
University of California, Berkeley
U.C. Berkeley Division of Biostatistics Working Paper Series

Year  Paper 

Prognosis of Stage II Colon Cancer by
Non-Neoplastic Mucosa Gene Expresssion

Profiling

Alain Barrier∗ Sandrine Dudoit†

et al.‡

∗Dept of Digestive Surgery, Hopital Tenon, Paris; INSERM U444, Faculte de Medecine Saint-
Antoine, Universite Pierre et Marie Curie, Paris, alain.barrier@tnn.ap-hop-paris.fr
†Division of Biostatistics, School of Public Health, University of California, Berkeley, san-

drine@stat.berkeley.edu
‡

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/ucbbiostat/paper179

Copyright c©2005 by the authors.



Prognosis of Stage II Colon Cancer by
Non-Neoplastic Mucosa Gene Expresssion

Profiling

Alain Barrier, Sandrine Dudoit, and et al.

Abstract

Aims. This study assessed the possibility to build a prognosis predictor, based
on non-neoplastic mucosa microarray gene expression measures, in stage II colon
cancer patients. Materials and Methods. Non-neoplastic colonic mucosa mRNA
samples from 24 patients (10 with a metachronous metastasis, 14 with no recur-
rence) were profiled using the Affymetrix HGU133A GeneChip. The k-nearest
neighbor method was used for prognosis prediction using microarray gene ex-
pression measures. Leave-one-out cross-validation was used to select the number
of neighbors and number of informative genes to include in the predictor. Based
on this information, a prognosis predictor was proposed and its accuracy estimated
by double cross-validation. Results. In leave-one-out cross-validation, the lowest
number of informative genes giving the lowest number of false predictions (3 out
of 24) was 65. A 65-gene prognosis predictor was then built, with an estimated
accuracy of 79%. Genes included in this predictor suggested branching signal
transduction pathways with possible extensive networks between individual path-
ways. It also included genes coding for proteins involved in immune surveillance.
Conclusion. This study suggests that one can build an accurate prognosis predic-
tor for stage II colon cancer patients, based on non-neoplastic mucosa microarray
gene expression measures.



Introduction 

 

 Despite numerous clinical trials, the benefit of adjuvant chemotherapy in the treatment 

of stage II colon cancer patients has never been proved in a randomized study. In most meta-

analyses, there is a trend towards a benefit of adjuvant chemotherapy, but statistical 

significance is not reached [1]. Thus, this benefit seems to exist but, as it is slight, studies are 

not powerful enough to demonstrate it. This ambiguous situation is perfectly summarized by 

the conclusion of the 2004 recommendations of the American Society of Clinical Oncology 

[2]: “Direct evidence from randomized controlled trials does not support the routine use of 

adjuvant chemotherapy for patients with stage II colon cancer. Patients and oncologists … are 

justified in considering the use of adjuvant chemotherapy, particularly for those patients with 

high-risk stage II disease. … Patients with stage II disease should be encouraged to participate 

in randomized trials”.  

Including all stage II colon cancer patients in a randomized trial is debatable. Even if a 

properly-designed study, comprising thousands of patients, demonstrated a statistically 

significant benefit of adjuvant chemotherapy, it may not be logical to conclude that this 

treatment should be given to all stage II patients. Such a conclusion would not take into 

account that three fourths of the patients are cured by surgery alone and would lead to 

administering to all patients a treatment that would be useful for only a few. Another more 

rational approach would be to identify a subgroup of patients at high risk of recurrence, thus 

more likely to benefit from adjuvant chemotherapy, and to include only these selected patients 

in a randomized trial. This presupposes finding accurate prognosis predictors for stage II 

colon cancer patients. 

 Microarray gene expression profiling has been reported to accurately predict the 

prognosis of several malignant tumors (breast carcinomas [3,4], lung carcinomas [5,6], 
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lymphomas [7,8]). Thus, by analogy with these tumors, it may be postulated that gene 

expression profiling represents a valuable tool in predicting the prognosis of stage II colon 

cancer patients and thereby in identifying a subgroup of patients at high risk of recurrence. To 

date, this hypothesis has only been addressed in the study of Wang et al. [9], with good results 

(overall prediction accuracy of 78%). 

The present study aimed to assess the possibility to build a microarray-based prognosis 

predictor for stage II colon cancer patients using non-neoplastic mucosa gene expression 

profiles. The rationale for studying the non-neoplastic mucosa, in contrast to tumor tissue as 

in Wang et al [9], may be summarized as follows. There is an increasing evidence that 

interactions between stromal and cancer cells are a prerequisite for metastases to occur [10]. 

However, it remains unclear whether this metastatic potential originates in cancer cells and/or 

in stromal compartments. Metastatic potential may be present from the start of the tumor 

[11,12]. Accepting this theory, non-neoplastic mucosa on which the tumor has arisen may 

contain some helpful information. Non-neoplastic mucosa mRNA samples from 24 patients, 

with homogeneous disease (stage II) and postoperative treatment (no adjuvant chemotherapy), 

but different outcomes (10 with metastatic recurrence, 14 with no recurrence), were profiled 

using the Affymetrix HGU133A GeneChip. 
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Materials and Methods 

 

Patients and samples 

 

Twenty-four patients operated on for a stage II colonic adenocarcinoma in the Department of 

Digestive Surgery of the Hospital Tenon between 1997 and 1999 were included in this study. 

None of these 24 patients had any adjuvant chemotherapy. Patients were evaluated at 3-month 

intervals for the first postoperative year and at 6-month intervals thereafter. Metastatic 

reccurrences were identified by clinical examination, completed by chest X-ray and liver 

ultrasound (or CT scan). Ten among the 24 patients developped a liver metastasis in the 

follow-up, while the other 14 patients remained disease-free for at least 60 months.   

For each patient, adjacent non-neoplastic colon mucosa (distance greater than 5 cm from the 

gross tumor limit) was collected at the time of surgery, with patients’ informed consent, and 

was stored in liquid nitrogen within 0.5 hour after the resection. Samples were reviewed by a 

pathologist to check the absence of tumor cells. 

 

Total RNA was extracted using Trizol reagent. mRNA target samples were hybridized to 

Affymetrix HGU133A GeneChips, containing a total of 22,283 probe-sets (Affymetrix, Santa 

Clara, CA), as described in the Affymetrix GeneChip Expression Analysis Manual 

(Affymetrix, Wooburn Green, UK). Briefly, 5 µg (100 ng/µl) of total RNA was used to 

synthesize double-stranded cDNA with SuperScript II reverse transcriptase (Invitrogen, Cergy 

Pontoise, France) and a T7-(dT)24 primer (Proligo Biochemie GmbH, Hamburg, Germany). 

Then, biotinylated cRNA was synthesized from the double-stranded cDNA using the RNA 

Transcript Labeling kit (Enzo Life Sciences, Farmingdale, NY) and was purified and 

fragmented. The fragmented cRNA was hybridized to the oligonucleotide microarray, which 
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was washed and stained with streptavidin-phycoerythrin. Scanning was performed with a 

GeneArray Scanner Update (Affymetrix, Wooburn Green, UK). 

 

Data analysis 

 

Data pre-processing 

Starting from the 24 CEL files, gene expression measures were computed using the Robust 

Multichip Average (RMA) method described in Irizarry et al. [13] and implemented in the 

Bioconductor R package affy. This method includes the following successive steps : 1) 

Background correction ; 2) Probe-level quantile normalization ; 3) Calculation of expression 

measures using median polish.  

 

Prognosis prediction 

The prognosis prediction method consists of the following two steps. 

a) Selection of informative genes. Genes that are differentially expressed between patients 

who experienced a tumor relapse and patients who remained disease-free are identified based 

on two-sample t-statistics with equal variance. The m genes with the largest absolute t-

statistics are retained to build a prognosis predictor. 

b) Prognosis prediction. The k-nearest neighbor method, based on the Euclidean distance 

between the expression profiles for the m informative genes of step a), is applied to predict 

prognosis. Specifically, the prognosis of a given patient is predicted as the most common 

prognosis among its k nearest neighbors, i.e., the k patients with the closest expression 

profiles.  

 

 

http://biostats.bepress.com/ucbbiostat/paper179



Selection of prognosis predictor parameters 

Leave-one-out cross-validation was used to select the two prognosis predictor parameters, 

namely the number of informative genes m and the number of nearest neighbors k. A total of 

150 prognosis predictors were considered, corresponding to the following parameter values: k 

= 1, 3, and 5, and m = 5, 10, …, 250. The performance of a given prognosis predictor, 

indexed by the pair (m,k), was assessed as follows. Each of the 24 samples was used in turn as 

the validation set; the prognosis predictor was built using the training set formed by the 

remaining 23 samples and used to assign a prognosis (recurrence or no recurrence) to the 

validation sample; the predicted prognosis was then compared to the actual recurrence status; 

the numbers of false predictions (discordance between the predicted and actual evolutions) 

and true predictions were recorded for each of the 24 samples. Thus, for each of the 150 

prognosis predictors, i.e., each (m,k) pair, a prediction error rate (out of 24) was obtained. 

 

Proposition of a prognosis predictor 

Because of ties in the error rates from leave-one-out cross-validation, the number of 

informative genes of this predictor was set to be the lowest number of informative genes, 

giving the lowest number of false predictions. Selection of informative genes was based on 

the 24 samples.      

 

Estimation of the generalization error of the prognosis predictor 

A double cross-validation scheme was used to assess the performance of the proposed 

prognosis predictor. For the “outer level” of cross-validation, the 24 samples were divided 

into 6 sets of 4 samples each (6-fold cross-validation). Each of these 6 sets was used in turn as 

the validation set, the other 5 sets (20 patients) being used as the training set. For each of the 6 

steps in the cross-validation, a prognosis predictor was built based on the training set using 
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the method previously described: i) determination of the lowest number of genes and the 

lowest number of nearest neighbors giving the lowest number of false predictions (out of 20), 

using leave-one-out cross-validation (“inner level” of cross-validation); ii) selection of the m  

informative genes based on the 20 patients. The predictor was used to assign a prognosis to 

the 4 “outer level” validation set samples. The predicted prognoses were then compared to the 

actual recurrence status, giving a false prediction rate (out of 4). The 6 false prediction rates 

(one for each of the 6 steps of the outer level cross-validation) were averaged to provide an 

estimate of the generalization error.            

       

Software 

The statiscal analysis was performed with the open-source software R, Version 2.0.1. 

(http://cran.r-project/org), and Bioconductor packages (www.bioconductor.org). The 

following R packages were used : affy Version 1.5.8. (Irizarry RA, Gautier L, Bolstad BM, 

Miller C), multtest Version 1.5.2. (Pollard KS, Ge Y, Dudoit S), class Version 7.2.11. 

(Venables T, Ripley B, Hornik K, Gebhardt A), hgu133a Version 1.6.5. (Zhang J), and 

annaffy Version 1.0.11. (Smith CA).  
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Results 

 

Selection of prognosis predictor parameters 

A total of 150 prognosis predictors (50 possible values for the number m of informative 

genes, 3 possible values for the number k of nearest neighbors) were considered and their 

performance assessed using leave-one-out cross-validation. The distribution of the numbers of 

false predictions obtained with each of these 150 predictors is given in Figure 1. No pair of 

parameters (m, k) allowed a perfect concordance between the predicted and the observed 

evolutions. The numbers of false predictions ranged between 3 and 7. Three false predictions 

(out of 24, accuracy = 88%) represented the best and most frequent result (96 out of 150) . 

Figure 2 shows the numbers of false predictions obtained with respect to the values of both 

parameters, m and k. Predictors built with 30 or fewer informative genes yielded the highest 

numbers of false predictions (5 to 7). Predictors built with more than 60 informative genes 

yielded stable results and low numbers of false predictions. For a given number of informative 

genes, the results were quite similar for different numbers of nearest neighbors. The lowest 

number of informative genes giving the lowest number of false predictions (=3) was 65.  

  

   

Proposition of a prognosis predictor 

Based on the results of the leave-one-out cross-validation, 65 informative genes were selected 

using all 24 patients, by taking the 65 top-ranked genes (i.e., the 65 genes with the highest 

absolute t-statistics). Of these genes, 44 were over-expressed in patients who developed a 

recurrence while the other 21 were over-expressed in patients who remained disease-free for 

at least 5 years. Both lists of genes are given in Tables 1 and 2, respectively. Informative 

genes can be divided into 3 categories: 1) plasma membrane receptors with members of 
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different signaling pathways and transcription factors, 2) proteins involved in cell growth 

and/or maintenance such as glucose metabolism, protein biosynthesis, transport and 

degradation, and 3) proteins involved in the immune response. The following membrane 

receptors were over-expressed in the mucosa of patients who recurred: solute carrier family 

18; translocation protein 1; annexin 2; exostoses 2; ribophorin II; transmembrane protein 4; 

two G protein-coupled receptors involved in positive regulation of I-kappaB 

kinase/NFkappaB cascade; KDEL endoplasmic reticulum protein retention receptor 3 that can 

modulate MAP kinase signalling; immediate early response 3 interacting protein 1; and 

integral membrane protein 2A. Membrane receptors that were over-expressed in the mucosa 

of patients who remained recurrence-free belong to different families, except for 

transmembrane 4 superfamily member 2. There were : CD24 antigen, a protein involved in 

the humoral immune response that is also a membrane receptor over-expressed on epithelial 

cancer cells; signal transducer and activator of transcription 2 that induces the JAK-STAT 

cascade; SPPL2b; potassium voltage channel shaker-related family beta member 1; basigin; 

and major histocompatibility complex class I C. As most of the cell surface receptors are 

linked to signal transduction, an over-expression of some signal transducers and factors of 

transcription was also observed : WD40 protein ciao 1 that can interact with tumor suppressor 

proteins, and ADP-ribosylation factor-like 1 in patients who recurred ; cyclin-dependent 

kinase (CDC2-like) 10, ankyring repeat and SOCS-box containing 13 in patients who did not 

recur. Among genes involved in immunity, two transcripts, CD24 and the major 

histocompatibility complex class I, C were overexpressed in the mucosa of patients who did 

not recur. Two members of the forkhead-box transcription factors, forhead boxO1A and 

forkhead box J3, were overexpressed in patients who recurred and in those who did not recur, 

respectively.  
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Estimation of the generalization error of the prognosis predictor 

The results obtained at each of the 6 steps of the “outer level” cross-validation are 

summarized in Table 3. For each step, 20 samples were used as the training set, while the 

other 4 were used as the validation set. The second column indicates the distribution of the 

numbers of false predictions obtained with each of the 150 predictors in the “inner level” 

cross-validation based on the 20 patients of the training set. The third column gives the lowest 

numbers of informative genes and nearest neighbors that yielded the lowest number of false 

predictions for “inner level” leave-one-out cross-validation. These parameter values were 

used to build the prognosis predictor based on the training set of size 20. This predictor was 

applied to assign a prognosis to each of the 4 patients of the validation set. The false 

prediction rates, obtained for each of the 6 steps, are given in the fourth column. The average 

of these 6 false prediction rates (21%) provides an estimate of the accuracy of our proposed 

prognosis predictor (79%).  
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Discussion 

 

The results of the present study clearly suggest the possibility to build a prognosis 

predictor based on non-neoplastic mucosa gene expression profiles for stage II colon cancer 

patients. To our knowledge, this is the first time that such a conclusion is reported. Wang et 

al. [9] have proposed an accurate prognosis predictor for stage II colon cancer patients, but 

based on tumor gene expression profiles. Non-neoplastic colonic mucosa profiles have 

already been studied, but only to compare them to tumor profiles [14-17]. 

 

Studies aiming to propose a predictor, for either diagnosis or prognosis purposes, are 

usually designed as follows: samples are split into a training set and a validation set; 

informative genes are selected based on the training set, using some arbitratory rule; the 

resulting predictor is assessed on the validation set. The design of the present study, which 

includes two distinct rounds of cross-validation with different aims, needs to be explained. 

The first part concerns the selection of a predictor using cross-validation, while the second 

aims to estimate the generalization error of the selected predictor. The k-nearest neighbor 

classifier was chosen because it has been shown to be competitive with more complex 

approaches, such as aggregated classification trees and support vector machines [18,19]. The 

main parameters of this classifier, namely the numbers of informative genes m and nearest 

neighbors k, were not chosen a-priori but using cross-validation in the first part of the study. 

Specifically, 150 different pairs of parameters were considered and the performance of 

each was assessed using leave-one out cross-validation. Even this first part mainly aimed to 

select the predictor parameters, it also allowed to draw some informations about the stability 

of non-neoplastic mucosa-based prognosis predictors, i.e., the sensitivity of prediction error to 

the parameters (m, k). With a few informative genes (50 and less), predictor performance was 
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inversely proportional to the number of genes. With more informative genes, the prediction 

error rate seemed to stabilise.         

Based on results of the first part, a 65-gene prognosis predictor was built on the whole 

set of patients. When proposing a predictor, it is important to provide an estimate of its 

accuracy. As a second set of independent samples was not available, a double cross-validation 

design was used with an “inner level” leave-one-out cross-validation, for parameter selection,  

and an “outer level” 6-fold cross-validation, for performance assessment of the selected 

predictor. In order to obtain an honnest estimate of generalization error, it is crucial that all 

aspects of predictor selection be included in the cross-validation process. Thus, for each of the 

6 steps of the “outer level” cross-validation, we reproduced exactly what had been done in the 

first part of the study with an “inner level” cross-validation: i) selection of the parameters (m, 

k) yielding the best results by leave-one-out cross-validation, ii) use of this information to 

build a predictor based on the 20 patients. Note that the estimate of the generalization error, 

obtained by averaging the estimates of the “outer level” cross-validation, should be 

conservative, since it is computed based on sets of 20 patients (instead of 24). Thus, one may 

be confident that the accuracy of the proposed predictor is not over-estimated.  

 

Wang et al. [9] reported a 78% accuracy in predicting the prognosis of stage II colon 

cancer patients with a predictor based on tumor gene expression profiles, while our predictor, 

based on non-neoplastic mucosa gene expression profiles, yielded a similar estimated 

accuracy  (79%). The question of whether one should build a prognosis predictor based on 

tumor or non-neoplastic mucosa gene expression profiles immediately arises. In the present 

study, the paired tumor samples were not profiled since the aim was not to compare both 

predictors but to assess non-neoplastic mucosa-based predictors. However, in future studies, it 

would be of interest to compare the performances of both kinds of predictors. From a practical 
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point of view, the non-neoplastic mucosa represents an homogeneous pathological sample, 

while the tumor includes both tumoral and non-tumoral cells. The use of non-neoplastic may 

though avoid the need of laser-capture microdissection.   

Despite the major difference in tissue material, the present study and that of Wang et 

al. [9] share an important conclusion: gene expression profiling is able to predict, with a great 

accuracy, the long-term postoperative outcome of stage II colon cancer patients. Thus, by 

identifying a subgroup of patients at high risk of recurrence, gene expression profiling may be 

used for postoperative therapeutical indications. To date, there is not enough evidence to 

claim that adjuvant chemotherapy should be given or not, based on gene expression profiles. 

But, initially, these profiles may be helpful for clinical studies assessing chemotherapy in 

stage II colon cancer patients: instead of including all these patients, these studies may be 

designed to include only patients identified as having a high risk of recurrence, thus more 

likely to benefit from adjuvant chemotherapy. 

  

Interestingly, genes included in the proposed predictor are not cancer genes or genes 

encoding elements of the adhesion system, migration or proteolysis, but rather suggest 

branching signal transduction pathways with possible extensive networks between individual 

pathways and between cells themselves. For example, in the non-neoplastic mucosa of 

patients who recurred, we have observed an over-expression of two membrane receptors, 

annexin 2, and transmembrane protein 4, previously shown to be involved in tumor invasion 

[20-22]. Conversely, in the mucosa of patients who did not recur after a follow-up of 5 years, 

we have observed an increased expression of some genes already reported to induce tumor 

cell invasion: basigin, known to stimulate production of matrix metalloproteinases by 

fibroblasts [23,24]; a member of transmembrane protein 4 [21,22]; and CD24 [25]. CD24 is a 

mucin-like cell surface molecule on human neutrophils, pre-lymphocytes, and many epithelial 
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tumors. Its over-expression in some epithelial tumors, frequently associated with a high tumor 

grade, has suggested its prognostic value as a routine marker [25]. However, an absence of 

expression of CD24 mRNA has also been observed in invasive mammary carcinoma derived 

cells compared to non invasive cells [26]. The role of CD24 in the dissemination of tumor 

cells could be due to different pathophysiological processes according to its cellular 

localization. Indeed, it has been described to facilitate the interactions with P-selectin in 

platelets or endothelial cells [27,28] and to regulate T-cell proliferation in lymphopenic host 

[29]. Recently, the role of CD24 signaling in the mitochondrial regulation of apoptosis has 

also been shown [30].  

The over-expression of CD24 in the mucosa of patients who remained disease-free 

was associated with over-expressions of the major histocompatibility complex and a member 

of the forkhead box, a family of transcription factors recently shown to play a crucial role in 

the immune system [31]. Emerging evidences suggest that epigenetic events associated with 

tumor development and progression, such as deregulated methylation of CpG dinucleotides 

and aberrant histone acetylation, may impair the immunogenic potential of cancer cells. A 

central question in cancer immunology remains how the additional genetic alterations, both in 

primary tumor and in the stromal cells, and the inherent proinflammatory processes can 

activate tumoral immunity and thus induce immune tolerance. Thus, although the role of the 

abnormal expression of these genes was not clearly defined as pro- or anti-invasive, our 

results emphasize that the immune response, to promote the survival or the death of malignant 

cells, is not restricted to immune cells that infiltrate tumors. The recruitment of cells distant 

from the primary tumor could constitute a possible mechanism for the presence of lymph-

node metastases in some solid tumors such as colorectal cancers.  

The over-expression of genes coding for membrane receptors coupled with signal 

transduction, such as G protein-coupled-receptor and protein kinases, transcription factors and 

Hosted by The Berkeley Electronic Press



members of cellular proteolysis systems, such as the Cop9 signalosome and 26S proteasome, 

suggests an important cross talk between cells, probably connecting the initial events, e.g. 

activation of receptors, to the activation of gene expression in the nucleus. The activation of 

signalling pathways has been already shown to play a central function in invasion–related 

cellular activities determining the cells response to extrinsic or intrinsic modulators [32].  

  

In conclusion, the present study clearly suggests the possibility to build a prognosis 

predictor, based on non-neoplastic mucosa gene expression profiles for stage II colon cancer 

patients. It also raises questions regarding the role of the so-called “normal mucosa” 

surrounding the tumor. Genomic alterations in epithelial cells which lead to primary tumors 

may disturb the molecular cross-talk between cancer cells and the underlying stroma. This 

conversation may be relayed by other host cells distant from the primary tumors, these cells 

presenting normal phenotype and thus allowing an adaptated signalling. Several questions 

remain to be elucidated. One of these is to determine whether normal cells distant from the 

tumors are contacted to stop and repair or to help the cancer cell invasion.  
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Table 1. Over-expressed genes in patients who developped a recurrence 
 

Affy probeID Gene Name GenBank 
Accession Number 

207074_s_at 
213800_at 
208942_s_at 
202141_s_at 
 
206884_s_at 
201606_s_at 
213503_x_at 
203536_s_at 
202341_s_at 
211023_at 
202013_s_at 
210427_x_at 
212836_at 
208093_s_at 
 
201067_at 
201590_x_at 
213399_x_at 
218976_at 
201543_s_at 
202857_at 
202723_s_at 
209045_at 
220841_s_at 
218135_at 
214307_at 
207651_at 
204017_at 
 
211406_at 
218257_s_at 
219553_at 
 
212342_at 
222122_s_at 
221766_s_at 
201658_at 
217868_s_at 
201077_s_at 
 
205141_at 
205342_s_at 
216228_s_at 
222140_s_at 
208095_s_at 
213491_x_at 
202747_s_at 
201822_at 
 

Solute carrier family 18 (vesicular monoamine), member 1 
complement factor H 
translocation protein 1 
COP9 constitutive photomorphogenic homolog subunit 8 
(Arabidopsis) 
Sciellin 
nuclear phosphoprotein similar to S. cerevisiae PWP1 
annexin A2 
WD40 protein Ciao1 
tripartite motif-containing 2 
pyruvate dehydrogenase (lipoamide) beta 
exostoses (multiple) 2 
annexin A2 
polymerase (DNA-directed), delta 3, accessory subunit 
nudE nuclear distribution gene E homolog like 1 (A. 
nidulans) 
proteasome (prosome, macropain) 26S subunit, ATPase, 2 
annexin A2 
ribophorin II 
DnaJ (Hsp40) homolog, subfamily C, member 12 
 
transmembrane protein 4 
forkhead box O1A (rhabdomyosarcoma) 
X-prolyl aminopeptidase (aminopeptidase P) 1, soluble 
Abelson helper integration site 
PTX1 protein 
homogentisate 1,2-dioxygenase (homogentisate oxidase) 
G protein-coupled receptor 171 
KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein 
retention receptor 3 
immediate early response 3 interacting protein 1 
UDP-glucose ceramide glucosyltransferase-like 1 
non-metastatic cells 7, protein expressed in (nucleoside-
diphosphate kinase) 
hypothetical protein MGC21416 
THO complex 2 
family with sequence similarity 46, member A 
ADP-ribosylation factor-like 1 
DORA reverse strand protein 1 
NHP2 non-histone chromosome protein 2-like 1 (S. 
cerevisiae) 
angiogenin, ribonuclease, RNase A family, 5 
sulfotransferase family, cytosolic, 1C, member 1 
WD repeat and HMG-box DNA binding protein 1 
G protein-coupled receptor 89 
signal recognition particle 72kDa 
ribophorin II 
integral membrane protein 2A 
translocase of inner mitochondrial membrane 17 homolog A 
(yeast) 

NM_003053 
X04697 
BE866511 
BC003090 
 
NM_003843 
BE796924 
BE908217 
NM_004804 
AA149745 
AL117618 
NM_000401 
BC001388 
D26018 
NM_030808 
 
BF215487 
NM_004039 
AI560720 
NM_021800 
NM_020150 
NM_014255 
AW117498 
AF195530 
NM_017651 
NM_016570 
AI478172 
NM_013308 
NM_006855 
 
AF119875 
NM_020120 
NM_013330 
 
BG500611 
BG403671 
AW246673 
AU151560 
NM_016025 
AF155235 
 
NM_001145 
AF026303 
AK001538 
AK021758 
NM_001222 
AL514285 
NM_004867 
NM_006335 
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Table 2. Over-expressed genes in patients who remained disease-free 
 
 
 
Affy probeID Gene Name GenBank 

Accession Number 
209771_x_at 
205170_at 
215833_s_at 
216379_x_at 
210622_x_at 
208651_x_at 
266_s_at 
207980_s_at 
 
202242_at 
200661_at 
213827_at 
208156_x_at 
210079_x_at 
 
211065_x_at 
209357_at 
 
216103_at 
218862_at 
208677_s_at 
211799_x_at 
200646_s_at 
217310_s_at 
 

CD24 antigen (small cell lung carcinoma cluster 4 antigen) 
signal transducer and activator of transcription 2, 113kDa 
SPPL2b 
KIAA1919 
cyclin-dependent kinase (CDC2-like) 10 
CD24 antigen (small cell lung carcinoma cluster 4 antigen) 
CD24 antigen (small cell lung carcinoma cluster 4 antigen) 
Cbp/p300-interacting transactivator, with Glu/Asp-rich 
carboxy-terminal domain, 2 
transmembrane 4 superfamily member 2 
protective protein for beta-galactosidase (galactosialidosis) 
sorting nexin 26 
epiplakin 1 
potassium voltage-gated channel, shaker-related 
subfamily, beta member 1 
phosphofructokinase, liver 
Cbp/p300-interacting transactivator, with Glu/Asp-rich 
carboxy-terminal domain, 2 
thioesterase, adipose associated 
ankyrin repeat and SOCS box-containing 13 
basigin (OK blood group) 
major histocompatibility complex, class I, C 
nucleobindin 1 
forkhead box J3 

AA761181 
NM_005419 
AC004410 
AK000168 
AF153430 
M58664 
L33930 
NM_006079 
 
NM_004615 
NM_000308 
AL137579 
NM_031308 
U16953 
 
BC006422 
AF109161 
 
AB014607 
NM_024701 
AL550657 
U62824 
NM_006184 
AK027075 
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Figure 1. Distribution of the numbers of false predictions. 

 

 
 

A total of 150 prognosis predictors - 50 possible values for the number m of informative 

genes (m = 5, 10, …, 250), 3 possible values for the number k of nearest neighbors (k = 1, 3, 

and 5) - were considered and their performance assessed using leave-one-out cross-validation. 

Figure 1 shows the distribution of the numbers of false predictions (out of 24) obtained with 

each of these 150 predictors. 
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Figure 2. Number of false predictions.  
 
 

 
Figure 2 shows the number of false predictions as a function of the number m of informative 

genes (x-axis) and the number k of nearest neighbors (y-axis). In these pseudo-color images, 

colored rectangles indicate the number of false predictions, with yellow (black) corresponding 

to the lowest (highest) numbers of errors. 
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