this paper.

Baseline Correction

As previously mentioned, there is often a shift in raw mass-intensity data.
Quantile regression was applied to predict the intensity quantile (0.02 quan-
tile) by m/z value for each of the samples. The intensity is then adjusted by
subtracting the observed peak from this predicted quantile.

Smoothed Intensity

To ”smooth” over the error in the m/z estimate per sample, a smoother
is used, such as ksmooth() in R (using a box kernel), with bounded sup-
port (i.e. we expect most m/z ratios should have 0 intensity). The kernel
bandwidth is chosen, per biologic sample, by using a simple cross-validation
technique on the replicates.

For each bandwidth (1-10 m/z) the smoothing algorithm is trained on
one replicate of a biological sample (subject) and used to predict the intensi-
ties of its matched replicate. We then reverse the roles of the two replicates
and train the smoothing algorithm on the second replicate and test it on the
first replicate. The mean squared error is recorded each time the algorithm
is trained on the second replicate for each bandwidth. This is then repeated
over all samples/replicates. The average MSE is calculated for each band-
width and the bandwidth with the smallest MSE is chosen, which was 9 in
this example. Finally, the original data is reduced to a set of unique m/z
ratios (that are non-zero in at least one biological sample).

Finally, after smoothing, the replicate profiles are averaged to get one
protein expression/biologic replicate. This processing stream results in a
data matrix with 204 unique protein intensities (the rows) for each of the 21
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biologic samples (the columns).

3.1.4 Application to AML ALL data

The difference in the mean intensities of the AML versus the ALL sam-
ples at each of the 204 m/z ratios is tested. The test-statistics will be

defined as: Tn(j) =
√

n (µAML(j)−µALL(j))
σAML/ALL(j) , j = 1, ..., 204, where σ2

AML/ALL

is the pooled variance of the two samples. The null hypothesis is that
(µAML−µALL) = 0 and the alternative hypothesis is that (µAML−µALL) %= 0.
The E-Bayes/Bootstrap TPPFP procedure is used to determine those m/z
ratios which have significantly different mean intensities between AML and
ALL, while controlling the proportion of false positives to total rejections at
a level q = 0.1, with probability 0.95 (α = 0.05).

3.1.5 Results

There are 20 m/z values out of the 204 with an unadjusted p-value less than
α = 0.05. With the tppfp augmentation method no m/z are rejected at an
α = 0.05 and only one is rejected at an α = 0.1 level. The E-Bayes/Bootstrap
TPPFP rejects 3 m/z ratios at an α = 0.05 and also three are rejected at
an α = 0.1 level. Interestingly, the proprietary Biomarker Wizard software
(Ciphergen Biosystems, Fremont, CA) also found these masses to be signifi-
cant, based on another algorithm. [These were found through the software’s
autodetection; therefore anything with a signal to noise ratio greater than 2,
the peak had to be present in at least 25 percent of the samples, and the mass
window of 0.8 percent mass]. These results illustrate the importance of the
E-Bayes/Bootstrap TPPFP method, especially in the cases of few significant
associations in the data.

The mass to charge ratios have yet to be identified as unique proteins.
However, researchers plan to follow this analysis and ID the most signifi-
cant mass to charge ratios by SDSPAGE separation and LD MS/MS peptide
identification procedures.

3.2 Airborne Bacterial Data

3.2.1 Motivation

Bacteria are naturally occurring in air and researchers have been interested
in various mechanisms to monitor and evaluate the type and concentration
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Table 1: Adjusted p-values: Top 10 m/z Ratios:

m/z E-Bayes/Bootstrap TPPFP (q = 0.1) Augmentation (q = 0.1)
4968.104 0.039 0.051
3333.169 0.043 0.0595
4941.165 0.0491 0.1515
3201.327 0.215 0.352
8457.161 0.3197 0.437
3281.276 0.3404 0.4535
3908.681 0.3586 0.460
2908.314 0.3605 0.4615
10527.394 0.3897 0.467
10509.961 0.3999 0.467

in the air samples. This is also of interest given the concern of terrorism
by biological agents. The Department of Homeland Security, in conjunction
with the Lawrence Berkeley Laboratory, Division for Environmental Biotech-
nology initiated this project. The goal of this project is to catalog thousands
of different types of bacteria from cities throughout the United States. The
concentration of the bacteria is monitored over several weeks. The goal of
this study is to catalog the various natural airborne pathogens. Therefore
it can be used as a baseline to compare future levels and it could also help
identify disease causing bacteria.

The process of determining the bacteria consists of using a special Affymetrix
glass chip. This microarray process quantifies and classifies environmental
DNA from a range of prokaryotic and eukaryotic origins. The array has been
designed based on 62,358 probes which are matched to both prokaryotic and
eukaryotic ribosomal RNA genes (DeSantis et al., 2005). The bacterial DNA
is separated, then it is fluorescently labelled and placed on the slide. The
more matches to a specific bacteria, the higher the chance that the bacte-
ria is in the air sample. Detailed information regarding the array process
and technique can be found in Wilson et al. (May 2002) and DeSantis et al.
(2005). After processing, the resulting data for each biological replicate is
the expression for each of the 420 bacterial species or samples.

http://biostats.bepress.com/ucbbiostat/paper186



3.2.2 Applying Multiple Testing

The dataset analyzed here consists of 17 arrays containing samples collected
at different times in San Antonio and Austin, Texas. Thus, the final data
matrix is 17 columns, where each entry is the log-base 2 relative expression of
a bacterial species (the row) for Austin versus San Antonio for one time point
(the column). The test statistics, which we are interested in testing is the if

the mean of the difference is equal to 0. Therefore, Tn(j) =
√

n(µdiff−0)
σdiff

, j =

1, ..., 420. This is computed for each of the 420 unique bacterium and both the
augmentation technique as well as the E-Bayes/Bootstrap TPPFP technique
are applied at a q = 0.1 and controlling at an α = 0.05.

3.2.3 Results

Table 2 illustrates the adjusted p-values produced by the augmentation tech-
nique. The table illustrates that more are rejected with the E-Bayes/Bootstrap
TPPFP procedure as compared to the Augmentation techniques at both an
α = 0.05 and α = 0.1. Both of these procedures used q = 0.1.

4 Discussion

This article presented two separate types of data structures to which the E-
Bayes/Bootstrap TPPFP technique, presented in van der Laan et al. (2005),
was applied. As previously mentioned, the TPPFP is an appropriate Type-I
error rate to control in many biological applications controlling the TPPFP.
This error rate is less conservative than the family-wise error rate. The first
dataset was comparing two types of leukemia in regards to their differen-
tial protein intensity levels. An initial preprocessing technique was applied
to the data before the multiple testing procedures. The application of the
E-Bayes/Bootstrap TPPFP approach resulted in rejecting more m/z values
as compared to the augmentation approach. The bacterial application also
elucidated several bacteria that were differentially expressed between the two
cities, again with the E-Bayes/Bootstrap TPPFP approach providing more
rejections as compared to the augmentation approach. We suggest that both
the examples and simulations in the paper as well as the data applications
prove that the E-Bayes/Bootstrap TPPFP approach is a more powerful tech-
nique to control the proportion of false positives to total rejections at a given
level q, as compared to various other methods controlling the TPPFP.
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Table 2: Adjusted p-values of Top Bacteria

Organism E-Bayes/Bootstrap TPPFP Augmentation
A.ferrooxidans subgroup CtaxTah 0.00095 0.002

Lactobacillus fermentum 0.00102 0.00225
Calyptogena symbionts Calyptogena magnifica 0.00121 0.0025

Catellatospora citrea 0.001858 0.0035
Vr.pantothenticus subgroup compost 0.00380 0.00525

Bacillus alcalophilus 0.00382 0.00525
Dfm.ruminis subgroup 0.0161 0.023

Mlm.methanica subgroup gamma SA51 0.019 0.029
Pseudonocardia thermophila 0.0252 0.03725

B.cereussubgroup Gram-positive D-Su1-25 0.0243 0.03725
Bacillus endophyticus 0.0254 0.045

Thermophilic streptomyces Streptomyces 0.02773 0.0735
Klebsiella pneumoniae c3 0.03159 0.0785
Clostridium beijerinckii 0.05896 0.087

Clostridium collagenovorans 0.06846 0.144
B.cohnii subgroup str. HTA437. 0.0685 0.1575

Microcoleus sociatus 0.0695 0.179
Taxeobacter ocellatus 0.06998 0.18825

Environmental clone iii1-8 group soil clone 0.0701 0.18975
Environmental clone opb45 group soil clone S079 0.0701 0.18975

Pae.validus subgroup SCBP-S17 0.0767 0.18975
Myb.tuberculosis subgroup Mycobacterium 0.0777 0.22575

Achromatium assemblage Agricultural soil clone 0.0806 0.229
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