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Abstract

This is a compilation of current and past work on targeted maximum likelihood
estimation. It features the original targeted maximum likelihood learning paper as
well as chapters on super (machine) learning using cross validation, randomized
controlled trials, realistic individualized treatment rules in observational studies,
biomarker discovery, case-control studies, and time-to-event outcomes with cen-
sored data, among others. We hope this collection is helpful to the interested
reader and stimulates additional research in this important area.
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Chapter 1

Introduction

We have received many requests for centralized reading material on targeted maximum
likelihood estimation. While we are in the process of writing a book on these methods, we
decided that it might be helpful to bundle most of our current papers on this topic and post
them on http://www.bepress.com/ucbbiostat. In this introductory chapter we present the
statistical foundation for targeted maximum likelihood estimation, practical implications of
targeted maximum likelihood estimation in randomized controlled trials and observational
studies, a comparison to estimating function equation methodology, a methods summary
for the applied researcher, and an outline of the papers in this compilation. We hope that
Readings in Targeted Maximum Likelihood Estimation is helpful to the interested reader and
stimulates more research in this important area.

Statistical Foundation for Targeted Maximum

Likelihood Estimation

For the sake of context, let’s consider the case that one observed n i.i.d. copies of a random
variable O with probability distribution P0, and suppose that one is concerned with esti-
mation and inference for a particular target parameter Ψ(P0) of this true data generating
distribution P0. Targeted maximum likelihood estimation in semiparametric models for P0

is the extension of maximum likelihood estimation in parametric models. Three key ingre-
dients are needed for this extension. Firstly, one needs to define the parameter of interest
nonparametrically (or semiparametrically) as a function of the data generating distribution
varying over the (large) semiparametric model . Many practitioners are used to thinking
of their parameter in terms of a regression coefficient, but that luxury is not available in
semi or nonparametric models. Instead, one has to carefully think of what feature of the
distribution of the data one wishes to target.

Secondly, one needs to estimate the true distribution P0, or at least, its relevant factor
or portion as needed to evaluate the target parameter, and this estimate should respect the
actual semiparametric model. As a consequence, nonparametric maximum likelihood esti-
mation is often ill defined or results in a complete overfit, and thereby results in too variable
estimators of the target parameter. Therefore, sensible estimation procedures involve putting
breaks on algorithms that aim to maximize the log-likelihood (e.g., using greedy algorithms,
and a sieve representing a sequence of submodels of the semiparametric model), and then fine
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Chapter 1. Introduction

tune the choice of these brakes. We use cross-validation to select these fine tuning parameters.
One can come up with a large collection of equally appropriate algorithms and fine tuning
parameters, resulting in a library of candidate estimators of the distribution of the data. Our
research papers on cross-validation, starting in 2003 (Unified Cross-Validation Methodology
For Selection Among Estimators and a General Cross-Validated Adaptive Epsilon-Net Es-
timator: Finite Sample Oracle Inequalities and Examples), have focused on understanding
the properties of the cross-validation selector for any type of loss function, including the
log-likelihood loss function. The theoretical results obtained for the cross-validation selector
in this paper have inspired us to propose a general super learning methodology for esti-
mation of distributions of the data, or factors of the distributions of the data. This super
learning methodology takes as input a library of candidate estimators of the distribution of
the data, and then uses cross-validation to determine the best weighted combination of these
estimators. It is assumed or arranged that the loss function is uniformly bounded so that
our oracle results for the cross-validation selector apply. The super learning methodology
results now in an estimator of the distribution of the data that will be inputted as an initial
estimator in the targeted maximum likelihood procedure. This initial estimator is optimized
with respect to (w.r.t.) a global loss function such as the log-likelihood loss function, and is
thereby not targeted towards the target parameter, ψ0. That is, it will be too biased for ψ0

due to a bias variance trade-off w.r.t to the more ambitious full P0 instead of having used a
bias-variance trade-off w.r.t ψ0. The targeted maximum likelihood step is tailored to remove
bias due to the non-targeting.

The targeted maximum likelihood step involves now updating of this initial (super learn-
ing based) estimator of P0 to tailor its fit to estimation of the target Ψ(P0). This is carried
out by determining a fluctuation function applied to the initial estimator with a fluctu-
ation parameter ε, where fitting ε is the (asymptotic) equivalent of fitting Ψ(P0) in the
semi-parametric model. One now estimates ε with maximum likelihood estimation (like
maximum likelihood estimation in a parametric model), and updates the initial estimator
accordingly. If needed, this updating step is iterated till convergence, and the final update
P̂ ∗ is called the targeted maximum likelihood estimator of P0, while the resulting substitu-
tion estimator Ψ(P̂ ∗) of Ψ(P0) is the targeted maximum likelihood estimator of ψ0. This
targeted maximum likelihood step uses maximum likelihood fitting of the data to obtain a
bias reduction for the target Ψ(P0).

An important feature of the targeted maximum likelihood estimator is that it solves the
efficient influence curve/score equation: if D∗(P ) is the efficient influence curve at P , and
P̂ ∗ is the targeted maximum likelihood estimator of P0, then

0 =
n∑
i=1

D∗(P̂ ∗)(Oi).

This can then be used to establish that targeted maximum likelihood estimator is asymp-
totically efficient if the initial estimator is consistent, and remarkably robust in the sense
that for many data structures and semiparametric models, the targeted maximum likelihood
estimator of ψ0 remains consistent even if the initial estimator is inconsistent. In particular,
in censored data and causal inference models, the targeted maximum likelihood estimator
is a so called double robust estimator: in such semiparametric models the density dP̂ ∗ of
targeted maximum likelihood estimator P̂ ∗ can be factorized as dP̂ ∗ = Q̂∗ĝ∗, where ĝ∗ is the
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Chapter 1. Introduction

estimator of the censoring and treatment mechanism, and the targeted maximum likelihood
estimator Ψ(Q̂∗) of ψ0 = Ψ(Q0) is consistent if either Q̂∗ or ĝ∗ is consistent.

Practical Implications of Targeted Maximum

Likelihood Estimation

The double robustness of the targeted maximum likelihood estimator has important impli-
cations for both the analysis of randomized clinical trials as well as observational studies. In
a randomized clinical trial (RCT) the treatment assignment process is known, and it is often
assumed that missingness or drop-out is non-informative. When this assumption holds, the
ĝ, comprising the treatment and censoring mechanism, is always correctly estimated, and
therefore the targeted maximum likelihood estimator will provide valid type-I error control
and confidence intervals for the causal effect of the investigated treatment. Moreover, the
use of targeted maximum likelihood estimation often results in efciency gains with respect to
the unadjusted estimator commonly employed in the analysis of RCT data. There are two
reasons for this. First, the unadjusted estimator is restricted to considering only complete
cases, ignoring observations where the outcome is missing. The targeted maximum likelihood
approach integrates over all observations. Second, targeted maximum likelihood estimation
can exploit information in measured baseline and time-dependent covariates. This allows for
bias reduction due to empirical confounding. Perhaps more importantly, it naturally adjusts
for drop-out/missingness as well, and can also be used to assess the estimate of the effect
of treatment under non-compliance. Unlike an unadjusted estimator, targeted maximum
likelihood estimation does not rely on an assumption of non-informative missing/drop-out.
Pre- specication of the targeted maximum likelihood estimator in the statistical analysis plan
allows for appropriate adjustment by measured confounders while avoiding the possible in-
troduction of bias should that decision be based on human intervention. Therefore, targeted
maximum likelihood estimators can be used for both the efcacy as well as the safety analysis
in Phase II, III, IV clinical trials.

As a simple example of the potential gain in efficiency obtained with targeted maximum
likeihood estimation, the relative efficiency of the targeted maximum likelihood estimator
relative to the unadjusted estimator of the causal additive risk in a standard randomized
control trial with two arms, no missingness or censoring, is given by 1 minus the R-square
of the regression of the clinical outcome Y on the baseline covariates W implied by the
targeted maximum likelihood fit of the regression of Y on the binary treatment and baseline
covariates. That is, if the baseline covariates are predictive, one will gain efficiency, and one
can predict the amount of improvement from the actual regression fit. This does not take
into account the additional savings obtained by the bias reduction of the targeted maximum
likelihood estimator relative to the unadjusted estimator. That is, in randomized controlled
trials, including sequentially randomized controlled trials, one can still fully respect the
likelihood of the data and obtain fully efficient and unbiased estimators, without taking the
risk of bias due to model misspecification (which has been the sole reason for the application
of inefficient unadjusted estimators). On the contrary, the better one fits the models, as can
be evaluated with the cross-validated log-likelihood, the more bias reduction and efficiency
gain will have been achieved.
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Chapter 1. Introduction

In both randomized trials and observational studies, the utilization of efficient and max-
imally unbiased estimators is extremely important. One cannot analyze the effect of high
dose of a drug on heart attack in a post-market safety analysis using parametric logistic re-
gression or Cox-proportional hazards models, and put much trust in a p-value. It is already
a priori known that these models are biased and that the effect estimate will be estimating
this bias, so that under the null hypothesis of no treatment effect, the resulting test statistic
will reject the null hypothesis wrongly with probability tending to 1 as sample size increases.

As a consequence, the only alternative is to use semiparametric models that acknowl-
edge what is known and what is not known, and use robust and efficient estimators in a
semiparametric model. Given such infinite dimensional semiparametric models, we need to
employ machine learning, and, in fact, as theory suggests, we should not be married to one
particular machine learning algorithm, but let the data speak by using super learning. That
is, one cannot foresee what kind of algorithm should be used, but one should build a rich
library of approaches, and use cross-validation to combine these estimators into an improved
estimator that adapts the choice to the truth. In addition, again, as theory teaches us, we
have to target the fit towards the parameter of interest, to remove bias for the target param-
eter, and to improve the statistical inference based on the central limit theorem. Targeted
maximum likelihood estimation combined with super learning provides such an approach,
while we maintain the log-likelihood as the principle criterion.

Targeted maximum likelihood estimation distinguishes from estimating equation method-
ology (e.g., see the book Unified Methods for Censored Longitudinal Data and
Causality, van der Laan and Robins, 2003) and (regularized) maximum likelihood esti-
mation, but it also inherits the good properties of both. Targeted maximum likelihood
estimation distinguishes from nonparametric or regularized maximum likelihood estimation
by fully utilizing the power of cross-validation (super learning) to fine-tune the bias-variance
trade-off w.r.t. the distribution P0 of the data , thereby increasing adaptivity to the true P0,
and by targeting the fit to remove bias w.r.t. ψ0. In particular, it achieves higher rates of
convergence for P0 itself, higher efficiency due to better fit of true P0, or even higher rates
of convergence for ψ0, it is less biased for ψ0 due to the targeted maximum likelihood step,
and, as a bonus, the statistical inference based on the central limit theorem is also heavily
improved relative to just using a regularized maximum likelihood estimator.

Just as an example illustrating that a regularized maximum likelihood estimator is not
targeted towards the target, a typical machine learning algorithm for prediction might not
select the treatment variable so that the resulting treatment effect or variable importance
equals zero. Such an estimate is not helpful, and follows a heavily non-normal distribution
(it will have a pointmass at zero). Similarly, a kernel density estimator with an optimally
selected bandwidth (e.g., based on likelihood based cross-validation) will result in a survival
function with a bias that converges to zero at a slower rate than 1/

√
n (n is sample size),

so that the substitution estimator of a survival function at a point based on this optimal
kernel density estimator will have an asymptotic relative efficiency of zero (!) relative to the
simple empirical survival function. However, if we apply the targeted maximum likelihood
estimation step to the kernel density estimator, then the resulting targeted maximum like-
lihood estimator of the survival function is efficient, and it would also have been efficient if
the kernel density estimator would be replaced by a wrong guess of the true density. The
point is: the best estimator of a density is not a good enough estimator of a smooth feature
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of the density, but the targeted maximum likelihood estimation step takes care of this.

Advantages over Estimating Equation Methods

In comparison with locally efficient estimating equation methodology (e.g., augmented IPCW-
estimator in causal inference and censored data models) the locally efficient targeted maxi-
mum likelihood estimation, has the following advantages:

No need for estimating function: The estimating equation methodology relies on repre-
senting the efficient score/influence curve D∗(P ), the so called canonical gradient of the
pathwise derivative of the parameter Ψ at P , as an estimating function in the param-
eter ψ of interest, and nuisance parameters: D∗(P ) = D(Ψ(P ), η(P )). This restricts
the estimating equation methodology to parameters for which such a representation of
an efficient influence curve D∗(P ) = D(Ψ(P ), η(P )) is possible. This is an important
and unnecessary restriction.

Targeted maximum likelihood estimation uses the efficient influence curve D∗(P ) at
P to define the fluctuation function applied to an initial P . This does not require
that the efficient influence curve, D∗, also be an estimating function. Therefore tar-
geted maximum likelihood estimation can still be used in situations where estimating
equation methodology cannot be applied due to the efficient influence curve not being
an estimating function in the parameter of interest, such as, for example, when the
parameter of interest is a nonparametric extension of the log-rank parameter.

Respects global constraints of model: The targeted maximum likelihood estimator of
ψ0 is obtained by substitution of an estimator P̂ ∗ in the model into the parameter
mapping Ψ(). As a consequence, it respects the knowledge of the model.

On the other hand, an estimator of ψ0 that is obtained as a solution of an estimating
equation such as 0 =

∑
iD

∗(ψ, η̂)(Oi) is often not a substitution estimator: i.e., it
cannot be written as Ψ(P̂ ) for a specified estimator P̂ in the model. To be specific,
suppose one wishes to estimate the treatment specific mean EY (1) = EWE(Y | A =
1,W ) based on n i.i.d. copies of (W,A, Y ), Y being binary. Then the estimator ψn
solving the efficient influence curve estimating equation (i.e., the augmented IPTW-
estimator) can fall outside the range [0, 1], due to inverse probability of treatments
being close to zero. This results in a loss of efficiency and truncation of the estimate
has its own obvious problems. On the other hand, the targeted MLE of EY (1) will
still be between [0, 1].

No need to deal with multiple solutions of the estimating equation: When defining
an estimator as a solution of the efficient score/influence curve estimating equation,
one often ends up having to solve non-linear equations that can have multiple solu-
tions. The estimating equation itself provides no information on how to select among
these candidates for estimation of ψ0. One can also not use the likelihood since these
estimators cannot be represented as Ψ(P̂ ) for some P̂ , i.e., these are not substitution
estimators. This goes back to the basic fact that estimating functions (such as the
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efficient score) might not identify the target parameter, and, even if they do, the cor-
responding estimating equation might not uniquely identify an estimator for a given
sample.

Targeted maximum likelihood estimation does not aim to solve an estimating equation
and is therefore not affected by this problem.

Log-likelihood of targeted MLE provides direct measure of fit: Consider the exam-
ple O = (W,A, Y ) and ψ0 = EY (1), as above. Let Q0 denote the conditional prob-
ability distribution of Y , given (A,W ), and the marginal probability distribution of
W , and let g0 denote the conditional probability distribution of A, given W . We have
ψ0 = Ψ(Q0) is only a parameter of this Q0-factor of the density of P0. Given an initial
estimator ĝ, Q̂, a targeted maximum likelihood estimator is defined as Ψ(Q̂∗) while an
augmented IPTW estimator is defined as the solution in ψ of 0 =

∑
iD

∗(ψ, Q̂, ĝ)(Oi).
A targeted maximum likelihood can use the log-likelihood fit (i.e., cross-validated) of
Q̂∗ as a measure of performance of the targeted maximum likelihood estimator of ψ0.
However, the augmented IPTW-estimator cannot be evaluated by the log-likelihood
fit of Q̂, since ĝ is also having an important impact on the estimator. So one might
wish to evaluate the performance by evaluating the log-likelihood fit of both Q̂ and ĝ,
but the log-likelihood of g is non-informative for parameters of Q0 due to factoriza-
tion dP0 = Q0g0 of the density dP0 of P0. So one would be using a criterion that is
responding to irrelevant features in the data that have nothing to do with estimation
of ψ0. The fact that the estimating equation methodology does not provide a sensible
criterion for selecting an estimator of g0 makes the estimators rely on subjective choices
and makes it hard to define a sensible a priori specified estimator.

This happens to be a very helpful advantage of the targeted maximum likelihood
estimator. In particular, it allows one to fine tune the ĝ (e.g., variable selection,
truncation constant) for the sake of applying the fluctuation function to Q̂ in the
targeted maximum likelihood step, based on the log-likelihood of the corresponding
targeted maximum likelihood estimator Q̂∗. Due to this feature, we can also fully
exploit the oracle properties of the cross-validation selector based on the loss function
− logQ for Q0 to also make choices about how to estimate g0 for the sake of making
the targeted maximum likelihood step most effective. This inspired the collaborative
targeted MLE extension (van der Laan and Gruber, 2009). In particular, it made clear
that the estimation of g0 as required to evaluate the targeted maximum likelihood step
should take place in collaboration with the estimation of Q0.

Methodology Summary

Targeted maximum likelihood estimation is a two-step procedure where one first obtains an
estimate of the data-generating distribution P0. The second stage updates this initial fit in a
step targeted towards making an optimal bias-variance trade-off for the parameter of interest
Ψ(P0), instead of the overall density P0. The procedure is double robust and can incorpo-
rate data-adaptive likelihood based estimation procedures to estimate the data-generating
distribution and the treatment mechanism. The double robustness of targeted maximum
likelihood estimation has important implications in both randomized controlled trials and
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observational studies, with potential reductions in bias and gains in efficiency. There are also
significant advantages to targeted maximum likelihood estimation methodology over the use
of estimating equation methods.

Additionally, we refer readers to Appendix A for an introductory tutorial on targeted
maximum likelihood estimation. This Appendix, complete with R code, aims to provide
the reader with understanding sufficient to implement a basic version of targeted maximum
likelihood estimation. It may be a good starting point for those less familiar with the concepts
discussed previously in this introduction.

Outline of the Collection

The papers bundled in Readings in Targeted Maximum Likelihood Estimation are some of
the fruits of our research over the past years. Chapter 2 is the original paper Targeted
Maximum Likelihood Learning (van der Laan and Rubin, 2006) which provides a compre-
hensive introduction to targeted maximum likelihood estimation, theoretical development,
and resulting procedures for the estimation of causal inference, variable importance, and
other parameters of interest.

Chapter 3 is titled “Super (Machine) Learning using Cross Validation.” It has two
parts. The first part, Super Learner (van der Laan, et al., 2007), proposes an algorithm
for constructing a super learner which uses cross-validation to select weights to combine
an initial set of candidate estimators, where the true target (typically a function, such
as a conditional density, conditional hazard, regression) is defined as a minimizer of the
expectation under the observed data distribution P0 of a loss function of O and a can-
didate value for the target. For example, the target could represent the whole distribu-
tion of the data, a factor of this distribution, an identifiable part of the distribution of
the full underlying data, a regression, a median regression, a conditional hazard, a causal
dose response curve, and so on. The second part of Chapter 3, Loss-Based Cross-Validated
Deletion/Substitution/Addition Algorithms in Estimation (Sinisi and van der Laan, 2004),
describes loss-based learning based on cross-validation in the context of regression. This pa-
per discusses the Deletion/Substitution/Addition (DSA) algorithm, which is a data-adaptive
model selection procedure based on cross-validation and uses polynomial basis functions to
search through a parameter space of potential regression functions. This function is available
as an R-package. It illustrates concretely how cross-validaiton is used to make a variety of
choices when fitting a regression.

Chapter 4 features Collaborative Double Robust Targeted Penalized Maximum Likeli-
hood Estimation (van der Laan and Gruber, 2009). It establishes a new collaborative double
robustness result for the targeted maximum likelihood estimator, and, in order to exploit this
collaborative robustness, refines the standard targeted maximum likelihood estimation pro-
cedure by refining the targeted maximum likelihood step. This involves utilizing likelihood-
based cross-validation to select among different targeted maximum likelihood steps possibly
indexed by different sets of confounders for the treatment/censoring mechanism, thereby
yielding maximally effective bias reduction. We show that if the initial estimator converges
fast, then the collaborative targeted maximum likelihood estimator can even be super effi-
cient. It also presents a strategy to penalize the log-likelihood to make the log-likelihood
of the targeted maximum likelihood estimation more targeted in the context of sparse data
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(i.e., lack of practical identifiability of the target parameter ψ0), which results in unstable
targeted maximum likelihood steps.

Chapter 5, titled “Randomized Controlled Trials,” is concerned with targeted maxi-
mum likelihood estimation in randomized controlled trials. Firstly, we present Covariate
Adjustment in Randomized Trials with Binary Outcomes: Targeted Maximum Likelihood
Estimation (Moore and van der Laan, 2008), which includes simulation studies assessing
potential gains in efficiency one can achieve by having predictive baseline covariates. The
targeted maximum likelihood estimator for the data structure O = (W,A,∆,∆Y ) is pre-
sented, where W denotes baseline covariates, A treatment, ∆ indicator of observing the
clinical outcome Y . The paper Selecting Optimal Treatments Based on Predictive Factors
(Polley and van der Laan, 2009) shows how one can use super learning and targeted max-
imum likelihood to assess effect modification in clinical trials, one factor at the time, or
for estimating the treatment effect as a function of a whole set of baseline covariates. In
particular, it allows one to estimate the optimal treatment decision in response to baseline
characteristics. The paper Simple, Efficient Estimators of Treatment Effects in Randomized
Trials Using Generalized Linear Models to Leverage Baseline Variables (Rosenblum and van
der Laan, 2009) illustrates that the results for the targeted maximum likelihood estima-
tor prove that misspecified generalized linear regression models provide valid estimates of
marginal causal effects in randomized controlled trials. That is, these misspecified regression
estimators represent particular implementations of the targeted maximum likelihood esti-
mator in randomized controlled trials, and are thereby guaranteed to be consistent for the
target.

Chapter 6 features Estimating the Effect of Vigorous Physical Activity on Mortality in
the Elderly Based on Realistic Individualized Treatment and Intention-to-Treat Rules (Be-
mbom and van der Laan, 2007), which presents a practical illustration of the importance
of realistic individualized treatment rules in causal inference. It applies targeted maximum
likelihood estimation to estimate these causal effects defined by realistic treatment rules in
populations where certain levels of treatment are unlikely to be observed in some individuals.
Since this is the first application of targeted maximum likelihood estimation to estimate the
effect of individualized treatment rules we included this paper in this particular collection of
readings, although, we have earlier work (van der Laan and Petersen, 2006, among others)
on realistic rules for multiple time-point treatment interventions, but these previous papers
apply the IPCW-estimator.

Chapter 7, “Biomarker Discovery,” concerns the application of targeted maximum like-
lihood estimation in biomarker discovery. The paper Targeted Methods for Biomarker Dis-
covery, the Search for a Standard (Tuglus, van der Laan, 2008) proposes targeted maximum
likelihood estimators of variable importance (tVIM) as a standardized method for biomarker
discovery. In this paper we focus on variable importance analysis of possibly continuous
variables, exploiting the semiparametric regression model to define variable importance.
Simulations and data analyses are used to illustrate the benefits achieved in biomarker dis-
covery relative to current approaches for variable importance analyses (univariate regression,
random forest, lars). The paper Biomarker Discovery using Targeted Maximum Likelihood
Estimation: Application to the Treatment of Antiretroviral Resistant HIV Infection (Bem-
bom, et al., 2008) discusses and implements targeted maximum likelihood estimation for
variable importance for a set of candidate binary biomarkers such as mutations or single
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Chapter 1. Introduction

nucleotide polymorphisms. The paper Data-adaptive Selection Of The Adjustment Set In
Variable Importance Estimation (Bembom, et al., 2008) introduces an algorithm intended
to make variable importance estimation more robust with respect to violations of the ex-
perimental treatment assignment assumption. This algorithm is applied to a dataset in an
effort to identify mutations in the protease enzyme of HIV that have an effect on virologic
response to the commonly used antiretroviral drug lopinavir.

Chapter 8, “Case-Control Studies,” presents targeted maximum likelihood estimation,
and, in particular, targeted likelihood based causal inference for case-control studies. The pa-
per Estimation Based on Case-Control Designs with Known Prevalance Probability (van der
Laan, 2008) provides a comprehensive introduction to case-control weighted targeted maxi-
mum likelihood estimation theory for case-control study designs. Simple Optimal Weighting
of Cases and Controls in Case-Control Studies (Rose and van der Laan, 2008) implements
case-control weighted targeted maximum likelihood estimation for independent case-control
study designs, and compares this methodology to existing methods. The paper Why Match?
Investigating Matched Case-Control Study Designs with Causal Effect Estimation (Rose and
van der Laan, 2009) discusses the use of matching in case-control study designs. In partic-
ular, it compares the efficiency of matched case-control study designs to independent study
designs in varied situations using case-control weighted targeted maximum likelihood esti-
mation. Lastly, Causal Inference for Nested Case-Control Studies using Targeted Maximum
Likelihood Estimation (Rose and van der Laan, 2009) discusses the use of targeted maximum
likelihood estimation in nested case-control study designs. It also compares the efficiency of
nested case-control designs to analysis of the full cohort data.

Chapter 9 is titled “Time-to-Event Outcomes and Censored Data.” The first paper, A
Note on Targeted Maximum Likelihood and Right Censored Data (van der Laan and Rubin,
2007), fully develops the targeted maximum likelihood estimator of causal effects in ran-
domized controlled trials with a time-to-event outcome that is subject to right-censoring.
The second paper, Application of Time-to-Event Methods in the Assessment of Safety in
Clinical Trials (Moore, van der Laan, 2009), provides the theoretical ingredients to derive
the targeted maximum likelihood estimator for this data structure.

The Appendix contains a gentle introduction to and R-code for the targeted maxi-
mum likelihood estimator of the causal effect of a binary treatment for the data structure
(W,A,∆,∆Y ) allowing for confounding of treatment and missingness of the clinical out-
come Y . For the more theoretical oriented reader, the Appendix also includes a collection of
worked out examples of targeted maximum likelihood estimation for different data structures
and parameters. This shows how the targeted maximum likelihood step is derived, given the
data structure and the model. It presents the natural extension of targeted maximum likeli-
hood estimation to targeted minimum loss based learning. In addition, it presents targeted
Bayesian learning based on targeted maximum likelihood, presenting a mapping from a prior
distribution on the target parameter into a targeted (bias reduced) posterior distribution of
the target parameter.

For the interested reader, we note that targeted maximum likelihood has been generalized
to group sequential adaptive designs in which the censoring and treatment mechanism of
a new subject/unit can be adapted in response to the observed data on the previously
recruited units: The Construction and Analysis of Adaptive Group Sequential Designs (van
der Laan, 2008). The latter paper contains many additional examples of targeted maximum
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Chapter 1. Introduction

likelihood estimation for longitudinal data structures, including effects of multiple time-
point interventions, and shows that adaptive designs can learn the optimal design in a group
sequential design, while preserving frequentist statistical inference based on the martingale
central limit theorem.

Finally, we remark that Target Analytics, Inc. (www.targetanalytics.com) is a company
founded on the premise of implementing statistical software based on targeted maximum
likelihood estimation. A version of TargetDiscovery, a variable importance software product
based on targeted maximum likelihood estimation of variable importance across a user sup-
plied set of target variables, can be tested directly on the website. The IP for the targeted
maximum likelihood estimation methodology is owned by University of California, Berkeley.
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Chapter 2. Targeted Maximum Likelihood Estimation

2.1 Targeted Maximum Likelihood Learning

The following article appears as it was published in the International Journal of
Biostatistics in 2006, http://www.bepress.com/ijb/vol2/iss1/11/.

It was originally published on the University of California, Berkeley Division of Biostatistics
Working Paper Series website in 2006, http://www.bepress.com/ucbbiostat/paper213/.
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Targeted Maximum Likelihood Learning

Mark J. van der Laan and Daniel B. Rubin

Suppose one observes a sample of independent and identically distributed
observations from a particular data generating distribution. Suppose that
one has available an estimate of the density of the data generating distribu-
tion such as a maximum likelihood estimator according to a given or data
adaptively selected model. Suppose that one is concerned with estimation
of a particular pathwise differentiable Euclidean parameter. A substitution
estimator evaluating the parameter of the density estimator is typically too
biased and might not even converge at the parametric rate: that is, the den-
sity estimator was targeted to be a good estimator of the density and might
therefore result in a poor estimator of a particular smooth functional of the
density. In this article we propose a one step (and, by iteration, k-th step)
targeted maximum likelihood density estimator which involves 1) creating a
hardest parametric submodel with parameter epsilon through the given den-
sity estimator with score equal to the efficient influence curve of the pathwise
differentiable parameter at the density estimator, 2) estimating epsilon with
the maximum likelihood estimator, and 3) defining a new density estimator
as the corresponding update of the original density estimator. We show that
iteration of this algorithm results in a targeted maximum likelihood density
estimator which solves the efficient influence curve estimating equation and
thereby yields a locally efficient estimator of the parameter of interest, un-
der regularity conditions. In particular, we show that, if the parameter is
linear and the model is convex, then the targeted maximum likelihood esti-
mator is often achieved in the first step, and it results in a locally efficient
estimator at an arbitrary (e.g., heavily misspecified) starting density. This
tool provides us with a new class of targeted likelihood based estimators of
pathwise differentiable parameters. We also show that the targeted maximum
likelihood estimators are now in full agreement with the locally efficient es-
timating function methodology as presented in Robins and Rotnitzky (1992)
and van der Laan and Robins (2003), creating, in particular, algebraic equiva-
lence between the double robust locally efficient estimators using the targeted
maximum likelihood estimators as an estimate of its nuisance parameters, and
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targeted maximum likelihood estimators. In addition, it is argued that the
targeted MLE has various advantages relative to the current estimating func-
tion based approach. We proceed by providing data driven methodologies to
select the initial density estimator for the targeted MLE, thereby providing
data adaptive targeted maximum likelihood estimation methodology. Finally,
in our accompanying technical report we show that targeted maximum likeli-
hood estimation can be generalized to estimate any kind of parameter, such
as infinite dimensional non-pathwise differentiable parameters, by restricting
the likelihood and cross-validated log-likelihood to targeted candidate density
estimators only. We illustrate the method with various worked out examples.
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1 Introduction

Let O1, . . . , On be n independent and identically distributed (i.i.d.) observa-
tions of an experimental unit O with probability distribution P0 ∈ M, where
M is the statistical model. For the sake of presentation, we will assume that
M is dominated by a common measure µ so that we can identify each possible
probability measure P ∈ M by its density p = dP/dµ. In the discussion we
point out that our methods are not restricted to models dominated by a single
measure. Let Pn be the empirical probability distribution of O1, . . . , On which
puts mass 1/n on each of the n observations. Let p0 = dP0

dµ
be the density of

p0 with respect to a dominating measure µ, and let pn be a density estimator
of p0. For example, pn ≡ Φ(Pn) could be the maximum likelihood estimator
defined by the following mapping Φ

pn = Φ(Pn) ≡ arg max
P∈M

n∑
i=1

log
dP

dµ
(Oi).

Alternatively, if the model M is too large in the sense that the maximum
likelihood estimator is too variable or even inconsistent, then one typically
proposes a sieve Ms ⊂ M, indexed by indices s, approximating M, and
computes candidate maximum likelihood estimators

pns = Φs(Pn) ≡ arg max
P∈Ms

n∑
i=1

log
dP

dµ
(Oi).

In such a setting it remains to data adaptively select s. For example, one could
use likelihood based cross-validation to select s:

sn = arg max
s
EBn

∑
i:Bn(i)=1

log Φs(P
0
n,Bn)(Oi),

where Bn ∈ {0, 1}n is a random vector of binary variables defining a random
split in a training sample {i : Bn(i) = 0} and validation sample {i : Bn(i) = 1},
and P 0

n,Bn , P
1
n,Bn denote the empirical probability distributions of the training

and validation sample, respectively. Now, one would define the estimator of
p0 as the cross-validated maximum likelihood estimator given by

pn = Φ(Pn) ≡ pnsn = Φsn(Pn).

It is common practice to evaluate one or many Euclidean valued smooth
functionals Ψ(pn) of the density estimator pn and view them as estimators of
the parameter Ψ(p0) for given parameter mappings Ψ : M → IRd. Although
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this method is known to result in efficient estimators of Ψ(p0) in paramet-
ric models (i.e., M in the above definition of pn is a parametric model), in
general, such substitution estimators are not correctly trading off bias and
variance with respect to the parameter of interest ψ0 = Ψ(p0). For example,
a univariate (standard) kernel density estimator optimizing the mean squared
error with respect to p0, assuming a continuous second derivative, can have
bias of the order n−2/5 based on an optimal bandwidth of the order n−1/5. The
corresponding substitution estimator of the cumulative distribution function
at a point can have bias which converges to zero at the same rate n−2/5, but
a variance of O(1/n), so that the substitution estimator has a variance (1/n)
which is smaller than the square bias (n−4/5) by an order of magnitude. In
particular, the smoothed empirical cumulative distribution functions would
not even converge at root-n rate due to the fact that

√
n times the bias n−2/5

does not converge to zero: that is, in this kernel density estimator example√
nn−2.5 → ∞, so that the relative efficiency of the empirical cumulative dis-

tribution function and this smooth cumulative distribution function converges
to zero. This shows that substitution estimators based on optimal (for the
purpose of the density itself) density estimators of the cumulative distribution
function are typically theoretically inferior to other more targeted estimators
of the parameter of interest. In general, substitution estimators based on den-
sity estimators might simply not be very good estimators, and, in particular,
likelihood based substitution estimators will often fail to be asymptotically ef-
ficient due to the bias caused by the curse of dimensionality: the kernel density
example already shows the failure of likelihood based learning of smooth pa-
rameters of a density of a univariate random variable, and it gets much worse
for densities of multivariate random variables. This issue has been stressed
repeatly by Robins and co-authors (see e.g., Robins and Rotnitzky (1992) and
van der Laan and Robins (2003)). This article proposes a method which, given
a particular pathwise differentiable parameter of interest, allows one to map a
density estimator (such as pn or pns for each s) into a targeted maximum likeli-
hood density estimator so that the corresponding substitution estimator of ψ0

is locally efficient, under reasonable conditions: that is, if the starting density
estimator is consistent, it will typically be efficient, and otherwise in certain
classes of problems it might still be consistent and asymptotically linear.

Specifically, in this article we propose a one step maximum likelihood den-
sity estimator which involves 1) creating a parametric model with Euclidean
parameter ε (e.g., the same dimension d as the parameter ψ0) through a given
density estimator p0

n (e.g., s-specific MLE pns) at ε = 0 whose scores include
the components of the efficient influence curve of the pathwise differentiable
parameter at the density estimator p0

n, 2) estimating ε with the maximum
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likelihood estimator of this parametric model, and 3) defining a new density
estimator p1

n as the corresponding fluctuation of the original density estimator
p0
n. In addition, iterating this process results in a sequence of pkn with in-

creasing log-likelihood converging to a solution of the efficient influence curve
estimating equation, and thereby typically results in a locally efficient substi-
tution estimator of ψ0. We refer to this solution as the targeted maximum
likelihood estimator based on the initial p0

n. We provide various examples in
which this targeted maximum likelihood estimator is achieved at the first step
of the algorithm.

In particular, one can map each model based MLE pns into a targeted MLE
p∗ns (targeted towards ψ0). We suggest that it is appropriate to select among
this collection of targeted MLEs p∗ns with likelihood based cross-validation, as
explained heuristically in our accompanying technical report: targeted MLE’s
are comparable w.r.t. to being fully trained w.r.t. estimation of the parameter
of interest, which makes the log-likelihood an appropriate criteria to select
among them. That is, let p∗ns = Φ̂∗

s(Pn) be the s-specific targeted MLE applied
to the initial density estimator pns. Let

sn = arg max
s
EBn

∑
i:Bn(i)=1

log Φ̂∗
s(P

0
n,Bn)(Oi),

where Bn ∈ {0, 1}n is a random vector of binary variables defining a random
split in a training sample {i : Bn(i) = 0} and validation sample {i : Bn(i) = 1},
and P 0

n,Bn , P
1
n,Bn denote the empirical probability distributions of the training

and validation sample, respectively, as above. Now, likelihood cross-validated
targeted MLE is defined as:

p∗n = Φ̂(Pn) ≡ p∗nsn = Φ̂∗
sn(Pn).

We also note that the candidate models indexed by s can be chosen to represent
a sieve in a possibly misspecified (big) model M, as long as this model M
is still such that the Kullback-Leibler projection of the true density p0 on
this model identifies the parameter of interest Ψ(p0) correctly: for example,
if the parameter of interest is a parameter of a regression of an outcome Y
on covariates W , then one might select as big model the normal densities
with unspecified conditional mean, given W , and certain possibly misspecified
conditional variance, even though the true density p0 is not a member of this
model.

1.1 Organization of article.

In Section 2, given an initial density estimator p0
n (e.g., pns) of p0, we formally

define the k-th order targeted maximum likelihood density estimator pkn, and
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corresponding targeted maximum likelihood estimator Ψ(pkn) of ψ0. We illus-
trate the targeted MLE of the cumulative distribution function at a point in a
nonparametric model. In this case, it appears that the first step targeted MLE
of ψ0 algebraically equals the empirical cumulative distribution function, for
any given initial density estimator p0

n. Thus, while the original substitution
estimator of the cumulative distribution function would not converge at the
parametric rate 1/

√
n due to it being too biased, the first order targeted bias

corrected density estimator estimates the cumulative distribution function ef-
ficiently. In Section 3 we establish that the targeted MLE solves the efficient
influence curve estimating equation, which provides the basis of its asymptotic
efficiency for ψ0. In Section 4 we present general templates for establishing
consistency, asymptotic linearity and efficiency of the targeted MLE of ψ0,
which provides a particular powerful theorem for convex models and linear
pathwise differentiable parameters stating that the targeted MLE will be con-
sistent and asymptotically linear for an arbitrary starting density, and it will
be efficient if the starting (or its targeted MLE version) density consistently
estimates the efficient influence curve. We illustrate the latter result with two
examples. In Section 5 we discuss the relation, and in particular, the algebraic
equivalence, between targeted maximum likelihood estimation and estimating
function based estimation if one estimates the nuisance parameters in the es-
timating functions with the targeted MLE. We point out that targeted MLE
is more widely applicable by not relying on being able to map the efficient
influence curve in a corresponding estimating function, and it deals naturally
with the issue of multiple solutions of estimating equations. In Subsection 5.1
we focus on censored data models to make the comparison with the estimat-
ing function methodology in van der Laan and Robins (2003). In particular,
we present the targeted MLE approach which results in algebraic equivalence
between the Inverse Probability of Censoring Weighted estimator, the dou-
ble robust IPCW estimator, and the targeted MLE of a parameter of the full
data distribution based on observing n i.i.d. observations of a censored data
structure under coarsening at random (CAR). These results show that the
targeted MLE does not only provide a boost for likelihood based estimation,
but it also provides an improvement relative to the current implementation of
locally efficient estimation based on estimating function methodology. In Sec-
tion 6 we present important examples illustrating the power and computational
simplicity of this new targeted maximum likelihood estimator: estimation of
a marginal causal effect, and the parametric component in a semiparamet-
ric regression model, and we present a simulation to illustrate the targeted
MLE. In Section 7 we present a loss based approach of targeted MLE learning
based on the unified loss function based approach in van der Laan and Dudoit
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(2003). We end this article with a discussion in Section 8. In our accompany-
ing technical report we show generalizations of the targeted MLE of pathwise
differentiable parameters to targeted MLE of general parameters.

1.2 Some relevant literature overview.

There exist various methods for construction of an efficient estimator of a pa-
rameter based on parametric models. In particular, Fisher’s method of maxi-
mum likelihood estimation can be applied, or closely related M-estimate (i.e.,
estimators defined as solutions of estimating equations) methods which work
under minimal conditions. Maximum likelihood estimation in semiparametric
models has been an extensive research area of interest. Here we suffice with
a referral to van der Vaart and Wellner (1996b) for a partial overview of the
theory for the analysis of maximum likelihood. There are plenty of examples in
which the straightforward semiparametric MLE even fails to be consistent, but
often an appropriate regularization can be applied to repair the consistency
of the semiparametric MLE: e.g., see van der Laan (1995) for such examples
based on censored data. However, as argued above in the kernel density es-
timator example, maximum likelihood based smoothing/model selection will
often provide the wrong trade-off of bias and variance for specific smooth pa-
rameters. The literature (notably Robins and co-authors) has recognized this
problem with likelihood based estimation. For example, smoothing survival
functions or smoothing the nonparametric components in a semiparametric re-
gression model requires so called “under-smoothing” in order to obtain root-n
consistency for the parameter of interest: see e.g., Cosslett (2004).

For an overview of the literature on efficient estimation of pathwise differ-
entiable parameters in semiparametric models we refer to Bickel et al. (1993b).
In particular, the latter presents the general one step estimator based on an
estimate of the efficient influence curve: see e.g. Klaassen (1987). For an
overview of the literature on locally efficient estimating function based esti-
mation of pathwise differentiable parameters based on censored longitudinal
data (starting with the ground breaking paper Robins and Rotnitzky (1992)),
we refer to van der Laan and Robins (2003).

A unified loss function approach based methodology for estimation and
estimator selection, and concrete illustration of this method in various exam-
ples is presented in van der Laan and Dudoit (2003). This methodology is
general by allowing the loss function to be an unknown function of the ex-
perimental unit and the parameter values. van der Laan and Rubin (2005)
and van der Laan and Rubin (2006) present an alternative unified estimating
function methodology for both estimation and estimator selection. The latter
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two methodologies provide two general strategies for data adaptive estimation
of any parameter in any model.

We note that these (unified) loss function and (unified) estimating func-
tion based approaches give up on using the log-likelihood as loss function for
the purpose of estimator selection and estimation when the parameter of in-
terest is not the actual density of the data, but a particular parameter of
it: these methods replace the log-likelihood loss function by a loss function
or an estimating function targeted at the parameter of interest. From that
point of view, the current article shows that it is not necessary to replace the
log-likelihood loss function by a targeted loss function, but that one can also
target the directions in which one maximizes the log-likelihood.

2 Targeted maximum likelihood estimators.

Let Ψ : M→ IRd be a pathwise differentiable parameter at any density p ∈M,
where M denotes the statistical model consisting of the possible densities
p = dP/dµ of O with respect to some dominating measure µ. That is, given a
sufficiently rich class of one-dimensional regular parametric submodels {pδ : δ}
with parameter δ of M through the density p at δ = 0, we have for each of
these submodels pδ with score s at δ = 0 and pδ=0 = p

d

dδ
Ψ(pδ)|δ=0 = EpS(p)(O)s(O)

for some S(p) ∈ (L2
0(p))

d, where L2
0(p) denotes the Hilbert space of functions

of O with mean 0 and finite variance under P , endowed with inner product
〈h1, h2〉P = Eph1(O)h2(O). This random variable S(p) ∈ (L2

0(p))
d is called a

gradient of the pathwise derivative at p. Let T (p) ⊂ L2
0(p) be the tangent space

at p which is defined as the closure of the linear span of the scores s of this
class of submodels through p. If the model is not locally saturated in the sense
that T (p) = L2

0(p), then there can be many gradients. Let T⊥nuis(p) ⊂ L2
0(p) be

the orthogonal complement of the so called nuisance tangent space, where the
latter is defined as the closure of the linear span of all scores of pδ for which
the pathwise derivative equals 0 (see van der Laan and Robins (2003), Chapter
1). As in van der Laan and Robins (2003), we denote the set of gradients at
p with T⊥∗nuis(p) ⊂ (T⊥nuis(p))

d. Let S∗(p) be the so called canonical gradient
which is the unique gradient whose d components S∗(p)j, j = 1, . . . , d, are
elements of the tangent space T (P ). A submodel {pε : ε} with score S∗(p) at
ε = 0 is often referred to as a hardest submodel (Bickel et al. (1993a)), as we
will also do in this article.
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Let (O, p) → D(p)(O) be a point-wise well defined class of functions on
the Cartesian product of the support of O and the model M, which satisfies

D(p) = S∗(p) P0-a.e. for all p ∈M.

As an example, consider letting O be a Euclidean valued d-variate random
variable with density p0. Let M be the class of all continuous densities with
respect to Lebesgue measure µ, and let Ψ(p) =

∫ t
0 p(o)dµ(o) be the cumulative

distribution function at a point t ∈ IR corresponding with density p. In this
case Ψ : M → IR is pathwise differentiable parameter at p with efficient
influence curve S(p)(O) = I(O ≤ t)−Ψ(p), and, because the model is locally
saturated, it is also the only influence curve/gradient. So D(p) = I(O ≤ t)−
Ψ(p). Similarly, given a set of user supplied points {t1, . . . , td}, we could define
the d-dimensional Euclidean parameter Ψ(p) = (Ψ(p)(tj) ≡ ∫ tj

0 p(o)dµ(o) : j =
1, . . . , d) representing the cumulative distribution function at d points. In this
case, D(p) = (I(O ≤ tj)−Ψ(p)(tj) : j = 1, . . . , d) has d components.

A general methodology for construction of functions Dh(p) indexed by an
h ∈ H so that {Dh(p) : h ∈ H} ⊂ T⊥nuis(p) (or equality) is presented in
van der Laan and Robins (2003). In van der Laan and Robins (2003) the
class of functions {Dh(p) : h ∈ H} is referred to as a representation of the
orthogonal complement of the nuisance tangent space, which is then used
to map into a class of corresponding estimating functions for the pathwise
differentiable parameter p → Ψ(p) of the form p → Dh(Ψ(p),Υ(p)) with Υ
representing a nuisance parameter. In van der Laan and Robins (2003), for a
variety of general classes of models and censored data structures O, explicit
representations of the orthogonal complement of the nuisance tangent space,
T⊥nuis(p), corresponding gradients, T⊥∗nuis(p), and canonical gradient S∗(p), have
been provided.

Let p0
n = Φ(Pn) ∈ M be a density estimator of p0 = dP0/dµ. Define now

a parametric submodel {p0
n(ε) : ε ∈ IRk} ⊂ M through p0

n at ε = 0 whose
linear span of scores of ε at ε = 0 includes all d components of D(pn). One
possibility is to choose ε ∈ IRd of the same dimension as D(p) and arrange
that the score of εj at ε = 0 equals Dj(p), j = 1, . . . , d. For example, if the
model M is convex then the following model typically applies

p0
n(ε) ≡ (1 + ε>D(p0

n))p
0
n, (1)

where ε ∈ IRd denotes the parameter ranging over all values for which p0
n(ε)

is a proper density. Note that indeed p0
n(0) = p0

n, p
0
n(ε) is a density (positive

valued and integrates till 1) for ε small enough, and d
dε

log p0
n(ε)

∣∣∣
ε=0

= D(p0
n).
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One can also use an exponential family

p0
n(ε) ≡ C(ε, p0

n) exp(ε>D(p0
n))p

0
n

for C(ε, p0
n) be a normalizing constant. In general, one can choose a parame-

terization ε → p0
n(ε) ∈ M which is smooth in ε at ε = 0 and whose score at

ε = 0 equals D(p0
n). However, we will also consider submodels p0

n(ε) with addi-
tional scores in order to arrange that the targeted MLE will be fully targeted
towards estimation of D(p0).

Let

εn = ε(Pn | p0
n) ≡ arg max

{ε:p0n(ε)∈M}

n∑
i=1

log p0
n(ε)(Oi)

be the maximum likelihood estimator of ε treating the density estimator p0
n as

given and fixed. We will assume that the maximum is attained in the interior
of M so that εn solves the estimating equation:

0 = Pn

d
dε
p0
n(ε)

p0
n(ε)

.

Here we use the common notation Pf ≡ ∫
f(o)dP (o). For example, if p0

n(ε) =
(1 + ε>D(p0

n))p
0
n, as one might choose in convex models, then we have that εn

is the solution of

0 =
1

n

n∑
i=1

D(p0
n)(Oi)

1 + ε>nD(p0
n)(Oi)

.

This defines now an updated density estimator

p1
n ≡ p0

n(εn) = p0
n(ε(Pn | p0

n)) ∈M.

Note that this simply defines a method for mapping an initial density estimator
p0
n ∈ M in a new density estimator p1

n ∈ M, which we call the first step
targeted maximum likelihood estimator. By iterating this process one obtains
the k-step targeted maximum likelihood estimator pkn, k = 1, . . .

Definition 1 Given an initial density estimator p0
n = Φ̂0(Pn) based on the

empirical probability distribution Pn, a parametric fluctuation {p0
n(ε) : ε} ⊂ M

satisfying p0
n(0) = p0

n, and d
dε

log p0
n(ε)

∣∣∣
ε=0

= D∗(p0
n), where the linear span of

the components of D∗(p0
n) include all d components of a canonical gradient

D(p0
n) of the parameter of interest Ψ : M→ IRd at p0

n, a maximum likelihood
estimator

ε(Pn | p0
n) ≡ arg max

ε

n∑
i=1

log p0
n(ε)(Oi)
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of ε, we define the first step targeted maximum likelihood density estimator as

p1
n = Φ̂1(Pn) ≡ p0

n(ε(Pn | p0
n)).

This process can be iterated to define the k-step targeted maximum likelihood
density estimator as

pk+1
n = Φ̂k+1(Pn) ≡ pkn(ε(Pn | pkn)), k = 0, 1, . . ..

The corresponding k-step targeted maximum likelihood estimator of ψ0 is
defined as

Ψ̂k(Pn) = Ψ(pkn).

The targeted maximum likelihood estimator is defined as

ψn = Φ̂∗(Pn) ≡ lim
k→∞

Ψ(pkn),

assuming this limit exists.

2.1 Example: Estimating the CDF.

Consider an initial data generating density p0 = f , let F (t) =
∫ t
−∞ f(o)do

denote the associated CDF at some fixed point t ∈ IR, and consider the para-
metric model{

fε(o) = (1 + ε[I(o ≤ t)− F (t)])f(o) : − 1

1− F (t)
≤ ε ≤ 1

F (t)

}
, (2)

where one can check that the range restraint on ε serves merely to ensure that
the family is indeed a proper class of densities. Consider estimating ε from
maximum likelihood based on an i.i.d. sample {Oi}ni=1. The log likelihood is,

l(ε) =
n∑
i=1

log(1 + ε[I(Oi ≤ t)− F (t)]) +
n∑
i=1

log f(Oi). (3)

Its derivative is,

l′(ε) =
n∑
i=1

I(Oi ≤ t)− F (t)

1 + ε[I(Oi ≤ t)− F (t)]
. (4)

Its second derivative is easily seen to be,

l′′(ε) = −
n∑
i=1

{
I(Oi ≤ t)− F (t)

1 + ε[I(Oi ≤ t)− F (t)]

}2

. (5)
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Because the log likelihood is concave, we know that the maximum is achieved
if l′(ε) = 0 has a solution. Letting Fn(·) denote the empirical distribution
function, note that we can decompose the terms in l′(ε) into two parts (those
for which I(Oi ≤ t) are 0 or 1), and the MLE of ε can be seen to solve,

0 = l′(ε)

=
n∑
i=1

I(Oi ≤ t)− F (t)

1 + ε[I(Oi ≤ t)− F (t)]

= nFn(t)
1− F (t)

1 + ε[1− F (t)]
+ n(1− Fn(t))

−F (t)

1− εF (t)
.

Moving the second term on the right to the other side of the equation, dividing
both sides by n, and multiplying both sides by (1 + ε[1 − F (t)])(1 − εF (t)),
the equation reduces to,

Fn(t)(1− F (t))(1− εF (t)) = (1− Fn(t))F (t)(1 + ε(1− F (t))). (6)

This is linear in ε, and one can check that the solution is

εn =
Fn(t)(1− F (t))− (1− Fn(t))F (t)

F (t)(1− F (t))

=
Fn(t)− Fn(t)F (t)− F (t) + Fn(t)F (t)

F (t)(1− F (t))

=
Fn(t)− F (t)

F (t)(1− F (t))
. (7)

Because 0 ≤ Fn(t) ≤ 1, one can check that indeed

− 1

1− F (t)
= − F (t)

F (t)(1− F (t)
≤ εn ≤ 1− F (t)

F (t)(1− F (t))
=

1

F (t)
, (8)

so the range restraint on ε for the family (2) always holds for the maximum
likelihood estimator, meaning that fεn(·) is a proper density. Now, the result-
ing CDF at t for this density is then,

Fεn(t) =
∫ t

−∞
fεn(o)do

=
∫ t

−∞
(1 + εn[I(o ≤ t)− F (t)])f(o)do

=
∫ t

−∞
f(o)do+ εn

∫ t

−∞
I(o ≤ t)f(o)do− ε1F (t)

∫ t

−∞
f(o)do
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= F (t) + εnF (t)− εnF (t)2 = F (t) + ε1F (t)(1− F (t))

= F (t) +
Fn(t)− F (t)

F (t)(1− F (t))
F (t)(1− F (t)) from (7)

= F (t) + Fn(t)− F (t) = Fn(t).

Therefore, for any initial density f(·) and any time point t, the targeted like-
lihood maximum likelihood estimator of the CDF reduces to the empirical
distribution estimator in a single step. This result immediately generalizes to
Ψ(p) =

∫
A p(o)dµ(o) for any measurable set A.

3 Solving the efficient estimating equation.

We have the following trivial, but useful result. It states that if the MLE’s
ε(Pn | pkn) at step k of the targeted MLE algorithm converge to zero for k →∞
(as one expects to hold if the log likelihood of the data is uniformly bounded
in the model M), then the algorithm converges to a solution of the efficient
influence curve equation PnD(p) = 0 in the sense that PnD(pkn) → 0.

Result 1 Let Pn be given. Assume that

lim
ε→0

lim sup
k→∞

| Pn
d
dε
pkn(ε)

pkn(ε)
− Pn

pk′n (0)

pkn(0)
|→ 0, (9)

that for each k there exist a constant matrix Ak so that Ak
pk′n
pkn

= D(pkn) with

lim supk→∞ ‖ Ak ‖<∞, where ‖ A ‖ denotes a matrix norm.

If ε(Pn | pkn) solves Pn
d
dε
pkn(ε)

pkn(ε)
= 0 for all k, and ε(Pn | pkn) → 0 for k →∞,

then we have
PnD(pkn) → 0 for k →∞.

The condition (9) holds if the score of the one-dimensional submodel p(ε)
at ε converges to the score at ε = 0 for ε → 0 uniformly in a set containing
the k-step targeted MLE’s pkn, k = 1, 2, . . ., and that for each p ∈ M, the

linear span of the components p′(0)
p(0)

includes the components of D(p). Since
the likelihood increases at each step one might indeed expect that typically the
targeted MLE algorithm will converge and thereby that ε(Pn | pkn) → 0. That
is, Result 1 essentially states that, if the targeted MLE algorithm converges,
then the algorithm will converge to a solution of the efficient influence curve
equation in the sense that by choosing k large enough PnD(pkn) ≈ 0 with
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arbitrary small deviation from 0.
Proof. Let εk = ε(Pn | pkn), k = 0, . . .. If εk → 0 for k →∞, then

Pn

d
dεk
pkn(εk)

pkn(εk)
− Pn

pk′n (0)

pkn(0)
→ 0

for k →∞. Let Ak be such that Ak
pk′n (0)
pkn(0)

= D(pkn). By assumption, the matrix
has a norm bounded uniformly in k. Thus, we also have

PnAk

d
dεk
pkn(εk)

pkn(εk)
− PnD(pkn) → 0

for k → ∞. However, Pn
d
dεk
pkn(εk)/p

k
n(εk) = 0 (and thus Ak applied to this

equals 0 as well), which shows that PnD(pkn) → 0. 2

4 Efficiency of targeted likelihood estimation.

In this section we provide templates for proving consistency, asymptotic linear-
ity and efficiency of the targeted maximum likelihood estimator of a path-wise
differentiable parameter. Since convexity of the model and linearity of the
parameter allows a particular strong result, we separate this situation from
the general case.

4.1 Linear parameters in convex models.

Let p∞n denote the limit of our algorithm if it exists as a density with respect
to µ in M, and otherwise it represents a pkn ∈ M for a large enough k. If
the condition of the above Result 1 holds, then p∞n ∈M, and for all practical
purposes, we have PnD(p∞n ) = 0. If this is true, then this result can be used
to establish efficiency of the substitution estimator Ψ(p∞n ) as an estimator
of ψ0 under the assumption that the parameter Ψ : M → IRd is linear and
M is convex, under weak regularity conditions. Specifically, by the identity
for convex models and linear parameters in van der Laan (1998) we have
Ψ(p) − Ψ(p0) = −P0D(p) for any p, p0 ∈ M for which p0/p < ∞. Thus, if
p∞n ∈M and it is bounded away from 0 on the support of p0, then combining
PnD(p∞n ) = 0 with the latter identity gives us

Ψ(p∞n )−Ψ(p0) = (Pn − P0)D(p∞n ). (10)

Even if p∞n does not satisfy p0/p
∞
n < ∞, then the identity Ψ(p∞n ) − Ψ(p0) =

−P0D(p∞n ) can still be established under a continuity condition on p→ P0D(p)
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(see van der Laan (1998)), so that (10) can even be established for density
estimators not satisfying this support condition.

Applying empirical process theory (van der Vaart and Wellner (1996a)) now
proves that Ψ(p∞n ) is root-n consistent if D(p∞n ) falls in a P0 Donsker class with
probability tending to 1. If one can now also establish that P0(D(p∞n )−D(p1))

2

converges to zero in probability for a certain p1 ∈ M, then it follows that
Ψ(p∞n ) is asymptotically linear with influence curve D0(p1) ≡ D(p1)−P0D(p1):

Ψ(p∞n )−Ψ(p0) = (Pn − P0)D0(p1) + oP (1/
√
n),

where we note that p1 can be an arbitrary limit (i.e., p1 6= p0 is allowed). In
particular, if the limit p1 is such that D(p1) = D(p0), then Ψ(p∞n ) is asymptot-
ically linear with influence curve D(p0). Thus, if D(p0) is the efficient influence
curve, then Ψ(p∞n ) is asymptotically efficient.

Theorem 1 Suppose the conclusion of Result 1 holds, and K = K(n) is
chosen large enough so that the targeted MLE pn = pKn satisfies PnD(pn) =
R(n,K(n)) = oP (1/

√
n) (where limK→∞R(n,K) = 0). Assume that pn ∈M,

p0/pn <∞ uniformly over a support of p0, M is convex, and Ψ : M→ IRd is
linear. Then

Ψ(pn)−Ψ(p0) = (Pn − P0)D(pn) +R(n,K(n)).

If D(pn) falls in a P0 Donsker class with probability tending to 1, then

Ψ(pn)− ψ0 = OP (1/
√
n).

If it is also shown that P0(D(pn)−D(p1))
2 → 0 in probability for n→∞ for

some p1 ∈M, then it follows that Ψ(pn) is asymptotically linear with influence
curve D(p1)− P0D(p1):

Ψ(pn)−Ψ(p0) = (Pn − P0)D(p1) + oP (1/
√
n).

In particular, if D(p1) = D(p0), and D(p0) is the efficient influence curve of
Ψ at p0, then Ψ(pn) is asymptotically efficient.

This shows that the targeted MLE of a linear parameter in a convex model
is typically consistent and asymptotically linear for arbitrary starting density
p0
n, and if the targeted MLE p∞n is consistent in the sense that P0(D(p∞n ) −
D(p0))

2 → 0 with probability tending to 1 for n converging to infinity (e.g.,
the initial starting density p0

n would already yield a consistent estimator D(pn0 )
of D(p0)), then the targeted MLE will also be efficient. We will now provide
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two examples illustrating this theorem. The first example represents a case
in which the targeted MLE is efficient for arbitrary starting density p0

n. The
second example represents the case that the targeted MLE is consistent and
asymptotically linear for arbitrary starting density p0

n, and is efficient if the
starting density consistently estimates D(p0).

Example 1 ((Efficiency of a smooth cumulative distribution func-
tion) In this example we have D(p)(O) = I(O ≤ t) − ∫ t

0 p(o)dµ(o). A tar-
geted MLE pn solving PnD(pn) = 0 satisfies that Ψ(pn) = PnI(· ≤ t) equals
the empirical cumulative distribution function at t and is therefore asymp-
totically efficient, for arbitrary starting density p0. Thus in this example the
initial density does not need to be consistent in order to make the targeted
MLE asymptotically efficient. Suppose that p0

nh is indexed by a bandwidth
or model choice h, and let p∗nh be the targeted MLE density estimator using
as starting density p0

nh. Each of the targeted MLE’s p∗nh results in the same
estimator of the cumulative distribution function Ψ(p0) at time t. If one uses
likelihood cross-validation to select h, then one selects among all of these tar-
geted MLE’s the one which is supposedly closest to the true density p0 with
respect to Kullback-Leibler divergence, which now provides a valid and rea-
sonable criteria since all the candidates density estimators already map into
efficient (and algebraically equivalent) estimators of ψ0.

Example 2 ((Local efficiency of targeted MLE based on censored
data) We consider a particular example of a censored data structure to il-
lustrate that Theorem 1 yields local efficiency of the targeted MLE based on
CAR censored data structures based on any starting density p0

n, under very
weak conditions.

Suppose that the full data structure X = (W,Y (a) : a ∈ {0, 1}) on the
experimental unit consists of a set of baseline covariates W , and treatment
specific outcomes Y (a), indexed by treatment values a ∈ {0, 1}. Suppose that
the observed data structure O = (W,A, Y = Y (A)) ∼ p0, and it is assumed
that the conditional probability distribution g0(· | X) of A, given X, satisfies
g0(A | X) = g0(A | W ): that is, A is independent of X, given W . Suppose
that this conditional probability distribution of g0(A | W ) of A, given W , is
known, and satisfies 0 < g0(1 | W ) < 1, as it would be in a randomized trial
aiming to establish the causal effect of A on Y . Let M be the class of all
densities of O with respect to an appropriate dominating measure. We have

M = {p(O) = QXA(W,Y )g0(A | X) : QX0, QX1},
where the full data sub-distributions QXa(w, y) = PW,Y (a)(w, y) are joint den-
sities of (W,Y (a)), a ∈ {0, 1}, and are unspecified. As a consequence, M is
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a convex model. Let Ψ : M → IR be defined as Ψ(p) = Ep(Y (1) − Y (0)) =
Ep(Ep(Y | A = 1,W )−Ep(Y | A = 0,W )), which is often called the marginal
causal effect of treatment A on the outcome Y . In this case, Ψ(p) is pathwise
differentiable at p with efficient influence curve S(p) defined by

S(p) =
(Y −Q(p)(A,W ))(A− (1− A))

g(p)(A | W )
+Q(p)(1,W )−Q(p)(0,W )−Ψ(p),

where g(p)(· | W ) = Prp(A = · | W ) = g0(· | W ), and Q(p)(A,W ) =
Ep(Y | A,W ). Note that Ψ(p) depends on p through Q(p) and its marginal
distribution pW of W . Due to the factorization of the density of O in a QX-
factor and g0 factor, this is also the efficient influence curve if g0 is unknown
or modelled. The class of all gradients at p ∈M is given by:{

(Y −Q(A,W ))(I(A = 1)− I(A = 0))

g0(A | W )
+Q(1,W )−Q(0,W )−Ψ(p) : Q

}
,

where Q can be an arbitrary function of A,W .
So we could define

DQ(p)(O) ≡ (Y −Q(A,W ))(A− (1− A))

g0(A | W )
+Q(1,W )−Q(0,W )−Ψ(p),

andD(p) = DQ(p)(p) represents the efficient influence curve. We are now ready
to define the targeted MLE of p0 with respect to the parameter ψ0.

Let p0
n be an initial density estimator of p0. For example, p0

n could cor-
respond with the empirical distribution of W , and a normal distribution for
the conditional density of Y , given A,W , with mean Q0

n(A,W ) and variance
σ2
n(A,W ), where Q0

n is an estimate of Q(p0)(A,W ) = E0(Y | A,W ). Let p∗n be
a targeted MLE, as we explicitly define in the later Section 6 in detail, solving
PnD(p∗n) = 0. In Section 6, we show for a particular hardest submodel pkn(ε)
consisting of normal densities of Y , conditional on A,W , with ε corresponding
with a fluctuation of current regression Qk

n(A,W ), that the targeted MLE is
achieved in the first step (i.e., p∗n = p1

n), and indeed solves the score equation
PnD(p1

n) = 0. Let’s consider this particular targeted MLE for illustration, but
the following arguments apply to any targeted MLE solving PnD(p∗n) = 0.

Application of the theorem teaches us that

Ψ(p∗n)− ψ0 = (Pn − P0)DQ(p∗n).

Since g0 is bounded away from zero, if Q1
n is a nice smooth function (e.g.,

with a uniformly bounded uniform sectional variation norm, van der Laan
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(1995)), it follows that DQ(p∗n) falls in a P0-Donsker class, and thus that
Ψ(p∗n) − ψ0 = OP (1/

√
n). If the initial regression estimator Q0

n = Q(p0
n)

converges to a possibly misspecified Q1 = Q(p1), then it follows that Ψ(p∗n)
is asymptotically linear with influence curve DQ(p1)(O), where p1 is the pos-
sibly misspecified limit of p1

n. Finally, if Q0
n is actually consistent for Q(p0),

then the targeted MLE of ψ0 is asymptotically efficient. We can use likelihood
based cross-validation to select among targeted MLE’s indexed by different
candidate initial estimators Q0

n, thereby improving the efficiency relative to
a targeted MLE with a fixed initial Q0

n. Thus this example teaches us that
the targeted MLE Ψ(p∗n) of ψ0, which typically equals the first step targeted
MLE, is consistent and asymptotically linear for arbitrary initial regression
estimator Q0

n, and it is efficient if Q0
n happens to be consistent, where the

latter can potentially be achieved by using a machine learning type algorithm
and selecting the fine tuning parameters with likelihood based cross-validation.
These results still carry through if g0 is unknown but is known to belong to a
parametric model.

4.2 Local efficiency for general smooth parameters.

The remarkable robustness with respect to the starting density p0
n as observed

in the previous subsection is a consequence of the convexity of the model and
linearity of the parameter Ψ. In general, such results cannot be expected to
hold. In this subsection we present a more general approach for establishing
the wished asymptotic linearity and efficiency of the targeted MLE of any
pathwise differentiable parameter.

Let p∞n ∈ M denote the limit of the targeted MLE algorithm if it exists
and otherwise it represents a pkn for a large k. If the targeted MLE solves
the efficient influence curve equation, then for all practical purposes, we have
PnD(p∞n ) = 0. Let R(p, p0) be defined by

Ψ(p)−Ψ(p0) = −P0D(p) +R(p, p0)

for any p ∈ M. We note that by pathwise differentiability of Ψ at p, R(p, p0)
represents a second order term in the difference p−p0. Combining PnD(p∞n ) =
0 with the latter identity gives us

Ψ(p∞n )−Ψ(p0) = (Pn − P0)D(p∞n ) +R(p∞n , p0).

Applying empirical process theory now proves that Ψ(p∞n ) is root-n consis-
tent if D(p∞n ) falls in a P0 Donsker class with probability tending to 1, and
R(p∞n , p0) = oP (1/

√
n). If one can now also establish that P0(D(p∞n )−D(p1))

2
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converges to zero in probability for a possibly misspecified p1 ∈M, then it fol-
lows that Ψ(p∞n ) is asymptotically linear with influence curve D(p1)−P0D(p1):

Ψ(p∞n )−Ψ(p0) = (Pn − P0)D(p1) + oP (1/
√
n).

In particular, if D(p1) = D(p0), then the targeted MLE is asymptotically effi-
cient. Note that the asymptotic linearity requires that R(p∞n , p0) = oP (1/

√
n),

while the convexity of the model and linearity of the parameter as assumed in
the previous subsection allowed us to avoid such a condition: i.e. in that case
we had R(p, p0) = 0 for arbitrary p ∈M with p0/p <∞.

5 Fusion of MLE and estimating equations

In this section we show that the targeted MLE can be viewed as a solution of
an optimal estimating equation for the parameter of interest, if one estimates
the nuisance parameters with the targeted MLE itself. This comparison can
only be made by making the assumption that the efficient influence curve can
be viewed as an estimating function of the parameter of interest, which is
needed for the estimating function methodology (van der Laan and Robins
(2003)), but not for targeted MLE.

As previously argued, a sieve-based maximum likelihood estimator of a
pathwise differentiable parameter is based on choices such as the sieve and
the criteria for trading off variance and bias, which is completely unrelated to
the actual parameter Ψ. As a consequence, such likelihood based estimators
suffer, in principle, from serious bias for the parameter of interest ψ0. Let p0

n

be such a likelihood based estimator of p0 and Ψ(p0
n) be the corresponding

substitution estimator of ψ0.
On the other hand, estimating function methodology (van der Laan and

Robins (2003)) constructs estimating functions Dh(ψ, υ)(O) for the parameter
of interest ψ indexed by a choice h, based on a representation of the orthogonal
complement of the nuisance tangent space p→ T⊥nuis(p) (i.e., Dh(Ψ(p),Υ(p)) ∈
T⊥nuis(p) for all h), which typically also depend on an unknown nuisance pa-
rameter Υ satisfying EpDh(Ψ(p),Υ(p)) = 0 for all p ∈ M. The current
recommendation in estimating function methodology (see e.g., van der Laan
and Robins (2003)) proposes to use an external estimator υn of nuisance pa-
rameters and estimate ψ0 with the solution of 0 = PnDhn(ψ, υn) = 0 in ψ. For
example, one could use the maximum likelihood estimator p0

n and estimate ψ0

with the solution ψn0 of 0 = PnDh(p0n)(ψ,Υ(p0
n)). This estimator ψn0 is not

necessarily, and in fact, will typically not be equal to Ψ(p0
n). Thus, even if

the nuisance parameters are based on a maximum likelihood estimator p0
n, the
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resulting estimating function based estimators of ψ0 are intrinsically different
from (and less biased than) the likelihood based estimator Ψ(p0

n).
However, let pn be the targeted maximum likelihood estimator based on

hardest submodels at p with efficient influence curve D(p) = Dh(p)(Ψ(p),Υ(p))
and starting with the initial density estimator p0

n, so that pn solves PnD(pn) =
Dh(pn)(Ψ(pn),Υ(pn)) = 0. Again, we consider the (now targeted) maximum
likelihood estimator Ψ(pn) versus the estimating function based estimator
described in the previous paragraph. The estimating function based esti-
mator ψn of ψ0 is defined as the solution of the estimating equation 0 =
PnDh(pn)(ψ,Υ(pn)), which differs from above by now using the targeted MLE
pn (based on p0

n) to estimate the index and nuisance parameters (instead of
likelihood based p0

n). Because PnDh(pn)(Ψ(pn),Υ(pn)) = 0, it follows that the
estimating function based estimator ψn now equals Ψ(pn), assuming that this
solution is unique. That is, if one estimates the nuisance parameters and index
in the estimating function methodology with a targeted maximum likelihood
estimator pn, then the (or, at least, one of the) estimating function based esti-
mator ψn and the targeted maximum likelihood estimator Ψ(pn) are identical.

Note that the targeted MLE is more general than the estimating function
based methodology since it does not require the representation of an estimating
function as a function of the parameter of interest and a variation indepen-
dent nuisance parameter, thereby making it more widely applicable. Another
advantage of targeted MLE relative to estimating function based estimation
that it is invariant to monotone transformations of the parameter of interest.

5.1 CAR-censored data models

This targeted MLE approach has a particular nice application in estimation of
pathwise differentiable parameters based on censored data under the coarsen-
ing at random assumption (Heitjan and Rubin (1991), Jacobsen and Keiding
(1995), Gill et al. (1997), van der Laan and Robins (2003)). That is, let
O = Φ(C,X) ∼ p0 for some known many to one mapping Φ, X ∼ FX0 is
the full data structure one wishes to observe on a randomly sampled exper-
imental unit, and assume that the conditional distribution of the censoring
variable C, given X, i.e., the censoring mechanism, satisfies coarsening at
random (CAR). In this case it is known that the density of O factorizes as:
p0(0) = g(p0)(O | X)Q(p0)(O), where g(p0)(O | X) (which is only a function
of O by CAR) is the conditional density of O, given X, which thus only de-
pends on the conditional distribution of C, given X. The Q(p0) factor only
depends on the distribution FX0 of the full data structure X (van der Laan
and Robins (2003)). Thus given a model M for O obtained by modelling
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FX0 and or the censoring mechanism g0(O | X), each p ∈ M is identified
by (g(p), Q(p)). Let Ψ(p) = Ψ(Q(p)) be a pathwise differentiable parame-
ter of the Q(p)-part of the density p of O: i.e., it represents an identifiable
parameter of FX . In this case, it is known that the efficient influence curve
D(p) = D(g(p), Q(p)) at p ∈ M is orthogonal to the tangent space TCAR(p)
of the censoring mechanism g at p only assuming CAR (i.e., the Hilbert space
in L2

0(P ) spanned by all scores of parametric submodels through g(p) at p),
where TCAR(p) = {h(O) : Ep(h(O) | X) = 0} consists of all functions of O
with conditional mean, given X, equal to zero. As a consequence, given an
initial estimator Q0 of Q(p0) and g0 of g(p0), a hardest parametric model for
ψ0 can be chosen to be of the form p0(ε) ≈ (1 + εD(p0))p0 = g0Q0(ε), where
Q0(ε) ≈ (1 + εD(Q0, g0))Q0. That is, the hardest parametric model only cor-
responds with changing Q0, but it leaves g0 untouched. The targeted MLE
approach proceeds now as defined above.

5.2 Targeting the censoring mechanism.

In this subsection we propose a targeted maximum likelihood methodology
for estimation of ψ0 which involves updating of estimators of both g0 and Q0.
As shown in van der Laan and Robins (2003) (Theorem 1.3), we have that
any gradient D(p) can be decomposed as D(p) = DIPCW (p) −DCAR(p) with
DIPCW being a so called Inverse Probability of Censoring Weighted (IPCW)
function, and DCAR(p) = Π(DIPCW (p) | TCAR(p)) is the projection of the
IPCW function DIPCW (p) onto TCAR(p) in the Hilbert space L2

0(p). In order
to relate these functions to estimating functions for ψ0 (as in van der Laan and
Robins (2003)) we will also sometimes use DIPCW (p) = DIPCW (g(p),Ψ(p))
and D(p) = D(g(p), Q(p),Ψ(p)) in the case that these functions can be rep-
resented as an estimating function in ψ indexed by nuisance parameters be-
ing functions of g(p) and Q(p): we note that the IPCW estimating function
typically only depends on p through g(p) and Ψ(p). Given an initial esti-
mator p0

n = (g0
n, Q

0
n), in the censored data literature one defines the IPCW-

estimator and DR-IPCW estimator as the solutions of the estimating equa-
tions PnDIPCW (g0

n, ψ) = 0 and PnD(g0
n, Q

0
n, ψ) = 0, respectively, and Ψ(Q0

n)
is called the likelihood based estimator (making the assumption that Q0

n is
likelihood based).

We will now describe the targeted MLE algorithm also involving the up-
dating of g0

n. At step k it now involves also a parametric submodel g(pkn)(ε2)
through g(pkn) with score DCAR(gkn, Q

k
n) at ε2 = 0. It can be shown that

DCAR(g(p), Q(p)) corresponds with the efficient influence curve of the param-
eter Φ(g) = EpDIPCW (g,Q(p)) at g = g(p), so that this parametric submodel
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makes the estimator of g0 targeted for estimation of the mean of the IPCW -
component of the efficient influence curve. In particular, it is also the para-
metric submodel which makes the IPCW estimator ψn,IPCW , defined as the
solution of the IPCW estimating equation 0 = PnDIPCW (gn, ψ), efficient if
the submodel is correctly specified, under regularity conditions. As above, let
Qk
n(ε1) be a parametric submodel through Qk

n with score D(gkn, Q
k
n) at ε1 = 0.

Targeted MLE algorithm:

• Set k = 0.

• Let pkn = (gkn, Q
k
n).

• Let ε1nk = arg maxε1 Pn logQk
n(ε1), and ε2nk = arg maxε2 Pn log gkn(ε2).

• Set gk+1
n = gkn(ε2n) and Qk+1

n = Qk
n(ε1n). Set pk+1

n = (gk+1
n , Qk+1

n ).

• Set k = k + 1, and iterate this process utill convergence.

If ε1nk and ε2nk converge to zero for k →∞ (which can be expected because
both factors g and Q of the likelihood are increasing at each step), then the
targeted MLE algorithm will converge to a simultaneous solution of

lim
k
PnDCAR(gk, Qk) = 0 and lim

k
PnD(gk, Qk) = 0.

Equivalence of IPCW, DR-IPCW, and targeted MLE: As a conse-
quence of the decomposition D(p) = DIPCW (p) − DCAR(p), this implies also
limkDIPCW (gk,Ψ(Qk)) = 0. Note that the double robust IPCW estimator
defined as the solution in ψ of PnD(gkn, Q

k
n, ψ) = 0, the targeted maximum

likelihood estimator Ψ(Qk
n), and the IPCW estimator defined as the solution

of PnD(gkn, ψ) = 0, all based on these targeted MLE’s gkn, Q
k
n are identical

up to an arbitrarily small error decreasing in k (assuming uniqueness of the
DR-IPCW and IPCW solution).

6 Examples of targeted maximum likelihood.

In this section we provide some important examples of the targeted MLE
to illustrate its remarkable simplicity and good properties. For additional
examples we refer to our accompanying technical report.
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6.1 Estimation of a mean in a nonparametric model.

Consider an initial data generating density p0
n (with respect to a dominating

measure µ) of a possibly multivariate random variable O, a given function
w(·), and define the parameter of interest as

Ψ(p) = Ep[w(O)] =
∫
w(o)p(o)dµ(o).

For the exponential family{
p0
n(ε)(x) =

exp(ε(w(x)− ψ0
n))p

0
n(x)∫

exp(ε(w(x)− ψ0
n))p

0
n(x)dµ(x)

: ε

}
,

consider attempting to estimate ε with maximum likelihood based on an i.i.d.
sample {Oi}ni=1. Here ψ0

n = Ψ(p0
n). The log likelihood is then,

l(ε) =
n∑
i=1

[log(p0
n(Oi))+ε(w(Oi)−ψ0

n)−log
(∫

exp(ε(w(x)− ψ0
n))p

0
n(x)dµ(x)

)
].

In our accompanying technical report we show that (for each initial p0
n) the one-

step targeted maximum likelihood estimator Ψ(p1
n) = Ψ(p0

n(εn) of the mean of
w(O) equals the sample mean W̄n = 1

n

∑n
i=1w(Oi). For the detailed proof we

refer to our technical report.

6.2 Estimation of a marginal causal effect.

Double robust locally efficient estimation of the causal effect of a point treat-
ment assuming a marginal structural model has been provided in Robins
(2000), Robins and Rotnitzky (2001), and Robins et al. (2000): see also van der
Laan and Robins (2003).

Let O = (W,A, Y ), W be a vector of baseline covariates, A be a binary
treatment variable, and Y an outcome of interest. Let M be the class of all
densities of O with respect to an appropriate dominating measure: so M is
nonparametric up to possible smoothness conditions. Let Ψ : M → IR be
defined as Ψ(p) = Ep(Ep(Y | A = 1,W ) − Ep(Y | A = 0,W )), where it is
assumed 0 < P (A = 1 | W ) < 1 with probability one so that this parameter
is well defined. This parameter corresponds with the marginal causal effect of
A on Y if one assumes the usual consistency assumption, temporal ordering
assumption, and randomization assumption required for causal inference. In
order to acknowledge that this parameter is of interest in general, van der
Laan (2006) refers to this parameter as the variable importance of variable

Chapter 2. Targeted Maximum Likelihood Estimation

35
http://biostats.bepress.com/ucbbiostat/paper254



A. This parameter Ψ(p) is pathwise differentiable at p with efficient influence
curve S(p) defined by

S(p) =
(Y −Q(p)(A,W ))(I(A = 1)− I(A = 0))

g(p)(A | W )

+Q(p)(1,W )−Q(p)(0,W )−Ψ(p),

where g(p)(· | W ) = Prp(A = · | W ), and Q(p)(A,W ) = Ep(Y | A,W )
(see e.g., Robins (2000), van der Laan (2006)). Note that Ψ(p) depends on
p through Q(p) and its marginal distribution pW of W . Because the model
is locally saturated, it is also the only influence curve/gradient (Gill et al.
(1997)). So we set D(p) = S(p).

We can decompose this efficient score D(p) into three subcomponents as
follows:

D(p) = D(p)− Ep(D(p) | A,W ) + Ep(D(p) | A,W )− Ep(D(p) | W )

+Ep(D(p) | W )− EpD(p),

which corresponds with scores for p(Y | A,W ), p(A|W ) and p(W ), respec-
tively. We have

D1(p)(O) ≡ D(p)− Ep(D(p) | A,W )

= (Y −Q(p)(A,W ))
A− (1− A)

g(p)(A | W )

Ep(D(p) | A,W )− Ep(D(p) | W ) = 0

D2(p) ≡ Ep(D(p) | W )− Ep(D(p))

= Q(p)(1,W )−Q(p)(0,W )−Ψ(p).

Consider an initial density estimator p0
n of the density p0 of (W,A, Y )

with marginal distribution of W being the empirical probability distribution
of W1, . . . ,Wn. We have that D(p0

n) = D1(p
0
n) +D2(p

0
n) and thus that a one-

dimensional p0
n(ε) with score D(p0

n) at ε = 0 corresponds with a zero score for
g(p0

n). In addition, we have that PnD2(p
0
n) = 0 (i.e., the empirical distribution

of W is a nonparametric maximum likelihood estimator) so that p0
n(ε) can be

selected to only vary p0
n(Y | A,W ) with a score D1(pn) at ε = 0.

We now propose an easily implemented targeted maximum likelihood es-
timator of the marginal causal effect by using a normal regression model as
hardest submodel. Specifically, consider an initial density estimator p0

n with
marginal distribution of W equal to the empirical probability distribution
of W1, . . . ,Wn, and let the conditional probability density p0

n(Y | A,W ) =
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1
σ(Q0

n)(A,W )
f0({Y − Q0

n(A,W )}/σ(Q0
n)(A,W )) be a normal density with mean

Q0
n(A,W ) and variance σ(Q0

n)
2(A,W ). Here f0 denotes the N(0, 1) density.

In addition, g(pn0 )(A | W ) is a particular fit of the conditional density of A,
given W . We now consider as possible submodels p0

n(ε)

p0
n(ε)(Y | A,W ) =

1

σ(Q0
n(A,W )

f0

(
Y −Q0

n(A,W )− εh(p0
n)(A,W )

σ(Q0
n)(A,W )

)
,

where the function h will be specified so that the score of p0
n at ε = 0 equals

the efficient influence curve at p0
n. The maximum likelihood estimator of ε is

simply given by the weighted least squares estimator for a univariate linear
regression model:

εn = arg min
ε

n∑
i=1

(Yi −Q0
n(Ai,Wi)− εh(p0

n)(Ai,Wi))
2 1

σ(Q0
n)

2(Ai,Wi)
.

The score of p0
n(ε)(Y | A,W ) at a value ε is given by:

S(ε) = −Y −Q0
n(A,W )− εh(p0

n)(A,W )

σ(Q0
n)

2(A,W )
h(p0

n)(A,W ),

and εn solves indeed PnS(εn) = 0. If we set

h(p0
n)(A,W ) ≡

(
I(A = 1)

g0
n(1 | W )

− I(A = 0)

g0
n(0 | W )

)
σ(Q0

n)
2(A,W ),

then the score S(0) = D1(p
0
n) = (Y −Q0

n(A,W ))(I(A = 1)/g0
n(1 | W )− I(A =

0)/g0
n(0 | W )) of p0

n(ε)(Y | A,W ) at ε = 0 corresponds with the efficient
influence curve at p0

n. As in our previous subsection, since p0
n(W ) equals the

empirical distribution of W the MLE of ε1 → Pn log p0(ε1)(W ) equals ε = 0,
and g0

n(A | W ) will not be varied by p0
n(ε): that is, the marginal distribution

of W and the treatment mechanism g0(A | W ) will not be updated in the
algorithm for calculating the targeted maximum likelihood estimator.

Let p1
n = p0

n(εn) whose conditional distribution of Y , given A,W , is a
normal density with mean Q1

n(A,W ) and variance σ2(Q1
n)(A,W ), where

Q1
n(A,W ) = Q(p1

n)(A,W ) = Q0
n(A,W ) + εnh(p

0
n)(A,W ).

The corresponding estimate of ψ0 is given by

Ψ(p1
n) =

1

n

n∑
i=1

Q1
n(1,Wi)−Q1

n(0,Wi).
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It is straightforward to show that PnD(p1
n) = 0 in the case that σ0

n(A,W )
is constant in the model {p0

n(ε) : ε}, but is simply set at an initial estimate.
Thus in this case the targeted maximum likelihood is achieved at the first step.
For arbitrary fixed values of σ(A,W ), the targeted MLE is locally efficient in
the sense that if g(p0

n) is consistent at some rate, then it is consistent and
asymptotically linear for arbitrary Q0

n, and it is efficient if Q0
n is consistent for

Q0(A,W ). Likewise, a consistent Q1
n(A,W ) will lead to a consistent estimator

of the parameter of interest ψ0, even with an arbitrary fit of the treatment
mechanism g(A|W ). Iterative estimation of σ provides no (asymptotic) re-
ward, and could simply be omitted by setting (e.g.) σ at an initial estimate,
so that the targeted MLE is achieved in a single step.

6.3 Targeting the treatment mechanism as well.

We will now proceed with this example, but also use for g0 a targeted maximum
likelihood estimator. Our goal is to make the IPTW estimator ψn,IPTW =
1
n

∑n
i=1 Yi

I(Ai=1)−I(Ai=0)
gn(Ai|Wi)

corresponding wiht the targeted MLE gn an efficient

estimator. Let g(p0
n)(A | W ) be an initial estimator and represent it as a

logistic function:

g(p0
n)(1 | W ) =

1

1 + exp(−m0
n(W ))

.

Consider as parametric submodel

g(p0
n)(ε2)(1 | W ) =

1

1 + exp(−m0
n(W )− ε2h(p0

n)(W ))
. (11)

Let ε2n = arg maxPn log g(p0
n)(ε). In practice this can be done by fitting a

logistic regression in the covariates m0
n(W ) and h(p0

n)(W ), setting the inter-
cept equal to zero, and setting the coefficient in front of m0

n(W ) equal to 1,
and set ε2n equal to fitted coefficient in front of h(p0

n)(W ). It is also fine to
refit the intercept and coefficient in front of m0

n(W ), since choosing additional
parameters still guarantees that the linear span of scores includes the score of
h(p0

n)(W ). We have

d

dε2
log g(p0

n)(ε2)

∣∣∣∣∣
ε2=0

(O) = h(p0
n)(W )(A− g(p0

n)(1 | W )).

Solving for h so that

h(W )(A− g(p0
n)(1 | W )) = DCAR(p0

n)(O)
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=
Q(p0

n)(A,W )

g0
n(A | W )

{I(A = 1)− I(A = 0)}
−{Q(p0

n)(1,W )−Q(p0
n)(0,W )}

yields the solution

h(p0
n)(W ) =

Q(p0
n)(1,W )

g(p0
n)(1 | W )

+
Q(p0

n)(0,W )

g(p0
n)(0 | W )

.

We are now ready to present the proposed targeted MLE which also targets
the treatment mechanism fit.

The algorithm for targeted maximum likelihood estimation of a
marginal causal effect, including the targeting of the treatment mech-
anism. Thus the algorithm for targeted maximum likelihood estimation of
ψ0 can be described as follows. Let k = 0, and let g0(A | W ) and the regression
fit Q0(A,W ) of E0(Y | A,W ) be given. Let

hk1 = h1(g
k, Qk)(A,W ) ≡

(
I(A = 1)

gk(1 | W )
− I(A = 0)

gk(0 | W )

)
σ(Qk)2(A,W )

and

hk2 = h2(g
k, Qk)(W ) =

Qk(1,W )

gk(1 | W )
+
Qk(0,W )

gk(0 | W )
.

Let mk(W ) = log(gk(1 | W )/gk(0 | W )) so that gk(1 | W ) = 1/(1 +
exp(−mk(W )). Consider the logistic regression model

gk(ε2)(1 | W ) =
1

1 + exp(−mk(W )− ε2hk2(W ))
.

Let ε2n(k) = arg maxε2 Pn log gk(ε2) be the maximum likelihood estimator of
this univariate logistic regression model, and let

ε1n(k) = arg min
ε1

n∑
i=1

(Yi −Qk(Ai,Wi)− ε1h
k
1(Ai,Wi))

2 1

σ(Qk)2(Ai,Wi)
,

the univariate least squares estimator of ε1.
Now, update gk and Qk as follows:

Qk+1(A,W ) = Qk(A,W ) + ε1n(k)h
k
1(A,W )

mk+1(A,W ) = mk(W ) + ε2n(k)h
k
2(W )

gk+1(A | W ) =
1

1 + exp(−mk+1(W ))

Set k = k + 1 and iterate this algorithm.
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Equivalence of IPTW, DR-IPTW, and targeted maximum likeli-
hood estimators. Recall that the efficient influence curve function is de-
composed as D(g,Q)(O) = DIPTW (g,Q)−DCAR(g,Q), where DIPTW (g,Q) =

Y
g(A|W )

(I(A = 1) − I(A = 0)) − Ψ(Q), and DCAR(g,Q) = Q(A,W )
g(A|W )

(I(A =

1) − I(A = 0)) − (Q(1,W ) − Q(0,W )). For k converging to infinity the
targeted MLE yields a final estimator gn of the treatment mechanism and a
regression fit Qn(A,W ) so that the score equations of the two submodels in ε1
and ε2 are solved at ε1 = ε2 = 0:

PnD(gn, Qn) = 0 and PnDCAR(gn, Qn) = 0.

This implies also that
PnDIPTW (gn, Qn) = 0.

Thus, we can conclude that the three estimators

Ψn,IPTW =
1

n

n∑
i=1

Yi
gn(Ai | Wi)

(I(Ai = 1)− I(Ai = 0))

Ψn,DR−IPTW =
1

n

n∑
i=1

Yi
gn(Ai | Wi)

(I(Ai = 1)− I(Ai = 0))

− DCAR(gn, Qn)(Ai,Wi)

Ψn,MLE =
1

n

n∑
i=1

Qn(1,Wi)−Qn(0,Wi)

are algebraically identical: Ψn,IPTW = Ψn,DR−IPTW = Ψn,MLE. That is, the
targeted MLE Ψ(Qn) equals the IPTW and DR-IPTW estimator based on the
targeted MLE (gn, Qn) as estimators of the nuisance parameters (g0, Q0) in the
corresponding estimating equations. Preliminary results suggest that consis-
tency of the resulting targeted likelihood algorithm depends on the consistency
of either the g0 or Q0 component of the initial density estimator.

6.4 Simulation for marginal variable importance.

Simulated data can be used to illustrate the benefits of the targeted likelihood
procedure. We simulated replicates of the data structure O = (W,A, Y ) ∼ p0

representing baseline covariates, a binary treatment, and a response measure-
ment on a subject, and attempted to estimate the causal effect of treatment
A on response Y . We generated 1000 datasets of size n = 200 according to
the following mechanism:

W ∼ U(0, 1)
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A ∈ {0, 1}
g(1|W ) = P (A = 1|W ) =

1

1 + exp(−8W2 + 8W − 1)

ε ∼ N(0, 1), ε ⊥ (W,A)

Y = AQ(1,W ) + (1− A)Q(0,W ) + ε

Q(0,W ) = −2

3
, Q(1,W ) = −(8W 2 − 8W + 1)

Here O represented a censored data structure. The unavailable counter-
factual data was given by,

X = (W,Y0, Y1) = (W,Q(0,W ) + ε, Q(1,W ) + ε).

It could be be verified that the coarsening at random assumption held, or that,

{A ⊥ X|W},
as well as the experimental treatment assignment assumption, implied by,

0 < 0.26 < g(1|W ) < .74 < 1 with probability one.

Together these assumptions made it possible to estimate the parameter,

Ψ(p0) = E[Y1]− E[Y0] = 1,

representing the counterfactual mean difference between the treatment group
(A = 1) and the control group (A = 0).

The standard estimators for this problem are the inverse probability of
treatment (IPTW), maximum likelihood (G-computation), and doubly robust
(efficient) estimators. These respectively depend on fitting either the censoring
mechanism g or the nuisance parameter Q(A,W ) = E[Y |W ], and are given as
follows, where hg(A,W ) = A

g(1|W )
− 1−A

g(0|W )
:

Ψ
n,IPTW(g) =

1

n

n∑
i=1

Yihg(Ai,Wi)

Ψ
n,MLE(Q) =

1

n

n∑
i=1

[Q(1,Wi)−Q(0,Wi)]

Ψ
n,DR-IPTW(g,Q) = Ψ

n,IPTW + Ψ
n,MLE −

1

n

n∑
i=1

hg(Ai,Wi)Q(Ai,Wi)

Typically estimation is based on forming external estimates of at least one
of the two nuisance parameters g or Q, and then applying one of the IPTW,
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maximum likelihood, or double robust estimators. The three estimators can
potentially be very different from one another, leading to difficulties when
interpreting the data. Targeted likelihood resolves this problem, by estimating
both nuisance parameters g and Q accurately with maximum likelihood, but in
a way so that the IPTW, maximum likelihood, and doubly robust estimators
are algebraically equivalent.

As our initial fit to p0 prescribed that {Y |A,W} followed a Gaussian dis-
tribution with fixed variance, the hardest one-dimensional submodel ε → pε
for estimation of Ψ(p0) could be given by,

{Y |A,W} ∼ N(Q(0)
n (A,W ) + εhg(A,W ), σ2),

while the laws of {W} and {A|W} were left unchanged. The maximum like-
lihood estimator of ε became,

εn =

∑n
i=1 hg(Ai,Wi)(Yi −Q(0)

n (Ai,Wi))∑n
i=1 hg(Ai,Wi)

,

leading to the updated estimate of Q(A,W ) = E[Y |A,W ],

Q(1)
n (A,W ) = Q(0)

n (A,W ) + εnhg(A,W ).

When the treatment mechanism g was not updated, the targeted likelihood
algorithm converged in a single iteration. Note that the update did not de-
pend in any way on the choice of variance σ2 for the law of {Y |A,W}, so
long as it was a constant. The parameter Ψ(p0) was then estimated with
Ψ(p(εn)), which was equal to Ψ

n,MLE(Q(1)
n ) and Ψ

n,DR-IPTW(g,Q(1)
n ). The

treatment mechanism g could also be updated with targeted likelihood, to
make the IPTW estimator equivalent with the maximum likelihood and dou-
ble robust estimators. This was done by making a one-dimensional model
gε(1|W ) through g(1|W ) at ε = 0, whose score at ε = 0 was the projection of
the IPTW estimator’s influence curve on TCAR. Such a submodel could be
formed by taking,

logit(gε(1|W )) = g(1|W ) + ε[
Q(1,W )

g(1|W )
+
Q(0,W )

g(0|W )
].

Because this was simply a logistic model for {A|W}, we could estimate ε
through logistic regression. After iterating the targeted likelihood procedure
to update both of the Q and g nuisance parameters until convergence, the
IPTW, maximum likelihood, and double robust estimators of Ψ(p0) became
equivalent.
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For this data structure, Ψ
n,DR-IPTW(g,Q) was asymptotically efficient,

meaning that its asymptotic performance was superior to any other regular
estimator. This efficient estimator could not be used directly on observed
data, due to its dependence on the unknown nuisance paramters g and Q. We
assessed the quality of an estimator Ψn through the ratio

R(Ψn) =
Ep0 [n|Ψn −Ψ(p0)|2]

Ep0 [n|Ψn,DR-IPTW(g,Q)−Ψ(p0)|2]

For large enough sample size n, and consistent and asymptotically linear Ψn,
this approximated the asymptotic relative efficiency of Ψn to the efficient esti-
mator, and necessarily exceeded one. We approximated R(Ψn) after forming
Ψn on 1000 simulated datasets of size n = 200.

In our simulations, we considered known censoring mechanism g, as could
occur in a randomized clinical trial. We misspecified the nuisance parameter
Q, by estimating E[Y |W ] in the A = 0 and A = 1 strata with linear regres-
sion, while quadratic regression would have been appropriate. This first-order
approximation to Q lead to an inaccurate maximum likelihood estimator, hav-
ing R(Ψn) = 2.63. Confidence intervals for R(Ψn) were negligible, due to the
number of simulations. The misspecified nuisance parameter Q did not affect
the performance of the IPTW estimator, or the consistency of the double ro-
bust estimator, which respectively had asymptotic relative efficiencies R(Ψn)
of 1.18 and 1.15. Note that the IPTW estimator was unbiased, but was less
accurate than the double robust estimator with misspecified Q. After updat-
ing Q with a single targeted likelihood iteration, R(Ψn) decreased to 1.10.
The resulting estimator was then a maximum likelihood estimator (and dou-
ble robust estimator) with updated Q, and the update greatly increased of
the accuracy of the parameter estimate. When also updating the censoring
mechanism g, the asymptotic relative efficiency dropped even further to 1.07,
making the estimator almost equivalent with the efficient estimator. In spite
of the fact that the censoring mechanism g was already known, estimating it
from the data was nevertheless beneficial, as could be surmised from Chapter
2.3.7 of (van der Laan and Robins (2003)).

Thus, the targeted likelihood algorithm allowed us to estimate the nuisance
parameters g and Q with maximum likelihood in a manner such that three
standard estimators become identical, and led to better performance than
was achieved by the initial IPTW, maximum likelihood, and double robust
estimators.
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6.5 Semiparametric regression example.

Let O = (W,A, Y ) ∼ p0 and consider the semiparametric regression model
M = {p : Ep(Y | A,W ) − Ep(Y | A = 0,W ) = m(A,W | β(p))} for some
parametrization β → m(A,W | β) satisfying m(0,W | β) = 0 for all β ∈ IRd.
This is equivalent with assuming E0(Y | A,W ) = m(A,W | β0) + θ0(W )
with θ0 unspecified and m(0,W | β) = 0, and can therefore also be viewed
as a semiparametric regression model. It has been recognized that a maxi-
mum likelihood fit (e.g., generalized additive models) of the semiparametric
regression suffers from bias for the parametric part, so that one needs to un-
dersmooth the nonparametric components in the semiparametric regression
model. However, the literature does not provide practical guidance about how
to undersmooth. Therefore, the targeted MLE approach presented here pro-
vides an importance practical improvement. Let Ψ(p) = β(p) ∈ IRd be the
parameter of interest.

This type of semiparametric regression models has been considered by
various authors (e.g., Newey (1995); Rosenbaum and Rubin (1983); Robins
et al. (1992); Robins and Rotnitzky; Yu and van der Laan (2003)). The lat-
ter three articles derive the orthogonal complement of the nuisance tangent
space (i.e., the set of all gradients of the pathwise derivative), the efficient in-
fluence curve/canonical gradient, and establish the wished double robustness
of the corresponding estimating functions. In particular, for our purpose we
refer to Theorem 2.1 and 2.2 in Yu and van der Laan (2003) for the following
statements.

The orthogonal complement of the nuisance tangent space is given by:

T⊥nuis(p) = {Dh(p) : h} ⊂ L2
0(P ),

where Dh(p)(O) ≡ (h(A,W ) − Ep(h(A,W ) | W ))(Y − m(A,W | β(p)) −
Ep(Y | A = 0,W )). The orthogonal complement of the nuisance tangent
space corresponds with the set of gradients for Ψ at p given by:

T⊥nuis(p)
∗ =

{
−c(p)(h)−1Dh(p)(O) : h = (h1, . . . , hd)

}
,

where c(p)(h) = d
dβ
EpDh(p, β)

∣∣∣
β=β(p)

, and Dh now represents a vector function

(Dh1 , . . . , Dhd). The efficient influence curve is identified by a closed form index
h(p) (see e.g., Yu and van der Laan (2003)), which is provided below (12). Let
D(p) = Dh(p)(p) be this efficient influence curve at p as identified by this index
h(p).

Let g(p) be the conditional density of A, given W , under p, let Q(p) be
the conditional distribution of Y , given A,W , under p. We note that the
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parameter Ψ(p) is only a function of Q(p), and the density factorizes as p(O) =
p(W )g(p)(A | W )Q(p)(Y | A,W ). As a consequence, the elements Dh(p)
are orthogonal to the tangent spaces of the nuisance parameter g(p) and the
nuisance parameter p(W ). That is, we can decompose the efficient score D(p)
into three subcomponents as follows:

D(p) = D(p)− Ep(D(p) | A,W ) + Ep(D(p) | A,W )− Ep(D(p) | W )

+Ep(D(p) | W )− EpD(p),

which corresponds with scores for p(Y | A,W ), p(A|W ) and p(W ) at p,
respectively, but Ep(D(p) | A,W ) − Ep(D(p) | W ) = 0 and Ep(D(p) |
W )− E(D(p)) = 0. Thus the efficient influence curve D(p) represents only a
score for Q(p)(Y | A,W ), and indeed satisfies Ep(D(p)(O) | A,W ) = 0.

Consider an initial density estimator p0
n = (p0

nW , g(p
0
n), Q(p0

n)) of (W,A, Y )
with marginal distribution of W being the empirical probability distribution
of W1, . . . ,Wn. Above we showed that a submodel p0

n(ε) through p0
n with score

D(p0
n) at ε = 0 can be selected to only vary the conditional density Q(p0

n) of
Y , given A,W , with a score D(p0

n) at ε = 0. Such a submodel will now be
presented.

Let p0
n ∈ M. Suppose that Q(p0

n) is a normal distribution with mean
θ(p0

n)(A,W ) = Ep0n(Y | A,W ) and variance σ2(A,W ) = σ2(Q0
n)(A,W ). Recall

that D(p0
n) = (h(p0

n)(A,W )−Ep0n(h(p0
n) | W ))(Y −m(A,W | β(p0))−Ep0n(Y |

A = 0,W )). For notational convenience, we will represent this function as
h(p0

n)(A,W )(Y − Ep0n(Y | A,W )) with now h(p0
n) so that Ep0n(h(p

0
n)(A,W ) |

W ) = 0. Consider the parametric submodel of M defined as the normal
density with conditional variance σ2(A,W ) and conditional mean m(A,W |
β0
n(ε)) + θ0

n(ε). That is,

Q0
n(ε)(Y | A,W ) =

1

σ(A,W )
f0

(
Y −m(A,W | β0

n(ε))− θ0
n(ε)(W )

σ(A,W )

)
,

where β0
n(0) = β(Q0

n), θ
0
n(0) = θ(Q0

n) = EQ0
n
(Y | A = 0,W ), and f0 is the

standard normal density. We note that this is a valid submodel through Q0
n

at ε = 0. Let β(ε) ≡ β(Q0
n) + ε and θ0

n(ε) = θ(Q0
n) + ε>r. It remains to find a

function r(W ) so that the score of Q0
n(ε) at ε = 0 equals the efficient influence

curve D(p0
n).

We have that the score S(ε) at ε is given by (note that f ′0(x)/f0(x) = 2x/σ2)

S(ε)σ2(A,W )

= (Y −m(A,W | β0
n(ε))− θ0

n(ε)(W ))

{
d

dε
m(A,W | β0

n(ε))−
d

dε
θ0
n(ε)(W )

}
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=

{
d

dβ0
n(ε)

m(A,W | β0
n(ε))− r(W ))

}
(Y −m(A,W | β0

n(ε))− θ0
n(ε)(W )).

Solving for r so that S(0) = D(p0) yields the equation

h(p0
n)(A,W )(Y − EQ0(Y | A,W )) =
1

σ2(A,W )

{
d

dβ(Q0
n)
m(A,W | β(Q0

n))− r(W )
}

(Y − EQ0
n
(Y | A,W )).

In order to have that the score equals Dh for a particular h(A,W ) with
Ep0n(h(A,W ) | W ) = 0, we need

r(p0
n)(W ) =

Ep0n

(
d/dβ0

nm(A,W |β0
n)

σ2(A,W )
| W

)
Ep0n

(
1

σ2(A,W )
| W

) .

This yields the following score for our submodel p0
n(ε) at ε = 0:

S(0) = h(p0
n)(A,W )(Y −m(A,W | β(Q0

n))− θ(Q0
n)(W )),

where

h(p0
n)(A,W ) ≡ 1

σ2(A,W )

d

dβ(Q0
n)
m(A,W | β(Q0

n))

− 1

σ2(A,W )

Ep0n

(
d

dβ(Q0
n)
m(A,W | β(Q0

n))/σ
2(A,W ) | W

)
Ep0n(1/σ

2(A,W ) | W )
.

This choice h(p0
n) gives a score S(0) equal to the efficient influence curve (see

e.g., Yu and van der Laan (2003)). So we succeeded in finding a submodel
p0
n(ε) with a score at ε = 0 equal to the efficient influence curve at p0

n. Thus
we are now ready to define the targeted MLE.

Consider the log-likelihood for p0
n(ε) in ε:

l(ε) ≡ 1

n

n∑
i=1

log f0

(
Yi −m(Ai,Wi | β0

n + ε)− (θ0
n(W ) + ε>r(p0

n)(W ))

σ(A,W )

)
.

Let εn be the maximizer, which can thus be computed with standard weighted
least squares regression:

εn = arg min
ε

n∑
i=1

1

σ2(Ai,Wi)

(
Yi −m(Ai,Wi | β0

n + ε)− θ0
n(Wi)− εr(p0

n)(Wi)
)2
.

The score equation 0 = d/dεl(ε) = PnS(ε) for εn is given by

0 = Pn

{
d

dβ0
n(ε)

m(β0
n(ε))− r(p0

n))
}

(Y −m(β0
n(ε))− θ0

n − ε>r(p0
n))

σ2
.
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In the sequel we consider the case that m(A,W | β) = β>m1(A,W ) is lin-
ear in β for some specified covariate vector m1(A,W ). In this case we have
d/dβm(A,W | β) = m1(A,W ) so that the score equation PnS(ε) = 0 reduces
to:

0 = Pn
{m1 − r(p0

n)} (Y − (β0
n + εn)m1 − θ0

n − ε>n r(p
0
n))

σ2
. (12)

Firstly, we note that εn exist in closed form:

εn = A−1
n Pn

{m1 − r(p0
n)} (Y − β0>

n m1 − θ0
n)

σ2
,

where the d× d matrix An is given by

An ≡ 1

n

n∑
i=1

1

σ2(Ai,Wi)

{
m1(Ai,Wi)− r(p0

n)(Wi)
}

(m1(Ai,Wi) + r(p0
n)(Wi))

>.

Let p0
n(εn) be the new density estimator. Recall that the distribution of

(A,W ) under p0
n(εn) is still the same as under p0

n, because p0
n(ε) only updates

the conditional distribution of Y , given A,W . We now wish to investigate
if the first step targeted MLE p1

n ≡ p0
n(εn) already solves the efficient score

equation: PnD(p1
n) = PnD(p0

n(εn)) = 0. We have that PnD(p0
n(εn)) is given by

Pn
{m1 − r(p0

n(εn))} (Y − (β0
n + εn)m1 − θ0

n − εnr(p
0(εn)))

σ2
.

Because r(p0
n(ε)) = r(p0

n), it follows that PnD(p0(εn)) is given by

Pn
{m1 − r(p0

n)} (Y − (β0
n + εn)m1 − θ0

n − εnr(p
0
n))

σ2
,

but the latter equals zero by the fact that PnS(εn) = 0 (12). This proves that,
if m(A,W | β) is linear in β, then the targeted maximum likelihood estimator
is achieved in the first step of the algorithm and solves the efficient influence
curve estimating equation PnD(p) = 0. If one would also update σ2(A,W )
in the submodel p0

n(ε), then the algorithm would have to be iterated in order
to converge to a targeted MLE solving PnD(p) = 0. Similarly, for nonlinear
models m(A,W | β) the targeted MLE algorithm will also need to be iterated
till convergence.

7 Targeted MLE as loss based estimation.

In the previous sections we defined a targeted MLE in terms of an initial
density estimator and the targeted MLE algorithm applied to this initial den-
sity estimator. In order to provide a general data adaptive likelihood based
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approach for construction of targeted MLE’s (also allowing for an integrated
data adaptive approach for searching over the initial densities, just as in sieve
based MLE), we now note that the targeted MLE approach corresponds with
a particular modified log-likelihood loss function. Specifically, let

L(p | P0) ≡ − log p∗(p),

where p∗(p) is defined as the limit for k →∞ of the targeted MLE applied to
P0 and starting at p:

pk+1 = arg max
p∈{pk(ε):ε}

P0 log p. (13)

Note that L(p | P0) is a loss function for densities p of the data indexed by un-
known nuisance parameters, since the εk0 ≡ arg maxε P0 log pk(ε) are unknown.
However, estimation of the unknown nuisance parameter corresponds simply
with applying the targeted MLE algorithm to the data starting at p. The loss
function satisfies

p0 = arg min
p∈M

P0L(p | P0),

because p∗(p0) = p0 and p0 = arg minp∈M−P0 log p. Therefore, we can apply
the unified loss based learning approach presented in van der Laan and Dudoit
(2003) based on this new loss function L(p | P0) for a candidate density p.
Succinctly, this loss based learning approach works as follows. Let Ms ⊂ M
be a sieve of M indexed by fine tuning parameters s. Let

psn = Φ̂s(Pn) ≡ arg min
p∈Ms

PnL(p | Pn) = arg max
p∈Ms

Pn log p∗n(p),

where p∗n(p) represents the limit density of the targeted MLE algorithm start-
ing at p applied to the data Pn. Note that this maximization corresponds
with maximizing the log likelihood over solutions of PnD(p∗) = 0, where the
p∗ = p∗(p) is restricted by the constraints on the initial p. We can select s
with likelihood based cross-validation:

sn = Ŝ(Pn) ≡ arg min
s
EBnP

1
n,BnL(Φ̂s(P

0
n,Bn) | P 0

n,Bn),

resulting in the targeted ML density estimator

pn ≡ psnn = Φ̂Ŝ(Pn)(Pn)

and targeted ML estimator of ψ0 given by ψn = Ψ(pn).
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8 Discussion.

In this article we assumed a model in terms of densities with respect to a
known dominating measure, and our targeted MLE density estimators are
assumed to be dominated by this dominating measure. This allowed us to
simplify the presentation of the method. However, we also wish to stress that
the presented targeted maximum likelihood estimation methodology can easily
be generalized to targeted maximum likelihood estimation in models in terms
of probability distributions including (say) discrete as well as continuous dis-
tributions, just as this is common practice in maximum likelihood estimation
in semiparametric models. The targeted MLE algorithm takes as input an
initial density with respect to a specified dominating measure, and is based on
a hardest submodel in terms of densities with respect to this same dominating
measure. Thus, the targeted MLE algorithm can be applied to discrete dis-
tributions as well as continuous distributions, and as a consequence, the (loss
based) targeted MLE learning as presented in Section 7 applies to models that
are not necessarily dominated by a single dominating measure.

As a further generalization, the iterative principle underlying this work can
be applied to loss functions other than the negative log likelihood. Given a
loss function defined on the data and parameter space (and possibly a nui-
sance parameter η), we can make a one-dimensional ε-extension through a
space containing both the parameter Ψ and nuisance parameter η, initialize
the parameter estimate at Ψ(0), and then update the parameter estimate by
choosing ε to minimize the empirical risk 1

n

∑n
i=1 L(Oi,Ψ(ε)|η(ε)). The re-

quirement underlying the procedure is that d
dε
L(O,Ψ(ε)|η(ε))|ε=0 is equal to

an estimating equation for the parameter Ψ. If this condition is met, then
solving this estimating equation should correspond to convergence of the it-
erative empirical risk minimization algorithm. Hence, applying the algorithm
with such a loss function L(O,Ψ|η) leads to a fusion of general loss based
estimation and estimating function methodology.

Given a density estimator we defined a targeted density estimator through
an iterative maximum likelihood algorithm along hardest submodels with a
score equal to the efficient influence curve of the parameter of interest. This
tool allows us to map any candidate density p into its targeted version p∗n(p).
We now showed that by using the minus log density as loss function and
thereby use the log-likelihood criteria in combination with the cross-validated
log-likelihood criteria, but restricted to targeted density estimators only, we can
build data adaptive sieve based algorithms for generating a final targeted ML
density estimator and corresponding substitution estimator of the parameter
of interest.
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By restricting the log-likelihood criteria and cross-validated log-likelihood
criteria to targeted densities only, targeted maximum likelihood estimation
provides now a purely likelihood based methodology for estimation of any
kind of parameter such as pathwise differentiable parameters and infinite di-
mensional parameters: see our accompanying technical report.

In particular, we showed that targeted maximum likelihood estimation
completely unifies maximum likelihood estimation and estimating function
based estimation, and results in important improvements in both. Targeted
MLE also deals naturally with the issue of multiple solutions of estimating
equations by using the log-likelihood as the criteria to be maximized. Another
nice feature of targeted MLE is that it always improves on the initial density
estimator by increasing the log-likelihood fit. As a consequence, when targeted
MLE is applied to estimate pathwise differentiable parameters of a full data
distribution FX in CAR censored data models as in (van der Laan and Robins
(2003)), if one applies the targeted MLE to an initial p0

n = (g0
n, Q

0
n) with

g0
n and Q0

n being fits of the censoring mechanism g0 and the FX-factor Q0

of the density p0, then it provides an estimator which is guaranteed to be
more efficient than the double robust IPCW estimator based on estimating
the nuisance parameters (g0, Q0) with p0

n. So the targeted MLE algorithm
provides a natural way to always improve on any initial double robust IPCW
locally efficient estimator as presented in van der Laan and Robins (2003).
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Chapter 3. Super (Machine) Learning using Cross Validation

3.1 Super Learner

The following article appears as it was originally published on the University of California,
Berkeley Division of Biostatistics Working Paper Series website in 2007,
http://www.bepress.com/ucbbiostat/paper222/.

It was later published in Statistical Applications in Genetics and Molecular Biology in 2007,
http://www.bepress.com/sagmb/vol6/iss1/art25/.
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Super Learning

Mark J. van der Laan, Eric C. Polley and Alan E. Hubbard
Division of Biostatistics, University of California, Berkeley

laan@stat.berkeley.edu

Abstract
Previous articles (van der Laan and Dudoit (2003); van der Laan

et al. (2006); Sinisi et al. (2007)) advertised and theoretically validated
the use of cross-validation to select among many candidate estimators
to compute a so called super learner which outperforms any of the
given candidate estimators. The theoretical basis was provided for this
super learner based on oracle results for the cross-validation selector
(e.g., van der Laan and Dudoit (2003); van der Laan et al. (2006)) and
in Sinisi et al. (2007). In addition, these papers contained a practical
demonstration of the adaptivity of this so called super learner in the
context of prediction of the fitness of the HIV virus as a function of its
mutations. This article proposes a fast algorithm for constructing a
super learner in prediction which uses V-fold cross-validation to select
a functional form of an initial set of candidate predictors according to
a parametric or semi-parametric model, or possibly, data adaptively.
The paper contains a proof that the resulting super learner performs
asymptotically as well as the oracle selector among the continuum of
estimators defined by the (semi-)parametric functional forms of the
initial set of candidate estimators.

This approach also yields a new class of cross-validation methods
to select among a family of candidate estimators by formulating the
minimization of the cross-validated risk over the family of candidate
estimators as a new least squares regression problem which itself can
be carried out with any type of parametric or nonparametric regression
methodology (e.g. using cross-validation itself), thereby preventing
over-fitting of the cross-validated risk. Simulations and data analysis
suggest this new proposed super learner superior to competing meth-
ods. This approach for construction of a super learner generalizes to
any parameter which can be defined as a minimizer of a loss function.
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1 Introduction

Numerous methods exist to learn from data the best predictor of a given
outcome based on a sample of n independent and identically distributed
observations Oi = (Yi, Xi), Yi the outcome of interest, and Xi a vector of
input variables, i = 1, . . . , n. A few examples include decision trees, neu-
ral networks, support vector regression, least angle regression, logic regres-
sion, poly-class, Multivariate Adaptive Regression Splines (MARS), and the
Deletion/Substitution/Addition (D/S/A) algorithm. Such learners can be
characterized by the mechanism used to search the parameter space of pos-
sible regression functions. For example, the D/S/A algorithm (Sinisi and
van der Laan, 2004) uses polynomial basis functions, while logic regression
(Ruczinski et al., 2003) constructs Boolean expressions of binary covariates.
The performance of a particular learner depends on how effective its searching
strategy is in approximating the optimal predictor defined by the true data
generating distribution. Thus, the relative performance of various learners
will depend on the true data-generating distribution. In practice, it is gener-
ally impossible to know a priori which learner will perform best for a given
prediction problem and data set. To solve the problem, some researchers have
proposed combining learners in various methods and have exhibited better
performance over a single candidate learner (Freund et al., 1997; Hansen,
1998), but there is concern that these methods may over-fit the data and
may not be the optimal way to combine the candidate learners.

The framework for unified loss-based estimation (van der Laan and Du-
doit, 2003) suggests a solution to this problem in the form of a new learner,
termed the “super learner”. In the context of prediction, this learner is itself
a prediction algorithm, which applies a set of candidate learners to the ob-
served data, and chooses the optimal learner for a given prediction problem
based on cross-validated risk. Theoretical results show that such a super
learner will perform asymptotically as well as or better than any of the can-
didate learners (van der Laan and Dudoit, 2003; van der Laan et al., 2006).

To be specific, consider some candidate learners. Least Angle Regression
(LARS) (Efron et al., 2004) is a model selection algorithm related to the
lasso. Logic Regression (Ruczinski et al., 2003) is an adaptive regression
methodology that attempts to construct predictors as Boolean combinations
of binary covariates. The D/S/A algorithm (Sinisi and van der Laan, 2004)
for polynomial regression data-adaptively generates candidate predictors as
polynomial combinations of continuous and/or binary covariates, and is avail-
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Method R Package Authors
Least Angle Regression lars Hastie and Efron
Logic Regression LogicReg Kooperberg and Ruczinski
D/S/A DSA Neugebauer and Bullard
Regression Trees rpart Therneau and Atkinson
Ridge Regression MASS Venables and Ripley
Random Foretss randomForest Liaw and Wiener
Adaptive Regression Splines polspline Kooperberg

Table 1: R Packages for Candidate Learners. R is available at http://www.r-
project.org

able as an R package at http://www.stat.berkeley.edu/users/laan/Software/.
Classification and Regression Trees (CART) (Breiman et al., 1984) builds
a recursive partition of the covariates. Another candidate learner is ran-
dom forests Breiman (2001), which is a random bootstrap version of the
regression tree. Ridge Regression (Hoerl and Kennard, 1970) minimizes a
penalized least squares with a penalty on the L2 norm of the parameter
vector. Multivariate Adaptive Regression Splines (MARS) Friedman (1991)
is an automated model selection algorithm which creates a regression spline
function. Table 1 contains citations of R packages for each of the candidate
learners. All of these methods have the option to carry out selection using
v-fold cross-validation. The selected fine-tuning parameter(s) can include
the ratio of the L1 norm of the coefficient vector in LARS to the norm of
the coefficient vector from least squares; the number of logic trees and leaves
in Logic Regression; and the number of terms and a complexity measure on
each of the terms in D/S/A.

Cross-validation divides the available learning set into a training set and
a validation set. Observations in the training set are used to construct (or
train) the learners, and observations in the validation set are used to assess
the performance of (or validate) these learners. The cross-validation selector
selects the learner with the best performance on the validation sets. In v-
fold cross-validation, the learning set is divided into v mutually exclusive and
exhaustive sets of as nearly equal size as possible. Each set and its comple-
ment play the role of the validation and training sample, respectively, giving
v splits of the learning sample into a training and corresponding validation
sample. For each of the v splits, the estimator is applied to the training
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set, and its risk is estimated with the corresponding validation set. For each
learner the v risks over the v validation sets are averaged resulting in the
so-called cross-validated risk. The learner with the minimal cross-validated
risk is selected.

It is helpful to consider each learner as an algorithm applied to empirical
distributions. Thus, if we index a particular learner with an index k, then
this learner can be represented as a function Pn → Ψ̂k(Pn) from empirical
probability distributions Pn to functions of the covariates. Consider a collec-
tion of K(n) learners Ψ̂k, k = 1, . . . , K(n), in parameter space Ψ. The super
learner is a new learner defined as

Ψ̂(Pn) ≡ Ψ̂K̂(Pn)(Pn),

where K̂(Pn) denotes the cross-validation selector described above which
simply selects the learner which performed best in terms of cross-validated
risk. Specifically,

K̂(Pn) ≡ arg min
k
EBn

∑
i,Bn(i)=1

(Yi − Ψ̂k(P
0
n,Bn)(Xi))

2,

where Bn ∈ {0, 1}n denotes a random binary vector whose realizations define
a split of the learning sample into a training sample {i : Bn(i) = 0} and
validation sample {i : Bn(i) = 1}. Here P 1

n,Bn and P 0
n,Bn are the empirical

probability distributions of the validation and training sample, respectively.
The aggressive use of cross-validation is inspired by the theorem 3.1 in

van der Laan et al. (2006). The theorem is provided in the appendix.
The “oracle” selector is defined in Theorem 2 in the appendix as the

estimator, among the K(n) learners considered, which minimizes risk under
the true data-generating distribution. In other words, the oracle selector is
the best possible estimator given the set of candidate learners considered;
however, it depends on both the observed data and P0, and thus is unknown.

This theorem shows us that the super learner performs as well (in terms
of expected risk difference) as the oracle selector, up to a typically second
order term. Thus, as long as the number of candidate learners considered
(K(n)) is polynomial in sample size, the super learner is the optimal learner
in the following sense:

• If, as is typical, none of the candidate learners (nor, as a result, the
oracle selector) converge at a parametric rate, the super learner per-
forms asymptotically as well (in the risk difference sense) as the oracle
selector, which chooses the best of the candidate learners.
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• If one of the candidate learners searches within a parametric model
and that parametric model contains the truth, and thus achieves a
parametric rate of convergence, then the super learner achieves the
almost parametric rate of convergence log n/n.

Organization: The current article builds and extends this super learn-
ing methodology. In section 2 we will describe our new proposal for super
learning, also using an initial set of candidate learners and cross-validation
as above, but now allowing for semi-parametric families of the candidate
learners, and formulating the minimization of cross-validated risk as an-
other regression problem for which one can select an appropriate regression
methodology (e.g involving cross-validation or penalized regression). This is
an important improvement relative to our previous super learning proposal
by 1) extending the set of initial candidate learners into a large family of
candidate learners one obtains by combining the initial candidate learners
according to a parametric or semi-parametric model, thereby obtain a po-
tentially much more flexible learner, and 2) by controlling over-fitting of the
cross-validated risk through the use of data adaptive regression algorithms
using cross-validation or penalization itself. Importantly, these gains come at
no cost regarding computing time. In Section 3 we investigate the practical
performance of this new super learning algorithm based on simulated as well
as a number of real data sets.

2 The proposed super learning algorithm

Suppose one observes n i.i.d. observations Oi = (Xi, Yi) ∼ P0, i = 1, . . . , n,
and the goal is to estimate the regression ψ0(X) = E0(Y | X) of Y ∈ Y on
X ∈ X . The regression can be defined as the minimizer of the expectation
of the squared error loss function:

ψ0 = arg min
ψ
E0L(O,ψ),

where L(O,ψ) = (Y − ψ(X))2. The proposed super learner immediately
applies to any parameters that can be defined as minimizers of a loss function
L(O,ψ) over a parameter space Ψ, but the article focuses on the prediction
problem using the squared error loss function.

Let Ψ̂j, j = 1, . . . , J , be a collection of J candidate learners, which rep-
resent mappings from the empirical probability distribution Pn into the pa-
rameter space Ψ consisting of functions of X.

Chapter 3. Super (Machine) Learning using Cross Validation

59
http://biostats.bepress.com/ucbbiostat/paper254



The proposed super learner uses V -fold cross-validation. Let v ∈ {1, . . . , V }
index a sample split into a validation sample V (v) ⊂ {1, . . . , n} and training
sample (the complement of V (v)) T (v) ⊂ {1, . . . , n}, where V (v) ∪ T (v) =
{1, . . . , n}. Here we note that the union, ∪Vv=1V (v) = {1, . . . , n}, of the
validation samples equals the total sample, and the validations samples are
disjoint: V (v1) ∩ V (v2) = ∅ for v1 6= v2. For each v ∈ {1, . . . , V }, let,
ψnjv ≡ Ψ̂j(PnT (v)) be the realization of the jth-estimator Ψ̂j when applied to
the training sample PnT (v).

For an observation i, let v(i) denote the validation sample it belongs to,
i = 1, . . . , n. We now construct a new data set of n observations as follows:
(Yi, Zi), where Zi ≡ (ψnjv(i)(Xi) : j = 1, . . . , J) is the vector consisting of
the J predicted values according to the J estimators trained on the training
sample PnT (v(i)), i = 1, . . . , n. Let Z be the set of possible outcomes for Z.

Minimum cross-validated risk predictor: Another input of this su-
per learning algorithm is yet another user-supplied prediction algorithm Ψ̃
that estimates the regression E(Y | Z) of Y onto Z based on the data set
(Yi, Zi), i = 1, . . . , n. For notational convenience, we will denote {(Yi, Zi) :
i = 1, . . . , n} with Pn,Y,Z , so that Ψ̃ is a mapping from Pn,Y,Z to Ψ̃(Pn,Y,Z) :
Z → Y , where the latter is a function from Z to Y . We will refer to this
algorithm Ψ̃ as the minimum cross-validated risk predictor since it aims to
minimize the cross-validated risk, ψ̃ → ∑n

i=1(Yi − ψ̃(Zi))
2, over a set of

candidate functions ψ̃ from Z into Y , although, we allow penalization or
cross-validation to avoid over-fitting of this cross-validated risk criteria.

This now defines a mapping Ψ̂∗ from the original data Pn ≡ {Yi, Xi) : i =
1, . . . , n} into the predictor

Ψ̃
(
{Yi, Zi = (Ψ̂j(PnT (vi))(Xi) : j = 1, . . . , J)) : i = 1, . . . , n}

)
obtained by applying the cross-validated risk minimizer Ψ̃ to Pn,Y,Z = {(Yi, Zi) :

i = 1, . . . , n}. Denote ψ∗n = Ψ̂∗(Pn) as the actual obtained predictor when
one applies the learner Ψ̂∗ to the original sample Pn. We note that ψ∗n ∈
Ψ∗ ≡ {f : Z → Y} is a function of Z into the outcome set Y for Y .

The super learner for a value X based on the data (i.e., Pn) is now given
by

Ψ̂(Pn)(X) ≡ Ψ̂∗(Pn)((Ψ̂j(Pn)(X), j = 1, . . . , J). (1)

In words, the super learner of Y for a value X is obtained by evaluating the
predictor ψ∗n = Ψ̂∗(Pn) at the J predicted values, Ψ̂j(Pn)(X), at X of the J
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candidate learners. Figure 1 contains a flow diagram for the steps involved
in the super learner.

2.1 Specific choices of the minimum cross-validated
risk predictor.

Parametric minimum cross-validated risk predictor: Consider a few
concrete choices that aim to fit a regression of Y onto the J predicted values
Z based on the corresponding training samples from (Yi, Zi), i = 1, . . . , n for
the algorithm Ψ̂∗. Define the cross-validated risk criteria:

RCV (β) ≡
n∑
i=1

(Yi −m(Zi | β))2,

where one could use, for example, the linear regression model m(z | β) =
βz. If Y ∈ {0, 1}, then one could use the logistic linear regression model
m(z | β) = 1/(1 + exp(−βz)), if one allows predictions in the range of
[0, 1], or, if one wants a predictor mapping into {0, 1}, then we can choose
m(z | α0, β) ≡ I(1/(1 + exp(−βz)) > α0) as the indicator that the logistic
regression score exceeds a cut-off α0. Let βn = arg minβ RCV (β) be the least
squares or MLE estimator, and let

ψ∗n(z) ≡ m(z | βn).

One could also estimate β with a constrained least squares regression estima-
tor such as penalized L1-regression (Lasso), penalized L2 regression (shrink-
age), where the constraints are selected with cross-validation, or one could
restrict β to the set of positive weights summing up till 1.

Data adaptive minimum cross-validated risk predictor: There is
no need to restrict ψ∗n to parametric regression fits. For example, one could
define ψ∗n in terms of the application of a particular data adaptive (machine
learning) regression algorithm to the data set (Yi, Zi), i = 1, . . . , n, such as
CART, D/S/A, or MARS, among others. In fact, one could apply a super
learning algorithm itself to estimate E(Y | Z). In this manner one can let
the data speak in order to build a good predictor of Y based on covariate
vector Z based on (Yi, Zi), i = 1, . . . , n.

Thus, this super learner is indexed, beyond the choice of initial candidate
estimators, by a choice of minimum cross-validated risk predictor. As a con-
sequence, the proposal provides a whole class of tools indexed by an arbitrary
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choice of regression algorithm (i.e., ψ∗n) to map a set of candidate learners
into a new cross-validated estimator (i.e. super learner). In particular, it
provides a new way of using the cross-validated risk function, which goes
beyond minimizing the cross-validated risk over a set of candidate learners.

3 Finite sample result and asymptotics for

the super learner.

An immediate consequence of Theorem 2 above is the following result for the
proposed super learner (1), which provides for the case that the minimum
cross-validated risk predictor is based on a parametric regression model.

Theorem 1 Assume P ((Y,X) ∈ Y × X ) = 1, where Y is a bounded set in
IR, and X is a bounded Euclidean set. Assume that the candidate estimators
map into Y: P (Ψ̂j(Pn) ∈ Y , j = 1, . . . , J) = 1.

Let v ∈ {1, . . . , V } index a sample split into a validation sample V (v) ⊂
{1, . . . , n} and corresponding training sample T (v) ⊂ {1, . . . , n} (complement
of V (v)), where V (v) ∪ T (v) = {1, . . . , n}, and ∪Vv=1V (v) = {1, . . . , n}. For
each v ∈ {1, . . . , V }, let, ψnjv ≡ Ψ̂j(PnT (v)), X → Y, be the realization of the

j-th estimator Ψ̂j when applied to the training sample T (v).
For an observation i let v(i) be the validation sample observation i be-

longs to, i = 1, . . . , n. Construct a new data set of n observations defined as:
(Yi, Zi), where Zi ≡ (ψnjv(i)(Xi) : j = 1, . . . , J) ∈ YJ is the J-dimensional
vector consisting of the J predicted values according to the J estimators
trained on the training sample T (v(i)), i = 1, . . . , n.

Consider a regression model z → m(z | α) for E(Y | Z) indexed by a
α ∈ A representing a set of functions from YJ into Y. Consider a grid (or
any finite subset) An of α-values in the parameter space A. Let K(n) =| An |
be the number of grid points which grows at most at a polynomial rate in n:
K(n) ≤ nq for some q <∞.

Let

αn ≡ arg min
α∈An

n∑
i=1

(Yi −m(Zi | α))2.

Consider the regression estimator ψn : X → Y defined as

ψn(x) ≡ m((ψjn(x) : j = 1, . . . , J) | αn).
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For each α ∈ A, define the candidate estimator Ψ̂α(Pn) ≡ m((Ψ̂j(Pn) :
j = 1, . . . , J) | α): i.e.

Ψ̂α(Pn)(x) = m((Ψ̂j(Pn)(x) : j = 1, . . . , J) | α).

Consider the oracle selector of α:

α̃n ≡ arg min
α∈An

1

V

V∑
v=1

d(Ψ̂α(PnT (v)), ψ0),

where

d(ψ, ψ0) = E0(L(X,ψ)− L(X,ψ0)) = E0(ψ(X)− ψ0(X))2.

For each δ > 0 we have that there exists a C(δ) <∞ such that

1

V

V∑
v=1

Ed(Ψ̂αn(PnT (v)), ψ0) ≤ (1+δ)E min
α∈An

1

V

V∑
v=1

d(Ψ̂α(PnT (v)), ψ0)+C(δ)
V log n

n
.

Thus, if

Eminα∈An
1
V

∑V
v=1 d(Ψ̂α(PnT (v)), ψ0)

logn
n

→ 0 as n→∞, (2)

then it follows that the estimator Ψ̂αn is asymptotically equivalent with the
oracle estimator Ψ̂α̃n when applied to samples of size (1− 1/V )n:

1
V

∑V
v=1 Ed(Ψ̂αn(PnT (v)), ψ0)

Eminα∈An
1
V

∑V
v=1 d(Ψ̂α(PnT (v)), ψ0)

→ 1 as n→∞.

If (2) does not hold, then it follows that Ψ̂αn achieves the (log n)/n rate:

1

V

V∑
v=1

Ed(Ψ̂αn(PnT (v)), ψ0) = O

(
log n

n

)
.

Discussion of conditions. The discrete approximation An of A used in
this theorem is typically asymptotically negligible. For example, if A is a
bounded Euclidean set, then the distance between neighboring points on the
grid can be chosen as small as 1/nq for some q < ∞ so that minimizing
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a criteria over such a fine grid An versus minimizing over the whole set
A results in asymptotically equivalent procedures. For example, if α is a
Euclidean parameter and ‖ m(· | α1)−m(· | α2) ‖∞< C ‖ α1−α2 ‖ for some
C < ∞, where ‖ · ‖∞ denotes the supremum norm, then it follows that for
each δ > 0 we have that there exists a C(δ) <∞ such that

1

V

V∑
v=1

Ed(Ψ̂αn(PnT (v)), ψ0) ≤ (1+δ)Emin
α∈A

1

V

V∑
v=1

d(Ψ̂α(PnT (v)), ψ0)+C(δ)
log n

n
,

where αn = arg minα∈A
∑n
i=1(Yi −m(Zi | α))2. The other conclusions of the

theorem now also apply.
This theorem implies that the selected prediction algorithm Ψ̂αn will ei-

ther perform asymptotically as well (up till the constant) as the best estima-
tor among the family of estimators {Ψ̂α : α ∈ A} when applied to samples of
size n(1− 1/V ), or achieve the parametric model rate 1/n up till a log n fac-
tor. By a simple argument as presented in van der Laan and Dudoit (2003),
Dudoit and van der Laan (2005) and van der Vaart et al. (2006), it follows
that by letting the V = Vn in the V-fold cross-validation scheme converge
to infinity at a slow enough rate relative to n, then either ψn = Ψ̂αn(Pn)
performs asymptotically as well (up till the constant) as the best estimator
among the estimators {Ψ̂α : α} applied to the full sample Pn, or it achieves
the parametric rate of convergence up till the log n factor.

The take home message of this theorem is that our super learner will
perform asymptotically as well as the best learner among the family of can-
didate learners Ψ̂α indexed by α. By choosing the regression model m(· | α)
so that there exist a αj so that m(Z | αj) = Zj for each j = 1, . . . , J (e.g.,
m(Z | α) = αZ), then it follows, in particular, that the resulting prediction
algorithm asymptotically outperforms each of the initial candidate estima-
tors Ψ̂j. More importantly and practically, the set of candidate estimators

Ψ̂α can include interesting combinations of these J estimators which exploit
the strengths of various of these estimators for the particular data generating
distribution P0 instead of focusing on one of them. For example, if one uses
the linear regression model m(Z | α) = αZ, then the candidate estimators
{Ψ̂α : α} include all averages of the J estimators, including convex combina-
tions. As becomes evident in our data analysis and simulation results, the
selected super learner ψ∗n based on a linear (or logistic) regression model is
often indeed (or logistic function of) a weighted average of competing esti-
mators in which various of the candidate learners significantly contribute to
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the average.

4 Simulation results

In this section, we conducted 3 simulation studies to evaluate the working
characteristics of the super learner. These simulations all involve a continu-
ous response variable. For the first simulation, the true model is:

Yi = 2w1w10 + 4w2w7 + 3w4w5 − 5w6w10 + 3w8w9 + w1w2w4

−2w7(1− w6)w2w9 − 4(1− w10)w1(1− w4) + ε (3)

where wj ∼ Binomial(p = 0.4), j = 1, . . . , 10 and ε ∼ Normal(0, 1).
Each observation consists of the 10 dimensional covariate vector W, and
the continuous response variable Y. The parameter of interest is ψ0(W ) =
E0(Y|W). The simulated learning data set contains a sample of 500 obser-
vations (i=1,. . . ,500) from model 3.

We applied the super learner to the learning set using five candidate
learners. The first candidate was a simple linear regression model with only
main terms, which will be estimated with regular least squares. The sec-
ond candidate was main terms LARS. Internal cross-validation (i.e. another
layer of cross-validation inside each training split) was used the estimate
the optimal fraction parameter, λ0 ∈ (0, 1). The third candidate was the
D/S/A algorithm for data-adaptive polynomial regression. For the D/S/A
algorithm, we allowed interaction terms and restricted the model to less than
50 terms. The D/S/A uses internal cross-validation to determine the best
model in this model space. The fourth candidate was logic regression where
the number of trees was selected to be 5 and the number of leaves to be
20 based on 10-fold cross validation of the learning data set. For the logic
regression fine-tuning parameters, we searched over #trees ∈ {1, . . . , 5} and
#leaves ∈ {1, . . . , 20}. The final candidate algorithm was random forests.
Table 1 contains references for the R packages of each canidate learner.

We applied the super learner with 10-fold cross-validation on the learning
set. Applying the prediction to all 10 folds of the learning set gives us
the predicted values Zi ≡ (Ψ̂jν(i)(Wi) : j = 1, . . . , 5) and corresponding Yi
for each observation i = 1, . . . , 500. We then proposed the linear model
E(Y|Z) = α + βZ and used least squares to estimate the intercept α and
parameter vector β based on (Yi, Zi), i = 1, . . . , n.
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method RMSPE βn
Least Squares 1.00 0.038

LARS 1.15 -0.171
D/S/A 0.22 0.535
Logic 0.32 0.274

Random Forest 0.42 0.398
Super Learner 0.20

Table 2: Simulation Example 1: Estimates of the relative mean squared
prediction error (compared to least squares) based on a learning sample of
500 observations and the evaluation sample M=10,000. The estimates for β
in the super learner are also reported in the right column (αn = −0.018).

After having obtained the fit αn, βn of α, β, next, each of the candidate
learners was fit on the entire learning set to obtain
Psij(Pn)(W ), which gives the super learner Ψ̂(Pn)(W ) = αn+βn(Ψ̂j(Pn)(W ) :
j = 1, . . . , 5)) when applied to a new covariate vector W .

To evaluate the super learner next to each of the candidate learners, an ad-
ditional 10,000 observations are simulated from the same data generating dis-
tribution. This new sample is denoted the evaluation sample. Using the mod-
els on the learning data set, we calculated the mean squared prediction error
(MSPE) on this new evaluation data set for the super learner and each of the
candidate learners. Table 2 has the results for the relative mean squared pre-
diction error (RMPSE), whereRMSPE(x) = MSPE(x)/MSPE(least squares).
Among the candidate learners, the D/S/A algorithm appears to have the
smallest error, but the super learner improves on the D/S/A fit. The es-
timates βn all appear to be nonzero except for the simple linear regression
model. The super learner can combine information from the candidate learn-
ers to build a better predictor.

The second simulation considers continuous covariates as opposed to bi-
nary covariates from the first simulation. Let X be a 20 dimensional multi-
variate normal random vector and X ∼ Np(0, 16∗ Idp) where p = 20 and Idp
is the p-dimensional identity matrix. Each column of X is a covariate in the
models used below. The outcome is defined as:

Yi = X1X2 +X2
10 −X3X17 −X15X4 +X9X5 +X19 −X2

20 +X9X8 + ε, (4)

where ε ∼ Normal(0, 16) and Xj is the jth column of X. From this model,
200 observations were simulated for the learning data set and an additional
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5,000 were simulated for the evaluation data set similar to the first simulation.
The super learner was applied with the following candidate learners:

• Simple linear regression with all 20 main terms.

• LARS with internal cross-validation to find the optimal fraction.

• D/S/A with internal cross-validation to select the best model with
fewer than 25 terms allowing for interaction and quadratic terms.

• Ridge regression with internal cross-validation to select the optimal L2
penalty parameter.

• Random forests with 1,000 trees.

• Adaptive regression splines.

Table 3 contains the results for the second simulation. As in the first
simulation, the relative mean squared prediction error is used to evaluate
the candidate learners and the super learner. For this model, simple linear
regression, LARS, and ridge regression all appear to have the same results.
Random forests and adaptive regression splines are better able to pick up
the non-linear relationship, but among the candidate learners, the D/S/A is
the best with a relative MSPE of 0.43. But the super learner improves on
the fit even more with a relative MSPE of 0.22 by combining the candidate
learners. Since the model for ψ∗n(z) can be near collinear, the estimates of β
are often unstable and should not be used to determine the best candidate
by comparing the magnitude of the parameter estimate.

The main advantage of the proposed super learner is the adaptivity to
different data generating distributions across many studies. The third simu-
lation demonstrates this feature by creating 3 additional studies and applying
the super learner and the candidates to all 3 studies then combining the re-
sults with the second simulation and evaluating the mean square error across
all 4 studies. Equation 5 shows the data generating distributions for the 3
new studies. The data generating distribution for the covariates X is the
same as the second simulation example above. To be consistent across the 4
studies, the same candidate learners from the second simulation were applied
to these 3 new studies.
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method RMSPE βn
Least Squares 1.00 -0.73

LARS 0.91 -0.92
D/S/A 0.43 0.86
Ridge 0.98 0.61

Random Forest 0.71 1.06
MARS 0.61 0.05

Super Learner 0.22

Table 3: Simulation Example 2: Estimates of the relative mean squared
prediction error (compared to Least Squares) based on a learning sample of
200 observations and the evaluation sample M=5,000. The estimates for β
in the super learner are also reported in the right column (αn = 0.03).

Yij =



−5 +X2 + 6(X10 + 8)+ − 6(X10)+ − 7(X10 − 5)+

− 6(X15 + 6)+ + 8(X15)+ + 7(X15 − 6)+ + ε if j = 1

10 · I(X1 > −4 and X2 > 0 and X3 > −4) + ε if j = 2

−4 +X2 +
√
|X3|+ sin(X4)− .3X6X11 + 3X7

+ .3X3
8 − 2X9 − 2X10 − 2X11 + ε if j = 3

(5)

where ε ∼ Normal(0, 16) and I(x) = 1 if x is true, and 0 otherwise. For the 4
studies (the 3 new studies combined with the second simulation), the learning
sample contained 200 observations and the evaluation sample contained 5,000
observations.

Table 4 contains the results from the second simulation. For the first
study (j = 1), the adaptive regression spline function is able to estimate
well the true distribution. The super learner is not able to improve on the
fit, but it does not do worse than the best candidate algorithm. In the
second study (j = 2), the adaptive regression spline function is not the best
candidate learner. The random forests performs best in the second study,
but the super learner is able to improve on the fit. The third study (j = 3)
is similar to the first in that the adaptive regression splines function is able
to approximate the true distribution well, but the super learner does not do
worse. The squared prediction error from these three studies and the second
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method study 1 study 2 study 3 2nd simulation overall
Least Squares 1.00 1.00 1.00 1.00 1.00

LARS 0.91 0.95 1.00 0.91 0.95
D/S/A 0.22 0.95 1.04 0.43 0.71
Ridge 0.96 0.99 1.02 0.98 1.00

Random Forest 0.39 0.72 1.18 0.71 0.91
MARS 0.02 0.82 0.17 0.61 0.38

Super Learner 0.02 0.67 0.16 0.22 0.19

Table 4: Simulation Example 3: Estimates of the relative mean squared
prediction error (compared to least squares) based on the validation sample.
The 3 new studies from 5 are combined with the second simulation example
and the relative mean squared prediction error is reported in the overall
column.

simulation was combined to give a mean squared prediction error for the four
studies. The last column in table 4 gives the relative mspe for each of the
candidate learners and the super learner. If the researcher had selected just
one of the candidate learners, they might have done well within one or two
of the studies, but overall the super learner will outperform the candidate
learners. For example, the MARS learner performs well on the first and
third study, and does well overall with a relative MSPE of 0.38, but the
super learner outperforms the MARS learner with an overall relative MSPE
of 0.19. The super learner is able to adapt to the different data generating
distributions and will outperform any candidate learner across many studies.

5 Data Analysis

We applied the super learner to the diabetes data set from the LARS package
in R. Details on the data set can be found in Efron et al. (2004). The data set
consists of 442 observations of 10 covariates (9 quantitative and 1 qualitative)
and a continuous outcome. The covariates have been standardized to have
mean zero and unit L2 norm. We selected 6 candidate learners for the super
learner. The first candidate was least squares using all 10 covariates. Next
we considered the least squares model with all possible two-way interactions
and quadratic terms on the quantitative covariates. The third and fourth
candidates were applying LARS to the main effects and all possible two-
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way interaction models above. Internal cross-validation was used to select
the “fraction” point for the prediction. The fifth candidate algorithm was
D/S/A allowing for two-way interactions and a maximum model size of 64.
The final candidate learner was the random forests algorithm. For the super
learner, we then used a linear model and estimated the parameters with least
squares.

We also applied the proposed super learner to the HIV-1 drug resistance
data set in Sinisi et al. (2007) and Rhee et al. (2006). The goal of the data is
to predict drug susceptibility based on mutations in the protease and reverse
transcriptase enzymes. The HIV-1 sequences were obtained from publicly
available isolates in the Stanford HIV Reverse Transcriptase and Protease
Sequence Database. Details on the data and previous analysis can be found
in Sinisi et al. (2007) and Rhee et al. (2006). The outcome of interest is
standardized log fold change in drug susceptibility, defined as the ratio IC50

of an isolate to a standard wildtype control isolate; IC50 (inhibitory concen-
tration) is the concentration of the drug needed to inhibit viral replication
by 50%. We focused our analysis to a single protease inhibitor, nelfinavir,
where we have 740 viral isolates in the learning sample of 61 binary predictor
covariates and one quantitative outcome.

For the HIV data set, we considered six candidate learners. The first
candidate was least squares on all main terms. The second candidate was
the LARS algorithm. Internal cross validation was used to determine the best
fraction parameter. The third candidate was logic regression. Similar to the
simulation example, we used 10-fold cross-validation on the entire learning set
to determine the parameters,#trees ∈ {1, . . . , 5} and #leaves ∈ {1, . . . , 20},
for logic regression. For the HIV data set, we selected #trees = 5 and
#leaves = 10. The fourth candidate was the CART algorithm. We also
applied the D/S/A algorithm searching over only main effects terms and a
maximum model size of 35. The final candidate was random forests. For the
super learner, a linear model was used to estimate the parameters with least
squares. All models were fit in R similar to the simulation example above.

To evaluate the performance of the super learner in comparison to each
of the candidate learners we split the learning data set into 10 validation
data sets and corresponding training data sets. The super learner and each
candidate learner was fit one each fold of the cross-validation, giving us a
honest cross-validated risk estimate to compare the super learner to each of
the candidate learners.
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Method RCV risk βn
Least Squares (1) 1.00 0.172
Least Squares (2) 1.13 -0.003

LARS (1) 1.07 0.239
LARS (2) 1.08 0.126

D/S/A 0.98 0.481
Random Forests 1.07 0.027
Super Learner 0.98

Table 5: Super learner results for the diabetes data set. Least Squares (1)
and LARS (1) refer to the main effects only models. Least Squares (2) and
LARS (2) refer to the all possible two-way interaction models. Relative 10-
fold Honest Cross-Validation risk estimates, compared to main terms least
squares (RCV risk) are reported. βn in the super learner is reported in the
last column (αn = −6.228).

5.1 Super Learner Results

Table 5 presents results for the diabetes data analysis. A 10-fold cross-
validation estimate of the mean squared error was calculated, and the relative
risk estimate is reported. The relative cross-validation risk estimate (RCV)
is RCV (x) = CV (x)/CV (main terms least squares), where CV (x) is the
cross-validation risk estimate for x. Based on the cross validated estimate,
the D/S/A has the best estimate among the candidate learners. The super
learner does not appear to improve significantly on the D/S/A learner, but
it does not do any worse either. We also report the estimates αn and βn
used in the super learner. The D/S/A algorithm has the largest coefficient
(0.481) and appears to be given the most weight in the super learner. We
also note that least squares with all possible two-way interactions is barely
used in the super learner, with a coefficient of −0.003. This example shows
how the super learner can use cross validation to data adaptively select (i.e.
give more weight) to the better candidate predictors.

Table 6 presents the results for the HIV data analysis. Based on 10-
fold cross validated estimates of the mean squared error, main terms least
squares performs best, although random forests and LARS have similar error
estimates to least squares. In contrast to the diabetes data analysis above,
D/S/A does not perform well on this data set. This highlights the need
for a super learner since one candidate algorithm will not work on all data
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Method RCV risk βn
Least Squares 1.00 0.552

LARS 1.03 0.075
Logic 1.52 -0.020
CART 1.77 0.076
D/S/A 1.53 -0.161

Random Forests 1.02 0.510
Super Learner 0.87

Table 6: Super learner results for the HIV data set. Relative 10-fold hon-
est cross validated risk estimates (RCV risk) compared to least squares are
reported. βn in the super learner is reported in the last column (αn = 0.027).

sets. Among the candidate learners, least squares has the smallest cross-
validated risk estimate, but the super learner has a smaller risk estimate
(RCV = 0.87). We also present the estimates for α and β in table 6. Both
least squares and random forests appear to be receiving the most weight in
the super learner with coefficients 0.552 and 0.510 respectively. Again, the
super learner can use the cross validated predictions to data adaptively build
the best predictor.

These are both situations where one of the candidate learners does a good
job of prediction and gives little room for improvement for the super learner.
But these examples also demonstrate that one candidate algorithm may not
be flexible enough to perform best on all data generating distributions and
since a researcher is unlikely to know a priori which candidate learner will
work best, the super learner is a natural choice for prediction.

6 Discussion.

The new super learning approach provides both a fundamental theoretical
as well as practical improvement to the construction of a predictor. The
super learner is a flexible prediction algorithm which can perform well on
many different data generating distributions, and utilizes cross-validation
to protect against over-fitting. We wish to stress that the theory suggests
that to achieve the best performance one should not apply this algorithm
to a restricted set of candidate learners, but one should aim to include any
available sensible learners. In addition, the amount of computations does

Chapter 3. Super (Machine) Learning using Cross Validation

73
http://biostats.bepress.com/ucbbiostat/paper254



not exceed the amount of computations it takes to calculate each of the
candidate learners on the training and full data sets. In our simulations
we used a particular set of available learners only because they were easily
available as R functions. Thus, the potential for improving learners applies
to a very wide array of practical problems.

Our results generalize to parameters which can be defined as minimizers
of a loss function, including (unknown) loss functions indexed by parameters
of the true data generating distribution (van der Laan and Dudoit (2003)).
In particular, the super learner approach applies to maximum likelihood es-
timation in semiparametric or nonparametric models for the data generating
distribution, and to targeted maximum likelihood estimation with respect to
a particular smooth functional of the density of the data, as presented in
van der Laan and Rubin (2007).

7 Appendix

Under the Assumption A1 that the loss function L(O,ψ) = (Y − ψ(X))2

is uniformly bounded, and the Assumption A2 that the variance of the ψ0-
centered loss function L(O,ψ)−L(O,ψ0) can be bounded by its expectation
uniformly in ψ, van der Laan et al. (2006) (Theorem 3.1) establish the fol-
lowing finite sample inequality.

Theorem 2 Let {ψ̂k = Ψ̂k(Pn), k = 1, ..., K(n)} be a given set of K(n)
estimators of the parameter value ψ0 = arg minψ∈Ψ

∫
L(o, ψ)dP0(o). Let

d0(ψ, ψ0) ≡ EP0{L(O,ψ) − L(O,ψ0)} denote the risk difference between a
candidate estimator ψ and the parameter ψ0. Suppose that Ψ is a param-
eter space so that Ψ̂k(Pn) ∈ Ψ for all k, with probability 1. Let K̂(Pn) ≡
arg mink EBn

∫
L(o, Ψ̂k(P

0
n,Bn))dP 1

n,Bn(o) be the cross-validation selector, and

let K̃(Pn) ≡ arg mink EBn
∫
L(o, Ψ̂k(P

0
n,Bn))dP0(o) be the comparable oracle

selector. Let p be the proportion of observations in the validation sample.
Then, under assumptions A1 and A2, one has the following finite sample
inequality for any λ > 0 (where C(λ) is a constant, defined in van der Laan
et al. (2006)):

Ed0(Ψ̂K̂(Pn)(P
0
n,Bn), ψ0) ≤ (1+2λ)Ed0(Ψ̂K̃(Pn)(P

0
n,Bn), ψ0)+2C(λ)

1 + log(K(n))

np
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Loss-Based Cross-Validated
Deletion/Substitution/Addition Algorithms

in Estimation

Sandra E. Sinisi, Mark J. van der Laan
Division of Biostatistics, University of California, Berkeley

Abstract

In van der Laan and Dudoit (2003) we propose and theoretically
study a unified loss function based statistical methodology, which pro-
vides a road map for estimation and performance assessment. Given
a parameter of interest which can be described as the minimizer of
the population mean of a loss function, the road map involves as im-
portant ingredients cross-validation for estimator selection and mini-
mizing over subsets of basis functions the empirical risk of the subset-
specific estimator of the parameter of interest, where the basis func-
tions correspond to a parameterization of a specified subspace of the
complete parameter space. In this article we first review this approach.
Then we propose a general deletion/substitution/addition algorithm
for minimizing over subsets of variables (e.g., basis functions) the em-
pirical risk of subset-specific estimators of the parameter of interest.
In particular, in the regression context, this algorithm corresponds to
minimizing over subsets of variables the sum of squared residuals of the
subset-specific linear regression estimator. This algorithm provides us
with a new class of loss-based cross-validated algorithms in predic-
tion of univariate and multivariate outcomes, conditional density and
hazard estimation, and we generalize it to censored outcomes such as
survival. In the context of regression, using polynomial basis func-
tions, we study the properties of the deletion/substitution/addition
algorithm in simulations and apply the method to detect binding sites
in yeast gene expression experiments.
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1 Introduction.

This article introduces the Deletion/Substitution/Addition (D/S/A) algo-
rithm by demonstrating how it works in linear regression with polynomial
basis functions and illustrates the utility of this method in genomics by ap-
plying it to the detection of binding sites in a publicly available dataset of
the yeast Saccharomyces cerevisiae. The D/S/A algorithm can be used in a
variety of settings including prediction of univariate outcomes (setting used
in this article), prediction of multivariate outcomes, conditional density and
hazard estimation, and can be generalized to censored outcomes such as sur-
vival. Our motivation stems from current statistical inference problems in
the analysis of genomic data, such as the prediction of biological and clinical
outcomes using microarray gene expression measures, the identification of
regulatory motifs (i.e., transcription factor binding sites) in DNA sequences,
and the genetic mapping of complex traits using single nucleotide polymor-
phisms (SNPs). One such motivating example is the identification of regula-
tory motifs in DNA sequences. Transcription factors (TF) are proteins that
selectively bind to DNA to regulate gene expression. The transcription factor
binding sites, or regulatory motifs, are short DNA sequences (5-25 base pairs)
in the upstream control region (UCR) of genes, i.e., in regions roughly 600
to 1,000 base pairs from the gene start site (in lower eukaryotes, e.g., yeast).
A possible statistical question is to utilize gene expression data to identify
sequence motifs associated with genes that are activated under a specified
experimental condition. Thus, the estimation problem can be framed as
a prediction problem where one is predicting gene expression levels based
on sequence features, such as pentamers (and their interactions). Making
statistical inferences based on voluminous, genomic data involves exploring
many different relationships (to account for high-order interactions) amongst
a vast array of explanatory variables and a single outcome or multiple out-
comes. As a result, dominating features of statistical inference problems in
genomics include a high-dimensional parameter space and deciding upon a
reasonable error measure which we wish to minimize. When faced with a
high-dimensional parameter space, it becomes difficult to minimize a suit-
able error measure over the entire parameter space. A unified framework
to approach these problems has been offered by van der Laan and Dudoit
(2003).

Given a large parameter space, we want to perform intensive searches
over this space and form candidate estimators which address the desired
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statistical question. Once we collect all these candidate estimators, we must
then select a best estimate. The approach of van der Laan and Dudoit (2003)
establishes that cross-validation can be used to select among many candidate
estimators, even in finite sample situations. Furthermore, it is shown that
aggressive searches are adaptive to the truth. van der Laan et al. (2004)
propose a cross-validated adaptive ε-net estimation methodology where they
consider collections of subspaces of the parameter space. For each choice of
subspace and resolution, they generate candidate estimators as the empirical
risk minimizers over ε-nets.

Consequently, it becomes necessary to construct an algorithm that is
capable of adapting to the data completely to address inference questions
satisfactorily. This means that we need an algorithm that is capable of min-
imizing a suitable error measure, say the empirical mean of a loss function,
over an arbitrarily good approximation of the complete parameter space, and
we need cross-validation to select certain fine-tuning parameters. However,
we do not want a nonparametric version of such an algorithm because it will
try to fit the data perfectly resulting in estimators that are too variable due
to the number of variables involved relative to a limited sample size. Con-
sequently, we want to put certain stops on the algorithm and index it by a
number of “brakes.” These brakes correspond to specified subspaces of the
complete parameter space. A natural collection of brakes can be obtained by
parameterizing the complete parameter space in terms of linear combinations
of basis functions where the choice of a basis, the number of basis functions,
complexity measure(s) on the basis functions, and a constraint on the vec-
tor of coefficients (e.g., norm) provide natural choices for brakes. Based on
the cross-validation results given by van der Laan and Dudoit (2003), even
when one implements a large number of brakes, the resulting estimator will
perform asymptotically exactly as well as the estimator corresponding to
the oracle selector of brakes. As a consequence, the estimator adapts at an
asymptotically increasing level to the truth when more and more brakes are
applied. Hence, such notions as aggressive searches, using basis functions
to parameterize large parameter spaces, applying certain brakes, and cross-
validation selection led us to construct algorithms which incorporate these
ideas to answer statistical questions in genomics.

In this article, we propose a D/S/A algorithm for minimizing empirical
risk over a subspace. In the context of regression, we will study the perfor-
mance of the D/S/A algorithm in simulation studies. Finally, we apply the
methodology to a yeast data set to detect binding sites.
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2 Review of Estimation Road Map.

This section briefly explains the concepts of loss-function based estimation
and cross-validation selection which are important components of the D/S/A
algorithm. Details on theoretical aspects behind the D/S/A algorithm are
available in Sinisi and van der Laan (2004) and Dudoit et al. (2003). A more
thorough description of loss-function based estimation is available in van der
Laan and Dudoit (2003) and van der Laan et al. (2004).

Let (O,ψ) → L(O,ψ) ∈ IR be a (loss) function which maps a candi-
date parameter value ψ ∈ Ψ and observation O into a real number. The
expectation of this loss function is minimized at ψ0:

ψ0 = argminψ∈Ψ
∫
L(o, ψ)dP0(o) (1)

= argminψ∈ΨE0L(O,ψ).

In univariate outcome regression, we have O = (Y,W ) ∼ P0, where Y is a
scalar outcome and W is a vector of covariates. The parameter of interest
is the conditional expected value, ψ0(W ) ≡ EP0(Y | W ), of the outcome Y
given covariates W . We can use as loss function the quadratic loss function:

L(O,ψ) ≡ L(Y,W, ψ) = (Y − ψ(W ))2,

also known as the squared error loss function or the L2 loss function.

Parameterization of the parameter space.

Having defined the parameter of interest as the risk minimizer for the squared
error loss function, the next task is to generate a sequence of candidate es-
timators by minimizing the empirical risk over subspaces of increasing di-
mension approximating the complete parameter space Ψ. We propose to
parameterize Ψ in terms of tensor products of basis functions with polyno-
mial basis functions. Given a d-vector ~p = (p1, . . . , pd) ∈ INd, we denote
the polynomial basis functions by φ~p(W ) = W p1

1 . . .W pd
d where the collection

{φ~p : ~p ∈ INd} provides a basis for the complete parameter space Ψ. The
index set I ⊂ I represents a set of elements in INd.

Next, we define a collection of subspaces Ψs ⊂ Ψ, indexed by s ranging
over a set An. Such subspaces can be obtained by restricting the subsets I
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of basis functions to be contained in Is ⊂ I:

Ψs =

∑
~p∈I

β~pφ~p ∈ Ψ : m(I) ≤ s

 , (2)

where m(I) = (m1(I), . . . ,mq(I)) is defined as a q-valued function such that
m1(I) ≤ s1, . . . ,mq(I) ≤ sq. In this article, m1(I) = |I| represents the num-
ber of tensor products or the size of the index sets, m2(I) = max~p∈I

∑d
j=1 I(pj 6=

0) represents the maximum order of interaction of tensor products (the num-
ber of non-zero components in ~p), and m3(I) = max~p∈I

∑d
j=1 pj represents

the maximum sum of powers of tensor products.

Construction of candidate estimators.

After having defined our subspaces, Ψs, we would like to find the minimizer
of the empirical risk over the subspace for each s ∈ An. This minimization
problem is naturally split into two sequential steps. Given each possible
subset I ∈ Is of basis functions, compute the corresponding minimum risk
estimator of β, which in regression corresponds to minimizing the sum of
the squared residuals over the linear regression model in the basis functions
φ~p indexed by ~p ∈ I. For each I this results in an estimator ΨI,s(Pn) ≡
ψI,β(Pn|I,s).

Now, it remains to minimize the empirical risk over all allowed subsets
I ∈ Is of basis functions. Specifically, one needs to minimize the function
fE,s : Is → IR defined by

fE,s(I) ≡
∫
L (O,ΨI,s(Pn)) dPn(O). (3)

Let
Is(Pn) ≡ argminI∈IsfE,s(I)

be the minimizer. In Section 3 we propose a D/S/A algorithm that seeks to
calculate Is(Pn).

Selection among candidate estimators: Cross-validation.

Now, we have the empirical risk minimizer, denoted by Ψ̂s(Pn), for each
choice of subspace s. The final task is to select s with cross-validation.
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To derive a general representation for cross-validation, let Bn ∈ {0, 1}n
be a random vector whose observed value defines a split of the observed
data O1, . . . , On, the learning sample, into a validation sample and a training
sample. If Bn(i) = 0 then observation i is placed in the training sample
and if Bn(i) = 1, it is placed in the validation sample. We will denote
the empirical distribution of the data in the training sample and validation
sample with P 0

n,Bn and P 1
n,Bn , respectively. The proportion of observations

in the validation sample is denoted by p =
∑
iBn(i)/n. The cross-validation

selector of s is now defined as

s(Pn) ≡ argmins∈AnEBn
∫
L(O, Ψ̂s(P

0
n,Bn))dP 1

n,Bn(O)

= argmins∈AnEBn
1

np

n∑
i=1

I(Bn(i) = 1)L(Oi, Ψ̂s(P
0
n,Bn)).

Our final estimator of our parameter of interest is given by Ψ̂(Pn) ≡ Ψs(Pn)(Pn).
For the finite sample inequalities comparing the risk distance of the cross-

validation selected estimator with the risk distance of the estimator chosen
by the oracle selector and its asymptotic implications, we refer to van der
Laan and Dudoit (2003) for results for general loss functions, and Dudoit
and van der Laan (2003), van der Laan et al. (2003) for the corresponding
results in regression and likelihood cross-validation. The practical message
of these results is that for quadratic (e.g., convex) uniformly bounded loss
functions the cross-validation selector performs as well in risk distance as the
oracle selector up to a term smaller than C log(K(n))/(np), while for non-

quadratic loss functions, this last term is replaced by C
√

log(K(n)/(np).

Thus, as long as the number K(n) of estimators we consider is such that
log(K(n))/(np) is of smaller order than the actual minimal risk distance
mins∈An d(ψ̂s, ψ0) of the candidate estimators to ψ0, then the cross-validation
selector is asymptotically equivalent (in risk distance) to the oracle selector.
That is, in estimation problems which do not allow the parametric 1/

√
n-rate

of convergence, the numberK(n) of candidate estimators can be a polynomial
power in n.
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3 D/S/A algorithm for minimizing over sub-

sets of basis functions.

In this section, we propose an aggressive and flexible algorithm for gener-
ating a sequence of index sets I, according to three types of moves for the
elements of I: deletions, substitutions, and additions. We refer to this gen-
eral algorithm as the Deletion/Substitution/Addition algorithm, or D/S/A
algorithm. The main features of this approach are summarized below for the
case where the index sets are subsets of INd, as is the case for tensor prod-
uct polynomial basis functions φ~p. The D/S/A algorithm has been adapted
to histogram regression with partition-specific indicator basis functions as
provided by Molinaro and van der Laan (2004).

To simplify notation, in this section we will suppress dependence of quan-
tities on s; let I denote the collection of allowed index sets. Let s0 denote the
dimension d and assume that s = (s1, . . . , sq), where s1 denotes the upper
bound on the size of the index sets (i.e, the number of allowed basis func-
tions), while s2, . . . , sq represent the remaining fine tuning parameters. The
D/S/A algorithm described below aims to calculate Is(Pn) for each choice of
s1, given the remaining components of s. Thus, one has to carry out this algo-
rithm for each value of s2, . . . , sq to obtain all optimal index sets {Is(Pn) : s}
and thereby our collection of s-specific estimators Ψ̂s(Pn). Throughout this
section, we use k to represent s1 where s1 = |I|.

The D/S/A algorithm for minimizing over index sets I is defined in terms
of three functions, DEL(I), SUB(I), and ADD(I), which map an index set
I ∈ I of size k into sets of index sets of size k− 1, k, and k+ 1, respectively.

Deletion/Substitution/Addition moves.
Consider index sets I ⊂ INd and let I denote a collection of subsets of INd.
Deletion moves. Given an index set I ∈ I of size k = |I|, define a set
DEL(I) ⊂ I of index sets of size k− 1, by deleting individual elements of I.
This results in k possible deletion moves, i.e., |DEL(I)| = k.
Substitution moves. Given an index set I ∈ I of size k = |I|, define a
set SUB(I) ⊂ I of index sets of size k, by replacing individual elements
~p ∈ I by one of the 2d vectors created by adding or subtracting 1 to any
of the d components of ~p. That is, for each ~p ∈ I, consider moves ~p ± ~uj,
where ~uj denotes the unit d-vector with one in position j and zero elsewhere,
j = 1, . . . , d. This results in up to k × (2d) possible substitution moves, i.e.,
|SUB(I)| = k × (2d). In case the allowed index sets require that each ~p
has at most s2 non-zero components, then we propose to add to these sub-
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stitution moves the alternate-substitution moves. The alternate-substitution
moves correspond to adding or subtracting the unit vectors as above, but if
that results in a ~p with more than s2 non-zero components, then we replace
it by the s2 vectors one obtains by setting one of the (original) non-zero com-
ponents equal to zero. This augmentation of the set of substitution moves
results in maximally k × s2 × (2d) substitution moves.
Addition moves. Given an index set I ∈ I of size k = |I|, define a set
ADD(I) ⊂ I of index sets of size k+1, by adding to I an element of SUB(I)
or one of the d unit vectors ~uj, j = 1, . . . , d. This results in up to k× (2d)+d
(or k× s2× (2d) + d) possible addition moves, i.e., |ADD(I)| = k× (2d) + d.

Thus the substitution moves (excluding the alternate-substitution moves)
can be described as

SUB(I)→



(p1 + 1, p2, p3, . . . , pd)
(p1, p2 + 1, p3, . . . , pd)
...
(p1, p2, p3, . . . , pd + 1)
(p1 − 1, p2, p3, . . . , pd)
(p1, p2 − 1, p3, . . . , pd)
...
(p1, p2, p3, . . . , pd − 1)

for each ~p ∈ I, and the addition moves as adding ~pk+1 described by

ADD(I) =



(1, 0, . . . , 0)
...
(0, . . . , 0, 1)
(p1 + 1, p2, p3, . . . , pd)
...
(p1, p2, p3, . . . , pd + 1)
(p1 − 1, p2, p3, . . . , pd)
...
(p1, p2, p3, . . . , pd − 1)

Clearly, each of these sets DEL(I), SUB(I), and ADD(I) of possible
moves can be enlarged (or modified) to enforce this algorithm to search the
parameter space more aggressively, but an obvious need for this is not seen
presently.
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Next, we describe how the three basic moves of the D/S/A algorithm can
be used to generate index sets Ik(Pn), that seek to minimize the empirical
risk function, fE(I), over all index sets I of size less than or equal to k,
k = 1, . . . , Kn (Box 1).

In our case of the squared error loss function, with full data, the empirical
risk function is simply the mean squared error (cf. residual sum of squares)
for Ψ̂I(Pn)

fE(I) =
1

n

n∑
i=1

(Yi − Ψ̂I(Pn)(Wi))
2.

Denote the best (in terms of empirical risk) index set I of size less than
or equal to k, k = 1, . . . , Kn, by

I?k(Pn) ≡ argmin
{I:|I|≤k, I∈I}

fE(I).

The D/S/A algorithm, described in Box 1, returns for each k, an index set
Ik(Pn) that aims to approximate (or equal) I?k(Pn).
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Box 1. Deletion/Substitution/Addition algorithm for optimizing the
empirical risk function.

1. Initialization. Set I0 = ∅ and BEST (k) = ∞, k = 1, 2, . . ., where BEST (k)
represents the current lowest value of the objective function f = fE for index
sets I of size k. Let BEST.SET (k) represent the actual index sets so that
f(BEST.SET (k)) = BEST (k).

2. Algorithm (*). Let k = |I0|. Find an optimal updated index set I− of size
k−1, among all allowed deletion moves: I− ≡ argminI∈DEL(I0)f(I). If f(I−) <
BEST (k−1), then set I0 = I−, BEST (k−1) = f(I−), BEST.SET (k−1) = I0,
and go back to (*).

Otherwise, find an optimal updated index set I= of the same size k as I0, among
all allowed substitution moves: I= ≡ argminI∈SUB(I0)f(I). If this update
improves on I0, that is, f(I=) < f(I0), then set I0 = I=, BEST (k) = f(I=),
BEST.SET (k) = I0, and go back to (*).

Otherwise, find an optimal updated index set I+ of size k+1, among all allowed
addition moves: I+ ≡ argminI∈ADD(I0)f(I). Set I0 = I+. If this update
improves on I0, that is, f(I+) < f(I0), then set BEST (k + 1) = f(I+), and
BEST.SET (k + 1) = I0. Go back to (*).

3. Stopping rule. Run the algorithm until the current index set size k = |I0| is
larger than a user-supplied max. size or until f(I+) − f(I0) < ∆ for a user-
specified ∆ > 0. Denote the last set I by Ifinal(Pn).

Note that the D/S/A algorithm is such that BEST (k) is decreasing in k,
since addition moves only occur when they result in a decrease in risk over
the current index set size. Thus, the best subset of size k is also the best
subset of size less than or equal to k. We also note that this algorithm gives
priority to moves which make the fit smaller, and it avoids getting “trapped”
by always carrying out the addition move.

Unlike previously proposed forward/backward selection approaches, the
D/S/A algorithm performs an extensive search of the parameter space, truly
aimed at minimizing the empirical risk function over all index sets of a given
size.
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3.1 Simple example to illustrate D/S/A algorithm.

Consider the regression setting so that L(O,ψ) = (Y − ψ(W ))2, and sup-
pose that we parameterize each allowed regression function as linear com-
binations of tensor products of the polynomial powers. Suppose that W =
(W1, . . . ,W4) (i.e., d = 4) and that the current model (i.e., I0) in the D/S/A
algorithm is given by Y = W1W2W3 + W2W

5
4 . Note that the current size

is k = 2, the corresponding indices are ~p1 = (1, 1, 1, 0), ~p2 = (0, 1, 0, 5), and
I0 = {~p1, ~p2}.

A deletion move simply means removing one of the terms of the current
model and fitting a model of size k − 1. Thus, the deletions set, DEL(I0),
contains two index sets of size k = 1

DEL(I0) =
{
{~p1}, {~p2}

}
=
{
{(1, 1, 1, 0)}, {(0, 1, 0, 5)}

}
.

The substitution moves involve replacing the jth term for j = 1, . . . , k
with a new term, keeping the size of the model fixed at k. The possible
substitution moves are given by:

SUB(I0) =



W 2
1W2W3 +W2W

5
4 ~p1 = (2, 1, 1, 0)

W1W
2
2W3 +W2W

5
4 ~p1 = (1, 2, 1, 0)

W1W2W
2
3 +W2W

5
4 ~p1 = (1, 1, 2, 0)

W1W2W3W4 +W2W
5
4 ~p1 = (1, 1, 1, 1)

W2W3 +W2W
5
4 ~p1 = (0, 1, 1, 0)

W1W3 +W2W
5
4 ~p1 = (1, 0, 1, 0)

W1W2 +W2W
5
4 ~p1 = (1, 1, 0, 0)

W1W2W
5
4 +W1W2W3 ~p2 = (1, 1, 0, 5)

W 2
2W

5
4 +W1W2W3 ~p2 = (0, 2, 0, 5)

W2W3W
5
4 +W1W2W3 ~p2 = (0, 1, 1, 5)

W2W
6
4 +W1W2W3 ~p2 = (0, 1, 0, 6)

W 5
4 +W1W2W3 ~p2 = (0, 0, 0, 5)

W2W
4
4 +W1W2W3 ~p2 = (0, 1, 0, 4)

We want also to note that, if the total number of terms in the tensor prod-
ucts is bounded by s2 = 3, then the substitution move which would not be
allowed, W1W2W3W4 +W2W

5
4 , would be replaced by these alternate moves:

W2W3W4 +W2W
5
4 , W1W3W4 +W2W

5
4 , W1W2W4 +W2W

5
4 .
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If none of these substitution moves improve RSS, then the D/S/A algo-
rithm finds the best fit among the following addition moves:

ADD(I0) =



W1 +W1W2W3 +W2W
5
4 ~p3 = (1, 0, 0, 0)

W2 +W1W2W3 +W2W
5
4 ~p3 = (0, 1, 0, 0)

W3 +W1W2W3 +W2W
5
4 ~p3 = (0, 0, 1, 0)

W4 +W1W2W3 +W2W
5
4 ~p3 = (0, 0, 0, 1)

W 2
1W2W3 +W1W2W3 +W2W

5
4 ~p3 = (2, 1, 1, 0)

W1W
2
2W3 +W1W2W3 +W2W

5
4 ~p3 = (1, 2, 1, 0)

W1W2W
2
3 +W1W2W3 +W2W

5
4 ~p3 = (1, 1, 2, 0)

W1W2W3W4 +W1W2W3 +W2W
5
4 ~p3 = (1, 1, 1, 1)

W2W3 +W1W2W3 +W2W
5
4 ~p3 = (0, 1, 1, 0)

W1W3 +W1W2W3 +W2W
5
4 ~p3 = (1, 0, 1, 0)

W1W2 +W1W2W3 +W2W
5
4 ~p3 = (1, 1, 0, 0)

W1W2W
5
4 +W1W2W3 +W2W

5
4 ~p3 = (1, 1, 0, 5)

W 2
2W

5
4 +W1W2W3 +W2W

5
4 ~p3 = (0, 2, 0, 5)

W2W3W
5
4 +W1W2W3 +W2W

5
4 ~p3 = (0, 1, 1, 5)

W2W
6
4 +W1W2W3 +W2W

5
4 ~p3 = (0, 1, 0, 6)

W 5
4 +W1W2W3 +W2W

5
4 ~p3 = (0, 0, 0, 5)

W2W
4
4 +W1W2W3 +W2W

5
4 ~p3 = (0, 1, 0, 4)

3.2 Available Options.

Dimension Reduction. Depending on the application at hand, it can
be worthwhile to transform and/or reduce the number of given explana-
tory variables. To reduce the data, we compute d T -statistics correspond-
ing to the main effects of W1, . . . ,Wd by fitting d univariate regressions.
Next, we rank these statistics, possibly in absolute value, in decreasing order
R̂(1), . . . , R̂(d) ⊂ {1, . . . , d} yielding our ordered covariatesWR̂(1),WR̂(2), . . . ,WR̂(d).
Then, one can input the set (WR̂(1), . . . ,WR̂(s0)), of length s0, as the vector of
covariates into the D/S/A algorithm and can choose whether or not to select
s0 via cross-validation. This reduction was done in Section 5.

Derivative-based importance measures. In prediction problems, a com-
mon and practical question is to assess the importance of a variable, or set
of variables, in terms of its predictive ability for the outcome of interest. For
instance, in microarray experiments, one is interested in determining how

Chapter 3. Super (Machine) Learning using Cross Validation

89
http://biostats.bepress.com/ucbbiostat/paper254



important each gene (or set of genes) is for the prediction of a particular
biological or clinical outcome. Measures of variable importance can assist in
the identification of a subset of marker genes for the outcome.

Various measures of importance exist in the literature including loss-
function based importance measures (Dudoit et al., 2003), and we will de-
scribe the measure that we used in Section 5.

As before, let the data be n observations of (Y,W ), where Y is the out-
come of interest and W is a d-dimensional vector of covariates for which
we would like a measure of importance. Let h(W ) = E(Y |W ) and let α(j)
denote the importance measure for variable Wj:

α(j) = E

(
d

dWj

E[h(W )|Wj]

)

To estimate this importance measure, consider a fitted regression model
denoted by ĥ(W ). Based on the idea of counterfactual variables in the causal-
ity literature (van der Laan and Robins, 2003), we are getting a sense of the
importance of variable Wj for j = 1, . . . , d by seeing what happens when W =

w for a given variable of interest. Given a fit from a particular model ĥb(W )
for b = 1, . . . , B, let h̄j(w) = 1

n

∑
i ĥb(W1,i, . . . ,Wj−1,i, w,Wj+1,i, . . . ,Wd,i).

The importance measure, for the following types of variables, can be esti-
mated as follows:

• Continuous

α̂b(j) =

∫
w∈Wj

| d
dw
h̄j(w)|dw∫

w∈Wj
dw

where Wj represents the set of possible values

of Wj.

• Binary
α̂b(j) =| h̄j(1)− h̄j(0) |
• General Discrete

α̂b(j) =

K−1∑
l=1

|h̄j(l+1)−h̄j(l)|

K−1
where w ∈ {1, . . . , K}.

The final estimate of the importance measure is then a weighted average
of α̂b(j) across many b-specific fits. We can easily accomplish this in two
ways. The first approach is to use the fits for all s ∈ An and estimate α̂s(j)
for all s. The second approach is to reduce the data to V ⊂ W reasonably
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important variables. Then form B random subsets of variables of a specified
size from V . The matrix Sb identifies these subsets where each row represents
a given subset of variables. Then for a given variable, its importance measure
is estimated across fits as:

α̂(j) =

B∑
b=1

α̂b(j)I(Wj ∈ Sb)wtb

B∑
b=1

I(Wj ∈ Sb)wtb

(4)

In equation 4, wt represents a weight for a particular fit which can be the
cross-validated risk of the given regression model for example. For instance,
to measure variable importance in Section 5, we reduced the data to the
10 most important variables based on univariate regressions and formed all
subsets of size 3 from these 10 variables.

3.3 Other Approaches.

The estimation road-map offered by van der Laan and Dudoit (2003) and
van der Laan et al. (2004) inspired the D/S/A algorithm and lists as its
three main steps:

1. Definition of the parameter of interest in terms of a loss function.

2. Construction of candidate estimators based on a loss function.
Define a finite collection of candidate estimators for the parameter of
interest based on a sieve of increasing dimension approximating the
complete parameter space. For each element of the sieve, the candidate
estimator is chosen as the minimizer of the empirical risk based on the
observed data loss function.

3. Cross-validation for estimator selection and performance assessment.

The D/S/A algorithm incorporates Steps 2 and 3 by first forming can-
didate estimators as outlined in step two. It then uses cross-validation to
select the optimal estimator among the candidates it formed.

There are many approaches to regression problems in the statistics and
machine learning literature which can produce candidate estimators (Breiman
et al. (1984),Friedman (1991), Ruczinski et al. (2003), Efron et al. (2004)).
The results for cross-validation given by van der Laan and Dudoit (2003) are

Chapter 3. Super (Machine) Learning using Cross Validation

91
http://biostats.bepress.com/ucbbiostat/paper254



very general, and hence they apply to any set of candidate estimators. The
D/S/A algorithm does not differ in its use of cross-validation but in the way
it produces candidate estimators.

Friedman (1991) introduced MARS, an adaptive procedure for regression,
which uses linear splines as basis functions. Stone et al. (1997) developed a
hybrid of MARS. Support Vector Machines (SVMs) have been well-promoted
for classification and have been adapted for regression, sometimes referred
to as support vector regression (Shawe-Taylor and Cristianini, 2004). To
use the SVM, one needs to define a kernel and its corresponding parameters
which requires time spent fine-tuning. Logic Regression (Ruczinski et al.,
2003) is an adaptive regression method and performs a very thorough search
by allowing many different moves in its tree growing process. It works in
a specialized context, to construct predictors as Boolean combinations of
binary covariates.

However, many existing methods for constructing candidate estimators
are not aggressive enough for the types of datasets encountered in genomics.
They either only accomodate variable main effects or are too rigid to gen-
erate a good set of candidate estimators. These approaches do not aim to
minimize the empirical mean of a loss function over specified subspaces of
the complete parameter space. Instead, they rely on forward/backward-like
local optimization steps. For example, while regression trees allow interac-
tions among variables, the candidate tree estimators are generated according
to a limited set of moves, amounting to forward selection (node splitting)
followed by backward elimination (tree pruning).

The D/S/A algorithm keeps running because it can always improve the
objective function by adding a term or in some cases by altering an existing
term. Once it adds a term, it then has the ability to try to delete a term
or alter a term and can avoid getting “stuck.” It performs a very aggressive
search. Logic Regression also performs an aggressive search. Yet, many other
methods do not perform thorough enough searches.

In the next section, we compare our approach to Logic Regression, MARS,
and SVMs. Two implementations of the D/S/A algorithm for histogram
regression (Molinaro and van der Laan, 2004) and neural networks (Durbin
and Dudoit, 2004) are being developed.
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4 Simulations.

In this section, we will present the results of applying the D/S/A algorithm to
simulated data sets. All simulations and data analyses were done using ma-
chines available in the labs of the Statistical Computing Facility (University
of California, Berkeley). These are Sun workstations which have UltraSparc
II processors ranging in speed from around 200 MHz to 440 MHz. They
typically have 128 MB to 256 MB of RAM.

We conducted a variety of simulations to see how the algorithm performs
in different settings. The first set of simulations use the D/S/A algorithm
in its simplest form while later simulations impose different constraints on
the algorithm. In all simulations, no additional constraints have been placed
on β nor did we reduce the data. Dimension reduction is done for the data
analysis (Section 5).

The D/S/A algorithm first is implemented without constraints (brakes);
we are not restricting the number of tensor products, k, and thus not us-
ing cross-validation to select k. We run the algorithm until we reach a k
that gives a minimal residual sum of squared error (RSS). Next, the algo-
rithm is implemented with a cross-validated constraint placed on the num-
ber of tensor products in the regrssion, i.e., selecting k via v-fold cross-
validation. The cross-validated D/S/A algorithm is then compared to: the
R function stepAIC(), forward selection with cross-validation (fscv), Logic
Regression, and Multivariate Adaptive Regression Splines (MARS). Finally,
the algorithm which places brakes on the complexity of each tensor product:
m2(I) = max~p∈I

∑d
j=1 I(pj 6= 0); m2(I) ≤ s2 and m3(I) = max~p∈I

∑d
j=1 pj;

m3(I) ≤ s3, and thereby incorporates the alternate-substitution moves is
implemented and used in the Logic Regression and MARS comparisons.

In each of the simulations, an n × d covariate matrix, W , is generated
from a given probability distribution, e.g. normal, uniform, Bernoulli. The
true mean linear polynomial regression model, E(Y |W ), is either manually
or randomly generated. The outcome Y is then generated from the true
mean linear polynomial regression model with no noise or a Gaussian noise
with mean 0 and standard deviation σ. The D/S/A algorithm is then used
to minimize fE,s(I), and the procedure may be repeated a number of times.
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4.1 Implementation without constraints.

The first set of simulations explore the performance of the D/S/A algorithm
itself. Therefore, cross-validation is not yet employed, and the D/S/A algo-
rithm is run on the learning set without using cross-validation to select the
size k.

The purpose of these simulations is to establish to what degree the D/S/A
algorithm is truly capable of finding the global minimum (i.e., the optimal
predictor W → ψ0(W ) = E0(Y |W )) when n is large enough. In the following
simulations, the true regression model is randomly generated (see Sinisi and
van der Laan (2004)).

Numerical results obtained from this simulation are available in (Sinisi
and van der Laan, 2004). We found that the algorithm succeeded in min-
imizing fE,s(I); both sensitivity and specificity is 100% indicating that the
algorithm is successful in fitting true simple regressions in the case of zero
error which corresponds to choosing a very large sample size. These results
are encouraging and led to further exploration of the algorithm’s capabilities.

The next step is to see what happens when some noise is added to these
regression models. We used a normal distribution with mean 1 and standard
deviation 0.5 to generate Wn,d for E5[Y |W ] and E6[Y |W ]. The outcome Y
is generated from the randomly chosen true regression model with zero error
or Gaussian error with mean 0 and standard deviation 1. These were run
only once.

The following two models were generated, first with ε = 0 and then with
ε ∼ N (0, 1).

E5[Y |W ] = W0W
2
1W

2
2 +W0W1W

2
2W3 +W 3

2 +W 4
4

E6[Y |W ] = W0 +W0W49W99 +W 5
24 +W17W30W53W62W78W88

Table 1 displays the results of this simulation which compares two models
with zero error and a Gaussian error. The truth was identified in all cases
where ε = 0 or ε ∼ N (0, 1). The number of moves the algorithm needed to
make in order to converge are displayed as well for this simulation. Based
on Table 1, a large number of covariates does not affect the convergence rate
since the number of moves performed when d = 100 is less than the number
of moves performed when d = 5.

Chapter 3. Super (Machine) Learning using Cross Validation

94
Hosted by The Berkeley Electronic Press



E[Y |W ] n d sens spec RSSn RSS0 moves subs adds dels

E5[Y |W ] 1000 5 100% 100% 0.0000 0.0000 30 22 6 2
E5[Y |W ]∗ 1000 5 100% 80% 1.074 1.080 30 23 6 1
E6[Y |W ] 1000 100 100% 100% 0.0000 0.0000 21 17 4 0
E6[Y |W ]∗ 1000 100 100% 100% 0.9576 0.9572 21 17 4 0

Table 1: DSA unconstrained. Comparing ε = 0 and ε ∼ N (0, 1)∗. sens:
sensitivity, spec: specificity, RSSn: RSS/(n − b) represents the estimate of
the variance of the error where b is the number of independent variables in
fitted model, RSS0: true variance of the error, moves : number of moves
made by the algorithm, subs : number of substitution moves made, adds :
number of addition moves made, dels : number of deletion moves made, *:
indicates the model for which ε ∼ N (0, 1).

4.2 D/S/A algorithm with cross-validated size versus
the stepAIC() function in R.

The next set of simulations address the performance of cross-validation in
making sure that the algorithm does not select too many variables, and
thereby over-fits, by comparing it to the R function stepAIC(). We first
generated the covariate matrix Wn,d of n i.i.d. observations of d variables
Wi, i = 1, . . . , d from a uniformly distributed distribution between 1 and 10.
Then, we manually generated the following three true regression models:

E1[Y |W ] = W1 +W 2
2

E2[Y |W ] = W1W3

E3[Y |W ] = W1W3 +W 2
5 +W7W10

Using the models, we next generated the outcome Y with a Gaussian er-
ror with mean 0 and standard deviation 1. Then ran the procedure once
with the cross-validated D/S/A algorithm (DSA1-CV ) and stepAIC and re-
ported the final size of the fitted model chosen by each method, k̂, and an
estimate of the true risk, r̂.

The D/S/A algorithm creates variables data-adaptively and therefore
does not require enumeration of all potential variables. StepAIC does re-
quire enumeration of all variables. To compare the two black-box algorithms
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(data→ predictor), we enumerated all main terms, squared terms, and pair-
wise interactions. This is a preliminary simulation to compare the D/S/A
algorithm with a cross-validated constraint on the size of the model with the
forward selection algorithm (enumerating all terms) using AIC to select the
size of the model. (In Section 4.3, we will compare our DSA1-CV algorithm
to forward selection with cross-validation.) For this simulation, we are inter-
ested in whether or not each method fits the true model and the true risk of
the selected model. The true risk is estimated by setting aside a large sample
of independent observations, a test set, and calculating the risk based on the
fitted model on this set of observations. In this particular case, a test set of
size 20,000 was used to estimate the true risk.

In the first simulation (row 1, table 2), both our method and stepAIC

selected the exact true model. However, in the next two simulations (rows
2-3, table 2), our method fitted the truth exactly while stepAIC heavily over-
fitted the model (col 4, table 2). AIC’s tendency to over-fit is well-known in
the statistical literature, but the over-fitting did not hurt the risk estimate
because the estimated risk from the fitted model produced by stepAIC is
nearly the same as the estimated risk given by our method’s fitted model.

E[Y |W ] n d k̂AIC k̂DSA1−CV r̂AIC r̂DSA1−CV
E1[Y |W ] 5000 3 2 2 0.9963 0.9963
E2[Y |W ] 5000 10 19 1 0.9995 0.9932
E3[Y |W ] 5000 10 22 3 1.0174 1.0106

Table 2: Comparing stepAIC to DSA-CV algorithm with cross-validated con-
straint on size under 2-fold cross-validation. k̂: size of the final fitted model
for each method, r̂: estimate of the true risk, based on 20,000 independent
observations, of the final model chosen by both methods.

4.3 Comparison to forward selection with cross-validation.

This simulation study (Table 3) compares the D/S/A algorithm (DSA1-CV
to a type of forward selection with cross-validation (fscv) algorithm. The
forward selection algorithm makes all the same addition moves as our method
but does not carry out the deletion and substitution moves.

The true model, (Table 3), is y = 4w+3w3−2w5 +ε, where w ∼ U(1, 5),
ε is normal with mean 0 and standard deviation 1, and y ∈ (−6000, 8). Both
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methods were run under 2, 5, and 10-fold cross-validation with the maximum
number of terms in the model pre-set at 10.

The fscv algorithm, naturally, picks a model with about 5 or more terms,
not having the deletion or substitution step to get rid of terms involving
even powers, and thus has a sensitivity of 100% in all cases. DSA1-CV
picks a smaller model on average with a higher specificity as expected. The
risk estimates are approximately the same for both methods. The D/S/A
algorithm seems to be more efficient for smaller sample sizes than the fscv
algorithm.

4.4 Logic Regression.

Logic Regression (Ruczinski et al., 2003) is a very useful regression method
currently available, and it can handle a variety of problems including lin-
ear regression, logistic regression and classification and can be extended to
other problems by defining an appropriate score function. Both the D/S/A
algorithm and Logic Regression is an adaptive regression methodology that
attempts to construct predictors. However, the goal of Logic Regression is
to find predictors that are Boolean (logical) expressions, and thus is applied
when the covariates in the data to be analyzed are primarily binary. The
D/S/A algorithm can handle any combination of continuous and discrete
covariates. It is important to compare the two methods when applied to
binary variables, and this simulation is an initial attempt at comparing the
two. Logic Regression uses a cross-validated constraint on the complexity of
each tree, which corresponds to the complexity of our tensor products (im-
plemented by DSA2-CV, Table 4). Thus, Logic Regression is compared to
two implementations of the D/S/A algorithm, (DSA1-CV and DSA2-CV )
referred to as dsa1 and dsa2, respectively, in Table 4.

DSA1-CV has been described previously; it uses cross-validation to se-
lect k, the number of tensor products. DSA2-CV uses cross-validation to
select the number of tensor products and places a brake on the complexity
of each tensor product thereby involving the alternate-substitution moves.
Specifically, we are limiting the order of interactions to be no greater than
a specified value, m2(I) = max~p∈I

∑d
j=1 I(pj 6= 0) ≤ s2. In the case of bi-

nary covariates, m2(I) ≡ m3(I) and thus we did not need to select s3 via
cross-validation.

The true model was generated from y = β1(w1w3(1 − w2)) + β2((1 −
w1)w3(1−w2))+β3(w7w10)+er, where wi ∼ B(0.7), 1 ≤ i ≤ 10, β ∼ N (1, 1),
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Table 3: Simulation study FSCV Comparison. Data simulated from
y = 4w + 3w3 − 2w5 + er, where w ∼ U(1, 5) and er ∼ N(0, 1). Candidate
estimator was chosen over 50 repetitions of three sample sizes (col 1), three
v-fold cross-validations (col 2) for all algorithms (col 3). The results (cols
4-9) in the table are based on an independent test sample of n = 10000.
col 4 is the average of the 50 risks for each method, col 5 is the standard
deviation of the risks over the 50 reps, col 6 is the average size (number of
basis functions), col 7 is the sensitivity, col 8 is the specificity, and col 9 is
the ratio of averaged risks (col 4) − optimal risk, (ours/fscv).

Sample 50 Repetitions
Size v − fold Method mean std dev avg size sens spec ratio

ours 1.043 .018 3.62 83% 71% 1
2 fscv 1.045 .019 5.36 100% 57% .950

ours 1.044 .018 3.64 82% 71% 1
250 5 fscv 1.046 .019 5.46 100% 56% .960

ours 1.043 .018 3.62 82% 72% 1
10 fscv 1.046 .019 5.52 100% 55% .939

ours 1.031 .006 3.24 91% 86% 1
2 fscv 1.031 .007 5.28 100% 57% .980

ours 1.030 .006 3.30 89% 84% 1
500 5 fscv 1.031 .007 5.30 100% 57% .965

ours 1.030 .006 3.34 89% 83% 1
10 fscv 1.031 .007 5.34 100% 57% .967

ours 1.026 .005 3.54 85% 75% 1
2 fscv 1.026 .005 5.28 100% 57% 1.014

ours 1.027 .005 3.46 84% 75% 1
1000 5 fscv 1.026 .005 5.18 100% 58% 1.023

ours 1.026 .005 3.44 85% 77% 1
10 fscv 1.026 .005 5.28 100% 57% 1.015
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and er ∼ N(0, 1). It has been pointed out that the model can be reduced to:

β1(w3(1− w2)) + (β2 − β1)(w3(1− w1)(1− w2)) + β3(w7w10)

or
β2(w3(1− w2)) + (β2 + β1)(w3w1(1− w2)) + β3(w7w10).

Thus, the true number of leaves is 7.
When running Logic Regression, the preset maximum number of allowed

trees matched the number of terms in the true model. The results of both
Logic Regression and DSA-CV depend on the fine tuning parameters such
as number of folds, number of trees or maximum number of tensor products,
and number of leaves or tensor product complexity measure. In terms of pre-
diction, this simulation shows that the D/S/A algorithm is competitive with
Logic Regression since the risk ratios are roughly one. When using binary
covariates, both methods produce models that are easy to interpret. Logic
Regression provides the user with enhanced interpretability by using intuitive
operators. See Sinisi and van der Laan (2004) for two other comparisons to
Logic Regression.

4.5 Multivariate Adaptive Regression Splines.

Multivariate Adaptive Regression Splines (MARS) (Friedman, 1991) is a
method for flexible regression modeling of high-dimensional data. It can
be viewed as a generalization of stepwise linear regression or a modication
of the CART (Breiman et al., 1984) method. MARS uses expansions in the
form of linear splines.

To compare the D/S/A algorithm to MARS, we used the mars{mda} R
function to run MARS. We used the model taken from Section 4.3 of the
MARS paper (Friedman, 1991):

y = 10 sin(πw1w2) + 20(w3 − 1

2
)2 + 10w4 + 5w5 + er,

where wi ∼ U(0, 1), 1 ≤ i ≤ 10 and er ∼ N(0, 1).
Both methods allow the user to set an optional integer specifying the

maximum interaction degree (degree) and number of model terms (nk). To
compare both methods under the same level of constraint, we set nk to
ten and degree to two. For the D/S/A algorithm, we set the maximum
sum of powers to be 5 and used 10-fold cross-validation. The results for
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Table 4: Simulation study Logic Regression Comparison. Data simulated
from y = β1(w1w3(1−w2)) +β2((1−w1)w3(1−w2)) +β3(w7w10) + er, where
wi ∼ B(0.7), 1 ≤ i ≤ 10, β ∼ N (1, 1), and er ∼ N(0, 1). Candidate
estimator was chosen over 10 repetitions of two sample sizes (col 1), three
v-fold cross-validations (col 2) for both our algorithm and logic regression
(col 3). The results (cols 4-7) in the table are based on an independent test
sample of n = 10000. col 4 is the average size (number of basis functions
for ours and number of leaves for logic), col 5 is the average of the 10 risks
(with the L2 loss function) for each method, col 6 is the standard deviation
of the risks over the 10 reps, and col 7 is the ratio of averaged risks (col 5)
− optimal risk, (dsa/logic).

Sample 10 Repetitions
Size v − fold Method avg size mean risk std dev ratio

dsa1 4.1 4.647 .248 .995
2 dsa2 4.0 4.636 .254 .992

logic 5.6 4.664 .255 1
dsa1 4.8 4.705 .319 1.013

250 5 dsa2 4.7 4.723 .297 1.018
logic 6.0 4.657 .246 1
dsa1 4.8 4.705 .319 1.014

10 dsa2 4.7 4.723 .297 1.019
logic 6.0 4.654 .278 1
dsa1 5.0 4.738 .101 1.001

2 dsa2 4.9 4.731 .105 .999
logic 7.0 4.734 .105 1
dsa1 5.0 4.738 .101 1.001

1000 5 dsa2 5.0 4.743 .101 1.002
logic 7.0 4.734 .105 1
dsa1 5.0 4.738 .101 1.001

10 dsa2 5.0 4.743 .101 1.002
logic 7.0 4.734 .105 1
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Table 5: Simulation study I. MARS Comparison. Data simulated from
y = 10 sin(πw1w2) + 20(w3 − 1

2
)2 + 10w4 + 5w5 + er, where wi ∼ U(0, 1),

1 ≤ i ≤ 10 and er ∼ N(0, 1). Candidate estimator was chosen over 50
repetitions of two sample sizes (col 1) for our algorithm versus MARS (col
2). The results (cols 3-6) in the table are based on an independent test
sample of n = 10000. col 3 is the average size (number of basis functions
for ours and MARS), col 4 is the average of the 50 risks (with the L2 loss
function) for each method, col 5 is the standard deviation of the risks over
the 50 reps, and col 6 is the ratio of averaged risks (col 5) − optimal risk,
(dsa/mars).

Sample 50 Repetitions
Size Method avg size mean risk std dev ratio

dsa (10) 9.50 2.927 1.6 1
mars (10) 6.38 5.531 .19 0.43

250 dsa (15)
mars (15)
dsa (10) 9.36 2.511 1.5 1

mars (10) 6.34 5.333 .12 0.35
500 dsa (15)

mars (15)

50 repetitions comparing the estimated risks of each method based on an
independent test set of 10,000 are displayed in Table 5. In this setting, it looks
as if the D/S/A algorithm outperforms MARS. However, MARS produces
more consistent results (smaller risk variance). The D/S/A algorithm has
the ability to produce models with very low risk, but it is unable to do this
for every repetition under the imposed constraints. Furthermore, if we ran
mars without specifying nk, it tends to pick models of size 14-15 with a much
lower risk estimate. Using degree 2 or degree 10 did not radically alter the
results.

EDIT once new results are in!
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Table 6: Simulation study II. MARS Comparison. Data simulated from
y = 10 sin(πw1w2) + 20(w3 − 1

2
)2 + INSERT + er, where wi ∼ U(0, 1),

1 ≤ i ≤ 10 and er ∼ N(0, 1). Candidate estimator was chosen over 50
repetitions of two sample sizes (col 1) for our algorithm versus MARS (col
2). The results (cols 3-6) in the table are based on an independent test
sample of n = 10000. col 3 is the average size (number of basis functions
for ours and MARS), col 4 is the average of the 50 risks (with the L2 loss
function) for each method, col 5 is the standard deviation of the risks over
the 50 reps, and col 6 is the ratio of averaged risks (col 5) − optimal risk,
(dsa/mars).

Sample 50 Repetitions
Size Method avg size mean risk std dev ratio

dsa (10) 1
mars (10)

250 dsa (15)
mars (15)
dsa (10)

mars (10)
500 dsa (15)

mars (15)

5 Data Analysis.

An important problem in contemporary biology is transcription factor bind-
ing site identification. The activities of hundreds of sequence specific DNA
binding proteins, transcription factors (TFs), play an important role in tran-
scriptional regulation of eukaryotes. TFs are proteins, needed to initiate the
transcription of a gene, that bind to regions in the vicinity of genes and as
a result regulate the activities of the genes. Each TF, or group of closely
related factors, recognizes a unique grouping of short sequence elements,
usually between five and fifteen basepairs in length. Identification of these
sites is a crucial problem as understanding the components of regulation is
a step toward understanding how genes are expressed at all times in the cell
life. In this section, we look at the identification of biologically significant
transcription factor binding sites in the genome of the yeast Saccharomyces
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cerevisiae.
This biological problem has been put by Keleş et al. (2002) into a statis-

tical framework by formulating it as a model selection problem. Keleş et al.
(2002) model gene expression as a function of short oligonucleotides that
represent potential binding sites and use length five motifs, or pentamers, as
an initial set of covariates, adopting a stepwise cross-validation methodology
with forward selection and backward deletion to choose the most predictive
pentamers.

5.1 Cell Cycle Data.

The eukaryotic cell cycle consists of four phases: M (mitosis), S (synthesis,
DNA is replicated), G1, and G2. During the first gap phase, G1, cells increase
in size, produce RNA, and synthesize protein, and there is a checkpoint
ensuring that everything is ready for DNA synthesis. During the gap between
DNA synthesis and mitosis, G2, the cell will continue to grow, produce new
proteins, and determine if the cell can proceed to enter mitosis and divide.

Cho et al. (1998) gathered data by using Affymetrix oligonucleotide mi-
croarrays to query the abundances of 6,220 mRNA species in synchronized
Saccharomyces cerevisiae batch cultures. Cells were collected at 17 time
points taken at 10 minute intervals to cover nearly two full cell cycles. The
time course was divided into early G1, late G1, S, G2, and M phases (G1-S for
replication, S-G2 for organization of centrosome, and M phase for budding
and cell polarity).

For this data analysis, we used 15 of the 17 time points. Time points
90 and 100 minutes were excluded due to the less efficient labeling of their
mRNA during the original chip hybridizations (Tavazoie et al., 1999). The
outcome was the normalized expression profiles of the most variable 3,000
ORFs. With the 15 time points, we constructed a 3,000 by 15 outcome data
matrix.

In yeast, regulatory elements are found almost exclusively upstream from
the promoter. There are several known upstream regulatory sequences in-
volved in cell cycle-dependent transcription including the late G1 elements
MCB (MIuI cell cycle box) and SCB (Swi4/6 cell cycle box) and the early
G1 element ECB (early cell cycle box) (Cho et al., 1998). The SCB element
has been identified as a regulatory sequence located upstream of genes tran-
scribed in late G1 and early S. SCB is bound by the SBF transcription factor,
a complex of Swi4p and Swi6p (Wolfsberg et al., 1999). The Hap complex
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is formed by four proteins (Hap2p, Hap3p, Hap4p, and Hap5p); Hap2p and
Hap3p have been shown to bind DNA, and Hap4p acts as activation domain
for the complex. The Hap2p-Hap3p binding site contains the conserved motif
CCAAT/C (van Helden et al., 1998).

Upstream regions of all genes should be searched for other known yeast
regulatory sequences, such as the ABF1 and RAP1 transcription factor bind-
ing sites, the stress response element STRE with consensus sequence AGGGG,
and the SFF factor which acts with MCM1 to control cell cycle regulated
genes. Other cell cycle period-specific transcription factors such as Swi5 and
MCM1 do not have a highly conserved binding sequence, making it difficult
to search genomic sequence for possible action sites accurately.

5.2 Applying the D/S/A algorithm.

Previous work on cell cycle regulation in yeast suggests that more than one
sequence element may be responsible for transcription at the same phase (e.g.,
SCB and MCB both regulate late G1 mRNA expression). Wolfsberg et al.
(1999) predicts that a variety of elements can be responsible for transcription
at each phase of the cell cycle. It is important to look at interactions between
motifs, and the D/S/A algorithm is one adaptive regression approach that
can easily search through two-way and multi-way interactions of explanatory
variables.

As many transcription factors bind to short, highly conserved stretches
of DNA, many analyses focuses on short oligomers of length five or six, pen-
tamers or hexamers. We focus on pentamers for comparison to the results of
Keleş et al. (2002). After having retrieved the set of upstream sequences from
the regulatory family, the number of occurrences of all oligonucleotides of the
selected size, five in our case, are counted. There are 512 distinct pairs of
pentamers and reverse complements. For these 512 motifs, we form sequence
motif scores which represent the proportion of occurences of the given motif.
We treat the sequence motif scores (which is a proportion between zero and
one) as explanatory variables, and model gene expression as a function of
these pentamers present in presumptive transcription control regions. The
D/S/A algorithm is used to extract the pentamers that are most relevant.

The D/S/A algorithm was ran three different ways when analyzing the
data: (1) select the number of tensor products, s1, via cross-validation; (2)
select the number of tensor products, s1, and two complexity measures of the
tensor products, s2, s3, via cross-validation where m2(I) = max

∑d
j=1 I(pj 6=
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0) ≤ s2 and m3(I) = max
∑d
j=1 pj ≤ s3; or (3) select s0, s1, s2, and s3 via

cross-validation, where s0 represents the dimension of the vector of covariates
and can range between 1 and 512. Each implementation ran with a maximum
size model of 5 under 2-fold cross-validation.

The data reduction done in the third implementation ranks the main
effects of the 512 given covariates based on the training set. An average of 29
(or fewer pentamers) have significant main effects for p ≤ 0.05 across the 15
time points while an average of only 8 pentamers have significant main effects
at the 0.01 significant p-level. In this particular data set, the reduction steps
are essential for reducing the noise by narrowing the candidate covariates
down to a significant set.

The variable importance measures calculated using equation 4, where
α̂b(j) is estimated for continuous variables, for each time point are given by
Table 8 (displayed for the first four time points). To calculate these measures
we reduced the data to the top 10 variables (ranked by | T |) and formed
all subsets of 3 variables from these 10 at each time point. Given that the
main effects of a limited number of pentamers on average was small relative
to the total number of pentamers (29 for p ≤ 0.05, 8 for p ≤ 0.01), we chose
to form importance measures on the ten most significant pentamers for each
time point.

Summary of Previous Results. Keleş et al. (2002) model gene expres-
sion on sequence motif scores using a forward and backward stepwise selection
method embedded in Monte Carlo cross-validation allowing for main effects
and two-way interactions. The scores they use as explanatory variables in-
corporate the number of occurences of the motifs and their positions with
respect to the gene’s translation start site. They begin with pentamers as
sequence motifs.

Keleş et al. (2002) report experiment specific importance measures, Rw(n),
on selected pentamers for the first four time points (0, 10, 20, and 30 min-
utes). The final model given by their feature selection method is not shown.
Rw(n) represents a rank weighted proportion of the number of times that
motif w is selected within the total number of splits, selected at random
from their method. If a motif has Rw(n) = 1, then it entered the model first
in all of the splits. A motif that is never selected will have an Rw(n) = 0.
The three pentamers with the highest Rw(n) are (Keleş et al., 2002):

• T = 0 minutes
AGGGG/CCCCT [stre]
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ACGCG/CGCGT [mcb]
GAAAA/TTTTC [ecb]

• T = 10 minutes
AAACA/TGTTT [ste12]
CTTAA/TTAAG
GTTTA/TAAAC [sff]

• T = 20 minutes
ACGCG/CGCGT [mcb]
CGCGA/TCGCG [scb]
AGGGG/CCCCT [stre]

• T = 30 minutes
ACGCG/CGCGT [mcb]
CCACA/TGTGG
CGCGA/TCGCG [scb]

MCB has a measure of one at 20 and 30 minutes.
We restricted our analysis to pentamers for direct comparison to the

results of (Keleş et al., 2002), however it is of interest to consider longer
motifs. This could be done by incorporating the extension method (Keleş
et al., 2002) into the D/S/A algorithm for example.

5.3 Results.

Results given by the three implementations of the D/S/A algorithm for the
first time point are given in Table 7. Looking at the results for T = 0
minutes, the first two reported models (DSA1: ŝ1 = 5; DSA2: ŝ1 = 5, ŝ2 =
3, ŝ3 = 3) are identical and composed of five terms: a main effect involving the
pentamer AGGGG and/or its reverse complement (N.B. a pentamer can refer
to itself and/or its reverse complement), a two-way interaction of ACGCG
with CGAAA, and three three-way interactions. Pentamers have partial
or exact matches to the regulatory elements shown in brackets after the
pentamer. The third reported model reduced the data to 55 covariates and
produced a similar, yet simplified, model. The two models contain STRE,
MCB, and ECB which are the most highly ranked motifs at T = 0 based on
the work of Keleş et al. (2002). The method was able to select biologically
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Table 7: Yeast Data Analysis DSA1-CV, DSA2-CV, DSA3-CV, 2-fold
cross-validation, applied to yeast cell cycle data of (Cho et al., 1998), first
time point.

T=0 min
(s0 = 512, ŝ1 = 5)
(AGGGG[stre]) + (ACGCG[mcb])(CGAAA)

+ (ATCCC)(CCTTA)(GCAAA) + (AAAAT )(CATCG)(GATGA)
+ (ACCCG)(AGGGG[stre])(GAAAA[ecb])

(s0 = 512, ŝ1 = 5, ŝ2 = 3, ŝ3 = 3)
(AGGGG[stre]) + (ACGCG[mcb])(CGAAA)

+ (ATCCC)(CCTTA)(GCAAA) + (AAAAT )(CATCG)(GATGA)
+ (ACCCG)(AGGGG[stre])(GAAAA[ecb])

(ŝ0 = 55, ŝ1 = 5, ŝ2 = 3, ŝ3 = 3)
(AGGGG[stre]) + (ACGCG[mcb])

+ (ATCCC)(CCTTA) + (CATCG)
+ (ACCCG)(AGGGG[stre])(GAAAA[ecb])
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relevant pentamers, and perhaps, other identified pentamers play a role in
predicting gene expression.

Importance measures for the ten pentamers with the highest ranked uni-
variate T -statistic at the first four time points are displayed in Table 8.
ACGCG/CGCGT [MCB], CGCGA/TCGCG [SCB], andAGGGG/CCCCT
[STRE] have the highest overall importance measure. This coincides with
what Keleş et al. (2002) found. In late G1, about 20 and 30 minutes, MCB
has the highest importance measure and SCB has the second highest impor-
tance measure, as expected. ECB is known to be relevant at early G1. It
was selected at 0 minutes from the D/S/A algorithm, but it did not make
the top ten variables.

Wolfsberg et al. (1999) identified pentamers and hexamers as potential
regulatory motifs by analyzing UCRs of the genes that might have been
involved in the cell-cycle dependent transcription regulation. Comparing
their significant pentamers (p ≤ 0.05) to ours, seven pentamers listed at
20 minutes and six pentamers listed at 30 minutes correspond to the seven
significant pentamers they listed for late G1. Keleş et al. (2002) found that
most of the late G1 pentamers identified by Wolfsberg et al. (1999) were
picked up be their method as well. However, their results disagreed at other
phases. The pentamers that we selected at different phases also differ from
the results of Wolfsberg et al. (1999). In conclusion, it seems that the D/S/A
algorithm worked reasonably well as a basis for this analysis.
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Table 8: Yeast Data Analysis Variable Importance Measures

T = 0 min.
Index Pentamer VIM
157 AGGGG CCCCT [stre] 11.54
42 AAGGG CCCTT 6.71
98 ACGCG CGCGT [mcb] 8.84
310 CCTTA TAAGG 5.23
82 ACCCC GGGGT 7.62
424 GCCCC GGGGC 7.41
192 ATCCC GGGAT 7.24
264 CATCG CGATG 8.11
455 GGGGA TCCCC 4.52
328 CGCGA TCGCG [scb] 7.43

T = 10 min.
Index Pentamer VIM

4 AAACA TGTTT [ste12] 2.81
16 AACAA TTGTT [sff] 1.02
17 AACAC GTGTT 2.75
455 GGGGA TCCCC 3.86
157 AGGGG CCCCT [stre] 2.94
329 CGCGC GCGCG 1.95
318 CGAGA TCTCG 2.38
72 ACAGG CCTGT 3.57
254 CAGGA TCCTG 2.12
479 GTTTA TAAAC [sff] 1.16
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T = 20 min.
Index Pentamer VIM

98 ACGCG CGCGT [mcb] 21.55
328 CGCGA TCGCG [scb] 17.49
397 GACGC GCGTC 9.20
25 AACGC GCGTT 5.24
428 GCGAA TTCGC [scb] 2.43
157 AGGGG CCCCT [stre] 7.19
42 AAGGG CCCTT 4.89
312 CGAAA TTTCG [scb] 1.30
242 CACGA TCGTG 0.97
433 GCGTA TACGC 2.33

T = 30 min.
Index Pentamer VIM

98 ACGCG CGCGT [mcb] 10.51
328 CGCGA TCGCG [scb] 7.02
25 AACGC GCGTT 4.23
397 GACGC GCGTC 3.69
433 GCGTA TACGC 2.60
273 CCACA TGTGG 2.07
238 CACAG CTGTG 1.63
282 CCCAC GTGGG 0.02
428 GCGAA TTCGC [scb] 0.95
362 CTCCA TGGAG 2.15
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6 Discussion.

The D/S/A algorithm has been developed as a general tool for loss-based
estimation inspired by the theoretical results of van der Laan et al. (2004).
It is completely defined by the following choices: the loss function; the basis
functions defining the parameterization of the parameter space; and the sets
of deletion, substitution, and addition moves. As a result, by choosing the
appropriate loss function, it can deal with problems such as multivariate pre-
diction and density/hazard estimation. The D/S/A algorithm, as presented
in this article, has been implemented in the context of polynomial regression
for the prediction of a univariate outcome. The current implementation of
the D/S/A algorithm has the following options available: (1) to choose the
number of basis functions by v-fold cross-validation, (2) the option to reduce
the data based on univariate regressions to have no more than s0 candidate
covariates where s0 can be chosen via cross-validation, (3) the option to re-
strict the order of interaction of candidate tensor products to be no higher
than a specified limit s2 and to choose s2 also with cross-validation, (4) the
option to restrict the sum of polynomial powers of candidate tensor prod-
ucts to be no higher than a specified limit s3 and to choose s3 again with
cross-validation, and (5) the option to report variable importance measures.

Many regression procedures exist including Logic Regression (Ruczinski
et al., 2003) and MARS (Friedman, 1991). Logic Regression is a method
freely available in R to find interactions between binary inputs associated
with an output. It introduced the idea of substitutions by defining a number
of permissible moves in its tree growing process. It can be adapted to other
statistical problems by using the appropriate score function. When faced
with binary explanatory variables, Logic Regression is a nice tool to use both
for its predictive capabilities and its ease of interpretation. Barron and Xiao
argue in favor of their multivariate adaptive polynomial synthesis (MAPS)
method over MARS (Friedman, 1991, pg. 67-82). At the time of writing
their discussion, Barron had only implemented the forward stepwise synthesis
in the MAPS program, implying the utility of allowing backward passes.
MARS first builds a model with its forward moves, and at the end of that
process, a backward deletion procedure is applied. The D/S/A algorithm
always is attempting to make backward and substitution selection moves
throughout its search, thereby eliminating the luggage of undesirables. They
conclude that polynomials are a reasonable choice for basis functions for
reasons including its known approximation capabilities, interpretability, and
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a model dimension which tends to be smaller than the sample size (Cox,
1988; Friedman, 1991, pg. 67-82). Polynomials served as a practical way to
represent one version of the D/S/A algorithm. However, it is of interest to
implement the D/S/A algorithm using spline basis functions and see how it
behaves.

The D/S/A algorithm is currently implemented in C with subroutines
from the NAG libraries, and it will be made into an R function. An overall
description of the estimation methodology with examples of the D/S/A al-
gorithms used here and in the context of histogram regression is available in
(Dudoit et al., 2003).
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S. Keleş, M. J. van der Laan, and M. B. Eisen. Identification of regulatory
elements using a feature selection method. Bioinformatics, 18:1167–1175,
2002.

A. M. Molinaro and M. J. van der Laan. A Deletion/Substitution/Addition
algorithm for partitioning the covariate space in prediction. Technical
report, Division of Biostatistics, UC Berkeley, 2004. (In preparation).

Chapter 3. Super (Machine) Learning using Cross Validation

113
http://biostats.bepress.com/ucbbiostat/paper254



I. Ruczinski, C. Kooperberg, and M. LeBlanc. Logic regression. Journal of
Computational and Graphical Statistics, 12(3):475–511, 2003. URL www.

biostat.jhsph.edu/~iruczins/publications/publications.html.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004.

S. E. Sinisi and M. J. van der Laan. Loss-based cross-validated Dele-
tion/Substitution/Addition algorithms in estimation. Technical Report
143, Division of Biostatistics, University of California, Berkeley, March
2004. URL www.bepress.com/ucbbiostat/paper143/.

C. J. Stone, M. Hansen, C. Kooperberg, and Y. K. Truong. Polynomial
splines and their tensor products in extended linear modeling. The Annals
of Statistics, 25(4), 1997.

S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M. Church.
Systematic determination of genetic network architecture. Nature Genet.,
22:281–285, 1999.

M. J. van der Laan and S. Dudoit. Unified cross-validation methodology for
selection among estimators and a general cross-validated adaptive epsilon-
net estimator: Finite sample oracle inequalities and examples. Technical
Report 130, Division of Biostatistics, University of California, Berkeley,
Nov. 2003. URL www.bepress.com/ucbbiostat/paper130/.

M. J. van der Laan and J. Robins. Unified Methods for Censored Longitudinal
Data and Causality. Springer Series in Statistics. Springer, 2003.

M. J. van der Laan, S. Dudoit, and S. Keleş. Asymptotic optimality of like-
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Collaborative Double Robust Targeted
Penalized Maximum Likelihood Estimation

Mark J. van der Laan and Susan Gruber
Division of Biostatistics, University of California, Berkeley

Abstract

A new class of collaborative double robust targeted maximum like-
lihood estimators (C-DR-TMLE) targeting a particular parameter in a
semiparametric model is proposed, building on the targeted maximum
likelihood methodology of van der Laan and Rubin (2006). Targeted
maximum likelihood estimation applies a targeted fluctuation function
to a first stage (overall) density estimator and estimates the amount of
fluctuation with parametric maximum likelihood estimation, treating
the first stage density estimator as an offset. The optimal targeted
fluctuation function typically depends on an unknown nuisance pa-
rameter.

In this article a fundamental further advance is achieved by gen-
erating a sequence of targeted maximum likelihood estimators with
iincreasing likelihood indexed by increasingly nonparametric nuisance
parameter estimators. Likelihood based cross-validation is used to
select the nuisance parameter estimator for which the targeted max-
imum step yields the maximally effective bias reduction w.r.t. the
target parameter.

A newly introduced collaborative double robustness of the effi-
cient score equations solved by these targeted maximum likelihood
estimators is shown to be superior to the current definition of double
robustness in the estimating equation literature (e.g., Robins and Rot-
nitzky (2001) Robins et al. (2000), Robins (2000a), van der Laan and
Robins (2003)), both in theory and in practice. As a consequence of
this collaborative double robustness and maximum likelihood as the
principal driving force, the resulting C-DR-TMLE is a more robust
and optimal estimator of any pathwise differentiable parameter in any
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semi-parametric model than the current state of the art in double
robust estimation.

In addition, a general strategy of penalizing the log-likelihood so
that the selection among different candidate targeted maximum like-
lihood estimators becomes more targeted towards the parameter of
interest is introduced as well, which is able to avoid breakdowns of
the estimation procedure for borderline identifiable target parame-
ters. This results in a class of collaborative double robust targeted
penalized maximum likelihood estimators (C-DR-TPMLE).

The method is illustrated in the context of estimation of causal
effects in marginal structural models. In addition, simulations for
nonparametric causal effect estimation illustrate the gain in practi-
cal performance of the collaborative double robust targeted maximum
likelihood machine learning algorithms relative to current competitors
such as the double robust estimating equation methodology that relies
on an external non-collaborative estimator of the nuisance parameter.
We also provide comparisons with ad hoc popular estimation proce-
dures such as propensity score matching and inverse probability of
treatment weighting. We also apply a particular C-DR-TPMLE im-
plementation to assess the effects of mutations in the HIV virus on
drug resistance.

This research provides a template for targeted efficient and robust
machine learning of a particular target feature of the probability distri-
bution of the data within large (infinite dimensional) semi-parametric
models, while still providing statistical inference in terms of confidence
intervals and p-values.

1 Introduction.

Researchers are beginning to acknowledge that questions about our infinite
dimensional, semi-parametric world are not well-addressed by parametric
models. More sophisticated tools are needed to wrest meaning from data.
We can and should develop and utilize methods specifically designed to esti-
mate a relatively small-dimensional precisely specified parameter within such
a semiparametric model that is identifiable from the data. The ideal method
would be entirely a priori specified, have desirable statistical properties, avoid
reliance on ad hoc or arbitrary specifications, and be computationally feasi-
ble.

Chapter 4. Collaborative Targeted Maximum Likelihood Estimation

119
http://biostats.bepress.com/ucbbiostat/paper254



For example, suppose one observes a sample of independent and identi-
cally distributed observations from a particular data generating distribution
in a semi-parametric model, and that one is concerned with estimation of a
particular pathwise differentiable parameter of the data generating distribu-
tion. Due to the curse of dimensionality implied by the infinite dimension
of semi-parametric models, standard (nonparametric) maximum likelihood
often breaks down due to overfitting, and regularized sieve-based maximum
likelihood estimation results in overly biased plug-in estimators of the pa-
rameter of interest.

The latter is due to the fact that such likelihood based estimators are aim-
ing to estimate the density of the distribution of the data itself and thereby
seek and achieve a bias-variance trade-off that is optimal for that whole
density. Since the variance of an optimally smoothed density estimator is
typically much larger than the variance of a smooth (pathwise-differentiable)
parameter of the density estimator, the substitution estimators are often
too biased relative to their variance. That is, substitution estimators based
on density estimators involving optimal (e.g., likelihood-based) bias-variance
trade-off (for the whole density) are not targeted towards the parameter of
interest.

Motivated by this problem with the bias-variance trade-off of maximum
likelihood estimation in semiparametric models, while still wanting to pre-
serve the log-likelihood as the principle criterion in estimation, in van der
Laan and Rubin (2006) we introduced and developed a targeted maximum
likelihood estimator of the parameter of interest obtained by substitution
of a targeted maximum likelihood estimator of the distribution of the data
into the parameter mapping that maps the distribution of the data into the
wished target parameter: i.e., it is still a plug-in estimator, but the density
estimator is now targeted towards the parameter of interest.

The targeted maximum likelihood estimator of the distribution of the
data is obtained by fluctuating an initial estimator of the data generating
distribution with a parametric fluctuation model whose score at the initial
estimator (i.e. at zero fluctuation) equals the efficient influence curve of the
parameter of interest, and estimating the fluctuation parameter with maxi-
mum likelihood estimation, treating the initial estimator as fixed. The fluc-
tuation model choice typically depends on an unknown nuisance parameter,
which thus needs to be estimated as well. Iteration of this targeted max-
imum likelihood modification step results in a so called k-th step targeted
maximum likelihood estimator, and its limit in k solves the actual efficient in-
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fluence curve equation. The latter estimator we called the targeted maximum
likelihood estimator, which also results in a corresponding plug-in targeted
maximum likelihood estimator of the parameter of interest.

We refer to the log-likelihood of the targeted maximum likelihood estima-
tor as the targeted log-likelihood, which provides a new loss function which
can be used to evaluate candidate targeted maximum likelihood estimators,
by applying cross-validation to the targeted log-likelihood loss function: see
van der Laan and Rubin (2006) for a detailed exposition on the targeted
log-likelihood loss function.

One can consider a targeted maximum likelihood estimator as a two stage
estimator in which the first stage estimator is the initial (typically, non-
targeted) estimator, and the second stage represents the updating of the
initial estimator involving one or more iterative targeted maximum likeli-
hood estimations along the fluctuation model, including the estimation of
the nuisance parameter the fluctuation model depends upon. This targeted
maximum likelihood step corresponds with fitting the parameter of interest
and thereby results in considerable bias reduction (while increasing the like-
lihood), if the nuisance parameter identifying this optimal fluctuation model
is correctly specified.

In van der Laan and Rubin (2006) we prove that targeted maximum
likelihood estimators enjoy all the good properties of maximum likelihood
estimators, but, in addition, they satisfy the double robust property of es-
timators based on solving optimal estimating equations in (e.g.) censored
data models in which the censoring mechanism satisfies the coarsening at
random assumption: that is, if either the first stage initial estimator or the
nuisance parameter estimator (e.g., censoring mechanism) as required in the
targeted maximum likelihood steps are consistent, then the resulting plug
in estimator of the parameter of interest is consistent. In addition, targeted
maximum likelihood estimators are locally efficient in the sense that they
are asymptotically efficient (in the semiparametric model) if both the ini-
tial estimator as well as the nuisance parameter are consistently estimated,
assuming the usual regularity conditions guaranteeing the convergence to a
normal limit distribution. In fact, targeted maximum likelihood estimators
are naturally super efficient if the initial estimator is consistent according to
a (e.g.) parametric model and the nuisance parameter estimator is incon-
sistent by being based on a too small model (e.g., by failing to adjust for
certain confounders): In such situations, the targeted maximum likelihood
estimators essentially behaves as a parametric maximum likelihood estima-
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tor according to a correctly specified parametric model (representing the
augmentation of the original correctly specified parametric model with the
targeted fluctuation function).

An outstanding open problem that obstructs the robust practical applica-
tion of double robust estimators, including the targeted maximum likelihood
estimators (in particular, in nonparametric censored data or causal inference
models) is the selection of a sensible model or estimator of the nuisance pa-
rameter needed to evaluate the fluctuation model: this is especially the case
when the efficient influence curve estimating equation involves inverse prob-
ability of censoring or treatment weighting, due to the enormous sensitivity
of the estimator of the parameter of interest to the estimator of the censoring
or treatment mechanism.

In this article we introduce an appealing new strategy for nuisance pa-
rameter estimator selection for targeted maximum likelihood estimators that
addresses this challenge by taking the log-likelihood of the targeted maxi-
mum likelihood estimator indexed by the nuisance parameter estimator as
the principal selection criterion. Our solution to nuisance parameter estima-
tor selection is therefore a direct consequence of the introduction of targeted
maximum likelihood estimation. Since even the nuisance parameter esti-
mators as needed in the targeted maximum likelihood step are now based
on the log-likelihood of the resulting targeted maximum likelihood estima-
tor, the resulting estimator of the target parameter is completely likelihood
based.

For the sake of illustration, while still covering a very wide range of sta-
tistical estimation problems, in this article we will focus on likelihoods that
factor into a relevant factor and nuisance factor, as in censored data models
satisfying the coarsening at random assumption (CAR). Even though a max-
imum likelihood estimator will only be concerned with the relevant factor of
the likelihood identified by the full data distribution in a CAR censored data
model, the targeting step in the targeted maximum likelihood estimators
will depend on an estimator of the censoring mechanism. Our proposal is
to select among candidate estimators or models of the censoring mechanism
based on the cross-validated or empirical log-likelihood of the correspond-
ing targeted maximum likelihood estimator implied by the initial estimator
and the estimator of the censoring mechanism. In particular, we propose
specific greedy algorithms for generating an estimator of the censoring mech-
anism that aims to maximize this targeted log-likelihood criterion among lots
of candidate censoring mechanism estimators (indexed by different models).
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We note that this estimator of the censoring mechanism targets a censoring
mechanism that depends on the limit of the initial estimator of the relevant
factor of the density of the data.

In addition, we propose to iterate this procedure resulting in the follow-
ing explicit template for construction of our proposed collaborative targeted
maximum likelihood estimators: 1) start with a first stage initial estima-
tor of the relevant factor of the likelihood, 2) generate an estimator of the
censoring mechanism based on an algorithm that maximizes, over candidate
estimators of the censoring mechanism, the log-likelihood of the correspond-
ing candidate targeted maximum likelihood estimators of the relevant factor,
3) select the resulting targeted maximum likelihood estimator at this partic-
ular selected estimator of the censoring mechanism, resulting in an update of
the initial estimator, 4) iterate steps 1-3 (by using the update of 3) as initial
estimator in 1)) to generate a sequence of targeted maximum likelihood es-
timators at increasingly nonparametric censoring mechanism estimators by
maximizing the targeted log-likelihood as in 2) either over augmentations
of the previously obtained fit of the censoring mechanism or over all can-
didate estimators that are more nonparametric than the previous one, and
5) use the cross-validated log-likelihood (or a penalized version as proposed
here) to select among these candidate targeted maximum likelihood estima-
tors indexed by the different censoring mechanism estimators (i.e., number
of iterations), and possibly indexed by different initial estimators. Natural
variations of this template can be included.

1.1 Organization of article

The complete description of the two stage collaborative targeted maximum
likelihood methodology is presented in Section 2.

In Section 3 we present the statistical property of our proposed selector of
the nuisance parameter estimator for the targeted maximum likelihood step
by referring to the previously established oracle property of the likelihood
based cross-validation selector among candidate density estimators. This ex-
position shows that our proposed methodology for building the second stage
of the targeted maximum likelihood estimator is superior to alternate meth-
ods that estimate the nuisance parameter externally based on the likelihood
for the nuisance parameter, as in the current literature.

The new method for estimation of the censoring mechanism (i.e., nuisance
parameter) targets a true censoring mechanism that depends on the limit or

Chapter 4. Collaborative Targeted Maximum Likelihood Estimation

123
http://biostats.bepress.com/ucbbiostat/paper254



the rate of convergence of the initial estimator of the relevant factor, and
thereby differs from the one implied by the log-likelihood of the censoring
mechanism. As a consequence, this calls into question whether this type of
targeted maximum likelihood estimator is still double robust. More general,
what are the asymptotic properties of this new class of targeted maximum
likelihood estimators, in particular, in relation to the regular targeted max-
imum likelihood estimator using an externally obtained nuisance parameter
estimator?

Inspired by this, in Section 4 we establish a new double robustness prop-
erty of the efficient influence curve (and estimating functions) in CAR cen-
sored data models that we name collaborative double robustness. This collab-
orative double robustness property provides additional confirmation (beyond
the oracle property of the likelihood based cross-validation selector referred
to in Section 3) of the validity of our approach for nuisance parameter estima-
tion and represents a new approach to collaborative double robust targeted
maximum likelihood estimation (C-DR-TMLE) with remarkable attractive
properties.

The new collaborative double robustness is superior to the classical dou-
ble robustness by providing additional important robustness: the censoring
mechanism only needs to condition on confounders/covariates that have not
been fully explained by the estimator of the relevant full-data distribution
factor of the likelihood. We argue and show through simulations that, if the
initial estimator is consistent, then this C-DR-TMLE is often more efficient
than the locally efficient DR-TMLE: that is, the C-DR-TMLE is a so called
super-efficient estimator that achieves an asymptotic variance that can be
smaller than the variance of the efficient influence curve. In fact, our finite
sample simulations show a remarkable superiority of the C-DR-TMLE rela-
tive to an efficient estimator like the DR-TMLE for estimation of a causal
effect in the presence of confounding.

This implies that the C-DR-TMLE may be an irregular estimator at
certain data generating distributions, since the best estimator among all
regular estimators has asymptotic variance equal the variance of the efficient
influence curve. A root-n consistent regular estimator is an estimator whose
limit distribution stays the same under ε/

√
n-fluctuations in the class of

parametric fluctuations {P (ε) : ε} of data generating distribution P , as used
to define the path-wise derivative of the target parameter and its canonical
gradient/efficient influence curve at P , for each P in the model. Indeed,
we can argue that fluctuations in the true full data factor of the likelihood
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of magnitude ε/
√
n can result in a different selection of estimator of the

censoring mechanism and thereby results in a different limit distribution.
In Section 5 we show that under the fixed true data generating distribu-

tion the estimator can be expected to be asymptotically normally distributed
and we provide tools for statistical inference based on its influence curve. Our
simulations establish, in spite of the high sensitivity to the data of our esti-
mator, reasonable coverage of the resulting confidence intervals.

From an asymptotic perspective the log-likelihood of the targeted maxi-
mum likelihood estimator is an excellent criterion to select among different
targeted maximum likelihood estimators, possibly indexed by different can-
didate estimators of the nuisance parameters (e.g., censoring mechanism). In
particular, it results in the new form of collaborative double robustness of
the resulting collaborative targeted maximum likelihood estimators. How-
ever, we argue and show that in various applications in which the target
parameter is borderline identifiable, for the purpose of nuisance parameter
estimator selection, the targeted log-likelihood of a density estimator may
not be sensitive enough towards the mean squared error of the substitution
estimator (corresponding with the density estimator) of the parameter of
interest.

Therefore in Section 6 we propose a targeted penalized log-likelihood
based criterion that can instead be used to select among targeted maximum
likelihood estimators indexed by an index δ, for example, representing differ-
ent choices for the nuisance parameter estimator. Our penalty for the log-
likelihood at a density estimator concerns an estimator of a mean squared
error of the substitution estimator of the target parameter. In particular,
we propose to estimate this mean squared error with the covariance matrix
of the efficient influence curve of the parameter of interest at a candidate
(targeted maximum likelihood) density estimator, and a bias estimate of
the substitution estimator of the target parameter relative to its asymptotic
limit. One can also use the bootstrap to estimate this mean squared error
term, if computer resources allow. The penalty is scaled appropriately and
so that the penalized log-likelihood criterion is asymptotically dominated by
the log-likelihood criterion.

The proposed criterion for selection among two stage δ-specific targeted
maximum likelihood estimators equals the sum of the cross-validated log-
likelihood of the δ-specific targeted maximum likelihood estimator and a
mean squared error term (relative to its δ-limit). The mean squared error
term is split up as a sum of an appropriately scaled function of the cross-
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validated or empirical estimate of the variance of the efficient influence curve
at the δ-specific targeted maximum likelihood estimator, and the square of
a cross-validated estimate of the bias in the δ-specific targeted maximum
likelihood estimator relative to its limit for fixed δ. We also consider splitting
up the cross-validated log-likelihood into a sum of the cross-validated log-
likelihood of the δ-specific initial maximum likelihood estimator and the gain
in empirical or cross-validated log-likelihood due to the targeted maximum
likelihood step for the δ-specific targeted maximum likelihood estimator. In
this separation the first term concerns the performance of the initial estimator
while the second term concerns the performance of the targeted maximum
likelihood estimation applied to the initial estimator.

We provide rationales for each of the terms in the proposed penalized tar-
geted log-likelihood criterion, which demonstrate that it is able to deal with
a variety of challenges that come with selection among density estimators of
the data generating distribution w.r.t. the parameter of interest of the true
density, without affecting the likelihood as principle criterion.

In Section 7 we consider estimation of a causal effect in a marginal struc-
tural model to illustrate the importance of this finite sample parameter spe-
cific penalty term for the log-likelihood and define the collaborative double
robust targeted penalized maximum likelihood estimator of the unknown
parameters of the marginal structural model.

In Section 8 we consider estimation of a causal effect of a binary treat-
ment in a nonparametric model, and present a particular implementation of
C-TMLE used in our simulations and data analysis. We illustrate the su-
perior performance of our C-DR-TMLE in this latter estimation problem in
comparison with various competitors representing current practice.

In Section 9 we carry out a data analysis and again observe excellent
finite sample performance.A discussion is presented in Section 10. Section
11 provides extensions to the core methodology.

2 Collaborative double robust targeted max-

imum likelihood estimators.

We will describe our newly proposed targeted maximum likelihood estimators
in the context of censored data models, but the generalization to general
semi-parametric models is immediate.
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Let O = Φ(C,X) be a censored data structure on a full data random
variable X, where C denotes the censoring variable. We assume coarsening
at random so that the observed data structure O ∼ P0 has a probability
distribution whose density w.r.t an appropriate dominating measure factors
as dP0(O) = Q0(O)g0(O | X), where Q0 is the part of the distribution of X
that is identifiable, and g0 denotes the conditional probability distribution of
O, given X, which we often refer to as the censoring mechanism. By CAR,
we have g0(O | X) = h(O) for some measurable function h. If C is observed
itself, then g0 denotes the conditional distribution of C, given X.

A semiparametric model M for the probability distribution P0 of the
observed data structure O is implied by a model Q for the full-data dis-
tribution factor Q0, and a model G for the censoring mechanism g0. Let
O1, . . . , On be n independent and identically distributed (i.i.d.) observations
of the experimental unit O with probability distribution P0 ∈M.

Let Ψ :M→ IRd be a d-dimensional parameter that is path-wise differ-
entiable at each P ∈ M (w.r.t. a class of finite dimensional paths through
P ) with efficient influence curve D∗(P ). For the sake of illustration, it is
assumed that Ψ(PQ,g) = ΨF (Q) for some ΨF : i..e, the parameter of interest
is a parameter of the full data distribution of X. The efficient influence curve
D∗(P ) at P with dP = Qg will also be denoted with D∗(Q, g).

Let Pn be the empirical probability distribution of O1, . . . , On which puts
mass 1/n on each of the n observations.

The Targeted Maximum Likelihood estimator indexed by initial
(Q, g): Given any P ∈M with dP = Qg, let {P (ε) : ε} ⊂ M be a submodel
with finite dimensional parameter ε, dominated by P , through P at ε = 0,
and whose scores at ε = 0 span a finite dimensional space within L2

0(P )
that includes the efficient influence curve D∗(P ) = D∗(Q, g). Because our
parameter of interest is a parameter of Q0 and the factorization dP0 = Q0g0,
it follows that such a fluctuation model can be chosen to only fluctuate Q
with a submodel Qg(ε) ⊂ Q, where this fluctuation model will be indexed
by g. Let dP (ε) = Qg(ε)g be such a fluctuation model with fluctuation
parameter ε.

At a given (Q, g), one can now define a k-th step targeted maximum
likelihood version Qk

g(Pn) of Q0 as follows. Firstly, let Q1
g(Pn) = Qg(ε

1
n),

where
ε1n = arg max

ε
Pn logQg(ε).

Here we use the notation Pf =
∫
f(o)dP (o). In general, Qk

gn = Qk
g(Pn) =
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Qk−1
g (Pn)(εkn), where

εkn = arg max
ε
Pn logQk−1

g (Pn)(ε).

One iterates this updating till εkn equals zero within a user supplied precision.
The final update is refered to as the (iterative) targeted maximum likelihood
estimator Q∗gn = Q∗g(Pn), indexed by the initial starting point (Q, g).

The Targeted Maximum Likelihood estimator indexed by initial
estimator and estimator of nuisance parameter: The above procedure,
applied to an initial estimator Q0

n, and an estimator gn of g0, defines the k-
th step targeted maximum likelihood estimator and its limit in k, Q∗n, as
introduced and analyzed in van der Laan and Rubin (2006).

Estimation of the censoring mechanism for TMLE-update of
initial estimator: However, an important consideration and open problem
addressed in this article is how to select the estimator gn that defines the
targeted maximum likelihood update of the first stage estimator Q0

n. For
example, what measured covariates should one adjust for in this censoring
mechanism model?

In this article we propose the following (class of) algorithms that provide
a likelihood driven method for generating such an estimator gn of censoring
mechanism g0, but also provides a further augmentation of the above tar-
geted maximum likelihood approach by building a sequence of second stage
targeted maximum likelihood nested bias reductions to choose from, and us-
ing the cross-validated log-likelihood criterion or a penalized cross-validated
log-likelihood (more targeted towards the target parameter) to choose among
them.

2.1 Collaborative Targeted MLEs.

We present the following template providing a new class of so called collab-
orative targeted maximum likelihood estimators.

Candidate estimators of censoring mechanism: For each δ in an index
set, let gnδ be a candidate estimator of g0. Let d(δ) denote a measure of
how data adaptive gnδ is, and for a maximal value d(δ) or for d(δ) ap-
proximating a maximum value we have that gnδ is actually a consistent
estimator of g0.
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For example, let Gδ ⊂ G be a submodel indexed by an index δ ranging
over an index set, and let d(δ) denote a dimension of Gδ so that Gδ
approximates G for d(δ) converging to infinity. Thus {Gδ : δ} denotes
a sieve for the model G for g0. Now, gnδ could be defined as (a possi-
bly regularized) maximum likelihood estimator of g0 according to this
model Gδ.
A particular type of candidate estimator gnδ is indexed by a data adap-
tive ordering of a set of covariates/confounders, and a maximum likeli-
hood based machine learning algorithm, such as the super learning algo-
rithm of van der Laan et al. (2007) which obtains an optimal weighted
combination of a user supplied set of candidate machine learning al-
gorithms, for estimating the censoring mechanism based on the set
consisting of the first k = δ covariates.

For example, the data adaptive ordering could be based on a forward
greedy algorithm aiming to find the main terms that need to be included
in the censoring mechanism to provide effective targeted maximum like-
lihood bias reduction for the target paramater, starting with the initial
estimator. In this manner, the first covariates in the ordering are likely
the most important confounders to adjust for in collaboration with the
initial estimator.

Another example is to order the covariates by the correlation with the
censoring variable so that potentially harmful covariates are pushed
towards the end of the ordered sequence of covariates.

In the above few examples, the collection of δ-values is finite and not
that large. Alternatively, δ identifies a set of basis functions used in a
linear model for g0 and gnδ is the corresponding maximum likelihood
estimator. In this case, the collection of δ values is typically extremely
large, so that heuristic greedy algorithms will be needed in the next
step.

Censoring mechanism estimator by maximizing targeted
log-likelihood: Consider an algorithm that takes as input a starting
choice δ∗, and searches among a specified set of candidate estimators
gnδ with d(δ) > d(δ∗) with the goal of maximizing the targeted log-
likelihood criterion.

δ → Pn logQ∗gnδ(Pn). (1)
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Recall that Q∗g(Pn) denotes the iterative targeted maximum likelihood
estimator that uses the optimal fluctuation model identified by censor-
ing mechanism g. Note that this algorithm will select an estimator of
the censoring mechanism that is more nonparametric than its starting
estimator gnδ∗ , and that its corresponding targeted maximum likeli-
hood estimator has a larger empirical targeted log-likelihood than the
targeted maximum likelihood estimator indexed by gnδ∗ .

First step collaborative targeted maximum likelihood estimator: This
provides us now with the ingredients to define our first step collabo-
rative targeted maximum likelihood estimator. We start the above
algorithm with a δstart with d(δstart) = 0, and suppose that it ends up
with a choice δ1

n, and thereby an estimator g1
n = gnδ1n . This defines now

a first-step targeted maximum likelihood estimator Q∗1n = Q∗g1nn, which
satisfies that its empirical log-likelihood is larger than the empirical
log-likelihood of the initial estimator: Pn logQ∗1n > Pn logQ0

n.

This defines a mapping that takes as input Qstart = Q0
n and g0

n = gδstart
(say the intercept model), and maps it into a targeted estimator Q∗1n
and corresponding censoring mechanism estimator g1

n, where this map-
ping involves applying an algorithm searching and maximizing over
candidate (e.g., maximum likelihood estimators) {gnδ : δ}, w.r.t. the
log-likelihood of the corresponding targeted maximum likelihood esti-
mator of Q0 starting at Q0

n, and subsequently selecting the resulting
targeted maximum likelihood estimator at the selected estimator of the
censoring mechanism.

We will refer to this estimator Q∗1n or the pair (Q∗1n , g
1
n) as a first step

collaborative targeted maximum likelihood estimator, using the term
”collaborative” to indicate that the estimator Q∗1n involves a collabora-
tion with the initial estimator Q0

n when determining the estimator g1
n

of the censoring mechanism g0.

Iteration. The k-th step collaborative targeted maximum likelihood
estimator (C-TMLE): We can now iterate this process of map-
ping an initial estimator Q0

n and g0
n into a targeted estimator Q∗1n and

corresponding censoring mechanism estimator g1
n: set Qstart = Q∗1n ,

δstart = d(g1
n), compute Q∗2n , g2

n, set Qstart = Q∗2n , and so on, giving
us a sequence of estimators (Q∗kn , g

k
n), k = 1, . . ., where gkn denotes the

censoring estimators selected in k-th step of this iterative algorithm.
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We refer to the estimator Q∗kn and its pair (Q∗kn , g
k
n) as the k-th step

collaborative targeted maximum likelihood estimator. Beyond these
candidate estimators indexed by k, one can also define Q∗n as the limit
in k of Q∗kn , which will correspond with iteration till the point that the
most nonparametric estimator gn = gnk has been selected.

Possible refinement/alternative of candidate C-TMLEs: We can de-
fine a set of values d1 < . . . < dK , and determine, for each k = 1, . . . , K,
the above estimator Q∗n but restricting our set of candidate estimators
of the censoring mechanism to {gnδ : d(δ) ≤ dk}, all censoring mecha-
nism estimators with complexity measure less than or equal to dk. This
now generates K candidate C-TMLE’s Q∗kn and corresponding (the in
final step selected censoring mechanism estimator) gkn, k = 1, . . . , K.

Note that in this way, we may obtain a richer set of candidate estimators
representing a larger set of possible nested bias reductions, resulting
in a more refined bias-variance trade-off when using likelihood based
cross-validation to select among these candidate estimators.

For example, when applied to the data set, Q∗1n might only carry out
one targeted maximum likelihood step selecting gnδ with d(δ) = d1,
while Q∗2n might still only represent one targeted maximum likelihood
step but now selecting gnδ with d(δ) = d2, and, say, Q∗3n will carry out
two targeted maximum likelihood steps, and so on.

Other variations of such proposed candidate C-TMLE’s may be ap-
preciated as well. For example, if one uses a greedy forward (bottom
up) algorithm when aiming to maximize the targeted log-likelihood
criterion (1) (over candidate censoring mechanism estimators), gener-
ating a sequence of censoring mechanism estimators of increasing size
1, 2, 3, . . ., moving towards the next targeted maximum likelihood it-
eration when the local maximum has been achieved, then each size
indexes a corresponding candidate C-TMLE in which the last targeted
maximum likelihood iteration uses the censoring mechanism estimator
of that size. Such a sequence of candidate C-TMLEs is presented and
implemented in our simulation section.

All candidate C-TMLEs solve an efficient influence curve equation:
Since all candidate C-TMLE’s are targeted maximum likelihood esti-
mators using the last selected censoring mechanism estimator to carry
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out the (possibly iterative) targeted maximum likelihood algorithm, we
have that all of them solve the efficient influence curve equation:

0 = PnD
∗(Q∗kn , g

k
n), k = 1, . . . , K.

This is a fundamental property of our candidate collaborative targeted
MLEs driving the targeted bias reduction w.r.t. the target parameter
of interest.

Cross-validation to select number of iterations k in k-th step C-TMLE:
Given this sequence of candidate collaborative targeted maximum like-
lihood estimators Pn → (Qk∗

n =)Q̂k∗(Pn) indexed by k, it remains to
select k.

We select k based on the cross-validated log-likelihood:

kn = argmax
k

EBnP
1
n,Bn log Q̂k∗(P 0

n,Bn),

where the random vectorBn ∈ {0, 1}n denotes a cross-validation scheme
such as V -fold cross-validation, and P 0

n,Bn
, P 1

n,Bn
are the empirical prob-

ability distributions of the training sample {i : Bn(i) = 0} and vali-
dation sample {i : Bn(i) = 1}, respectively, as identified by the split
vector Bn.

The Collaborative (Double Robust) Targeted Maximum Likelihood
Estimator: The corresponding targeted maximum likelihood estima-
tor of ψ0 = ΨF (Q0) is given by

Ψ(Qkn∗
n ) = Ψ(Q̂kn∗(Pn)).

We refer to this estimator as the collaborative (double robust) targeted
maximum likelihood estimator (C-DR-TMLE or C-TMLE).

Additional fine tuning of the second stage of the C-DR-TMLE: If the
above algorithm for maximizing the targeted log-likelihood over can-
didate censoring mechanism estimators is indexed by a choice δ2, then
our candidate C-DR-TMLE are indexed by a choice δ2 and k. In this
case we would select both k and δ2 as we selected k above, based on
the cross-validated log-likelihood:

(δ2n, kn) = argmax
δ2,k

EBnP
1
n,Bn log Q̂kδ2∗(P 0

n,Bn).
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Possible joint fine tuning of first stage and second stage in the C-DR-
TMLE: If the first stage initial estimator is indexed by different choices
δ1, then one selects both the first stage estimator choice δ1 as well as the
second stage choices (k, δ2) based on the cross-validated log-likelihood
of the actual targeted maximum likelihood estimator:

(δ1n, δ2n, kn) = argmax
δ1,δ2,k

EBnP
1
n,Bn log Q̂kδ2∗

δ1
(P 0

n,Bn).

Separation of First Stage and Second Stage fine tuning in the C-DR-
TMLE: If the first stage initial estimator is indexed by different choices
δ1, then it is also possible to select δ1 based on the cross-validated log-
likelihood of such initial estimators Pn → Q̂δ1(Pn), so that in the above
description Q0

n is simply Q̂δ1n(Pn) with δ1n defined as

δ1n = argmax
δ1

EBnP
1
n,Bn log Q̂δ1(P

0
n,Bn).

Penalized cross-validated log-likelihood: The above cross-validation se-
lection can be replaced by cross-validation based on a more targeted
loss function and or a cross-validated penalized log-likelihood, as we
present in a later section. Such a criterion for a density estimator is
selected to be more sensitive towards the behavior of the corresponding
substitution estimator of the target parameter, without affecting its ca-
pability to select for overall fits. In a later section we propose a penalty
based on an estimator of the mean squared error of the substitution
estimator relative to its asymptotic limit. In particular, such a mean
squared error could be estimated with the bootstrap, but we provide
analytic formulas that can be used instead as well.

Super Learning to select among different C-DR-TMLE: For simplic-
ity, let Q̂j∗(Pn), ĝj(Pn), j = 1, . . . , J , denote all candidate C-TMLE
Q̂j∗(Pn) with corresponding censoring mechanism estimator ĝj(Pn), in-
dexed by different second stage algorithms (e.g. indexed by number of
iterations, choice of algorithm, etc). One could now define new candi-
dates

∑
j α(j)Q̂j∗(Pn) indexed by weight vectors α. Even though each

targeted maximum likelihood estimator Q̂j∗(Pn) solves the efficient in-
fluence curve equation, 0 = PnD

∗(Q̂j∗(Pn), ĝj(Pn)), viewed as a require-
ment for bias reduction w.r.t. target parameter, this does not imply
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that weighted combinations of targeted maximum likelihood estimators
also solve an efficient influence curve equation. Therefore, for each com-
bination we would still need to define an (iterative) targeted maximum
likelihood step, at an appropriately selected censoring mechanism esti-
mator gαn , that maps the combination estimator

∑
j α(j)Q̂j∗(Pn) into a

solution of the efficient influence curve equation

0 = PnD
∗
(∑

j

α(j)Q̂j∗(Pn), gαn

)
.

One could now select α by maximizing the cross-validated log-likelihood
of these α-specific targeted maximum likelihood estimators.

In this way, one can use super learning to find the optimized combina-
tion of candidate collaborative targeted maximum likelihood estimators
indexed by different possible choices of initial estimator and or second
stage targeted bias reduction.

C-TMLE with unordered candidate nuisance parameter estimators:
The template outlined above relies upon knowing for any given candi-
date nuisance parameter estimator, representing the previously selected
nuisance parameter estimator at the current C-TMLE step, a set of can-
didates that are more nonparametric than the given nuisance parameter
estimator.

Suppose we are given a set of candidate nuisance parameter estimators
that include heavily nonparametric estimators, but for which we do
not know how to order them from least to most non-parametric. We
start out with selecting one nuisance parameter estimator from this
list of candidates resulting in the first step C-TMLE as above. In the
second step C-TMLE we now consider nuisance parameter estimators
that are combinations of the current nuisance parameter estimator with
any of the candidates. It is assumed that the combinations are always
more nonparametric than the candidate nuisance parameter estimators
that are combined: for example, the combinations are convex combi-
nations of the current nuisance parameter estimator with a candidate
with the coefficients being fitted with maximum likelihood. As possi-
ble variations one might decide to refit the coefficients of the previous
combinations, and, to exclude already selected nuisance parameter es-
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timators from the list. In this way the above template for C-TMLE
can be carried out.

2.2 The rationale of the collaborative-TMLE

For simplicity consider the case that we are given candidates gnδ for a finite
set of possible δ, and that one of the candidates actually converges to the
true g0. It follows that for k large enough gkn will converge to the true g0.

A few principles drive the asymptotic properties of the C-TMLE. Firstly,
a TMLE using g0 in the second stage to carry out the targeted maximum
likelihood steps will be consistent for ψ0.

Secondly, the asymptotic limit of the log-likelihood, P0 logQ∗kn , for n →
∞, is increasing in k as long as it is possible to increase the asymptotic
log-likelihood criterion: e.g, as long as there remain true confounders that
have not yet been properly adjusted for in either the current Q0-fit or the
censoring mechanism fit.

As a consequence, a cross-validated log-likelihood criterion will select
larger and larger kn for n→∞ as long as it can result in a true log-likelihood
increase for the Q0-fit. Therefore for large enough sample size one either will
start using an estimator gn that converges to the true g0, or the estimator
Q∗knn already fits the targeted maximum likelihood direction implied by the
g0-path, and less nonparametric estimators gn will be selected that converge
to some g0(Q). In either case, we will have that the limit Q of the selected
collaborative targeted maximum likelihood estimator Q∗n = Q∗knn will satisfy
Ψ(Q) = ψ0. Formally, the limit g0(Q) of the selected gn satisfies the wished
property

P0D
∗(Q, g0(Q)) = 0 implies Ψ(Q) = ψ0.

We will discuss this collaborative double robustness property of the efficient
influence curve D∗ in detail in the next section.

To summarize, the idea is that one iteratively applies the targeted maxi-
mum likelihood updating algorithm at more and more nonparametric models
fits of g0, thereby generating a sequence of k-th step collaborative targeted
maximum likelihood estimators Qk∗

n based on more and more nonparametric
fits gkn as k increases. This template covers the case where the censoring
mechanism is a vector of censoring variables, e.g. treatment and missing-
ness and right censoring. For example, g can be the conditional distribution
of action process A() given the full data, where A(t) measures both miss-
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ingness and treatment actions at time t. In addition, by construction, the
log-likelihood of Qk∗

n is increasing in k since Qk∗
n is a targeted maximum likeli-

hood estimator applied to initial estimator Qk−1∗
n (with censoring mechanism

fit gk−1
n ).
By using the cross-validated log-likelihood to select k one will not over-

select k and thus will only select meaningful censoring mechanism estimators
that increase the fit of Q0 during the targeted maximum likelihood algorithm.
At the same time, one will also not under-select k since the most nonpara-
metric censoring mechanism estimator is included as a candidate that will
only be ignored if its targeted maximum likelihood direction is already fitted
well by Q∗kn for smaller k.

Figure 1 illustrates the collaborate nature of the construction of the se-
quence increasingly data-adaptive nuisance parameter estimators, {g1

n, . . . g
K
n }.

A plot of the density of a poor initial estimator of Q0 applied to n = 5000
simulated observations and the corresponding sequence of censoring mech-
anism estimators is shown in the to half of the figure. When the initial fit
is poor, the nuisance parameter estimator converges quickly to g0, and the
selected candidate estimator closely approximates g0. Plots in the bottom
half of the figure shows the behavior of the C-TMLE procedure when Q0

n is
well-estimated. When the initial fit is good, the nuisance parameter estima-
tor grows slowly towards g0, and the selected candidate estimator captures
only a portion of the true nuisance parameter.
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Figure 1: Construction of a sequence of nuisance parameter estimators based on
a poor initial fit of the density (top) and a good initial fit for the density (bottom).
True densities Q0 and g0 are shown in gray.
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3 The superiority of the collaborative tar-

geted MLE relative to a targeted MLE us-

ing an external estimator of censoring mech-

anism.

Our collaborative targeted MLE can be presented in words as follows. Firstly,
we create candidate two-stage targeted maximum likelihood estimators of Q0

that are defined as the iterative application of a targeted maximum likeli-
hood step, starting with an initial first stage estimator, with an increasingly
nonparametric choice of censoring mechanism estimator to estimate the op-
timal direction/fluctuation used in the targeted maximum likelihood step.
This results in candidate k-th step targeted maximum likelihood estimators
using more and more nonparametric estimators of the censoring mechanism
to identify the optimal targeted direction, k = 1, . . . , K, all starting with the
same first stage estimator but differing in the number of iterations defining
the second stage of the estimator.

At each targeted maximum likelihood step, the choice of censoring mech-
anism is based on maximizing the targeted log-likelihood gain and a set of
candidates to choose from, where the set of candidates to choose from needs
to be more nonparametric than the censoring mechanism estimator selected
in the previous step. For example, we might a priori generate a set of candi-
date maximum likelihood estimators of the censoring mechanism based on a
sequence of models for the censoring mechanism that approximates the true
(large) model for the censoring mechanism (i.e., a so called sieve).

The collaborative targeted MLE is now defined by selecting k based on
the cross-validated targeted log-likelihood for Q0. This choice kn of the cross-
validation selector also identifies a choice of censoring mechanism estimator,
namely the one used in the kn-th targeted maximum likelihood algorithm.
This choice of censoring mechanism estimator tells us how agressively our pro-
posed collaborative targeted MLE pursues the bias reduction. This particular
way of selecting the censoring mechanism estimator has strong implications
for the practial and theoretical behavior of the collaborative targeted MLE
of ψ0 relative to a single step targeted MLE based on an external estimator
gn. These implications will be discussed in this section.

Firstly, we are concerned with understanding the statistical property of
the selection procedure defining this choice of censoring mechanism estima-
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tor. Under the assumption that the log-likelihood (i.e., log-Q) loss function
is uniformly bounded among all candidate estimators of Q0, and the num-
ber of candidates is polynomial in sample size, we can apply the theoretical
results for the likelihood based cross-validation selector kn of k as presented
in van der Laan et al. (2004). These theoretical results teach us the cross-
validation selector kn will have the following statistical property: if none
of the candidate two stage targeted maximum likelihood estimators of Q0

achieve the parametric rate 1/
√
n-rate of convergence, then the resulting

estimator of Q0 is asymptotically equivalent (not only in rate but also in-
cluding the constant) with the oracle selector that for each data set selects
the k that minimizes the Kullback-Leibler dissimilarity with Q0, else, the
resulting estimator will achieve (at minimal) the almost parametric rate of
convergence log n/

√
n. We are now ready to evaluate the implications of this

theoretically established optimality property of the cross-validation selector
for the resulting censoring mechanism estimator gn, and thereby for the bias
of the resulting estimator of ψ0.

For simplicity, let’s first only consider the comparison between the ini-
tial estimator and the first step collaborative targeted maximum likelihood
estimator, using g1

n as estimator of the censoring mechanism in the targeted
maximum likelihood algorithm. By iterating the argument our claims will
follow. Firstly, consider the case that g0 is known and the cross-validation
selector only selects between the first step collaborative targeted maximum
likelihood estimator using g0, and the initial estimator. The cross-validation
criterion will favor the first step estimator relative to the initial estimator Qn

if the first targeted direction was not fitted yet by the initial estimator Qn,
since it will bring the fit closer to Q0. By the same argument, if the estimator
g1
n converges faster to a fixed g1

0 than Qn converges to Q0, and this direction
identified by g01 was not fitted yet by Qn, then the cross-validation crite-
rion will favor the first step again. However, if the estimator g1

n converges
slower to g1

0 than the initial Qn converges to Q0, then the rate of conver-
gence of the first step targeted maximum likelihood estimator to Q0 will be
worse than the initial estimator, so that the oracle selector and thereby the
cross-validation selector will not favor the first step C-TMLE. By analogy,
this argument shows that the cross-validation selector will generally favor
higher step targeted maximum likelihood estimators until the corresponding
estimator gkn converges at a slower rate to a fixed gk0 than the k − 1-step
collaborative targeted maximum likelihood estimator converges to Q0.
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To summarize: The two stage k-th step collaborative targeted maximum
likelihood estimators involves building a two stage estimator of Q0. If the
directions targeted in the second stage are estimated at a worse rate than the
rate at which the initial estimator converges to Q0, then the second stage fit is
slowing down the rate of convergence of the two stage estimator. The oracle
selector among all the two stage estimators, and thereby the cross-validation
selector, will not allow this to happen by definition of the oracle selector. On
the other hand, if the maximum likelihood directions targeted in the second
stage are estimated at a precision going beyond the precision of the first stage
estimator, then the oracle selector, and thereby the cross-validation selector,
will favor such a second stage estimator.

In contrast, an externally estimated censoring mechanism can easily yield
a second stage component having a worse convergence rate than the first
stage, and thereby a resulting targeted MLE that is, in fact, a worse estima-
tor than the initial estimator. This shows the enormously important power
of selecting the censoring mechanism estimator with our proposed methodol-
ogy based on the cross-validated log-likelihood for the resulting collaborative
targeted maximum likelihood estimator of Q0.

Note that this can result in the following scenarios. Firstly, suppose that
the initial estimator Qn is doing well and that the true g0 is extremely hard
to estimate. For example, g0 might be a highly non-smooth function. Sup-
pose also that there is an a priori set of candidate estimators gnδ indexed by a
choice δ, including less aggressive estimators that involve less adjustment but
are converging fast. Then our proposed two stage collaborative targeted max-
imum likelihood estimator will still involve second stage targeted maximum
likelihood algorithms at reasonable estimators gnδ, but it will avoid carrying
out the noisy (relative to precision of initial estimator) targeted maximum
likelihood algorithm corresponding with the nonparametric estimator gn of
g0.

In particular, if the first stage estimator Qn converges at a parametric
rate to Q0, then the cross-validation selector will select a censoring mecha-
nism estimator gn among the candidates that converges at a parametric or
at most the almost parametric log(n)/

√
n rate. That is, in this case the se-

lected censoring mechanism estimator gn will not adjust for certain variables
in order to keep the rate of convergence for the two stage estimator close
to parametric. In the latter case, the resulting two stage collaborative tar-
geted maximum likelihood estimator of ψ0 would result in a super efficient
estimator, since the estimator will be asymptotically normal at root-n rate
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with smaller asymptotic variance than the variance of the efficient influence
curve.

We also note that in the case that the initial estimator Qn and the se-
lected censoring mechanism estimator gn are such that no parametric rate is
achieved for ψn, then we can have a relative efficiency of infinity in favor of
the collaborative targeted MLE relative to a regular double robust targeted
MLE using an externally selected gn that converges at a slower rate than
Qn. The reason is that the slower rate of gn and thereby the second stage
component of the estimator will now actually bring down the rate of conver-
gence of the targeted maximum likelihood estimator ψn relative to the rate
of convergence of the collaborative targeted MLE.

3.1 Formalizing the claimed property of the cross-vali-
dation selector of the censoring mechanism estima-
tor in the collaborative targeted MLE.

Let Q∗n be a targeted maximum likelihood estimator (playing the role of
one of the candidate two stage collaborative targeted maximum likelihood
estimators) using Qn as an initial estimator. Let d(Q,Q0) = E0 logQ0/Q be
the Kullback-Leibler dissimilarity between a candidate Q and the true Q0.
The oracle selector will compare the performance measures d(Q∗n, Q0) and
d(Qn, Q0) and prefer the one with the best performance, and as stated above,
the cross-validation selector will follow the oracle selector closely. Therefore,
we consider

d(Q∗n, Q0)

d(Qn, Q0)
=

d(Qn, Q0) + d(Q∗n, Q0)− d(Qn, Q0)

d(Qn, Q0)

= 1− E0 logQ∗n/Qn

E0 logQn/Q0

.

If this relative distance stays away from 1 from below, then the oracle selector
will prefer Q∗n, and so will the cross-validation selector. Similarly, if is stays
away from 1 from above, then the oracle selector will prefer Qn and so will
the cross-validation selector.

For concreteness and sake of illustration, assume Q∗n = Qn(εn) with
εn = arg maxε Pn logQn(ε) and Qn(ε) a fluctuation involving a known or
fast converging gn. In addition, assume that Qn actually learns Q0: i.e.,
for n converging to infinity, Qn will converge to Q0. We now make various
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observations. Firstly, since εn is a maximum likelihood estimator according
to a known parametric fluctuation, it will converge at a parametric rate to
ε0n = arg maxε P0 logQn(ε), if the flucuation function is indeed known. If
the parametric fluctuation function is identified by an estimator gn, then the
rate of convergence of εn− ε0n will be the worst of the parametric rate 1/

√
n

and the rate at which gn converges to its limit g. So typically (i.e., gn will
not converge faster than a parametric rate) this means that εn converges to
ε0n at the rate at which gn converges to its limit.

In addition, a standard M-estimator analysis (i.e., Taylor expansion),
based on the fact that ε0n and ε0 = 0 = arg maxε P0 logQ0(ε) solve their
score equations, proves that ε0n will converge to ε0 = 0 as a term involving
a difference between Qn and Q0. Thus, we can then conclude that εn − ε0 =
εn − ε0n + (ε0n − ε0) (ε0 = 0) will converge to zero at a rate that is the worst
among the parametric rate, the rate of gn and the rate of Qn to Q0.

We now note that the Kullback-Leibler dissimilarity, P0 logQn(εn)/Qn,
behaves as ε2n and thereby that P0 logQ∗n/Qn will behave as ε2n. Therefore, it
can be fully expected that the ratio P0 logQ∗n/Qn/P0 logQn/Q0 will behave
as the square of the worst of the rate at which gn and Qn converge, divided
by the rate at which Qn converges. Specifically, if Qn converges slower than
gn, then this ratio will bounded away from zero and infinity, so that we can
conclude that d(Q∗n, Q0)/d(Qn, Q0) will behave as a random number between
0 and 1. Thus, in this case, the oracle selector will prefer Q∗n above Qn. On
the other hand, if gn converges slower than Qn, then the ratio will converge
to infinity so that d(Q∗n, Q0)/d(Qn, Q0) will converge to infinity. Thus, in this
case the oracle selector will prefer the initial estimator Qn above Q∗n.

The above reasoning can be formalized with regularity conditions. The
clear qualitative conclusion is that the cross-validation selector will select
for the targeting steps in which the directions are estimated at a rate good
enough to not slow down the rate of convergence already achieved by the
initial estimator.
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4 Collaborative double robustness of estimat-

ing functions in CAR censored data mod-

els.

In this section we establish a new kind of collaborative robustness of the
class of estimating functions in CAR-censored data models. The new result
teaches us that the censoring mechanism required to obtain an unbiased
estimating function at a mis-specified Q for the parameter of interest need
not always condition on the whole full data structure. In fact, it teaches us
that the better Q approximates Q0 the less of an adjustment by full data
random variables is necessary for the censoring mechanism to still obtain
an unbiased estimating function for the parameter of interest. The precise
collaborative property of (Q, g0(Q)) required will be explicitly specified.

4.1 The formal collaborative robustness result.

The new form of double robustness we wish to establish is understood as
follows. Consider an estimating function D(Ψ(Q), G,Q) for the parameter
of interest ψ0 that is indexed by nuisance parameters (G0, Q0), and which
is already known to establish the classical double robustness property: for
any G under which ψ0 is identifiable from PQ0,G, we have E0D(ψ0, G,Q) = 0
if either Q = Q0 or G = G0 (van der Laan and Robins (2003)). Given
a Q we are interested in the question under what conditional distribution
G0δ of censoring variable C, given a reduction X(δ) of X, will we still have
P0D(ψ0, G0δ, Q) = 0 and thereby that D is an unbiased estimating function
for ψ at this mis-specified Q.

Firstly, we note that P0D(ψ0, G,Q) = P0D(ψ0, G,Q) − D(ψ0, G,Q0) +
P0D(ψ0, G,Q0), and the latter term is zero under any G that allows iden-
tifiability of ψ0. Thus, it remains to determine for what G0δ we will have
P0D(ψ0, G0δ, Q)−D(ψ0, G0δ, Q0) = 0.

By the general representation theorem for estimating functions that are
orthogonal to nuisance scores of the full data model (Theorem 1.6, van der
Laan and Robins (2003)), one can represent an estimating functionD(ψ0, G,Q)
as an Inverse Probability of Censoring Weighted Estimating function
DIPCW (G,ψ0) plus a function DCAR(Q,G) in the tangent space TCAR(G)
of the censoring mechanism at G. The function DCAR(Q,G) is defined as
the projection of DIPCW (G,ψ0) on the tangent space TCAR(G) = {h(O) :
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EG(h(O) | X) = 0} of the censoring mechanism when only assuming coars-
ening at random, where this projection is carried out in the Hilbert space
of all functions of O with mean zero and finite variance endowed with inner
product the covariance operator 〈f, g〉 = Ef(O)g(O).

This teaches us that P0D(ψ0, G,Q) − D(ψ0, G,Q0) = P0DCAR(Q,G) −
DCAR(Q0, G), since the IPCW-difference equals zero. It also teaches us that
for all Q we have that DCAR(Q,G) has conditional mean zero under G,
given X. In addition, this same theorem also shows that Q → DCAR(Q,G)
is linear in Q. Therefore, it remains to show that P0DCAR(Q − Q0, G) =
0. Now, inspection of the proof that the conditional mean of DCAR(Q′, G)
under G equals zero for a Q′ involves typically conditioning on a rich enough
reduction of X so that a particular function indexed by Q′ is fixed under the
conditioning.

For example, for right censored data structures O = (C, X̄(C)), X(t)
time dependent process, X̄(t) = {X(s) : s ≤ t} representing the sample
path up till time t, one can represent the projection of DIPCW onto TCAR as
DCAR(Q,G) =

∫
HQ,G(u, X̄(u−))dMG(u), where

HQ,G(u, X̄(u−)) = EQ,G(DIPCW | C = u, X̄(u))− E(DIPCW | C ≥ u, X̄(u))

dMG(u) = I(C = u)− I(C ≥ u)dΛC|X(u | X),

and ΛC|X is the cumulative hazard of C, given X. For details, we refer
to van der Laan and Robins (2003), Chapter 3. Here dMG(u) is a Mar-
tingale satisfying E(dMG(u) | X̄(u), C ≥ u) = 0. Due to the linear-
ity of the conditional expectation operator, we have DCAR(Q − Q0, G) =∫
HQ−Q0,G(u, X̄(u))dMG(u). By conditioning on HQ−Q0,G(u, X̄(u)) within

the integral, and using E(dMG(u) | X̄(u), C ≥ u) = 0, it follows that
DCAR(Q − Q0, G) also has mean zero under a censoring mechanism s.t.
g0(u | X) only depends on X through HQ−Q0,G(u, X̄(u)). If Q approximates
Q0, this function HQ−Q0,G will be shrunk to zero, so that less conditioning
becomes necessary.

The following much simpler (but in essence making the same point) ex-
ample helps to illustrate the general collaborative double robustness prop-
erty. Suppose the observed censored data structure is O = (W,∆,∆Y ) and
X = (W,Y ) is the full data random variable, where ∆ is a censoring variable.
Suppose one wishes to estimate ψ0 = E0Y . The efficient influence curve is
given by

D(ψ0,Π0, Q0) = DIPCW (ψ0,Π0)−DCAR(Q0,Π0),
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where

DIPCW (ψ0,Π0) = Y
∆

Π0(W )
− ψ0

DCAR(Q0,Π0) = E(Y | ∆ = 1,W )

(
∆

Π0(W )
− 1

)
,

Π0(W ) = P0(∆ = 1 | W ) and Q0(W ) = E0(Y | W,∆ = 1). Consider a Q.
We are interested in the question under what conditional distribution Π0δ of
∆, given a reduction W (δ) of W , will we still have P0D(ψ0,Π0δ, Q) = 0 and
thereby that D is an unbiased estimating function for ψ at this mis-specified
Q. Firstly, we note that P0D(ψ0,Π, Q) = P0D(ψ0,Π, Q) − D(ψ0,Π, Q0) +
P0D(ψ0,Π, Q0), and the latter term is zero under any Π for which P0(Π(W ) >
0) = 1. Thus, it remains to determine for what Π0δ P0D(ψ0,Π0δ, Q) −
D(ψ0,Π0δ, Q0) = 0.

This teaches us that P0D(ψ0,Π, Q) − D(ψ0,Π, Q0) = P0DCAR(Q,Π) −
DCAR(Q0,Π), since the IPCW-difference equals zero:

P0D(ψ0,Π, Q)−D(ψ0,Π, Q0) = (Q−Q0)(W )

(
∆

Π0(W )
− 1

)
.

Note that we used here that Q → DCAR(Q,Π) is linear in Q. Therefore, it
remains to show that P0DCAR(Q−Q0,Π) = 0.

The proof that the conditional mean of DCAR(Q′,Π) under Π equals zero
for a Q′ involves conditioning on a rich enough reduction of W so that Q′(W )
is captured by the conditioning: if Q′(W ) only depends on W through W (δ),
then

EQ′(W )

(
∆

Π0(W (δ))
− 1

)
= EQ′(W )

(
P0(∆ = 1 | W (δ))

Π0(W (δ))
− 1

)
= 0.

In particular, we have that the conditional mean of DCAR(Q−Q0,Π0), given
(Q − Q0)(W ), equals zero if Π0(W ) = P (∆ = 1 | Q − Q0(W )). This shows
that if, for example, (Q−Q0)(W ) only depends on one component W1, then
P0D(ψ0,Π0, Q) = 0 for Π0(W1) = P0(∆ = 1 | W1). That is, the better
job Q does in approximating Q0 the less inverse probability of missingness
weighting is required to still obtain an unbiased estimating function for ψ0.

We will now present the general result which can be applied to any CAR-
censored data model as defined and studied in van der Laan and Robins
(2003).
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Theorem 1 (Collaborative Double Robustness of Efficient Influ-
ence Curve/Estimating Functions)

CAR-censored data model: Let O = Φ(C,X) ∼ P0 be a censored data
structure with full data random variable X ∼ PX0, and censoring variable
C with conditional probability distribution G0 of C, given X. Assume G0

satisfies the coarsening at random assumption. Let g0(C | X) = dG0(C | X)
a probability density of G0 w.r.t. an appropriate dominating measure that
satisfies coarsening at random itself. Let M denote the observed data model
for P0. Due to CAR, we have w.r.t. an appropriate dominating measure
dP0(O) = Q0(O)g0(O | X), where g0(O | X) is only a function of O (by
CAR), and Q0 denotes the identifiable part of the full data distribution PX0.
(Here we abused notation to indicate that the conditional density of O, given
X, is a deterministic function of the conditional density of C, given X, and,
in fact, represents the identifiable part of the censoring mechanism G0.) Let
Q and G be models for Q0 and G0 which imply a model M = {dP = Qg :
Q ∈ Q, G ∈ G} for P0.

Parameter of interest: Let Ψ :M→ IRd be pathwise differentiable pa-
rameter of interest and it is assumed that Ψ(P0) = ΨF (Q0) is only a function
of Q0. Let D∗(Q,G) be the efficient influence curve/canonical gradient of Ψ
at dP = Qg.

We make the following assumptions:

Augmented “PCW”-representation of efficient influence curve: (PCW
stands for Probability of Censoring Weighted) For each Q ∈ Q, G ∈ G,

D∗(G,Q) = Dh(G,Q)(G,Q) = Dh(G,Q),PCW (G,Γ(Q))+Dh(G,Q),CAR(G,Q′),

for mappings (G,Q)→ h(G,Q), (h,G,Q)→ Dh,PCW (G,Γ(Q)), (h,G,Q)→
Dh,CAR(G,Q), both defined on H× G ×Q, a parameter mapping Γ on
Q, and (G,Q)→ Q′(G,Q).

(We refer to Theorem 1.6 in van der Laan and Robins (2003) for such
a general representation of the efficient influence curve and, more gen-
erally, the orthogonal complement of the nuisance tangent space, where
the CAR-components are elements of the tangent space TCAR of G con-
sisting of all functions of O with conditional mean zero, given X, under
G. Under that representation, we have that E0Dh,PCW (G0, γ0) = 0 and
Dh,CAR(G0, Q

′) has conditional mean zero, given X, for all Q′.)
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Linearity of CAR-component: Q′ → Dh,CAR(G,Q′) is linear on a set Q′
containing {Q′(G,Q) : G,Q} in the sense that for all h ∈ H, and all

Q1, Q2 ∈ Q′

Dh,CAR(G,Q′1)−Dh,CAR(G,Q′2) = Dh,CAR(G,Q′1 −Q′2).

Robustness for mis-specified censoring mechanism: For all Q0 ∈ Q0

and G ∈ G(Q0) ⊂ G, where (e.g.,) G(Q0) is defined as all censoring
mechanisms G for which ψ0 can be identified from dP = dQ0g, we have

E0Dh(G,Q0) = 0 for all h ∈ H.

Robustness of CAR-component: For a reduction X(δ) of X (i.e., X(δ) =
f(X, δ) for some function f), let G0δ be the conditional distribution of
C, given X(δ).

Let Qδ ′ be a set within Q′ for which for each Q̄′ ∈ Qδ ′

E0Dh,CAR(G0δ, Q̄
′) = 0.

(Typically, one can select Qδ ′ as all functions in Q′ that are only func-
tions of X through X(δ).)

Let Γ(Q) = Γ(Q0) (typically implying Ψ(Q) = ψ0), G0δ ∈ G(Q0), and

assume Q′ −Q′0 ∈ Qδ ′, where Q′ = Q′(G0δ, Q) and Q′0 = Q′(G0δ, Q0). Then

E0D
∗(G0δ, Q) = 0.

We also have for all G ∈ G(Q0)

E0D
∗(G,Q0) = 0.

Proof. Suppose Γ(Q) = Γ(Q0) and Q′ − Q′0 ∈ Qδ ′. Let G∗0 = G0δ be the
conditional distribution of C, given X(δ), and assume it is an element of
G(Q0).

By the “Augmented ‘PCW’-representation of efficient influence curve”
assumption, we have

E0D
∗(G∗0, Q) = E0Dh(G

∗
0, Q)
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for some h ∈ H. Thus,

E0D
∗(G∗0, Q) = E0Dh(G

∗
0, Q)

= E0{Dh(G
∗
0, Q)−Dh(G

∗
0, Q0)}+ E0Dh(G

∗
0, Q0).

By the assumption thatG∗0 ∈ G(Q0), it follows that the last term E0Dh(G
∗
0, Q0) =

0.
By the “PCW-representation” assumption we have

E0{Dh(G
∗
0, Q)−Dh(G

∗
0, Q0)} = E0{Dh,PCW (G∗0,Γ(Q))−Dh,PCW (G∗0,Γ(Q0))}

+E0{Dh,CAR(G∗0, Q
′(Q,G∗0))−Dh,CAR(G∗0, Q

′(Q0, G
∗
0))}.

By the assumption that Γ(Q) = Γ(Q0), the first term equals zero. By the
“linearity of CAR-component”-assumption we have that the last term equals:

E0{Dh,CAR(G∗0, Q
′)−Dh,CAR(G∗0, Q

′
0)} = E0Dh,CAR(G∗0, Q

′ −Q′0),

where Q′ = Q′(G∗0, Q) and Q′0 = Q′(G∗0, Q0).

We assumed that Q′ − Q′0 ∈ Qδ ′. Thus, by the “Robustness of CAR-
component”-assumption we have that

E0Dh,CAR(G∗0, Q
′ −Q′0) = 0.

This proves E0D
∗(G∗0, Q) = 0. 2

For the sake of explicit illustration, we will now explicitly establish the
collaborative double robustness of the efficient influence curve estimating
function in two additional examples. These results are also corollaries of the
above general Theorem 1.

4.2 Example I: Marginal causal effect in nonparamet-
ric model.

Let O = (W,A, Y ) ∼ P0 and let the model M be nonparametric. Let
Ψ(P0) = E0(E0(Y | A = 1,W )− E0(Y | A = 0,W )) be the parameter of in-
terest. This parameter can be referred to as a variable importance of variable
A or, under additional causal inference assumptions, it can be interpreted as
a causal effect.

The probability distribution of O can be factored as

dP0(W,A, Y ) = Q01(W )Q02(Y | A,W )dG0(A | W ),
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where each factor represents a density w.r.t. an appropriate dominating
measure of the conditional distribution. Let W (δ) ⊂ W be a subset of W
indexed by an index δ.

The efficient influence curve of Ψ at P = (Q,G) can be represented as

D∗(Q,G)(O) = h(G)(A,W )(Y −Q2(A,W )) +Q2(1,W )−Q2(0,W )−Ψ(Q),

where Q2(A,W ) = EQ2(Y | A,W ) denotes the conditional mean of Y , given
A,W , under Q = (Q1, Q2), and h(G)(A,W ) = A/g(1 | W ) − (1 − A)/g(0 |
W ), and g(1 | W ) = PG(A = 1 | W ).

We have the following double robustness result.

Theorem 2 Let dP0 = Q0dG0 be the distribution of O = (W,A, Y ) and let
the model for P0 be nonparametric.

Let Ψ(Q0) = EQ01{EQ02(Y | A = 1,W ) − EQ02(Y | A = 0,W )} be the
parameter on this model, where it is assumed that it is identifiable from P0.
The efficient influence curve of Ψ at P = (Q,G) is given by

D∗(Q,G)(O) = h(G)(A,W )(Y −Q2(A,W )) +Q2(1,W )−Q2(0,W )−Ψ(Q),

where Q2(A,W ) = EQ(Y | A,W ) denotes the conditional mean of Y , given
A,W , under Q = (Q1, Q2).

Assume

(Q02 −Q2)(A,W ) = EQ0(Y −Q2(A,W ) | A,W ) = f0(A,W (Q))

is only a function of A,W (Q) for a W (Q) = Φ(Q2,W ) for some mapping Φ:
i.e., W (Q) denotes a reduction or subset of the full vector random variable
W indexed by Q.

Let dG0(Q) be the conditional distribution of A, given W (Q). If Ψ(Q) =
Ψ(Q0), then

EP0D
∗(Q,G0(Q)) = 0.

Or, equivalently, if we represent D∗(Q,G) as D∗(Ψ(Q), Q,G), then

EP0D
∗(ψ0, Q,G0(Q)) = 0.

We also have: If Pr(PG(A = 0 | W ) ∗ PG(A = 1 | W ) > 0) = 1, then

EP0D
∗(Q0, G) = 0,

or equivalently,
EP0D

∗(ψ0, Q0, G) = 0.
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Proof. The last statement is easy and well known (e.g., van der Laan and
Robins (2003)). The first statement needs to be proved, or can be derived
as a corollary of Theorem 1. Note, if Ψ(Q) = ψ0, then

E0D
∗(Q,G0(Q)) = E0h(G0)(A,W (Q))(Y−Q(A,W ))+Q(1,W )−Q(0,W )−ψ0.

If E0(Y − Q(A,W ) | A,W ) = f0(A,W (Q)) is only a function of A,W (Q),
then it follows by first taking the conditional mean, given A,W , and then
taking the mean of A, given W (Q),

E0D
∗(Q,G0(Q)) = E0h(G0)(A,W (Q))f0(A,W (Q))

+Q(1,W )−Q(0,W )− ψ0

= E0f0(1,W (Q))− f0(0,W (Q)) +Q(1,W )−Q(0,W )

−ψ0.

Now, note that f0(A,W (Q)) = Q0(A,W )−Q(A,W ), which proves that
the latter quantity equals zero.

2

The implication of this result is that, given an estimate Q of Q0, we
only need to estimate G0(Q) as a parameter of the complete conditional
distribution G0. Thus, if Q already succeeds in explaining most of the true
regression E0(Y | A,W ), then only little inverse weighting with G0(Q) =
P (A = · | W (Q)) remains to be done. That is, the amount of inverse
weighting required to obtain a consistent estimator of the causal effect ψ0

can be adapted to the degree to which the true regression is fit by Q.

4.3 Example II: Semiparametric regression.

Let O = (W,A, Y ) ∼ P0. Assume the model E0(Y | A,W ) − E0(Y | A =
0,W ) = Aβ0V for some V ⊂ W . If the variance of Y , given A,W , only
depends on W , then the efficient score of β0 at P0 can be represented as

D∗(Π0, θ0, β0)(O) = (A− Π0(W ))(Y − Aβ0V − θ0(W )),

where Π0(W ) = E0(A | W ), and θ0(W ) = E0(Y | A = 0,W ). For the sake
of illustration we will use this simpler representation, but the same double
robustness applies to the general efficient influence curve representation as
(e.g.) presented in van der Laan and Robins (2003).
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Theorem 3 Suppose E0(Y − Aβ0V − θ(W ) | A,W ) = f0(W (θ)) for some
function f0 of W (θ) where W (θ) = Φ(W, θ) is function of W and θ. Note that
this states that θ0(W ) − θ(W ) = f0(W (θ)) is only a function of a reduction
W (θ) of W . Let Π0(θ)(W ) = E0(A | W (θ)). Then

E0D
∗(Π0(θ), θ, β0) = 0

We also have
E0D

∗(Π, θ0, β0) = 0

Proof. Only the first robustness result needs to be proved. First take the
conditional mean, givenA,W , which results in the term E0(A−Π0(θ)(W (θ)))f0(W (θ)).
Subsequently, we take the conditional mean, given W (θ), which proves it
equals zero. 2

5 Asymptotics of collaborative TMLE.

The collaborative targeted maximum likelihood estimator Q∗n equals a kn-th
collaborative targeted maximum likelihood estimator, and thereby equals a
targeted maximum likelihood estimator with a starting estimator Qn (the
kn − 1-th collaborative targeted maximum likelihood estimator), and the
censoring mechanism estimator gn = gnδn as selected in the kn-step, given
a collection of candidate estimators gnδ. Thus, just like the targeted max-
imum likelihood estimator, the collaborative targeted maximum likelihood
estimator ψn = Ψ(Q∗n) of ψ0 solves the efficient influence curve estimating
equation

0 = PnD
∗(Q∗n, gn, ψn).

For simplicity, we will make the assumption that the efficient influence curve
at a PQ,g can be represented as an estimating function in ψ. However, the
theorem in this section can be generalized to any efficient influence curve
D∗(Q, g) identified by a data generating distribution PQ,g.

Since Q∗n is just a maximum likelihood based estimator within a model,
it is a reasonable assumption that Q∗n converges to some element Q in the
model for Q0. In addition, gnδ converges to some g0δ for each δ ranging
over a finite set. If each extra iteration corresponds with a unique targeting
step, and we use the cross-validated log-likelihood to select the number of
iterations kn in the C-TMLE, then this selector will in most cases result in a
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data adaptive choice δn so that the corresponding complexity-measure d(δn)
converges either to infinity (i.e., resulting in most nonparametric estimator
consistent for G0(· | X)) or some upper limit (i.e., it stops short of selecting
the most nonparametric estimator). In these cases one expects that, as n
converges to infinity, then gn converges to a fixed g0δ0 representing the limit
of a gnδ0 , not necessarily equal to the conditional distribution given the full
X. For notational convenience, we will denote this limit with g0.

In such a case one will have that

P0D
∗(Q, g0δ, ψ0) = 0 for d(δ) ≥ d(δ0),

and thereby that, in particular,

0 = P0D
∗(Q, g0, ψ0),

which will be the fundamental assumptions for asymptotic normality of the
C-TMLE.

Theorem 4 Let (Q, g, ψ)→ D∗(Q, g, ψ) be a well defined function that maps
any possible (Q, g,Ψ(Q)) into a function of O. Let O1, . . . , On ∼ P0 be i.i.d,
and let Pn be the empirical probability distribution. Let Q → Ψ(Q) be a d-
dimensional parameter, where ψ0 = Ψ(Q0) is the parameter value of interest.
In the following template Q∗n represents the collaborative targeted maximum
likelihood estimator, but it can be any estimator.

Assume

• 0 = P0D
∗(Q, g0, ψ0) = PnD

∗(Q∗n, gn, ψn), where ψn = Ψ(Q∗n).

•
P0(D∗(Q∗n, gn, ψn)−D∗(Q, g0, ψ0))2 → 0 in probability,

as n→∞. And the same applies if one or two of the triplets (Q∗n, gn, ψn)
is replaced by its limit (Q, g0, ψ0).

• c0 = −d/dψ0P0D
∗(Q, g0, ψ0) exists and is invertible.

• {D∗(Q, g,Ψ(Q)) : Q, g} is P0-Donsker, where (Q, g) vary over sets that
contain (Q∗n, gn), (Q∗, gn), (Q∗n, g) with probability tending to 1.

• Define the mapping Q→ Φ1(Q) ≡ P0D
∗(Q, g0, ψ0). Assume Φ1(Q∗n)−

Φ1(Q) = (Pn−P0)ICQ+oP (1/
√
n) for some mean zero function ICQ ∈

L2
0(P0).
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• Define the mapping g → Φ2(g) ≡ P0D
∗(Q, g, ψ0). Assume Φ2(gn) −

Φ2(g0) = (Pn−P0)ICg0+oP (1/
√
n) for some mean zero function ICg0 ∈

L2
0(P0).

• Define second order term

Rn1 = P0{D∗(Q∗n, gn, ψn)−D∗(Q, gn, ψn)}−{D∗(Q∗n, g0, ψ0)−D∗(Q, g0, ψ0)},

and assume Rn1 = oP (1/
√
n). Note Rn1 is a second order term involv-

ing difference between Q∗n −Q and gn − g0.

• Define second order term

Rn2 = P0{D∗(Q, gn, ψn)−D∗(Q, g0, ψn)}−{D∗(Q, gn, ψ0)−D∗(Q, g0, ψ0)},

and assume Rn2 = oP (1/
√
n). Note Rn2 is a second order term involv-

ing difference between gn − g0 and ψn − ψ0.

Then, ψn is asymptotically linear estimator of ψ0 with influence curve

IC(P0) = c−1
0 {D∗(Q, g0, ψ0) + ICQ + ICg0} .

That is,
ψn − ψ0 = (Pn − P0)IC(P0) + oP (1/

√
n).

In particular,
√
n(ψn−ψ0) converges in distribution to a multivariate normal

distribution with mean zero and covariance matrix Σ0 = E0IC(P0)IC(P0)>.

Proof: The principle equations are 0 = PnD
∗(Qn, gn, ψn) and P0D

∗(Q, g0, ψ0) =
0. So, we have

P0D
∗(Q, g0, ψn)−D∗(Q, g0, ψ0) = −{PnD∗(Qn, gn, ψn)− P0D

∗(Q, g0, ψn)} .

Let c0 = − d
dψ0

P0D
∗(Q, g0, ψ0). Then,

c0(ψn − ψ0) + o(| ψn − ψ0 |) = (Pn − P0)D∗(Q, g0, ψn)

+Pn{D∗(Qn, gn, ψn)−D∗(Q, gn, ψn)}+ Pn{D∗(Q, gn, ψn)−D∗(Q, g0, ψn)}.

We denote the three terms on the right with I,II and III, and deal with them
separately below. In this proof, we will refer to the second assumption as
consistency condition (on the estimated influence curve).
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I: By the Donsker condition, and consistency condition, we have

(Pn − P0){D∗(Q, g0, ψn)−D∗(Q, g0, ψ0)} = oP (1/
√
n).

Thus, we obtain (Pn−P0)D∗(Q, g0, ψ0) + oP (1/
√
n) as first term approxima-

tion.
II: We have

Pn{D∗(Qn, gn, ψn)−D∗(Q, gn, ψn)} = (Pn − P0){D∗(Qn, gn, ψn)−D∗(Q, gn, ψn)}
+P0{D∗(Qn, gn, ψn)−D∗(Q, gn, ψn)}.

The first term is oP (1/
√
n) by Donsker class condition, and consistency con-

dition at Qn, gn, ψn. We also have

P0{D∗(Qn, gn, ψn)−D∗(Q, gn, ψn)} = P0{D∗(Qn, g0, ψ0)−D∗(Q, g0, ψ0)}+Rn1,

where

Rn1 = P0{D∗(Qn, gn, ψn)−D∗(Q, gn, ψn)−D∗(Qn, g0, ψ0)−D∗(Q, g0, ψ0)}
= oP (1/

√
n),

by assumption. Rn1 is a second order term involving Qn −Q and (gn, ψn)−
(g0, ψ0). Thus the second term equals P0{D∗(Qn, g0, ψ0) − D∗(Q, g0, ψ0)}.
This equals Φ1(Qn) − Φ1(Q). We assumed that Φ1(Qn) − Φ1(Q) = (Pn −
P0)ICQ+oP (1/

√
n). Thus, the second term equals (Pn−P0)ICQ+oP (1/

√
n).

III:
We have

PnD
∗(Q, gn, ψn)−D∗(Q, g0, ψn) = (Pn − P0)D∗(Q, gn, ψn)−D∗(Q, g0, ψn)

+P0D
∗(Q, gn, ψn)−D∗(Q, g0, ψn).

The first term is oP (1/
√
n) by Donsker class condition, and consistency con-

dition at Qn, gn, ψn. We also have

P0D
∗(Q, gn, ψn)−D∗(Q, g0, ψn) = P0D

∗(Q, gn, ψ0)−D∗(Q, g0, ψ0) +Rn2,

where

Rn2 = P0D
∗(Q, gn, ψn)−D∗(Q, g0, ψn)−D∗(Q, gn, ψ0)−D∗(Q, g0, ψ0) = oP (1/

√
n),

Chapter 4. Collaborative Targeted Maximum Likelihood Estimation

154
Hosted by The Berkeley Electronic Press



by assumption. Thus the third term equals P0D
∗(Q, gn, ψ0)−D∗(Q, g0, ψ0).

This equals Φ2(gn) − Φ2(g0). We assumed that Φ2(gn) − Φ1(g0) = (Pn −
P0)ICg0 +oP (1/

√
n). Thus, the third term equals (Pn−P0)ICg0 +oP (1/

√
n).

We can thus conclude that

ψn−ψ0 = (Pn−P0)c−1
0 {D∗(Q, g0, ψ0) + ICQ + ICg0}+oP (| ψn−ψ0 |)+oP (1/

√
n).

This implies | ψn − ψ0 |= OP (1/
√
n), and thereby the stated asymptotic

linearity. 2

5.1 Irregular C-TMLE and super efficiency.

Due to the particular way the gn is constructed in response to Qn, it is eas-
ily argued that the collaborative targeted MLE can be an irregular estimator
and can be super efficient by achieving an asymptotic variance that is smaller
than the variance of the efficient influence curve. In particular, our previous
arguments showed that if the initial estimator is a maximum likelihood esti-
mator according to a correctly specified parametric model, then gn will avoid
nonparametric fits, thereby staying away from estimating the g0 that would
result in an efficient estimator in first order. In these cases we observed super
efficiency in our simulations. Indeed, in this case the influence curve will now
be of the form D∗(Q, g0, ψ0) + ICQ, where ICQ is an influence curve that is
a product of a delta-method applied to Qn as an estimator of Q0.

6 Penalized targeted log-likelihood criterion.

Consider candidate (e.g., collaborative) targeted maximum likelihood estima-
tors Pn → P̂ ∗δ (Pn) of the true probability distribution of the data P0 ∈ M,
targeting a parameter ψ0 = Ψ(P0), indexed by δ. Our proposed criterion for
selecting δ is

δn = argmax
δ

LCV (Pn)(δ) + L∗(Pn)(δ)−MSE(Pn)(δ),

or
δn = argmax

δ
L∗CV (Pn)(δ)−MSE(Pn)(δ).

These terms will be specified below.
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6.1 The cross-validated log-likelihood of (T)MLE.

Given a particular dominating measure, we define the cross-validated log-
likelihood at the δ-specific targeted maximum likelihood estimator:

LCV (Pn)(δ) = EBnP
1
n,Bn log

dP̂ ∗δ (P 0
n,Bn

)

dµ
,

where Bn ∈ {0, 1}n is a random binary vector of length n defining a split
of the sample into a training sample {i : Bn(i) = 0} and validation sample
{i : Bn(i) = 1}, whose empirical distributions are denoted with P 0

n,Bn
and

P 1
n,Bn

, respectively.
We typically restrict attention to V -fold cross-validation so that Bn has

only V realizations, even though the choice of cross-validation scheme is user
supplied. In V-fold cross-validation these V realizations are identified by a
split of the original sample into V equal size sub-samples, by defining the
validation sample as one of these V subgroups, and the training sample as
the complement. Note that evaluation of this cross-validated log-likelihood
requires computation of the targeted maximum likelihood estimator Pn →
P̂ ∗δ (Pn) for each of the V training samples.

One could select δ as the maximizer of the cross-validated log-likelihood
at the TMLE.

As discussed previously, by finite sample and asymptotic oracle results
established for this likelihood-based cross-validation selector (van der Laan
et al. (2004)), this results in an excellent estimator of the actual distribu-
tion P0 optimally trading off bias and variance w.r.t. the target P0 w.r.t the
Kullback-Leibler measure of dissimilarity between two densities/data gener-
ating distributions. Since the targeted maximum likelihood estimators are
all targeted towards ψ0, in many applications this cross-validated targeted
log-likelihood criterion works well.

Therefore this log-likelihood term provides an excellent basis of our pro-
posed targeted criterion that will drive the selector towards a fit of the true P0

and thereby the target parameter ψ0. Our sole motivation for the proposed
additional penalty terms is to make the criterion more targeted towards ψ0.

We also note that if the density of O factorizes, dP0 = dQ0dG0, in two
factors dQ and dG, and the parameter of interest Ψ(P ) only depends on Q,
then we replace this cross-validated log-likelihood by the relevant term of the
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log-likelihood:

LCV (Pn)(δ) = EBnP
1
n,Bn log

dQ̂∗δ(P
0
n,Bn

)

dµ
.

Here Pn → Q̂∗δ(Pn) denotes the targeted maximum likelihood estimator of the
relevant factor Q0, where dP̂ ∗δ (Pn) = dQ̂∗δ(Pn)dĜ∗δ(Pn). This targeted maxi-
mum likelihood estimator of Q0 will still depend on the targeted maximum
likelihood estimator of G0, since the updating step in the TMLE-algorithm
will depend on this estimator.

The term we present in the next subsection will measure separately the
gain in the log-likelihood due to the targeting step in the targeted maximum
likelihood algorithm. If one uses this term in the criterion to select δ, then one
can may decide to use the the cross-validated log-likelihood at the δ-specific
initial estimator P̂δ (instead of at the corresponding C-TMLE):

LCV (Pn)(δ) = EBnP
1
n,Bn log

dP̂δ(P
0
n,Bn

)

dµ
.

6.2 The empirical log-likelihood increase due to tar-
geting.

The increase of the log-likelihood during the targeted maximum likelihood
updating algorithm corresponds with fitting the parameter of interest. There-
fore, this increase is all about bias reduction for the parameter of interest and
a choice of δ that results in a large bias reduction should be rewarded.

Therefore, we may add the following term to the cross-validated log-
likelihood of the TMLE:

L∗(Pn)(δ) = Pn log
dP̂ ∗δ (Pn)

dP̂δ(Pn)
,

where P̂δ(Pn) is the initial δ-specific estimator of P0 (i.e., the first stage esti-
mator) and P̂ ∗δ (Pn) is the (iterative) δ-specific targeted maximum likelihood
estimator of P0 taking P̂δ(Pn) as initial estimator.

This term may be appropriate for first step collaborative targeted maxi-
mum likelihood estimators, but might be subject to over-fitting for selecting
among k-th step C-TMLE in which k can be large. Therefore, in the latter

Chapter 4. Collaborative Targeted Maximum Likelihood Estimation

157
http://biostats.bepress.com/ucbbiostat/paper254



case, we propose to replace the k-th step C-TMLE in the above term by the
TMLE using the k-th censoring/nuisance parameter estimator with initial
estimator P̂δ(Pn) (thus dropping the previous fluctuations). In this way, the
above term measures a bias gain due to the targeted maximum likelihood
algorithm using the last selected censoring mechanism estimator.

In our nonparametric causal effect example one can show that this in-
crease in log-likelihood due to the targeted maximum likelihood algorithm
(now only requiring one step) equals the squared difference of the substitu-
tion estimator Ψ(P̂δ(Pn)) and the targeted maximum likelihood substitution
estimator Ψ(P̂ ∗δ (Pn)), scaled appropriately.

Again, if dP0 = dQ0dG0 factorizes in two factors and the parameter
of interest Ψ(P0) only depends on Q0, then we replace this targeted log-
likelihood increase by the relevant term:

L∗(Pn)(δ) = Pn log
dQ̂∗δ(Pn)

dQ̂δ(Pn)
.

This targeted log-likelihood increase term make our proposed selector
clearly more targeted in censored data and causal inference semi-parametric
models: For example, if there are no good choices of δ w.r.t. to Q̂δ(Pn) as an
estimator of Q0, but there is a choice of δ that results in great bias reduction
for the target parameter due to the targeted maximum likelihood algorithm,
then our selector will select the latter δ.

6.3 Combining the log-likelihood and targeted increase
of log-likelihood in one criterion.

Here we propose a modification of the cross-validated log-likelihood at a
TMLE, which also fully captures the targeted increase of the log-likelihood
as measured by L∗(Pn) as defined in previous subsection. This new term
which we will denote with L∗CV (Pn) can replace LCV (Pn) + L∗(Pn) in our
final criterion.

Define

LCV,δ(ε) ≡ EBnP
1
n,Bn log

dP̂δ(P
0
n,Bn

)(ε)

dµ
.

Let
ε0n = argmax

ε
LCV,δ(ε).
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This value can now be used to define a first step targeted MLE update
P̂δ(P

0
n,Bn

)1 = P̂δ(P
0
n,Bn

)(ε0n) on the training sample P 0
n,Bn

and corresponding
L0
CV (δ) = LCV,δ(ε

0
n). In the case that this process converges in one step, we

would use L0
CV (δ) in the criterion for selecting δ. Note that, it measures the

increase of the likelihood of the validation observations due to fluctuating
the training sample based initial estimator.

In general, we iterate by defining

L1
CV,δ(ε) ≡ EBnP

1
n,Bn log

dP̂δ(P
0
n,Bn

)1(ε)

dµ
.

We now define a process that maps an initial LCV,δ(ε) and corresponding
maximum LCV,δ(ε

0
n) into an updated L1

CV,δ(ε) and corresponding L1
CV,δ(ε

1
n),

where ε1n = argmax
ε

L1
CV,δ(ε). This process can now be iterated till conver-

gence and the final value of LkCV,δ(ε
k
n) is used as a criterion for δ.

We now use as single cross-validated targeted maximum likelihood crite-
rion:

L∗CV (Pn)(δ) = LkCV,δ(ε
k
n).

If the density of O factorizes, dP0 = dQ0dG0, then the log-likelihood
terms are replaced by log(dQ̂δ(P

0
n,Bn

)k(ε)/dµ) for the appropriate dominating
measure dµ. In addition, if the epsilon-extension Q(ε) is indexed by G0, then
we suggest that it is appropriate to use the estimator Ĝδ(Pn) on the whole
sample, instead of applying this estimator to the training samples P 0

n,Bn
.

That is, the cross-validation does not need to be strictly applied to Ĝδ since
this estimator is based on an orthogonal factor in the likelihood.

6.4 Variance of targeted maximum likelihood estima-
tor relative to its δ-limit.

If the target parameter cannot be reasonably identified from the data the
log-likelihood terms above will not be sensitive enough to such a singularity:
in fact, on many occasions this just means that the targeted maximum likeli-
hood algorithm will be ineffective (i.e., the maximum likelihood fluctuations
get too noisy) so that in essence the log-likelihood of the initial estimator
drives the selection.

Therefore it is crucial that the log-likelihood terms are penalized by a
term that blows up (in the negative direction) for δ-values for which the
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variance (or bias, addressed in next subsection) of the targeted maximum
likelihood estimator Ψ(P̂ ∗δ (Pn)) relative to its limit ψ0(δ) = Ψ(P̂ ∗δ (P0)) gets
large. Since we can derive the influence curve of the targeted maximum
likelihood estimator Ψ(P̂ ∗δ (Pn)) as an estimator of ψ0(δ), this variance can be
estimated with the variance of this influence curve at this targeted maximum
likelihood estimator P̂ ∗δ (Pn). As follows from the study of TMLE in van der
Laan and Rubin (2006) one can often use as influence curve the efficient
influence curve D∗(P ), at P = P̂ ∗δ (Pn), of the parameter Ψ :M→ IRd.

We first define the cross-validated covariance matrix for the estimator
Ψ̂(P̂ ∗δ (Pn)):

Σ(Pn)(δ)

n
=

1

n
EBnP

1
n,Bn

{
D∗(P̂ ∗δ (P 0

n,Bn))D∗(P̂ ∗δ (P 0
n,Bn))>

}
.

For example, if the target parameter is 1-dimensional (i.e., d = 1), then we
have

σ2(Pn)(δ)

n
=

1

n
EBnP

1
n,Bn

{
D∗(P̂ ∗δ (P 0

n,Bn))
}2

.

In a next subsection we discuss how this covariance matrix can be used to
construct a MSE term for our penalized log-likelihood. For example, one can
define the variance term of the MSE in our penalized log-likelihood criterion,
as

σ2(Pn)(δ) = aΣ(Pn)(δ)a>,

for a user supplied vector a, so that σ2(Pn)/n represents the variance estimate
of the estimator of a>ψ0(δ).

Our proposal will actually have the form

σ2(Pn)(δ) =
d∑
j=1

a>j Σ(Pn)(δ)aj, (2)

where aj are the row vectors of the square root of a user supplied matrix
such as the inverse of the the correlation matrix of Σ(Pn)(δ).

6.5 Bias of targeted maximum likelihood estimator rel-
ative to its δ-limit.

By the same argument, we wish to estimate the bias of the targeted maximum
likelihood estimator Ψ(P̂ ∗δ (Pn)) relative to its limit ψ0(δ). For example, this
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could be done with the bootstrap:

EPn

{
Ψ(P̂ ∗δ (P#

n ))−Ψ(P̂ ∗δ (Pn))
}
,

where P#
n represents the empirical distribution of a bootstrap sampleO#

1 , . . . , O
#
n

from the empirical distribution Pn. However, this would be much too com-
puter intensive in many applications in which the targeted maximum like-
lihood estimator involves data adaptive model or algorithm selection. By
noting that a bootstrap sample corresponds on average with 2/3 of the n
observations, the following analogue bias estimate can be viewed as an ap-
proximation of this bootstrap bias that only requires 3 times applying the
targeted maximum likelihood estimator to a sample of size n ∗ 2/3:

B(Pn)(δ) = EBn3

{
Ψ(P̂ ∗δ (P 0

n,Bn))−Ψ(P̂ ∗δ (Pn)
}
,

where Bn3 denotes the 3-fold cross-validation scheme.
If d = 1, then we will add to the variance term in the previous section the

squared bias B(Pn)2 to create a MSE-term. If d > 1, then in our proposal
below we will construct an appropriate function of B(Pn) representing the
analogue of the variance term (2):

b(Pn)2(δ) ≡
∑
j

(a>j B(Pn)(δ))2.

Additional rationale behind bias term: To provide further understand-
ing of this kind of bias estimate B(Pn), we note the following. Let Ψ̂(Pn) be
an estimator of its target Ψ̂(P0), where it plays the role of the δ-specific tar-
geted maximum likelihood estimator Ψ(P̂ ∗δ (Pn)). The fundamental assump-
tion allowing statistical inference for Ψ̂(P0) is the assumption of asymptotic
linearity:

Ψ̂(Pn)− Ψ̂(P0) = (Pn − P0)D(P0) +R(Pn), (3)

where D(P0) is the influence curve of the estimator, and R(Pn) is the re-
mainder. The asymptotic linearity assumption now assumes that R(Pn) =
oP (1/

√
n).

The representation (3) of the mapping Pn → Ψ̂(Pn) implies for any cross-
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validation scheme Bn

B(Pn) = EBnΨ̂(P 0
nBn)− Ψ̂(Pn)

= EBn

{
Ψ̂(P 0

nBn)− Ψ̂(P0)
}
−
{

Ψ̂(Pn)− Ψ̂(P0)
}

= EBn
{

(P 0
nBn − P0)D(P0) +R(P 0

n,Bn)
}

−{(Pn − P0)D(P0) +R(Pn)}
= EBnR(P 0

n,Bn)−R(Pn),

where we use that EBnP
0
n,Bn

D(P0) = PnD(P0). Thus, our proposed bias
estimate B(Pn) equals, for any cross-validation scheme, an average difference
of the remainder applied to a subsample of size n(1− p) and the full sample
of size n. Therefore, one can conclude that this term will be very sensitive
to a large remainder (e.g., second order terms) in the asymptotic linearity
expansion (3).

6.6 MSE of targeted maximum likelihood estimator
relative to its δ-limit.

If d = 1, then we define the MSE term as

MSE(Pn)(δ) =
σ2(Pn)(δ)

n
+B(Pn)2.

If d > 1, then we assume that we are provided with a user-specified d× d
symmetric positive definite matrix ρ, so that the square root of this matrix
ρ1/2 exists. Our MSE term will represent the expectation of the Euclidean
norm of ρ1/2(Ψ̂ − ψ), or equivalently, the expectation of (Ψ̂ − ψ)>ρ(Ψ̂ −
ψ). One concrete proposal is to set ρ1/2 equal to the square root of the
inverse of an estimate of the correlation matrix of the asymptotic covariance
matrix of

√
n(Ψ̂−ψ), so that the linearly transformed vector has uncorrelated

components.
Let aj be the j-th row of the matrix ρ1/2, j = 1, . . . , d. The wished MSE

term is now the sum of the MSEs of the linear combination a>j Ψ̂. Therefore,
the MSE term is represented as

MSE(Pn)(δ) =
1

n

∑
j

a>j Σ(Pn)(δ)aj + n
{
a>j B(Pn)(δ)

}
.
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This is equivalent to defining a variance term

σ2(Pn)(δ)

n
=

1

n

∑
j

a>j Σ(Pn)(δ)aj,

a bias term
b(Pn)(δ) =

∑
j

{
a>j B(Pn)(δ)

}
,

and defining

MSE(Pn)(δ) =
σ2(Pn)(δ)

n
+ {b(Pn)(δ)}2.

6.7 Scaling the MSE term relative to the log-likelihood
terms.

This subsection explores some issues regarding the scaling of the MSE term
relative to the log-likelihood terms.

We will subtract the MSE(Pn)(δ) from the log-likelihood driven criterion
LCV (Pn)(δ) + L∗(Pn)(δ) or L∗CV (Pn)(δ), but we wish to do so in a way that
achieves suitable balance between an increase in the log-likelihood fit and
an increase in MSE(Pn)(δ). Inspection of the log-likelihood might make
the choice of scaling reasonably obvious, but here we wish to present some
calculations that might shed further light on this scaling issue.

For the sake of illustration, suppose d = 1. Note that we then view
MSE(Pn)(δ) as an estimate of the squared distance (ψn(δ) − ψ0(δ))2 of
the δ-specific targeted maximum likelihood estimator and its target/limit
ψ0(δ). On the other hand, we view LCV (Pn)(δ) + L∗(Pn)(δ) as an estimate
of the Kullback-Leibler dissimilarity dKL(P̂ ∗δ (Pn), P0) ≡ P0 log dP̂ ∗δ (Pn)/dP0

between the δ-specific targeted maximum likelihood estimator P̂ ∗δ (Pn) and
the wished target P0. Therefore, from that perspective, the right balance
concerns the relation between the global dissimilarity dKL(P, P0) and the
targeted dissimilarity (Ψ(P )−Ψ(P0))2.

Our suggestion is that a meaningful quadratic distance might be inspired
by dKL(P0, P0(ε)) along an optimal fluctuation function P0(ε) that maximally
changes the target parameter along ε.

For that purpose, let P0(ε) be a fluctuation through P0 at ε = 0 whose
score (for each εj) equals a component of an orthogonal decomposition of the
(j-th component of the) efficient influence curve or the whole (j-th component
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of the) efficient influence curve. For example, suppose that the efficient
influence curve D = D1 +D2 and the score of P0(ε) at ε = 0 equals D1(P0).
A second order Taylor expansion of

dKL(P0, P0(ε)) = P0 log dP0/dP0(ε)

at ε = 0 shows that
dKL(P0, P0(ε)) ≈ ε>I(0)ε,

where I(0) = d/dεP0D1(P0(ε))|ε=0. By pathwise differentiability of Ψ we also
have

Ψ(P0(ε))−Ψ(P0) ≈ P0D(P0)
dP0(ε)− dP0

dP0

≈ P0D(P0)(
∑
j

ε(j)D1j(P0))

=
∑
j

P0D1(P0)D1j(P0).

If we define
I∗(0)(k, l) = P0D1k(P0)D1l(P0),

then it follows that
Ψ(P0(ε))−Ψ(P0) ≈ I∗(0)ε,

or

dI∗(0)(Ψ(P0(ε)),Ψ(P0)) ≡ (Ψ(P0(ε))−Ψ(P0))>I∗(0)−1(Ψ(P0(ε))−Ψ(P0))

≈ ε>[I∗(0)]ε.

Since dKL(P0(ε), P0) ≈ ε>I(0)ε is on the same scale as ε>I∗(0)ε it follows
that

dKL(P0, P0(ε)) + dI∗(0)(Ψ(P0(ε)),Ψ(P0))

is an appropriately scaled dissimilarity measure.
In the nonparametric causal effect example we haveD1(P0(ε)) = h0(A,W )(Y−

Q0(A,W )− εh0(A,W )), so that I(0) = P0h
2
0 and I∗(0) = P0h

2
0(Y −Q0)2. So

in that case we would have to divide the MSE by I∗(0).
However, if one would use the log-likelihood under a normal error regres-

sion model and set the variance of the residuals equal to 1 so that the RSS
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can be equated with the log-likelihood, then this factor can be set equal to
1.

We suggest that one should aim to scale the MSE term in such a way that
it is put on equal footing with the log-likelihood gain along an optimal fluc-
tuation function. The above calculations suggests that this can be achieved
by making the MSE term representative of the standardized Euclidean dis-
similarity dI∗(0)(ψ, ψ0).

7 Example: Targeted maximum likelihood es-

timation of the marginal structural model.

Suppose we observe O = (W,A, Y = Y (A)), where W are baseline covari-
ates, A is a discrete treatment, and Y is a subsequently measured outcome.
It is assumed that A is realized in response to the realization of W , and Y
is realized in response to both W and A. The full data structure on the ex-
perimental unit is X = (W, (Y (a) : a)), so that A represents the missingness
variable for the missing data structure O on X.

Consider a marginal structural model for the full data distribution

E0(Y (a) | V ) = m(a, V | β0)

that models the causal effect of a treatment intervention A = a on the
outcome Y . For example, one might assume a simple linear model m(a, V |
β0) = β0(a, V, aV ).

Since it is often unreasonable to assume such a parametric form, but
such parametric forms can still provide very meaningful projections of the
true causal curve, we consider its nonparametric extensions:

Ψh(P0) = argmin
β

EP0

∑
a

h(a, V )(Q0(a,W )−m(a, V | β))2,

where Q0(a, w) = E0(Y | A = a,W ). If the randomization assumption that
A ⊥ X, given W holds, so that, g0(a | X) = P0(A = a | X) = P0(A = a | W ),
then Ψh(P0) represents a projection of E0(Y (a) | V ) onto the working model
m(| β0). That is,

Ψh(P0) = argmin
β

EP0

∑
a

h(a, V ) (E(Y (a) | V )−m(a, V | β))2 .
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In particular, if E0(Y (a) | V ) = m(a, V | β0), then for each h we have
Ψh(P0) = β0. Without the randomization assumption, we can interpret
Ψh(P0) as an effect of A on Y that controls for the confounders W , which we
often refer to as a variable importance measure.

We note that this nonparametric extension only depends on P0 through
the conditional mean of Y , given A,W , and the marginal distribution of W .
For simplicity, we will also use the notation Ψh(Q0), where Q0 now denotes
both the marginal distribution of W and the conditional distribution of Y ,
given A,W .

The efficient estimating function for this nonparametric extension Ψh of
β0 is given by:

Dh(P0)(O) =
h1(A, V )

g0(A | W )
(Y −Q0(A,W ))

+
∑
a

h1(a, V )(Q0(a,W )−m(a, V | Ψh(P0)),

where h1(a, V ) = h(a, V ) d
dψ
m(a, V | ψ). We will assume that h1(A, V ) =

d/dψ0m(A, V | ψ0)h(A, V ) is chosen so that h1 does not depend on ψ0,
which is easily arranged for the case that m is linear in ψ and that m is
logistic linear. Let D∗h(P0) = −c−1

0 Dh(P0) be the corresponding efficient
influence curve obtained by standardizing the efficient estimating function
by the negative of the inverse of the derivative matrix c0 = d/dψ0E0Dh(P0)
(noting that Dh(P0) can indeed be viewed as function in ψ0).

If Y is continuous and we use a normal error regression model as a working
model, then a targeted maximum likelihood estimator of ψh0 can be obtained
by adding to an initial estimatorQ0(A,W ) of E0(Y | A,W ) the d-dimensional
ε-extension εCh(g)(A,W ), where

Ch(g)(A,W ) =
h1(A, V )

g(A | W )
,

for some fit g of g0, and fitting ε with maximum likelihood estimation using
Q0 as offset. The resulting update Q1(A,W ) is now a first step targeted
maximum likelihood estimator. One estimates the distribution of W with
the empirical distribution. The estimate Q1 and the empirical distribution
of W now yields a substitution estimate of the target parameter ψh0.

Similarly, the same covariate extension can be used in a logistic regression
fit of Q0 if Y is binary.
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7.1 Penalized log-likelihood for candidate treatment
mechanism fits.

Let Q̂(Pn) be an initial regression estimator of Q0 = E0(Y | A,W ). For a
given Pn → ĝ(Pn), let Q̂∗ĝ(Pn) be the targeted maximum likelihood estimator
corresponding with the covariate Ch(ĝ(Pn)). Let Bn be a cross-validation
scheme, and let P 1

n,Bn
and P 0

n,Bn
be the empirical distributions of the valida-

tion and training sample, respectively, as identified by Bn ∈ {0, 1}n. Let

Σ̂CV (Pn)(ĝ) = EBnP
1
n,BnD

∗
h(Q̂

∗
ĝ(P

0
n,Bn), ĝ(P 0

n,Bn))2

be the cross-validated estimate of the covariance matrix of the efficient influ-
ence curve at the estimator Q̂ and a certain ĝ. We also consider the empirical
estimate of this covariance matrix

Σ̂(Pn)(ĝ) = PnD
∗
h(Q̂

∗
ĝ(Pn), ĝ(Pn))2.

Let
B̂(Pn)(ĝ) = EBnΨ̂ĝ(P

0
n,Bn)− Ψ̂ĝ(Pn)

be the bias estimator for the targeted maximum likelihood estimator Ψ̂ĝ(Pn) =

Ψh(Q̂
∗
ĝ(Pn)) obtained by plugging in Q̂∗ĝ(Pn) in the parameter mapping Ψ.

We will penalize the log-likelihood with normally distributed residuals,
or equivalently, the sum of squared residuals, with the estimate of the mean
squared error

1

n

n∑
i=1

(E(m(ai, vi | Ψ̂ĝ(Pn)))−m(ai, vi | Ψ̂ĝ(P0)))2.

This mean squared error can be decomposed as 1/n
∑n

i=1 Var(m(ai, vi | Ψ̂ĝ(Pn)))

and 1/n
∑n

i=1 Bias2(m(ai, vi | Ψ̂ĝ(Pn))). The variance terms of this mean
squared error can be estimated by

σ2
i (ĝ)

n
≡ z(ai, vi)

>Σ̂(Pn)(ĝ)z(ai, vi)

n
,

where

z(ai, vi) =
d

dβ
m(ai, vi | β)

∣∣∣∣
β=Ψ̂ĝ(Pn)

.
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We keep open the option that one uses either the cross-validated covariance
matrix Σ̂CV (Pn) or the empirical covariance matrix Σ̂(Pn).

The bias terms of this mean squared error can be estimated as

Bi(ĝ) ≡ EBnm(ai, vi | Ψ̂ĝ(P
0
n,Bn))−m(ai, vi | Ψ̂ĝ(Pn)).

If m is linear in β, then the latter reduces to

Bi(ĝ) = m(ai, vi | B(Pn)).

Thus, we obtain the following mean squared error estimate for the targeted
maximum likelihood estimator Ψ̂ĝ(Pn) for a given g-estimator:

M̂SE(Pn)(ĝ) ≡ 1

n

n∑
i=1

{
σ2
i (ĝ)

n
+Bi(ĝ)2

}
.

We suggest that the penalized log-likelihood could also only be penalized by
the empirical variance component of the MSE. Therefore, we also define

σ2(Pn)(ĝ) ≡ 1

n

n∑
i=1

σ2
i (ĝ)

n
.

Consider now the following two penalized log-likelihood criterions for ĝ,
given the initial estimator Q̂0:

L(ĝ | Q̂0) =
1

n

n∑
i=1

(Yi − Q̂∗ĝ(Pn)(Wi, Ai))
2 + M̂SE(Pn)(ĝ),

or

L(ĝ | Q̂0) =
1

n

n∑
i=1

(Yi − Q̂∗ĝ(Pn)(Wi, Ai)))
2 + σ2(Pn)(ĝ).

7.2 Algorithm for estimating the treatment mechanism
based on penalized log-likelihood.

Given any candidate adjustment set W ∗ ⊂ W , let an estimator ĝ(Pn)(W ∗)
of g0(A | W ∗) be specified.
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This allows us to define a criterion in adjustment sets W ∗, given the
current estimator Q̂:

L(W ∗ | Q̂)→ L(ĝ(Pn)(W ∗) | Q̂).

Given Q̂, one can now use this empirical criterion in adjustment sets to
construct an estimator of g0(Q̂) with a greedy type algorithm maximizing
over a set of candidate adjustment sets. Firstly, one can evaluate any given
adjustment set W ∗ with L(W ∗ | Q̂). One starts with the empty adjustment
set and selects the best addition move among a set of candidate addition
moves based on the criterion. One iterates this process until there does not
exist an addition move that improves the criterion. More aggressive greedy
algorithms can be implemented as well, as with any machine learning algo-
rithm that is based on iterative local maximization of an empirical criterion.

Alternatively, one creates a sequence of nested (increasing in size) adjust-
ment sets W ∗

j , j = 1, . . . , J , for each W ∗
j one obtains a particular estimator

ĝj(Pn) of g0(A | W ∗
j ) (e.g., using super learning), and maximizes the penal-

ized log-likelihood criterion over all these J adjustment sets.
In our algorithm in the next subsection defining the sequence of C-TMLEs

we apply this greedy algorithm to candidate estimators that are more non-
parametric than the selected estimator of g0 in the previous step.

7.3 Iteration to obtain sequence of collaborative tar-
geted maximum likelihood estimators.

Given an initial estimator Q̂ of E(Y | A,W ) and a corresponding estimator
ĝ(Q̂), sometimes denoted with ĝ, we define a resulting targeted maximum
likelihood estimator

Q̂∗ĝ(Pn) = Q̂(Pn) + εnh(ĝ(Q̂)(Pn)),

where εn is the least squares estimator of the regression coefficient ε treat-
ing Q̂(Pn) as offset and h(ĝ(Q̂)(Pn)) as covariate. We can define this as a
first step targeted maximum likelihood estimator based on an initial Q̂(Pn),
and corresponding censoring mechanism estimator ĝ(Q̂)). Let’s denote this
operation as:

Q̂1(Pn) = Q̂(Pn) + ε1nh(ĝ(Q̂)(Pn)).

This process can now be iterated by replacing Q̂(Pn) by this update Q̂1(Pn):

Q̂2(Pn) = Q̂1(Pn) + ε2nh(ĝ(Q̂1)(Pn)),
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where we require that the next censoring mechanism estimator ĝ(Q̂1)(Pn)
is obtained with the same algorithm as above, but now maximizing over
candidate estimators that are more nonparametric than ĝ(Q̂)(Pn).

In general, we define the k-th step of this targeted maximum likelihood
estimator as

Q̂k(Pn) = Q̂k−1(Pn) + εknh(ĝ(Q̂k−1)(Pn)),

where ĝ(Q̂k−1)(Pn) involves maximizing over more nonparametric candidate
estimators than ĝ(Q̂k−2)(Pn).

This algorithm results in a sequence of collaborative targeted maximum
likelihood estimators Ψ(Q̂k(Pn)) of ψ0, and corresponding increasingly non-
parametric censoring mechanism estimators ĝk(Pn) (i.e., ĝ(Q̂k−1)(Pn) in above
notation), k = 1, . . . , K.

7.4 Selection among different candidate TMLEs.

If the initial estimator Q̂ is indexed by a choice δ1 and the choice of algorithm
ĝ(Q̂) is indexed by a δ2, then this results in candidate collaborative targeted
maximum likelihood estimators Pn → Q̂k

δ1,δ2
(Pn), corresponding treatment

mechanism estimators Pn → ĝkδ2(Pn), and corresponding Pn → Ψ(Q̂k
δ1,δ2

(Pn))
targeted maximum likelihood estimators of ψ0, indexed by triplets (k, δ1, δ2).

In order to select among these candidate targeted maximum likelihood es-
timators indexed by (k, δ1, δ2) we use our proposed cross-validated penalized
log-likelihood defined as

L(k, δ1, δ2) = EBnP
1
n,Bn

(
Y − Q̂k

δ1,δ2
(P 0

n,Bn)(W,A)
)2

+M̂SECV (Pn)(Q̂k
δ1,δ2

, ĝkδ2).

7.5 Statistical inference.

The resulting collaborative targeted maximum likelihood estimator Qn =
Q̂∗(Pn) and corresponding gn = ĝ(Pn) solve the efficient influence curve equa-
tion 0 = PnD

∗(Ψ(Qn), gn, Qn), so that ψn = Ψ(Qn) can be analyzed with
our asymptotics theorem, and inference can be based on the influence curve.
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8 Simulation.

In this section we first describe an implementation of the C-TMLE algorithm,
then review other estimators in the literature before presenting the results of
three simulations designed to offer a performance comparison across a variety
of situations commonly found in the analysis of real-world data. Though
each of the estimators described below is capable of providing an unbiased
estimate of the parameter of interest under ideal conditions, results indicate
that the C-TMLE estimator consistently performs as well or better than the
others across all simulations. We end by comparing performance of the new
C-TMLE estimator with the standard TMLE.

8.1 C-TMLE implementation.

The specific choices outlined below were used to run the simulations presented
in this section and for the data analysis described in Section 9.

Step 1: Obtain a stage 1 estimate Q0
n of Q(A,W ). Though super learning to

determine optimal weighted combinations of candidate machine learn-
ing algorithms is recommended, any particular data adaptive machine
learning algorithm providing a consistent estimate is acceptable. For
these simulations the DSA algorithm introduced in Sinisi and van der
Laan (2004) was used to provide the initial estimate of the the true
regression of Y on treatment A and confounders W .

Step 2: Generate candidate second stage estimators Qk
n. A super learner

implementation described below is recommended for this step, however
in these simulations forward selection was used to build a sequence of
updates for g that are increasing in size.

Though not required, a sensible approach is to use the intercept model
for g to construct the covariate, h1, used to create the first targeted
maximum likelihood candidate, Q1

n.

g1(1 | W ) = P (A = 1), g1(0 | W ) = P (A = 0)

h1 =

(
I[A = 1]

g1(1 | W )
− I[A = 0]

g1(0 | W )

)
Q1
n = Q0

n + ε1h1, where ε1 is fitted by regressing Y on h with offset Q0
n.

Next we create an updated model for g. The intercept term is forced
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into the next model for g. Additional terms are incorporated as long as
they increase the overall penalized likelihood. Increasing the penalized
likelihood is equivalent to decreasing the sum of the empirical sum of
squared residuals plus the empirical variance of the efficient influence
curve (see below) at the updated Q-fit and the candidate g-fit. In
the event that no terms increase the penalized likelihood, the term
that provides the best updated penalized likelihood is forced into the
model.

As an example suppose that in addition to the intercept term, m terms,
ordered 1, . . . ,m, are incorporated into the model, at which point no
further increase of the penalized likelihood is possible. We define can-
didate estimators Q2

n through Qm+1
n as:

Q2
n = Q1

n + ε2h2

Q3
n = Q1

n + ε3h3

...

Qm+1
n = Q1

n + εm+1hm+1

where the model for gi+1
n contains all the terms in the model for gin

plus one additional term. At this point Qm+1
n is considered as a new

“initial” estimate of the true regression, and the entire process starts
over in order to build a second clever covariate augmenting the previous
fit gm+1

n used in hm+1. To continue the example, Qm+2
n = Qm+1

n +
εm+2hm+2. This process is iterated until all terms are incorporated into
the final model for g. If the maximal number of terms that can be
added is given by K, then this results in K candidate estimators Qk

n,
k = 1, . . . , K, corresponding with treatment mechanism estimators gkn,
k = 1, . . . , K. Note that the number of clever covariates in Qk

n that
are added to the initial estimator Q0

n cannot be predicted, and depends
on how many covariates can be added to the treatment mechanism
estimator in each iteration before reaching the local maximum (not
allowing a further increase of the penalized log-likelihood).

Note that the model for g is not restricted to main terms only. For ex-
ample, variables can be created that correspond to higher-order terms.
In addition, a categorical or continuous covariate can be split into many
binary covariates, thereby allowing for more nonparametric modelling
of the effect of a single covariate. When there are many covariates it
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might be desirable in practice to terminate the procedure before all co-
variates have been incorporated into the model for g, though care must
be taken to ensure that none of the candidates thereby excluded from
the subsequent selection process potentially maximize the penalized
log-likelihood criterion.

A superior version of this procedure uses the super learner to estimate
the series of increasingly nonparametric candidate TMLEs. For this
version we use the forward selection algorithm just described to obtain
an ordering 1, . . . , K over all potential confounders in the set W . The
super learner uses this ordering to estimate each treatment mechanism
when k = 1, 2, . . . , K that is superior to an estimate based on a main-
terms regression alone, except on those rare occasions when the true
treatment mechanism is a function of main terms only. (Of course, a
main-terms regression model can be incorporated into the super learner,
as well.) As in the algorithm presented above, the number of clever
covariates used to update the initial estimator Q0

n depends entirely on
the likelihood and cannot be pre-determined. Terms are incorporated
into the model for g for a single clever covariate until there is a decrease
in the likelihood. At that point the density estimate is updated from
Qm
n → Q

(m+1)
n and the process re-iterates until all candidate TMLEs

have been constructed.

We also note that we can represent these estimators Qk
n and corre-

sponding treatment mechanism estimators gkn as mappings Q̂k and ĝk

applied to the empirical distribution Pn: Qk
n = Q̂k(Pn), gkn = ĝk(Pn),

k = 1, . . . , K. These mappings Pn → Q̂k(Pn) represent our candi-
date estimators of the true regression Q0, and in the next step we use
cross-validation to select among these candidate algorithms.

Step 3: Select the estimator that maximizes the V-fold cross-validated pe-
nalized likelihood, where V was set to 5. Maximizing the penalized
likelihood is equivalent to minimizing the residual sum of squares (RSS)
plus a penalty term corresponding to the mean squared error (MSE),
which can be decomposed into variance and bias terms:

k∗ = argmin
k

cvRSSk + cvV ark + n ∗ cvBias2
k.
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These terms are defined as follows:

cvRSSk =
V∑
v=1

∑
i∈V al(v)

(Yi − Q̂k(P 0
nv)(Wi, Ai))

2

cvV ark =
1

V

V∑
v=1

var(ICv(Q̂
k(P 0

nv), g
k
n))

cvBiask =
1

V

V∑
v=1

Ψ(Q̂k(Pn))−Ψ(Q̂k(P 0
nv))

ICv(Q, g) =
∑

i∈V al(v)

I[Ai = 1]− I[Ai = 0]

g(Ai | Wi)
(Yi −Q(Ai,Wi))

+
∑

i∈V al(v)

Q(Wi, 1)−Q(Wi, 0)−Ψ(Q),

where v ranging from 1 to V indexes the validation set V al(v) for
the vth fold, and Q̂k(P 0

nv) denotes the k-th C-TMLE applied to the
corresponding training sample P 0

nv.

A standard error and 95% confidence interval for the C-TMLE esti-
mator can be constructed based on the variance of the efficient influence
curve (IC): SE(ψn) =

√
var(IC)/n. A 95% confidence interval is given as

ψn ± 1.96SE(ψn). Diagnostic tests not reported in this paper indicate that
confidence intervals constructed in this way achieve the desired coverage rate,
but this result is not theoretically grounded. We recommend the bootstrap
procedure for inference. Alternatively, inference can be based off of a cor-
rected influence curve for this estimator that does not ignore the contribution
from Q in the case where the selected ĝ is not a consistent estimator for g0.

There are other methods for obtaining ψC−TMLE
n . For example, given set

of candidate nuisance parameter estimators that includes highly nonparamet-
ric candidates we could use forward selection to build models of increasing
size, where each term in the model corresponds to a candidate nuisance pa-
rameter estimator. The best model can be selected using likelihood-based
cross-validation. Note that coefficients in front of each term are estimated by
least squares, thereby solving the efficient influence equation corresponding
to each nuisance parameter estimator, in particular the most nonparametric
of these.
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However, correlations among candidate estimators included as terms in
the model are likely to result in highly variable coefficient estimates, and
therefore increased variance in the estimate of the parameter of interest. Re-
moving all but the most nonparametric candidate estimator from the selected
model is an ad hoc bias/variance tradeoff not specifically targeted to the pa-
rameter of interest that did not improve performance in simulation studies.
This approach is not recommended when the candidate estimator ordering
can be determined.

8.2 Current methods for estimating marginal treat-
ment effects.

We review current methods for estimating the marginal effect of a treat-
ment A on outcome Y as a prelude to comparing performance on simulated
data. The estimators under consideration in addition to C-TMLE are the
G-computation estimator Robins (1986), the IPTW estimator (Hernan et al.
(2000), Robins (2000b)), the double robust IPTW estimator (DR−IPTW ),
(Robins and Rotnitzky (2001); Robins et al. (2000); Robins (2000a)), and an
extension to propensity score matching implemented in a publicly available
R package (Sekhon (2008)).

Given observations O = (W,A, Y ), we are interested in estimating an
adjusted marginal effect of treatment A on outcome Y given a vector W
of potential confounders. If we restrict our discussion to the case where
A is binary our parameter of interest is given by: ψ = EW [E[Y | A =
1,W ]−E[Y | A = 0,W ]]. Each of the four estimators we are considering rely
on estimates of one or both of the following nuisance parameters: Q(A,W ) ≡
E[Y | A,W ] and g(A,W ) ≡ P (A | W ). The first nuisance parameters can be
estimated by, for example, a regression of Y on A and W . When the second
nuisance parameter is unknown it can be estimated by a logistic regression
of A on W . Each estimator is defined below.
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ψGcompn =
1

n

n∑
i=1

Qn(1,Wi)−Qn(0,Wi)

ψIPTWn =
1

n

n∑
i=1

[I(Ai = 1)− I(Ai = 0)]
Yi

gn(Ai,Wi)

ψDR−IPTWn =
1

n

n∑
i=1

[I(Ai = 1)− I(Ai = 0)]

gn(Ai | Wi)
(Yi −Q0

n(Wi, Ai))

+
1

n

n∑
i=1

Q0
n(1,Wi)−Q0

n(0,Wi)

ψC−TMLE
n =

1

n

n∑
i=1

[I(Ai = 1)− I(Ai = 0)]

g∗n(Ai | Wi)
(Yi −Q∗n(Wi, Ai))

+
1

n

n∑
i=1

Q∗n(1,Wi)−Q∗n(0,Wi)

ψPropScoren =
1

m

m∑
i=1

[I(Ai = 1)− I(Ai = 0)]Yi

where Q0
n refers to an initial untargeted estimate of Q(A | W ), Q∗n refers

to an updated targeted estimate of Q(A | W ) described in detail in the
next section, and m in the last equation indexes observations matched on
propensity score and covariates W .

The G-computation estimator relies on consistent estimation of Q. The
IPTW estimator depends on consistent estimation of g. DR−IPTW yields
valid estimates if one or both nuisance parameters are estimated consis-
tently. The augmented propensity score estimator included here uses the
genetic algorithm (Holland and Reitman (1977)) to determine a combina-
tion of propensity score and covariate values that provides the best matches
between observations where A = 1 and observations where A = 0. The
marginal treatment effect is estimated as the average over all matches. ETA
violations reduce the quality of the match and introduce bias into the es-
timate. This method is especially effective when overall match quality is a
function of true confounders. Estimates can suffer even when match qual-
ity is high if a small subset of covariates that are large confounders are not
well-matched.
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8.3 Comparison of estimators.

For each simulation we have a data structure O = (W,A, Y ), where W =
(W1, . . . ,W6) is a set of potential confounders of the relationship between
binary treatment variable A and continuous outcome Y . Our parameter of
interest is the marginal effect of treatment on the outcome: ψ = EW [E[Y |
A = 1,W ] − E[Y | A = 0,W ]]. The simulations are designed to demon-
strate estimator performance in the face of confounding of the relationship
between treatment and outcome, complex underlying data-generating distri-
butions (e.g., high level interactions and non-linear functional forms), and
practical violations of the Experimental Treatment Assumption (ETA), i.e.,
P (A = a | W ) < α, for some small α, implying that there is very little possi-
bility of observing both treated and untreated subjects for some combination
of covariates present in the data.

8.3.1 Data generation.

Covariates W1, . . .W5 were generated as independent normal random vari-
ables. W6 is a binary variable.

W1,W2,W3,W4,W5 ∼ N(0, 1)

logit(W6) = .3W1 + .2W2 − 3W3

Two treatment mechanisms were defined:

logit (g1,0(A | W )) = .3W1 + .2W2 − 3W3

logit (g2,0(A | W )) = .15(.3W1 + .2W2 − 3W3)

The observed outcome Y was generated as

Y = Qi,0(A,W ) + ε, ε ∼ N(0, 1)

with corresponding regression equations:

Q1,0(A,W ) = A+ .5W1 − 8W2 +W3 + 8W3 − 2W5

Q2,0(A,W ) = A+ .5W1 − 8W2 +W3 + 8W 2
3 − 2W5

We consider three different data-generating distributions, (Q1,0, g1,0) in simu-
lation 1, (Q2,0, g1,0) in simulation 2, and (Q2,0, g2,0) in simulation 3. Note that
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W6 is strongly correlated with treatment mechanism A in simulations 1 and
2 (corr=0.54), but is not an actual confounder of the relationship between A
and Y . W1,W2, and W3 are confounders. The linear nature of the confound-
ing due to W3 in simulation 1 differs from that in simulations 2 and 3, where
the true functional form is quadratic. In this way simulations 2 and 3 closely
mimic realistic data analysis settings in which the unknown underlying func-
tional form is seldom entirely captured by the regression model used in the
analysis. Finally, the treatment mechanism in simulations 1 and 2 leads to
ETA violations (p(A = a | W ) ranges between 9 × 10−7 and 0.9999978). In
simulation 3 there are no ETA violations (0.11 < p(A = a | W ) < 0.88). In
each simulation the true value of the parameter of interest is 1.

8.3.2 Simulation.

1000 samples of size n = 1000 were drawn from each data generating dis-
tribution. Marginal treatment effect estimates were calculated based on the
unadjusted regression of Y on A, G-comp, IPTW,DR − IPTW , propen-
sity score and C-TMLE methods. A main-effects model for G-comp and
DR− IPTW, Q̂, was obtained using the DSA algorithm with the maximum
model size set to seven. The propensity score function was run using de-
fault settings except population size for each generation was increased to
200. A model for the treatment mechanism ĝ used in IPTW,DR − IPTW
and propensity score estimation was also selected by DSA, again restricted
to main terms. In contrast, the C-TMLE algorithm includes an aggressive
search through a larger space of models to obtain an initial estimate of the
density. As a proxy for the super-learner algorithm we used the DSA algo-
rithm to select a model for Q̂ containing at most six terms, allowing quadratic
terms and two-way interactions.

8.3.3 Results.

Mean estimates of the treatment effect and standard errors are shown in
Table 1 for each simulation. Estimates and 95% confidence intervals are
plotted in figures 2 and 3.
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Table 1: Mean estimate and standard errors for each estimator based on 1000
iterations with sample size n = 1000. ψ0 = 1.

Simulation 1 Simulation 2 Simulation 3

ψn SE ψn SE ψn SE

Unadj −11.97 0.64 −0.98 0.91 0.29 0.86
G-comp 0.99 0.09 0.76 1.22 0.95 0.68
IPTW −4.36 0.72 0.03 0.76 0.83 0.90
DR-IPTW 0.99 0.09 0.94 0.62 1.03 0.80
C-TMLE 0.99 0.09 1.00 0.10 1.00 0.07
PropScore −1.22 0.82 0.54 0.73 0.96 0.25
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−
4
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Simulation 1

ψψ̂

Unadj Gcomp IPTW DR−IPTW C−TMLE PropScore

Figure 2: Estimates and 95% confidence intervals for each estimation method,
simulation 1. Horizontal dashed line is at true parameter value.
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Figure 3: Estimates and 95% confidence intervals for each estimation method,
simulations 2 and 3. Dashed line is at true parameter value.
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Figures 2 and 3 illustrate each estimator’s behavior. As expected, esti-
mators relying on consistent estimation of Q are unbiased in simulation 1,
estimators relying on consistent estimation of g are unbiased in simulation 3.

• The unadjusted estimator yields biased results in all three simulations
due to its failure to adjust for confounders.

• The G-computation estimator performs well in simulation 1 when the
model is correctly specified. We understand that mis-specification (sim-
ulations 2 and 3) will often, though not always, lead to bias in the
estimates. However the plots highlight another phenomenon that is
easy to overlook. Even when bias is not large, the inability of the mis-
specified model to adequately account for the variance in the outcome
often leads to large residual variance of the estimator, resulting in a
failure to reject the null hypothesis.

• Truncation bias due to ETA violations causes the IPTW estimator
using truncated weights to fail in simulations 1 and 2. The estimate
is not biased in simulation 3, but the variance is so large that even in
this setting where we’d expect IPTW to be reliable it fails to produce
a significant result.

• DR − IPTW estimates are unbiased and have low variance when the
functional form is correctly modeled by the regression equation (simu-
lation 1). Though we see little bias in the other two simulations, the
variance is large due to mis-specification of the treatment mechanism.
Because W6 is a strong predictor of A and is indistinguishable from a
true confounder of the relationship between Y and A it is always in-
cluded in the treatment mechanism, behavior that does not help achieve
an accurate estimate of the true treatment effect.

• The propensity score estimator is known to perform poorly when there
are ETA violations, e.g. simulations 1 and 2 (Sekhon (2008)). It does a
reasonable job in simulation 3, though the confidence interval is not as
tight as for the collaborative targeted maximum likelihood estimator.

• By carefully constructing a first stage estimator of the initial density
and then building a model for the treatment mechanism that adjusts
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only for confounding that has not been addressed in stage 1 the C-
TMLE estimator provides unbiased results with the smallest variance
in all three simulated scenarios.

8.4 Comparison of C-TMLE and TMLE.

The double robust property of the targeted maximum likelihood estimator
obviates the need for accurate estimation of both Q and g since correct
specification of either one leads to consistent estimates of the parameter of
interest. However, accurate estimates of both are needed to achieve minimum
variance. Implementations of the standard targeted maximum likelihood es-
timator (TMLE) therefore strive for ideal estimates of both Q and g. In
contrast, the collaborative nature of the second stage of the C-TMLE esti-
mation algorithm leads to selection of an estimator for g that includes only
that portion of the treatment mechanism needed to reduce bias not already
adequately addressed by the first stage estimator for Q. In general, covari-
ates included in the model for Q tend to not be incorporated into the model
for g because they do not increase the penalized log-likelihood. At the same
time, confounders that are not adequately adjusted for in the initial density
estimate are quickly added to model for g unless the gain in bias reduction
is offset by too great an increase in variance. When the initial estimate of
the density is a very good fit for the true underlying density, TMLE and C-
TMLE have similar performance. When the initial fit is less good, C-TMLE
makes judicious choices regarding inclusion of covariates in the treatment
mechanism, leading to lower variance. This is especially true when there are
ETA violations. Data were simulated to illustrate this phenomenon.

8.4.1 Data generation.

Covariates W1,W2, and W3 were generated as independent random uniform
variables over the interval [0, 1]. W4 and W5 are independent normally dis-
tributed random variables.

W1,W2,W3 ∼ U(0, 1)

W4,W5 ∼ N(0, 1)

Treatment mechanism g0 was designed so that W3 is highly predictive of
treatment:

logit (g0(A | W )) = 2W1 +W2 − 5W3 +W5
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The observed outcome Y was generated as

Y = Q0(A,W ) + ε, ε ∼ N(0, 1)

with corresponding regression equation:

Q0(A,W ) = A+ 4W1 − 5W2 + 5W4W5

8.4.2 Simulation.

C-TMLE and TMLE estimates of the parameter of interest, again defined as
ψ = EW [E[Y | A = 1,W ]−E[Y | A = 0,W ]], were obtained for 1000 samples
of size n = 1000 drawn from data generating distribution (Q0, g0). For this
study we deliberately select a mis-specified main-terms only model for Q by
running the DSA algorithm on 100,000 observations drawn from that same
distribution. P (A = a | W ) for these observations ranges from 0.004 to 0.996.
Approximately 17% of the observations have covariates indicating that the
probability of receiving treatment is less than 0.05, indicating that practical
ETA violations in finite samples will cause unstable TMLE estimates.

For each iteration an initial estimate of the density, Q0
n, was obtained

by fitting the selected model, Y = A + W1 + W2, on n observations in the
sample. We expect that any estimate of ψ based solely on this model is
likely to be incorrect because the model fails to take into account the effect
on the outcome of the missing interaction term, and also fails to adjust for
the confounding effect of W5. The targeting step for both targeted maximum
likelihood estimators reduces this bias.

In order to construct the covariate used to target the parameter of interest
in the updating step of the TMLE algorithm we obtain an estimate gn of
g0 by running the DSA algorithm, allowing quadratic terms and two-way
interaction terms to enter the model. This model was not fixed over the 1000
iterations; the model selection process was carried out each time a sample
was drawn from the population. Similarly, covariates that were candidates for
inclusion in the model for g in the second stage of the C-TMLE estimation
algorithm include (W1, . . . ,W5, W 2

1 , . . . ,W
2
5 ), and all two-way interaction

terms (WiWj), where i 6= j.

8.4.3 Results

Results of the simulation are shown in Table 2. A small number of TMLE
estimates were major contributers to the variance of that estimator. The
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three highest TMLE estimates of the treatment effect were (771.914, 37.219,
9.518). It is likely that these high values arise from atypical samples contain-
ing observations that presented unusually strong ETA issues. In contrast,
all C-TMLE estimates calculated from those same samples range between
0.307 and 1.698. Both estimator’s average treatment effect estimates are not
far from the true value, ψ0 = 1, though C-TMLE. As expected, the vari-
ance of the TMLE estimator is many times larger than that of the C-TMLE
estimator.

Not surprisingly, W3, the strong predictor of treatment that is not a true
confounder of the relationship between treatment and outcome, is included
in every one of the 1000 models for g selected by the DSA algorithm, but
is in only 35 of the models constructed in the second stage of the C-TMLE
algorithm. At the same time, the interaction term W4W5 is included in only
two out of 1000 models for g0 selected by DSA, but is present in 576, more
than half, of the collaborative models.

Table 2: Comparison of C-TMLE and TMLE estimators at different levels
of truncation. Mean estimate and variance based on 1000 iterations.

truncation # obs
level truncated ψn variance

C-TMLE ∞ 0 0.982 0.041

TMLE ∞ 0 1.730 597.518
40 1 1.358 162.379
10 2 0.941 1.993
5 9 0.915 1.680

8.5 Confidence Intervals

The variance of the uncorrected influence curve provides the basis for calcu-
lation of a 95% confidence interval for the C-TMLE estimate.

95%CI = ψC−TMLE ± 1.96
√

(var(IC)/n)

Chapter 4. Collaborative Targeted Maximum Likelihood Estimation

184
Hosted by The Berkeley Electronic Press



A confidence interval was constructed for each of the 1000 iterations in
simulation 4, with Q mis-specified by a main-terms only regression model.
Confidence intervals were also created for an additional 1000 samples from
the same data generating distribution that were analyzed using a correct
model for Q. When Q is correctly specified 93% of the confidence inter-
vals constructed at a nominal 95% level contained the true parameter value.
When Q was mis-specified confidence intervals were conservatively estimated,
with 99% containing the true value.

9 Data Analysis.

We apply the C-TMLE estimator to an observational dataset previously an-
alyzed by Bembom et al. (2008) and Bembom et al. (2007) with the goal
of identifying HIV mutations that affect response to the antiretroviral drug
lopinavir. The data includes observations, O = (W,A, Y ), where the out-
come, Y , is the change in log10 viral load measured at baseline and at follow-
up after treatment has been initiated. If follow-up viral load was beneath
the limit of detection Y was set to the maximal change seen in the popula-
tion. A ∈ {0, 1} is an indicator of the presence or absence of a mutation of
interest, taking on the appropriate value for each of the 26 candidate muta-
tions in 26 separate analyses. W consists of 51 covariates including treatment
history, baseline characteristics, and indicators of the presence of additional
HIV mutations. Practical ETA violations stemming from high correlations
among some of the covariates and/or low probability of observing a given
mutation of interest make it difficult to obtain stable low variance estimates
of the association between A and Y . Bembom used a targeted maximum
likelihood estimation approach incorporating data-adaptive selection of an
adjustment set that relies on setting a limit on the maximum allowable trun-
cation bias introduced by truncating treatment probabilities less than α to
some specified lower limit. Covariates whose inclusion in the adjustment set
introduces an unacceptable amount of bias are not selected. That study’s
findings showed good greement with Stanford HIVdb mutation scores, values
on a scale of 0 to 20 (http://hivdb.stanford.edu, as of September, 2007, sub-
sequently modified ), where 20 indicates evidence exists that the mutation
strongly inhibits response to drug treatment and 0 signifies that the mutation
confers no resistance. Because the C-TMLE method includes covariates in
the treatment mechanism only if they improve the targeting of the parameter
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of interest without having too adverse an effect on the MSE, we expect simi-
lar performance without having to specify truncation levels or an acceptable
maximum amount of bias.

9.1 Analysis description.

The dataset consists of 401 observations on 372 subjects. Correlations due to
the few subjects who contributed more than one observation were ignored.
Separate analyses was carried out for each mutation. In each, an initial
density estimate, Q0

n, was obtained using DSA restricted to addition moves
only to select a main-terms only model containing at most 20 terms, where
candidate terms in W include pre-computed interactions detailed in Bembom
et al. A was forced into the model. An estimate of the effect on change in
viral load was recorded for each mutation. The variance of the estimate
was calculated from the variance of the influence curve evaluated on the
observations in the dataset and used to calculate confidence intervals.

9.2 Results.

Table 3 lists the Stanford mutation score associated with each of the HIV
mutations under consideration, as well as the C-TMLE estimate of the ad-
justed effect of mutation on lopinavir resistance. The variance of the un-
corrected influence function was used to calculate 95% confidence intervals.
Confidence intervals entirely above zero indicate a mutation increases resis-
tance to lopinavir. Eight of the twelve mutations having a mutation score
of 10 or greater fall into this category. Point estimates for the remaining
four mutations were positive, but the variance was too large to produce a
significant result. Only one of the six mutations thought to confer slight re-
sistance to lopinavir was flagged by the procedure, though with the exception
of p10FIRVY point estimates were positive. Stanford mutation scores of 0
for four of the five mutations found to have a significantly negative effect
on drug resistance support the conclusion that these mutations do not in-
crease resistance, but are not designed to offer confirmation that a mutation
can decrease drug resistance. However, Bembom et al. report that there is
some clinical evidence that two of these mutations, 30N and 88S, do indeed
decrease lopinavir resistance.

Our findings are quite consistent with the Stanford muation scores and
with the results from the previous analysis using the data-adaptively selected
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adjustment set targeted maximum likelihood estimation approach. The C-
TMLE method was able to achieve these results without relying on ad hoc
or user-specified tuning parameters.

Chapter 4. Collaborative Targeted Maximum Likelihood Estimation

187
http://biostats.bepress.com/ucbbiostat/paper254



Table 3: Stanford score (2007), C-TMLE estimate and 95% confidence inter-
val for each mutation. Starred confidence intervals do not include 0.

mutation score estimate 95% CI

p50V 20 1.703 ( 0.760, 2.645)∗

p82AFST 20 0.389 ( 0.084, 0.695)∗

p54VA 11 0.505 ( 0.241, 0.770)∗

p54LMST 11 0.369 ( 0.002, 0.735)∗

p84AV 11 0.099 (-0.130, 0.329)
p46ILV 11 0.046 (-0.222, 0.315)
p48VM 10 0.306 (-0.162, 0.774)
p47V 10 0.805 ( 0.282, 1.328)∗

p32I 10 0.544 ( 0.312, 0.777)∗

p90M 10 0.209 (-0.058, 0.476)
p82MLC 10 1.610 ( 1.330, 1.890)∗

p84C 10 0.602 ( 0.471, 0.734)∗

p33F 5 0.300 (-0.070, 0.669)
p53LY 3 0.214 (-0.266, 0.695)
p73CSTA 2 0.635 ( 0.278, 0.992)∗

p24IF 2 0.229 (-0.215, 0.674)
p10FIRVY 2 −0.266 (-0.522,-0.011)∗

p71TVI 2 0.019 (-0.243, 0.281)
p30N 0 −0.440 (-0.853,-0.028)∗

p88S 0 −0.474 (-0.840,-0.108)∗

p88DTG 0 −0.426 (-0.842,-0.010)∗

p36ILVTA 0 0.272 (-0.001, 0.544)
p20IMRTVL 0 0.178 (-0.111, 0.467)
p23I 0 0.822 (-0.050, 1.694)
p16E 0 0.239 (-0.156, 0.633)
p63P 0 −0.131 (-0.392, 0.131)
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10 Discussion.

For most data sets little to no knowledge is available about the data gen-
erating distribution. As a consequence, the true model is a large infinite
dimensional semi-parametric model. In such models there are many data
adaptive approaches that can be considered for fitting the true distribution of
the data, based on different approximation function spaces, different search-
ing strategies for maximizing an empirical criterion (such as the empirical
log-likelihood) over these spaces, and different methods for selecting the fine
tuning parameters indexing the function spaces and search strategies. Each
of these algorithms operates within the semi-parametric model, so that none
of them should have any preference a priori. However, depending on the true
data generating distribution, these algorithms will have very different levels
of performance in approximating the true data generating distribution. As
a consequence, cross-validation based super learning should be employed to
find the best weighted combination among a large user supplied set of candi-
date estimators of the true data generating distribution. The oracle property
of the cross-validation selector (van der Vaart et al. (2006), van der Laan et al.
(2006)) teach us that the super learner will asymptotically perform exactly as
well, w.r.t. the Kullback-Leibler dissimilarity measure, as the best weighted
combination of the candidate algorithms optimized for each data set.

Even though the super learning application is an important advance over
relying on any one particular estimator, it represents a best fit for the purpose
of estimation of the whole distribution of the data, so that the bias-variance
trade-off is not targeted w.r.t. the parameter of interest.

Therefore, our methodology involves a second targeted modification of the
first stage super learner fit that aims to reduce the bias w.r.t the target pa-
rameter, while simultaneously increasing the likelihood fit. This is achieved
by first determining the single fluctuation function that would yield asymp-
totic optimal bias reduction as defined by the efficient influence curve of the
target parameter. This fluctuation function needs to have a score-vector at
zero fluctuation whose linear span includes the efficient influence curve of
the target parameter. This fluctuation function depends on an unknown
nuisance parameter of the data generating distribution, such as a censoring
mechanism.

We now define an iterative sequence of subsequent fluctuations, start-
ing with the initial super learner fit, where the subsequent fluctuation func-
tions are estimated with increasingly nonparametric estimates of the nuisance
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parameter, including a final fully non-parametrically estimated fluctuation
function. In addition, by construction, we make sure that for each fluctuation
function the nuisance parameter estimator that results in maximal increase in
likelihood fit is selected, among the candidate nuisance parameter estimators
that are more nonparametric than the one selected at previous fluctuation
function. In this way, we arrange that most of the targeted bias reduction
occurs in the first few fluctuations. The actual number of times we carry out
the subsequent update is selected with likelihood based cross-validation.

Essentially, we try to move towards the asymptotically optimal bias re-
duction along a sequence of targeted bias reduction steps, but we stop moving
towards this asymptotically optimal bias reduction when it results in a loss
of likelihood fit as measured by the cross-validated log-likelihood. We also
propose a finer sequence of nested targeted bias reduction steps (i.e., a finer
sequence of candidate second stage estimators) whose fits contain this set of
candidate-fits as a subsequence, thereby potentially providing an additional
improvement in practical performance of the resulting C-TMLE.

Theoretical results teach us that this push towards the asymptotically
optimal bias reduction also takes into account how well the initial estimator
already approximates the true distribution, by giving preference to targeted
bias reduction steps that improve the log-likelihood fit. As a consequence,
the C-TMLE is able to avoid selecting irrelevant or harmful (w.r.t. relevant
factor of density) fits of the nuisance parameter, even though such fits might
improve the overall fit of the nuisance parameter. That is, the fit of the
nuisance parameter is targeted towards our primary goal, the parameter of
interest.

In addition, we propose to replace the log-likelihood in this estimator by
a penalized log-likelihood, where the penalty is scaled appropriately, has neg-
ligible contribution for nicely identifiable target parameters, but blows up for
fits that result in extremely variable or biased estimators of the parameter of
interest. Even though the penalty’s effect on the Kullback-Leibler dissimi-
larity is asymptotically negligible for identifiable parameters, for parameters
that are borderline identifiable, this penalty can yield dramatic additional fi-
nite sample improvements to the C-TMLE. In essence, it builds in a sensible
robustness of the resulting C-TMLE as an estimator of the target parame-
ter. The penalized log-likelihood can now be used to both build candidate
nuisance parameter estimators, and to select among the nested sequence of
candidate second stage estimators, thereby providing additional improve-
ments to the candidate nuisance parameter estimators (avoiding candidates
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that result in bad or even horrific estimators of target parameter) as well as
to the selector among them.

To summarize, this article provides a template for building likelihood
based estimators in semiparametric models (i.e., machine learning algorithms)
that are targeted towards a particular target feature of the distribution of
the data. The combination of 1) likelihood based cross-validation to se-
lect among a variety of choices, 2) super learning to select combinations of
candidate choices, 3) building a nested sequence of candidate nuisance pa-
rameter estimators that are increasingly nonparametric and a corresponding
sequence of two-stage targeted maximum likelihood estimators 4) penalized
log-likelihood using an appropriately scaled penalty that is responsive to the
MSE of the fit for the target parameter, provides a blueprint for construction
of very powerful and robust machines for estimating target parameters in all
kinds of semiparametric and nonparametric models.

11 Extensions.

11.1 Super Learning for Estimation of Censoring Mech-
anism.

In one particular embodiment of our proposed template for collaborative
TMLE we first generate a sequence of highly data adaptive estimators of the
censoring mechanism based on adjustment sets that are increasing in size.
For each adjustment set we propose to use a super learner as estimator of
the censoring mechanism. These nested adjustment sets could be extracted
from an ordered list of the covariates. A variety of orderings could be con-
sidered. One interesting proposed ordering is obtained by first running the
forward main term regression approach for building a censoring mechanism
based on the log-likelihood of the corresponding targeted maximum likeli-
hood estimator, as presented in detail in our data analysis section, and then
use the ordering in which the covariates entered as the ordering.

Given the sequence of super learners corresponding with adjustment sets
that are increasing in size, we run our collaborative TMLE algorithm that
makes sure that, given the previous clever covariate uses the super learner
for the top K covariates in the list, the next clever covariate only considers
censoring mechanisms for adjustment sets defined by top L covariates with
L > K.
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11.2 Factorization of the Censoring Mechanism.

Suppose now that the likelihood of the censoring mechanism factors in two or
more terms, such as a treatment mechanism and right-censoring mechanism.
For example, a treatment mechanism of a time-dependent treatment across
multiple time points factors as g(Ā | X) =

∏K
j=0 g(A(j) | Ā(j − 1), X).

Our collaborative TMLE algorithm requires us to specify the set of candi-
date censoring mechanism estimators, given that the previous clever covariate
selected a particular censoring mechanism estimator. We need to make sure
that these candidates are more nonparametric than the previously selected
one, so that for increasing number of clever covariates we will converge to
an (maximally) unbiased estimator of the censoring mechanism, even though
for our particular data set we might only select few clever covariates.

Suppose we obtain an ordered list of candidate increasingly nonparametric
estimators for each factor of the censoring mechanism. So for two factors,
this results in a matrix of candidate estimators of the censoring mechanism,
and any non-decrease in both coordinates results in a more nonparametric
estimator. Given the previously selected estimator, corresponding with one
location in this matrix, we can consider the right-upper quadrant as the set
of candidate censoring mechanism estimators to consider.

In order to obtain sensible orderings of increasingly nonparametric esti-
mators for each factor of the censoring mechanism we might first run the
forward main term algorithm, mentioned in above subsection and presented
in detail in the data analysis section. This algorithm now involves selecting
the next best main term to add for each factor, and also selecting between
these factor-specific best moves. We can now use the ordering in which the
main terms are added into a factor as an ordered list of adjustments sets
for that factor of the censoring mechanism, and corresponding candidate
estimators (e.g. super learners).

11.3 Interpretability of the Parameter estimate in the
presence of sparse data bias.

For the sake of illustration, consider the collaborative targeted maximum
penalized likelihood estimator of a treatment effect EY (1) − EY (0) based
on the data structure (W,A, Y = Y (A)). Due to the penalization of the
log-likelihood certain strong confounders of the treatment effect might have
been excluded in the selected adjustment set for the treatment mechanism
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estimator. This raises the question if we can still interpret the estimator as
an estimator of the fully adjusted treatment effect.

In order to provide a more careful interpretation of the effect estimate
and its standard error, we propose the following approach.

Firstly, we report the collaborative targeted maximum penalized likeli-
hood estimate (C-TMPLE) of the treatment effect, the treatment mechanism
estimator gn and the adjustment set selected for the treatment mechanism
estimator gn (i..e, the one in the final clever covariate), the empirical vari-
ance of the influence curve at the C-TMPLE and the treatment mechanism
estimator, and the initial estimator Q0

n.
Secondly, we re-estimate the treatment effect with the C-TMLE , i.e.

based on the regular (non-penalized) log-likelihood, using the same initial
estimator Q0

n as in the C-TMPLE. Again, we report the estimate, the se-
lected treatment mechanism estimator, its adjustment set, and the empirical
variance of the influence curve at the C-TMLE and the treatment mechanism
estimator.

We now suggest that the adjustment set of the treatment mechanism
selected by the C-TMLE represents the set of confounders one would like
to adjust for in order to remove all confounding. These confounders are
related to both the outcome and the treatment. On the other hand, the
confounders in the adjustment set of the treatment mechanism selected by
the penalized C-TMPLE represents the set of confounders we were able to
adjust for without incurring too large a penalty w.r.t. variance. That is,
the penalized C-TMPLE accepted bias by not adjusting for some extreme
confounders, in order to reduce variance.

As a consequence a comparison of the two sets of output for the penalized
and regular C-TMLE’s is of interest. In particular, we can report the ratio of
the variances var(IC)unpenalized/var(IC)penalized. A value close to 1 indicates
that penalized was able to adjust for all relevant confounders, but a value
much larger than 1 indicates the opposite. In addition, we can report the
terms in the regular unpenalized treatment mechanism that are not present
in the penalized treatment mechanism. We view these left-out confounders
as the ones that are responsible for ETA/sparse data bias (maybe alone,
or perhaps in combination with other covariates already in the model). In
order to interpret the penalized C-TMPLE, we would state that the reported
treatment effect was not adjusted for these left-out confounders (which did
appear in the regular C-TMLE). Finally, we can also report the increase in
efficiency and change in effect estimate when we remove these confounders
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(say one by one) from the treatment mechanism estimator of the regular C-
TMLE, allowing us to also provide the user a sense of how strong/problematic
these left-out confounders are (or how much of a difference it makes to include
them versus not).

If the user supplied adjustment set used in the definition of the treatment
effect is such that the treatment mechanism estimators in the penalized and
regular C-TMLE are almost identical or that the variance estimates are iden-
tical, we can feel confident that we have estimated the parameter of interest
and can base statistical inference on the estimated variance of its influence
curve. That is, in this case the analysis is complete and satisfactory.

On the other hand, if there is a discrepancy, we will point to the prob-
lematic confounders that are causing the problem (the ones in treatment
mechanism of the regular C-TMLE that are not included in the treatment
mechanism of the penalized C-TMLE), and can even estimate at least some
of the problematic treatment probabilities to illustrate the lack of identifia-
bility.

This can now be used to define realistic treatment rules that are based on
these problematic confounders by never assigning very unlikely treatments,
and a corresponding treatment effect. That is, the hardly identifiable static
treatment effect is approximated by a nicely identifiable effect of treatment
rules that approximate the static treatments. Specifically, the treatment
mechanism of the regular C-TMLE implies rules such as d1(W ) that assigns
treatment 1 if g(1|W ) > α, and zero otherwise, and d0(W ) that assigns
treatment 0, if g(0|W ) > α and zero otherwise, and we would then define as
target parameter EYd1 − EYd0 .

Finally, we estimate the realistic parameter, and by now the difference
between the penalized and collaborative TMLE will be small, so that in-
terpretation and inference is understood. Some fine tuning of the choice
of realistic parameter might be required till the penalization is not causing
much change anymore.

To summarize, we are suggesting the following general template for data
analysis to deal with sparse data bias. 1) The user provides a target pa-
rameter and we use the penalized C-TMPLE to provide our best estimate
and inference. 2) If necessary, based on the comparison of the penalized and
non-penalized C-TMLE we will warn the user about severe degrees of sparse
data bias w.r.t. the target parameter, affecting the reliability of the interpre-
tation of the parameter and its inference. 3) We will show the user where the
data is sparse. 4) We suggest realistic parameters in the neighborhood of the
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original target parameter for treatment that will suffer much less from sparse
data bias and can still be nicely interpreted. 5) We rerun the penalized and
regular TMLE to determine a new realistic target parameter, in which the
effect of the penalization is small, and report its estimate and inference. This
new parameter is perhaps even more interesting than the original, since it
more closely corresponds to what occurs in the real world. Since the selection
of the realistic parameter is merely based on comparison of variances (not
based on effect sizes and p-values) the reported statistical inference might
still be reliable.

11.4 Parallel consideration multiple initial and second
stage estimators in C-TMLE .

We already stressed the following in our description of the C-TMLE template
in section 2.

We can imagine having K initial estimates of the Q part of the likelihood,
Q0

1, ...Q
0
K . For any one of these we outline above how to construct a sequences

of increasingly data-adaptive nuisance parameter estimators, {ĝ1, . . . , ĝm}
and corresponding two-stage estimators. We also can imagine different meth-
ods for obtaining such a sequence of nuisance parameter estimators having
the property that ĝk+1 is more non-parametric than ĝk. Thus, for each initial
estimator choice j ∈ 1, . . . , K we have multiple two-stage estimators of Q0,
resulting in a matrix of candidate two-stage estimators. We can select among
this using the cross-validated (possibly penalized) log-likelihood.

11.5 Not cross-validating the initial estimator when
fine tuning the second stage in the C-TMLE.

When selecting between candidate two stage estimators using the same initial
estimator one could use the cross-validated log-likelihood that treats the
initial estimator as given. In this way, the selector for the second stage will be
more agressive and thereby pursue more bias reduction w.r.t. the parameter
of interest than the selector based on honest cross-validation. The use of this
quasi cross-validated log-likelihood might even be appropriate across different
initial estimators as well as long as the initial estimators itself were fine tuned
based on cross-validation so that the empirical log-likelihood of the different
initial estimators reflect true fit of the data.
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Covariate Adjustment in Randomized Trials with Binary

Outcomes: Targeted Maximum Likelihood Estimation

Kelly L. Moore and Mark van der Laan

Abstract

Covariate adjustment using linear models for continuous outcomes in randomized trials has been
shown to increase efficiency and power over the unadjusted method in estimating the marginal effect
of treatment. However, for binary outcomes, investigators generally rely on the unadjusted estimate
as the literature indicates that covariate-adjusted estimates based on logistic regression models are
less efficient. The crucial step that has been missing when adjusting for covariates is that one must
integrate/average the adjusted estimate over those covariates in order to obtain the marginal effect.
We apply the method of targeted maximum likelihood estimation (MLE), as presented in van der Laan
and Rubin (2006), to obtain estimators for the marginal effect using covariate adjustment for binary
outcomes. We show that the covariate adjustment in randomized trials using logistic regression models
can be mapped, by averaging over the covariate(s), to obtain a fully robust and efficient estimator
of the marginal effect, which equals the targeted maximum likelihood estimator (MLE). We present
simulation studies that show the targeted MLE increases efficiency and power over the unadjusted
method, particularly for smaller sample sizes, even when the regression model is mis-specified.
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1 Introduction

Suppose we observe n independent and identically distributed observations of the random vector O =
(W,A, Y ) ∼ p0, where W is a vector of baseline covariates, A is the treatment of interest and Y =
{0, 1} is the binary outcome of interest, and p0 denotes the density of O. Causal effects are based on a
hypothetical full data structure X = ((Ya : a ∈ A),W ) containing the entire collection of counterfactual
or potential outcomes Ya for a ranging over the set of all possible treatments A. The observed data
structure O only contains a single counterfactual outcome Y = Y (A) corresponding to the treatment
that the subject received. The observed data O = (W,A, Y ≡ Y (A)) is thus a missing data structure
on X with missingness variable A. We denote the conditional probability distribution of treatment A by
g0(a|X) ≡ P (A = a|X). The randomization assumption or coarsening at random assumption states that
A is conditionally independent of the full data X given W , g0(A|X) = g0(A|W ). In a randomized trial in
which treatment is assigned completely at random, we have g0(A|X) = g0(A). For the sake of presentation,
we assume the treatment A is binary and that A is completely randomized as in a typical randomized trial,
but our methods are presented so that it is clear how our estimators generalize to observational studies
or randomized trials in which g0(A|W ) is known. In the binary A case, g0(1) = p(A = 1) = δ0 and
g0(0) = p(A = 0) = 1 − δ0 and n1 the number of subjects in treatment group 1 and n0 the number of
subjects in treatment group 0, and n = n1 + n0. The quantity of interest is causal effect of treatment A
on Y , which, for example, can be defined as the risk difference ψ = E(Y1) − E(Y0), where Y1 and Y0 are
the counterfactual outcomes under treatments 1 and 0 respectively. This quantity is typically estimated in
randomized trials with the unadjusted estimate

ψ̂1 = µ̂1 − µ̂0

where µ̂1 = 1
n

∑n
i=1 I(Ai = 1)Yi and µ̂0 = 1

n

∑n
i=1 I(Ai = 0)Yi. An adjusted effect is also sometimes

obtained,
ψ̂W = P̂ (Y = 1|A = 1,W )− P̂ (Y = 1|A = 0,W ).

Adjusting for baseline covariates and the issues involved has been discussed in Pocock et al. (2002). Al-
though it has been recognized, at least for linear models, i.e. continuous outcomes, that adjusting for
covariates increases the precision of the estimate of the marginal causal effect of treatment, investigators
are still resistant to adjusting in logistic models and often rely on the unadjusted estimate. This generally
appears to be due to confusion as to how to select the covariates and and how to adjust for them (Pocock
et al., 2002). In addition, there is a concern that if data-adaptive procedures are used to select the model
for P (Y = 1|A,W ) that investigators will be tempted to select the model that provides the most favorable
results. However, we recommend that as long as the procedure is determined a priori then we can avoid
this latter issue. Thus, a black box type data-adaptive procedure, e.g. forward selection, can still be
applied as long as the algorithm and candidate covariates are specified a priori. Adjusting for covariates
with main terms in linear models, referred to as analysis of covariance (ANCOVA) in randomized trial
literature, for the purpose of estimation of the marginal causal effect has been limited to no interaction
terms with treatment. When there is such an interaction term, it is often not clear in the literature on
analysis of randomized trial data how one uses this conditional model to obtain a marginal effect. However,
even in the absence of the interaction term, the increase in precision has not been observed for non-linear
models such as the logistic model. In fact, it has actually been reported that the estimates are not in fact
made more precise for logistic models (Hernández et al., 2004; Robinson and Jewell, 1991). The crucial
step that has been missing when the parameter of interest is the marginal causal effect of A on Y , is
that when adjusting for covariates W , one must integrate/average the adjusted estimate over those W
in order to obtain a marginal effect estimate that is comparable to the unadjusted effect estimate ψ̂1.
This method of averaging over W has been referred to as the G-computation formula and is often applied
in observational studies when the treatment or exposure has not been assigned randomly (Robins, 1986,
1987). We show that with this additional step of averaging over W , even when the outcome is binary, and
even if the regression model is misspecified, we obtain a more efficient estimate in the randomized trial
setting. Such an approach allows for interactions between A and W in the model for P (Y = 1|A,W ) while
still obtaining a marginal effect. We note that the conditional effect may be the parameter of interest in
some studies, for example the effect of a drug conditional on age, and thus the investigator does not want
to average over age. In this paper we focus only on the marginal effect and using the covariates W to
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obtain the most efficient (precise) estimate of this marginal causal effect in a nonparametric model. We
apply the method of targeted maximum likelihood estimation (MLE), as presented in van der Laan and
Rubin (2006), to obtain estimators for the marginal effect using covariate adjustment for binary outcomes.
This general targeted MLE methodology applies to any estimation problem. In this article we apply it to
the risk difference, relative risk and odds ratio, in the context of a randomized trial. Targeted MLE was
purposefully named in that maximum likelihood estimators aim for trade-off between bias and variance
for the whole density, while the targeted MLE carries out a bias reduction specifically tailored for the
parameter of interest. Substitution estimators based on standard MLE are often biased with respect to the
parameter of interest and do not always converge at a parametric rate. On the other hand, the targeted
MLE maps a density estimator (e.g., MLE) into a targeted maximum likelihood estimator (at parameter
of interest) so that the corresponding substitution estimator is double robust and locally efficient. That
is, this estimator in the randomized trial setting is always consistent and asymptotically linear even when
the initial regression estimator for P (Y |A,W ) is mis-specified, and is even nonparametrically efficient if
the initial estimator is consistent. The general algorithm, provided in van der Laan and Rubin (2006), is
to start with initial density estimator, then create a parametric model with parameter ε through this given
initial density estimator whose scores at ε = 0 include the components of the efficient influence curve of
the parameter of interest at the given density estimator. It estimates ε with MLE of this parametric model
and finally updates the new density estimator as the corresponding fluctuation of the given initial density
estimator. The algorithm can be iterated until convergence. However in many examples convergence is
achieved in a single step as is the case for the examples in this paper. We apply this approach to the
estimation of marginal treatment effects including the risk difference, relative risk and odds ratio. The
targeted maximum likelihood estimator is a very practically attractive procedure since it can be achieved
by simply adding a covariate to an initial estimate of the regression P (Y = 1|A,W ). The corresponding
coefficient ε for this new covariate can be estimated with standard software and thus has a straightforward
implementation. We show that for the logistic regression model for P (Y = 1|A,W ), that this covariate
is none other than a linear combination of the treatment variable A so that it follows that the targeted
MLE coincides with the standard G-computation ML estimator. This is not always true as we show that
these two estimators differ when the treatment mechanism is estimated from the data, which results in
an additional efficiency gain. We appeal to estimating function methodology (van der Laan and Robins,
2003) and observe that since the targeted MLE solves the efficient influence curve estimating equation it
is double robust and (locally) efficient. That is, the targeted MLE is always consistent and asymptotically
linear (thus the standardized estimator is asymptotically normally distributed with specified variance),
even if the initial estimate for P (Y = 1|A,W ) is misspecified. In the case that the initial estimate for
P (Y = 1|A,W ) is asymptotically consistent the targeted MLE is asymptotically efficient for the nonpara-
metric model. In section 2 we provide a brief overview of methods for covariate adjustment that have
been proposed in literature. In section 3 we present the targeted maximum likelihood estimators for three
marginal variable importance parameters: the risk difference, relative risk and odds ratio. We show that
for each of these three parameters, using a logistic regression model, the targeted MLE is achieved in a
single step. We also provide an alternative to the logistic regression model for the relative risk parameter
that is the relative risk regression model and provide the corresponding targeted MLE estimator. We also
address missing data on the outcome of covariates, and estimation of the treatment mechanism. Section
4 provides testing and inference for the targeted MLE. In section 5 we present simulation studies that
demonstrate the performance of the targeted MLE. Finally we conclude with a discussion in section 6.

2 Current Methods for Obtaining Covariate-
Adjusted Estimates

Suppose we observe O = (W,A, Y ) as above except the outcome Y is now continuous. Let the parameter
of interest be the marginal effect of A on Y , ψ = E(Y1)−E(Y0). For a continuous outcome Y , Q(A,W ) =
E(Y |A = 1,W ) is typically obtained using a linear regression model such as,

Q̂(A,W ) = β̂0 + β̂1A+ β̂2W.

In this setting, β̂1 coincides with and has been shown to be at least as precise as the unadjusted estimate ψ̂1.
In particular, the increase in precision occurs when the correlation between the covariate(s) and outcome
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is strong (Assmann et al., 2000). However, when Q(A,W ) is estimated as

Q̂(A,W ) = β̂0 + β̂1A+ β̂2W + β̂3AW,

then β̂1 no longer coincides with ψ̂1. In this case, to obtain the marginal effect, one must integrate out or
average over the covariate(s) W . The G-computation estimator introduced in Robins (1986) and Robins
(1987) is an estimator that does indeed average over W and thus give a marginal effect,

ψ̂Gcomp =
1
n

n∑
i=1

Q̂(1,Wi)− Q̂(0,Wi).

When Q̂(A,W ) is estimated with a linear model, and it does not contain any interaction terms, then
ψ̂Gcomp = β̂1. The G-computation estimator is not limited to a linear model for Q(A,W ) when estimating
the treatment effect, for example, when the outcome is binary, one could use a logistic regression model to
estimate Q(A,W ) and use the G-computation formula to obtain the estimated risk difference. However,
even in the absence of interaction terms, ψ̂Gcomp is not necessarily equivalent to the estimate obtained
from the logistic regression model. Based on estimating function methodology, the Double Robust (DR)
estimator has been provided in van der Laan and Robins (2003); Neugebauer and van der Laan (2005);
Robins (2000); Robins and Rotnitzky (2001). Consistency of the DR estimator relies on consistent esti-
mation of the treatment mechanism or the model for Q(A,W ). When the treatment is randomized, as
in a randomized trial, the treatment mechanism is always known and thus the DR estimator is always
consistent, i.e. even when Q(A,W ) is mis-specified.

It was shown in Scharfstein et al. (1999) (p. 1140−1141) that to obtain a DR estimate of the difference
in two mean outcomes, one can extend a parametric model for Q(A,W ) by adding the 2-dimensional
covariate

(
I(A=1)
g(1|W ) ,

I(A=0)
g(0|W )

)
, where in the randomized trial setting, g(1|W ) = δ and g(0|W ) = 1 − δ. In

section 3.4, under the framework of targeted MLE, we show that for this same additive effect the targeted
maximum likelihood algorithm that targets both parameters (P (Y0 = 1), P (Y1 = 1)) also adds these two
covariates, the first for P (Y1 = 1) and one for P (Y0 = 1), so that any function of these two parameters
is estimated in a targeted manner. This targeted MLE still differs from the proposal in Scharfstein et al.
(1999) by fixing the initial regression, which can thus also represent a data adaptive machine learning fit,
and simply estimating the coefficients for the additional covariates. The proposed estimator of Scharfstein
et al. (1999) does not fix the initial regression but fits all coefficients for the parametric regression and the
additional covariates simultaneously. This distinction in fixing the initial regression is important in that
it allows one to apply data adaptive algorithms for the initial estimate and simply update the estimate
with the targeting step. This is in contrast to the procedure proposed in Bang and Robins (2005) and
Scharfstein et al. (1999) which appears to rely on a parametric estimate for the regression. In Bang and
Robins (2005), it is stated that when the initial model for Q(A,W ) is correct, then one can obtain a more
efficient DR estimate by adding the 1-dimensional covariate I(A=1)

g(1|W ) − I(A=0)
g(0|W ) . This covariate is equivalent

to the targeted MLE covariate targeting the risk difference effect P (Y1 = 1) − P (Y0 = 1). This covariate
satisfies the condition of the targeting fluctuation that the score of the initial density p̂0 at ε = 0 must
include the efficient influence curve at p̂0. Again, the targeted maximum likelihood procedure fixes the
initial regression and then estimates the coefficient for the additional covariate as opposed to the proposal in
Bang and Robins (2005) where all coefficients for the parametric regression and the additional covariate are
fit simultaneously. We note that the covariate that is added in the targeted maximum likelihood algorithm
is specific to the parameter one is estimating and thus differs when the parameter of interest is the relative
risk or odds ratio as shown in sections 3.2 and 3.3. In section 3.1.1 we provide the relation between the
DR, targeted MLE and G-computation estimator and the circumstances in which they coincide.

In Tsiatis et al. (2008), the DR estimator is applied to estimate the marginal effect where the authors
recommend estimating two regression models separately: Q1(1,W ) = E(Y |A = 1,W ) is obtained using
only the subpopulation of individuals for whom A = 1 and Q2(0,W ) = E(Y |A = 0,W ) is obtained using
only the subpopulation of individuals for whom A = 0. This was proposed so that two different analysts
could independently select these models to prevent the analysts from selecting the model providing the
most favorable results. Another possibility is to select one model Q(A,W ) = E(Y |A,W ) using the whole
sample pooled together. When the procedure for selecting Q(A,W ) is specified a priori this additional
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step of estimating Q1(1,W ) and Q2(0,W ) is not necessary. The method provided by Tsiatis et al. (2008)
is limited to when the parameter of interest of the marginal effect E(Y0) − E(Y1). However, when the
outcome is binary, investigators are often also interested in not only the risk difference E(Y0) − E(Y1) =
P (Y1 = 1) − P (Y0 = 1), but the relative risk and odds ratios. Covariate adjustment in logistic regression
models for binary outcomes has been studied in literature. However it does not appear that any method
for covariate adjustment has been proposed to obtain marginal estimates for such parameters. Thus,
current applications of logistic regression models provide conditional effects. These conditional models
have been shown to reduce precision in the estimated effect. In Robinson and Jewell (1991), it was
observed that adjusting for covariates in logistic regression models leads to an increase in power due to
the fact that estimates of the treatment effect in the conditional logistic models are further away from
the null even though standard errors were larger for the adjusted effects. Hernández et al. (2004) also
demonstrated this fact using using simulation studies and observed that the increase in power was related
to the correlation between the covariate and the outcome. The simulations included only a single covariate
and no interactions between the covariate and treatment. Assmann et al. (2000) also indicated similar
results in logistic regression models in that odds ratios were generally further away from the null but the
standard errors were larger than the unadjusted estimates. It appears that in general, when adjusting
for covariates in a logistic regression model, the standard error provided by the software, i.e. standard
maximum likelihood procedures, is the standard error used by the investigator although it is often not
explicitly stated (Belda et al., 2005; Frasure-Smith et al., 1997; van der Horst et al., 1997; Randolph et al.,
2002). When adjusting for covariates in randomized trials using logistic regression, often the investigator is
interested in a conditional effect identified by continuous covariates in which case this may be an appropriate
approach. We focus on the targeted MLE method for covariate adjustment that provides inference for the
marginal (unconditional) effect. However, note that this method can be applied to different subgroups
defined by categorical or discrete valued covariates by simple stratification.

3 Targeted Maximum Likelihood Estimation of Marginal Vari-
able Importance: Risk Difference, Relative Risk and Odds Ra-
tio

In this section we present the targeted MLE method for adjusting for covariates when the outcome is binary
with the following 3 parameters: risk difference, relative risk and odds ratio.

3.1 Risk Difference

We now provide the targeted MLE for the risk difference P (Y1 = 1)− P (Y0 = 1). Let O = (W,A, Y ) ∼ p0

and M be the class of all densities of O with respect to an appropriate dominating measure: so M is
nonparametric up to possible smoothness conditions. Consider this non-parametric model for p0 and let

P0 → Ψ(p0) = Ep0(P (Y |A = 1,W )− P (Y |A = 0,W ))

be the parameter of interest. This parameter is pathwise differentiable at p0 with efficient influence curve,

D(p0) =
I(A = 1)

δ0
(Y −Q0(1,W ))− I(A = 0)

(1− δ0)
(Y −Q0(0,W )) +

+Q0(1,W )−Q0(0,W )−Ψ(p0)

where Q0(A,W ) = P (Y = 1|A,W ) and δ0 = P (A = 1) (see e.g., van der Laan and Robins (2003)). Since
the model is non-parametric, this is also the only influence curve. Following the strategy of van der Laan
and Rubin (2006), the efficient influence curve D(p0) can be decomposed as,

D(p0) = D(p0)− E(D(p0)|A,W ) + E(D(p0)|A,W )− E(D(p0)|W ) +
+E(D(p0)|W )− E(D(p0))
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Let,D1(p0) = D(p0)−E(D(p0)|A,W ),D2(p0) = E(D(p0)|A,W )−E(D(p0)|W ) andD3(p0) = E(D(p0)|A,W )−
E(D(p0)). Then, D1(p0) is a score for p(Y |A,W ), D2(p0) is a score for g0(A|W ) and D3(p0) is a
score for the marginal probability distribution p(W ) of W . Note that in this randomized trial setting,
g0(A|W ) = g0(A) = δA

0 (1− δ0)(1−A).
Consider an initial density estimator p̂0 of the density p0 of O identified by a regression fit Q̂0(A,W ),

marginal distribution of A identified by δ̂ = 1
n

∑n
i=1Ai, the marginal distribution of W being the empirical

probability distribution of W1, ...,Wn, and A being independent of W . Since Y is binary, we have the
following density,

p̂0(Y |A,W ) = (Q̂0(A,W ))Y (1− Q̂0(A,W ))1−Y

where,

Q̂0(A,W ) =
1

1 + exp−m̂0(A,W )

for some function m̂0. Now, consider the parametric submodel through p̂0 indexed by parameter ε,

p̂0(ε)(Y |A,W ) = (Q̂0(ε)(A,W ))Y (1− Q̂0(ε)(A,W ))1−Y

where Q̂0(ε)(A,W ) is given by the logistic regression model,

Q̂0(ε)(A,W ) =
1

1 + exp−(m̂0(A,W ) + εh(A,W ))

with an extra covariate h(A,W ), which needs to be chosen so that the score of ε at ε = 0 includes the efficient
influence curve component D1(p0) (see van der Laan and Rubin (2006)). The required choice h will be spec-
ified below. We estimate ε with the maximum likelihood estimator ε̂ = arg maxε

∑n
i=1 log Q̂0(ε)(Ai,Wi).

The score for this logistic regression model at ε = 0 is given by,

d

dε1
log p0(ε)(A,W )

∣∣∣∣
ε=0

= h(A,W )(Y − Q̂0(A,W ))

We now set the score equal to the part of the efficient IC for p(Y |A,W ), that is D1, at p̂0 to obtain,

h(A,W )(Y − Q̂0(A,W )) = (Y − Q̂0(A,W ))

(
I(A = 1)

δ̂
− I(A = 0)

(1− δ̂)

)
.

This equality in h(A,W ) is solved by

h(A,W ) =
I(A = 1)

δ̂
− I(A = 0)

(1− δ̂)
.

Thus, the covariate that is added to the logistic regression model Q̂0(A,W ) is none other than a linear
combination of A and an intercept only. Thus, if m̂0(A,W ) includes the main term A and the intercept,
then ε̂ = 0, and the targeted MLE for Q0(A,W ) is given by Q̂0(A,W ) itself. In other words, the targeted
MLE for ψ0 is given by the standard G-computation estimator

ψ̂RD−tMLE =
1
n

n∑
i=1

Q̂0(1,Wi)− Q̂0(0,Wi).

3.1.1 Relation between Targeted MLE, DR and G-computation Estimators

The efficient influence curve D(p0) can be represented as an estimating function in ψ indexed by Q and g,
D(p0) = D(Q0, g0,Ψ(p0)). In this randomized trial setting, g0 = δA

0 (1 − δ)1−A. The DR estimate is the
solution to the corresponding estimating equation in ψ, 1

n

∑n
i=1D(Q̂0(Ai,Wi), δ̂, ψ) = 0 and is given by,

ψ̂DR =
1
n

n∑
i=1

I(Ai = 1)

δ̂
(Yi − Q̂0(1,Wi))− 1

n

n∑
i=1

I(Ai = 0)

1− δ̂
(Yi − Q̂0(0,Wi)) +

+
1
n

n∑
i=1

Q̂0(1,Wi)− 1
n

n∑
i=1

Q̂0(0,Wi),
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where δ̂ = 1
n

∑n
i=1Ai. In the logistic regression fit, log( Q̂(A,W )

1−Q̂(A,W )
) = α̂X, where X = (1, A,W ), the MLE

α̂ solves the score equations given by,

0 =
n∑

i=1

Xij(Yi − Q̂(Ai,Wi)),

for j = 1, ..., p. The linear span of scores includes the covariate,

xj =
I(A = 1)

δ̂
− I(A = 0)

1− δ̂
,

when A and an intercept are included in X. Thus, it follows that

0 =
1
n

n∑
i=1

I(Ai = 1)

δ̂
(Yi − Q̂0(1,Wi))− 1

n

n∑
i=1

I(Ai = 0)

1− δ̂
(Yi − Q̂0(0,Wi)).

Hence,

ψ̂DR =
1
n

n∑
i=1

Q̂(1,Wi)− 1
n

n∑
i=1

Q̂(0,Wi) = ψ̂Gcomp = ψ̂RD−tMLE

Thus in this quite general scenario, we have that the double robust estimator, the G-computation estimator,
and the targeted MLE, all reduce to the same estimator.

3.2 Relative Risk

We now consider the parameter

P0 → Ψ(p0) =
Ep0(P (Y |A = 1,W ))
Ep0(P (Y |A = 0,W )))

=
µ1

µ0

Note that under the assumptions listed above for the risk difference, this parameter can be interpreted as
the causal relative risk, ψ0 = E(Y1)

E(Y0)
.

We can derive the efficient influence curve of this parameter using the delta method since we know
the efficient influence curve for µ1 and µ0. Let a = µ0 and b = µ1, so ψ0 = b

a . Then, d
db

(
b
a

)
= 1

a and
d
da

(
b
a

)
= − ( b

a2

)
. Thus, the efficient influence curve is given by,

D(p0) =
1
µ0

(
I(A = 1)

δ0
(Y −Q0(1,W )) +Q0(1,W )− µ1

)
−

−µ1

µ2
0

(
I(A = 0)
(1− δ0)

(Y −Q0(0,W )) +Q0(0,W )− µ0

)
=

1
µ0

(
I(A = 1)

δ0
(Y −Q0(1,W )) +Q0(1,W )

)
−

µ1

µ2
0

(
I(A = 0)
(1− δ0)

(Y −Q0(0,W )) +Q0(0,W )
)

We consider two models for the targeted MLE of the relative risk: logistic regression model and the
relative risk regression model. In order to find the covariate h(A,W ) that is added to the regression model,
we note the following equality given in van der Laan and Robins (2003),

V (Y,A,W ) = (V (1, A,W )− V (0, A,W ))(Y −Q(A,W )), (1)

if V is a function with conditional mean 0 given A and W . We apply this equality to D(p0) = V (Y,A,W )
to obtain h(A,W ).
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3.2.1 Submodel 1: Logistic Regression Model

Let p̂0(ε1) be the logistic regression fit with an extra covariate extension ε1h(A,W ). Based on (1) we can
immediately observe that the covariate h(A,W ) added to the logistic regression is V (1, A,W )−V (0, A,W )
since,

d

dε
log p̂0(ε)(A,W )

∣∣∣∣
ε=0

= h(A,W )(Y − Q̂0(A,W ))

= (V (1, A,W )− V (0, A,W ))(Y − Q̂0(A,W ))

Thus, evaluating D(p̂0) at Y = 1 and Y = 0 gives,

h(A,W ) =
1
µ0

I(A = 1)

δ̂
− µ1

µ2
0

I(A = 0)

(1− δ̂)
.

Again, as in the risk difference, the covariate that is added to Q̂0(A,W ) is a function of A only and
thus ε̂ = 0 and the targeted MLE for Q0(A,W ) is given by Q̂0(A,W ). The targeted MLE for the relative
risk is given by,

ψ̂RR−tMLE =
1
n

∑n
i=1 Q̂

0(1,Wi)
1
n

∑n
i=1 Q̂

0(0,Wi)
.

3.2.2 Submodel 2: Relative Risk Regression

As an alternative to using a logistic fit Q0(A,W ) for Q(A,W ), we can instead use a relative risk regression
fit,

log(Q̂(A,W )) = m̂(A,W ),

and find the corresponding targeted MLE. Consider now the parametric submodel p̂0 indexed by parameter
ε,

p̂0(ε)(Y |A,W ) = (Q̂0(ε)(A,W ))Y (1− Q̂0(ε)(A,W ))1−Y

where Q̂0(ε)(A,W ) is given by the relative risk regression model,

log(Q̂0)(ε)(A,W ) = m̂0(A,W ) + εh(A,W ).

The score for this model evaluated at ε = 0 is given by,

d

dε
log p̂0(ε)(A,W )

∣∣∣∣
ε=0

=
h(A,W )

1− Q̂0(A,W )
(Y − Q̂0(A,W )),

and it follows that the covariate added to logistic regression model to obtain the targeted MLE is given by,

h(A,W ) =

(
1
µ0

I(A = 1)

δ̂
− µ1

µ2
0

I(A = 0)

(1− δ̂)

)
(1− Q̂0(A,W )).

Now ε̂ = arg maxε

∑n
i=1 log Q̂0(ε)(Ai,Wi) can be estimated in practice by fitting a relative risk regression

in m̂0(A,W ) and h(A,W ), fixing the coefficient in front of m̂0(A,W ) to 1 and the intercept to 0. The
resulting coefficient for h(A,W ) is ε̂. In this case, the covariate is no longer simply a function of A and
thus ε̂ does not necessarily equal 0 and the targeted MLE is no longer achieved in one step but rather
iteratively. Now Q̂k(A,W ) is updated as,

log(Q̂k+1(A,W )) = m̂k(A,W ) + ε̂hk(A,W ),

setting k = k + 1 and one iterates this updating step.
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3.3 Odds Ratio

We now consider the parameter

P0 → Ψ(p0) =
Ep0(P (Y |A = 1,W ))/(1− Ep0(P (Y |A = 1,W )))
Ep0(P (Y |A = 0,W ))/(1− Ep0(P (Y |A = 0,W )))

=
µ1/(1− µ1)
µ0/(1− µ0)

Note that under the assumptions listed above for the risk difference, this parameter can be interpreted
as the causal odds ratio, E(Y1)/(1−E(Y1))

E(Y0)/(1−E(Y0))
. Again, applying the delta method we can obtain the efficient

influence curve for this parameter. Let a = µ0 and b = µ1, so ψ = b/(1−b)
a/(1−a) . Then, d

db

(
b/(1−b)
a/(1−a)

)
= (1−a)

a(1−b)2

and d
da

(
b/(1−b)
a/(1−a)

)
= −

(
b

a2(1−b)

)
. Thus, the efficient influence curve is given by,

D(p0) =
1− µ0

µ0(1− µ1)2

(
I(A = 1)

δ0
(Y −Q0(1,W )) +Q0(1,W )− µ1

)
−

− µ1

(µ0)2(1− µ1)

(
I(A = 0)
(1− δ0)

(Y −Q0(0,W )) +Q0(0,W )− µ0

)

Applying equality (1) to D(p̂0), we obtain,

h(A,W ) =
(1− µ0)

µ0(1− µ1)2
I(A = 1)

δ̂
− µ1

µ2
0(1− µ1)

I(A = 0)

(1− δ̂)

Again, the covariate that is added to the logistic regression model Q̂0(A,W ) is none other than a function
of A only and thus ε̂ = 0 and the targeted MLE for Q0(A,W ) is given by Q̂0(A,W ). Thus, the targeted
MLE for ψ is given by,

ψ̂OR−tMLE =

(
1
n

∑n
i=1 Q̂

0(1,Wi)
)
/
(
1− 1

n

∑n
i=1 Q̂

0(1,Wi)
)

(
1
n

∑n
i=1 Q̂

0(0,Wi)
)
/
(
1− 1

n

∑n
i=1 Q̂

0(0,Wi)
) .

3.4 Targeted MLE for the two treatment specific means, and thereby for all
parameters.

Consider the odds ratio, as an example. An alternative for targeting the odds ratio is to simultaneously
target both µ1 and µ0 and simply evaluate the odds ratio from the targeted MLEs of µ1 and µ0. This is a
straightforward approach where 2 covariate extensions are added to the logistic fit Q̂0,

h1(A,W ) = ε1
I(A = 1)

δ̂
,

and,

h2(A,W ) = ε2
I(A = 0)

(1− δ̂)
.

Again, if the initial logistic regression fit already includes an intercept and main term A, then ε̂ = 0 so
that this targeted MLE Q̂ = Q̂0(ε̂) = Q̂0 is not updated. This targeted MLE can now be used to map into
a locally efficient estimator of any parameter of µ0, µ1 such as the risk difference µ1 − µ0, the relative risk
µ1/µ0 and the odds ratio µ1(1−mu0)/((1− µ1)µ0).

3.5 Estimating the Treatment Mechanism as well

Even when the treatment mechanism (the way treatment was assigned) is known as it is in a randomized
trial, it has been shown that efficiency is increased when estimating it from the data (van der Laan and
Robins, 2003). Estimating the treatment mechanism does not add any benefit to the G-computation
estimator since it does not use this information. The targeted MLE can however leverage this information
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to obtain a more precise estimate of the treatment effect. This can be a particular benefit when the model for
Q(A,W ) is mis-specified. The targeted MLE is still consistent when Q(A,W ) is mis-specified, however, we
can gain efficiency when estimating the treatment mechanism in such a case. The treatment mechanism can
be estimated from the data using a logistic regression model, for example, ĝ0(1|W ) = 1

1+exp(−(α1W1+α2W2))
,

but one can also augment an initial fit ĝ0 with a targeted direction aiming for a maximal gain in efficiency:
see van der Laan and Rubin (2006). We present the targeted MLE for the risk difference, however, this
can be immediately extended to the relative risk and odds ratio as well. Consider the parametric submodel
through p̂0 indexed by parameter ε,

p̂0(ε)(Y |A,W ) = (Q̂0(ε)(A,W ))Y (1− Q̂0(ε)(A,W ))1−Y

where Q̂0(ε)(A,W ) is given by the logistic regression model,

Q̂0(ε)(A,W ) =
1

1 + exp−(m̂0(A,W ) + εh(A,W ))
.

Setting the score of this model equal to the part of the efficient influence curve that corresponds with scores
for P (Y |A,W ), and solving for h(A,W ) we obtain the covariate,

h(A,W ) =
I(A = 1)
ĝ0(1|W )

− I(A = 0)
ĝ0(0|W )

,

which is added to the logistic regression Q̂0(A,W ). Again,
ε̂ = arg maxε

∑n
i=1 log Q̂0(ε)(Ai,Wi) can be estimated in practice by fitting a logistic regression in m̂0(A,W )

and h(A,W ), fixing the coefficient in front of m̂0(A,W ) to 1 and the intercept to 0. The resulting coeffi-
cient ε̂ for h(A,W ) is no longer necessarily equal to 0. Let the targeted MLE for Q0(A,W ) be given by
Q̂∗(A,W ) = Q̂0(ε̂)(A,W ). The targeted MLE for ψ0 is then,

ψ̂RD−tMLE2 =
1
n

n∑
i=1

I(Ai = 1)
ĝ0(1|W )

(Yi − Q̂∗(1,Wi))−

− 1
n

n∑
i=1

I(Ai = 0)
ĝ0(0|W )

(Yi − Q̂∗(0,Wi)) +

+
1
n

n∑
i=1

Q̂∗(1,Wi)− 1
n

n∑
i=1

Q̂∗(0,Wi).

Note that Q̂0(A,W ) is now updated, contrary to the case when we were not estimating the treatment
mechanism as in previous subsections.

3.6 Missing Data

Here we provide the targeted MLE for the case that the outcome Y is subject to missingness that can
be informed by the baseline covariates W . In such a case the missingness cannot be ignored as it can
lead to biased estimates as treatment groups are no longer balanced with respect to the covariates. Let C
represent the indicator whether or not the outcome was observed. The observed data can be represented
as O = (W,A,C,CY ) ∼ p0 and the full data is given by X = ((Ya : a ∈ A),W ). We assume that
the conditional distribution of the joint censoring variable (A,C) given X satisfies coarsening at random
(CAR), i.e. g0(A,C|X) = g0(A,C|W ). Let

P0 → Ψ(p0) = Ep0(P (Y |A = 1,W )− P (Y |A = 0,W ))
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be the parameter of interest. We wish to estimate the risk difference with the targeted MLE. The efficient
influence curve is given by,

D(p0) =
I(A = 1)
g0(1, 1|W )

(Y −Q0(1, 1,W ))−

− I(A = 0)
(g0(0, 1|W ))

(Y −Q0(0, 1,W )) +

+Q0(1, 1,W )−Q0(0, 1,W )−Ψ(p0),

where g0(A = 1, c|W ) = δ0g(c|A = 1,W ) and g0(A = 0, c|W ) = (1 − δ0)g(c|A = 0,W ). We now present
the analogue to the derivation of the targeted MLE for ψ0. Consider the parametric submodel through p̂0

indexed by parameter ε,

p̂0(ε)(Y |A,C = 1,W ) = (Q̂0(ε)(A,C = 1,W ))Y (1− Q̂0(ε)(A,C = 1,W ))1−Y

where Q̂0(ε)(A,C = 1,W ) is given by the logistic regression model,

Q̂0(ε)(A,C = 1,W ) =
1

1 + exp−(m̂0(A,C = 1,W ) + εh(A,C = 1,W ))
.

At C = 0, the likelihood of P (Y | A,C,W ) provides as contribution a factor 1, which can thus be ignored.
The score for this logistic regression model at ε = 0 is given by,

d

dε
log p0(ε)(A,C,W )

∣∣∣∣
ε=0

= I(C = 1)h(A,C = 1,W )(Y − Q̂0(A,C = 1,W ))

We now set this score equal to the component of the efficient influence curve which equals a score for
P (Y |A,C = 1,W ), at p̂0, to obtain the equality

h(A,C = 1,W )(Y − Q̂0(A,C = 1,W ))

= (Y − Q̂0(A,C = 1,W ))
(
I(A = 1)
ĝ(1, 1|W )

− I(A = 0)
ĝ(0, 1|W )

)
.

Solving for h(A,C = 1,W ) we obtain,

h(A,C = 1,W ) =
I(A = 1)
ĝ(1, 1|W )

− I(A = 0)
ĝ(0, 1|W )

.

The estimate of ε given by ε̂ = arg maxε

∑n
i=1 I(Ci = 1) log Q̂0(ε)(Ai,Wi). Now the logistic regression

fit Q̂0(Y |A,C = 1,W ) can be updated by adding as covariate h(A,C = 1,W ) to obtain the targeted
MLE Q̂∗(Y |A,C = 1,W ) for Q0(A,C = 1,W ) based on all observations with Ci = 1. The estimate for
P (C = 1|A = 0,W ) as required to calculate the extra covariate h(A,W ) can be obtained by using a logistic
regression model selected either data-adaptively or using a fixed pre-specified model for C conditional on
W,A = 0. The targeted MLE for ψ0 is given by,

ψ̂RD−tMLE =
1
n

n∑
i=1

Q̂∗(1, 1,Wi)− Q̂∗(0, 1,Wi).

We note that the targeted MLE for missing covariate values is derived in exactly the same manner.

4 Testing and Inference

Let p̂∗ represent the targeted MLE of p0. One can construct a Wald-type 0.95-confidence interval based
on the estimate of the efficient influence curve, ˆIC(O) = D(p̂∗). That is, one can estimate the asymptotic
variance of

√
n(ψ̂ − ψ0) with

σ̂2 =
1
n

n∑
i=1

ˆIC
2
(Oi).
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The corresponding asymptotically conservative Wald-type 0.95-confidence interval is defined as ψn ±
1.96 σ̂√

n
. The null hypothesis H0 : ψ0 = 0 can be tested with the test statistic

Tn =
ψn

σ̂√
n

,

whose asymptotic distribution is N(0, 1) under the null hypothesis. We note that this estimate of the
asymptotic variance is conservative even if Q̂0(A,W ) is inconsistent, and it is actually asymptotically
accurate if Q̂0(A,W ) is consistent (see van der Laan and Robins (2003); van der Laan and Rubin (2006)).
An alternative recommended approach to obtain a non-conservative estimate of the variance is the bootstrap
procedure which will provide asymptotically valid confidence intervals.

5 Simulation Studies

5.1 Simulation 1

In this simulation, the treatment A and outcome Y are binary and W is a 2-dimensional covariate, W =
(W1,W2). The simulated data were generated according to the following laws:

1. W1 ∼ N(2, 2)

2. W2 ∼ U(3, 8)

3. P (A = 1) = δ0 = 0.5

4. Q0(A,W ) = P (Y = 1|A,W ) = 1
(1+exp(−(kA−5W 2

1 +2W2)))

We simulated the data for 2 scenarios based on the value for k in P (Y = 1|A,W ). In the first
scenario, k = 1.2 and there is a small treatment effect and in the second k = 20, and there is a larger
treatment effect. The risk difference, relative risk and odds ratio were estimated. The true values were
given by P (Y1 = 1) = 0.372, P (Y0 = 1) = 0.352 and (RD,RR,OR) = (0.019, 1.055, 1.087) for k = 1.2,
P (Y1 = 1) = 0.583, P (Y0 = 1) = 0.352 and (RD,RR,OR) = (0.231, 1.654, 2.570) for k = 20. The
parameters were estimated using 4 methods. The first method “Unadjusted” is the unadjusted method
of regressing Y on A using a logistic regression model. The second method “Correct” is the targeted
maximum likelihood method which is equivalent to the standard G-computation (maximum likelihood)
estimator with Q̂(A,W ) = 1/(1+ exp(−(α̂0 + α̂1A+ α̂2W

2
1 + α̂3W2))). The third method “Mis-spec” used

a mis-specified fit given by Q̂(A,W ) = 1/(1+ exp(−(α̂0 + α̂1A+ α̂2W1))). For the fourth method ,“DSA”,
the estimate Q̂(A,W ) was obtained using Deletion/Substitution/Addition (DSA). The DSA algorithm is
a data-adaptive model selection procedure based on cross-validation that relies on deletion, substitution,
and addition moves to search through a large space of possible functional forms, and is publicly available at
http://www.stat.berkeley.edu/ laan/Software/ (Sinisi and van der Laan, 2004). The variable A was forced
into the model and the DSA then selects from the remaining covariates. The maximum power set in the
DSA algorithm for any term in the model was set to 2, meaning square terms and 2-way interactions were
allowed. Standard errors for the targeted MLE were estimated using the estimated influence curve. For the
odds ratio simulations, the estimator obtained by extracting the coefficient for A and the corresponding
standard error from the logistic regression model fit is labeled “Adjusted”. The simulation was run 1000
times for each sample size: n = 50, 100, 250, 500, 1000.

For k = 1.2, W strongly predicts Y and thus the targeted MLE, which adjusts for W results in a large
increase in efficiency over the unadjusted method as observed by the relative efficiencies (RE) provided in
Table 1. The largest gain in efficiency occurs as expected when Q̂(A,W ) is correctly specified followed
closely by the DSA method, which in general gives a slightly lower bias and slightly higher variability than
the correctly specified model due to overfitting of Q̂(A,W ). In the scenario where k = 20, A is more
strongly predictive of Y as compared to W and thus the increase in efficiency is not as marked as when
k = 1.2. The largest increase in efficiency for both values of k occurs for the estimates of the odds ratio.
When Q̂(A,W ) is mis-specified, there is still a noticeable increase in efficiency showing that it is advised
to always adjust for covariates. This is a result of the double robustness of the estimator as discussed in
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section 2. A significant result is the increase in power of the targeted MLE as evidenced by the proportion
of rejected tests. In particular when k = 1.2, that is when the effect of A is weaker and more difficult to
detect, the increase in power is quite significant. When the sample size is greater than 100, and k = 20
the unadjusted performs similar to the targeted MLE estimators with respect to power. Another notable
result is that the targeted MLE circumvents the issue of singularity, i.e. Y is perfectly predicted by A and
W , that occurs when using the adjusted estimate. In this situation the adjusted estimate is drastically
inflated and for this reason, the adjusted results were not included in the bias plots. However, this is not
an issue for the targeted MLE. The efficiency gain of the targeted MLE increases as the covariate becomes
more predictive. This becomes even more drastic when the covariate is perfectly predictive, whereas the
adjusted estimate completely breaks down. For example, in a single run of the simulation for the odds ratio
with k = 1.2, with n = 50, the “Adjusted” model fit gave a coefficient of 25.4 and thus an estimate odds
ratio of approximately 1011. The corresponding targeted MLE using this same model gives an estimate of
1.083, noting that the true value is 1.087. This is of particular importance for small sample sizes but still
occurs even for large sample sizes as shown in the RE estimates for the “Adjusted” estimate in Table 2.
We also note that the bias is almost always positive for the relative risk and odds ratios whereas positive
and negative bias occurs for the risk difference.

Table 1: Simulation 1: k=1.2: MSE is Mean Squared Error for Unadjusted
Estimate, RE is Relative Efficiency of remaining estimators to Unadjusted
MSE and Rej is Proportion of Rejected Tests

n=50 n=100 n=250 n=500 n=1000

Risk Difference
Unadjusted MSE 1.8e-02 9.6e-03 3.5e-03 1.9e-03 8.3e-04
Correct RE 5.41 5.01 10.79 12.25 10.95
Mis-spec RE 2.01 2.31 1.95 2.16 2.10
DSA RE 3.38 7.07 10.72 11.99 10.94
Unadjusted Rej 0.06 0.06 0.06 0.08 0.08
Correct Rej 0.18 0.22 0.27 0.41 0.63
Mis-spec Rej 0.09 0.06 0.09 0.11 0.14
DSA Rej 0.09 0.12 0.27 0.42 0.64

Relative Risk
Unadj MSE 3.0e-01 1.0e-01 3.6e-02 1.5e-02 7.9e-03
Correct RE 9.08 4.07 12.76 12.55 12.34
Mis-spec RE 2.26 2.36 2.10 2.18 2.06
DSA RE 4.09 7.11 12.03 12.22 12.31
Unadjusted Rej 0.04 0.04 0.06 0.06 0.08
Correct Rej 0.10 0.15 0.22 0.37 0.65
Mis-spec Rej 0.05 0.04 0.06 0.07 0.14
DSA Rej 0.03 0.09 0.22 0.37 0.65

Odds Ratio
Unadj MSE 1.5e+00 3.1e-01 9.5e-02 4.1e-02 2.0e-02
Adjusted RE 9.4e-178 4.8e-251 5.2e-01 5.3e-01 4.2e-01
Correct RE 1.92 0.00 13.49 13.13 12.78
Mis-spec RE 2.97 2.42 2.39 2.28 1.96
DSA RE 7.07 7.05 13.3 12.72 12.57
Unadjusted Rej 0.04 0.06 0.06 0.06 0.09
Adjusted Rej 0.02 0.04 0.04 0.05 0.13
Correct Rej 0.11 0.14 0.21 0.36 0.67
Mis-spec Rej 0.06 0.04 0.04 0.05 0.14
DSA Rej 0.04 0.07 0.21 0.38 0.68
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Table 2: Simulation 1: k=20

n=50 n=100 n=250 n=500 n=1000

Risk Difference
Unadjusted MSE 2.0e-02 9.2e-03 3.9e-03 1.8e-03 9.9e-04
Correct RE 3.80 3.36 4.16 4.22 4.52
Mis-spec RE 2.25 2.45 2.59 2.49 2.50
DSA RE 2.89 3.86 4.33 4.23 4.52
Unadjusted Rej 0.38 0.68 0.95 1.00 1.00
Correct Rej 0.99 1.00 1.00 1.00 1.00
Mis-spec Rej 0.81 0.97 1.00 1.00 1.00
DSA Rej 0.92 1.00 1.00 1.00 1.00

Relative Risk
Unadj MSE 5.8e-01 2.0e-01 5.5e-02 2.7e-02 1.4e-02
Correct RE 4.76 4.24 3.63 3.98 4.10
Mis-spec RE 2.01 2.22 2.11 2.11 2.19
DSA RE 2.36 3.34 3.34 3.97 4.09
Unadjusted Rej 0.30 0.61 0.94 1.00 1.00
Correct Rej 0.96 1.00 1.00 1.00 1.00
Mis-spec Rej 0.47 0.92 1.00 1.00 1.00
DSA Rej 0.65 0.98 1.00 1.00 1.00

Odds Ratio
Unadj MSE 6.9e+00 1.9e+00 6.0e-01 2.4e-01 1.2e-01
Adjusted RE 0.00 0.00 1.7e-17 5.4e-03 4.3e-03
Correct RE 0.00 4.58 2.97 4.87 5.01
Mis-spec RE 2.81 2.79 2.63 2.38 2.58
DSA RE 4.59 4.62 5.27 4.82 5.00
Unadjusted Rej 0.33 0.65 0.96 1.00 1.00
Adjusted Rej 0.44 0.89 1.00 1.00 1.00
Correct Rej 0.94 1.00 1.00 1.00 1.00
Mis-spec Rej 0.25 0.84 1.00 1.00 1.00
DSA Rej 0.52 0.98 1.00 1.00 1.00
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(a) Risk Difference, k=1.2
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(b) Risk Difference, k=20

200 400 600 800 1000

0.
00

0.
02

0.
04

0.
06

0.
08

Sample Size

B
ia

s

Unadjusted
Correct
Mis−spec
DSA

(c) Relative Risk, k=1.2
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(d) Relative Risk, k=20
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(e) Odds Ratio, k=1.2
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(f) Odds Ratio, k=20

Figure 1: Simulation 1: Bias
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5.2 Simulation 2: Odds Ratio with Interaction Term

In this simulation, the treatment A and outcome Y are binary and W is a 2-dimensional covariate, W =
(W1,W2). Here the true causal odds ratio is 0.83. The simulated data were generated according to the
following laws:

1. W1 ∼ N(2, 2)

2. W2 ∼ U(3, 8)

3. P (A = 1) = δ0 = 0.5

4. Q0(A,W ) = P (Y = 1|A,W ) = 1
(1+exp(−(1.2A−5W 2

1 +2W2−5AW1)))

The true values were given by P (Y1 = 1) = 0.312, P (Y0 = 1) = 0.352 and OR = 0.833. The same
methods used in simulation 1 were used here to estimate the odds ratio. The simulation was run 1000
times for each sample size: n = 50, 100, 250, 500, 1000. For the “Mis-spec” targeted MLE, the mis-specified
fit was given by Q̂(A,W ) = 1/(1 + exp(−(α̂0 + α̂1A + α̂2W1))). Figure 2 provides a plot of the bias for
each of the estimators. The results are similar to odds ratio for simulation 1 in that the bias is positive
for all estimators, and thus the odds ratio is over-estimated. Again, even when Q̂(A,W ) is mis-specified
the bias and MSE are reduced as compared to the unadjusted estimate (Table 3). The DSA, which allows
for interactions, shows a significant improvement in terms of bias and MSE. A notable increase in power
is again observed for the targeted MLE over the unadjusted method.

Table 3: Odds Ratio, with Interaction

50 100 250 500 1000

Unadjusted MSE 5.6e-01 1.6e-01 5.9e-02 2.6e-02 1.2e-02
Adjusted RE 0.00 0.00 0.65 0.56 0.38
Correct RE 7.37 1.67 2.22 7.56 7.71
Mis-spec RE 2.78 2.52 2.44 2.60 2.69
DSA RE 5.30 5.69 6.65 7.26 7.68
Unadjusted Rej 0.05 0.07 0.10 0.17 0.31
Adjusted Rej 0.02 0.05 0.13 0.25 0.50
Correct Rej 0.99 0.99 1.00 1.00 1.00
Mis-spec Rej 0.96 1.00 1.00 1.00 1.00
DSA Rej 0.98 1.00 1.00 1.00 1.00

5.3 Simulation 3: Estimating the Treatment Mechanism as well

In this simulation, the treatment mechanism, P̂ (A|W ) is estimated from the data using a logistic regression
model with covariates that are predictive of the outcome Y . The simulated data were generated according
to the following laws:

1. W1 ∼ N(1, 2)

2. W2 ∼ U(1, 4)

3. W3 ∼ U(0, 20)

4. P (A = 1) = δ0 = 0.5

5. Q0(A,W ) = P (Y = 1|A,W ) = 1
(1+exp(−(3A−2W 2

1−log(W2)+0.5W3)))
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Figure 2: Odds Ratio, Interaction

The true values were given by P (Y1 = 1) = 0.569, P (Y0 = 1) = 0.419 and RD = 0.150. The treatment
mechanism was estimated with the logistic regression model given by g(A|W ) = 1/(1+exp(−(γ0 +γ1W1 +
γ2W2 + γ3W3))). The targeted MLE estimator, represented as “Est tx” in Table 5 and Figure 4, with the
estimated treatment mechanism is no longer equivalent to the G-computation estimator. The mis-specified
fit for Q(A,W ) = 1/(1 + exp(−(α0 + α1A + α2W1))) is used as the initial fit and the covariate h(A,W )
provided in section 3.4 is then added to this logistic regression. The targeted MLE is then estimated as
usual. Thus, we are interested in comparing the mis-specified targeted MLE to the estimated treatment
mechanism targeted MLE. Figure 4 shows the bias is reduced and the efficiency is slightly increased
when estimating the treatment mechanism. The power was approximately equal for the mis-specified
and estimated treatment mechanism targeted MLE. The DSA targeted MLE method again shows a large
improvement in efficiency and power over the unadjusted method.

Table 4: Risk Difference, Estimated Tx Mechanism

50 100 250 500 1000

Unadjusted MSE 2.1e-02 9.4e-03 3.8e-03 1.9e-03 9.9e-04
Correct RE 3.22 3.51 3.91 3.95 4.08
DSA RE 2.65 3.48 3.89 3.94 4.04
Mis-spec RE 1.19 1.18 1.16 1.21 1.20
Est tx RE 1.26 1.30 1.28 1.34 1.29
Unadjusted Rej 0.22 0.34 0.67 0.92 1.00
Correct Rej 0.73 0.90 1.00 1.00 1.00
DSA Rej 0.59 0.90 1.00 1.00 1.00
Mis-spec Rej 0.26 0.42 0.76 0.96 1.00
Est tx Rej 0.23 0.40 0.75 0.96 1.00
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Figure 3: Risk Difference, Estimated Treatment Mechanism
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5.4 Efficiency Gain and R2

The gain in relative efficiency is related to the gain in the squared multiple correlation coefficient R2. A
covariate predictive of the outcome results in an increase in R2 in the adjusted model as compared to the
unadjusted model. The increase in R2 results in an increase in efficiency in the targeted MLE. Pocock
et al. (2002) discussed the increase in efficiency when adjusting for predictive covariates in linear models.
The following simulations show that this also applies to the targeted MLE using logistic regression models.
Simulated data were generated according to the following laws:

1.
√
W ∼ N(2, 2)

2. P (A = 1) = δ0 = 0.5

3. Q0(A,W ) = P (Y = 1|A,W ) = 1
(1+exp(−(1.2A−cW )))

A simulation of sample size n = 1000 was run for each c = {0, 0.25, 2, 10}, that is covariate W is
increasingly predictive. The R2 was estimated in the ordinary least squares sense,

R2 = 1−
∑n

i=1(Yi − Q̂(A,W ))2∑n
i=1(Yi − Ȳ )2

.

A gain in R2 was computed as the difference between R2 in the covariate adjusted model and the covariate
unadjusted model. Figure 5 and 6 depict the relative efficiency to the unadjusted model for the targeted
MLE of the odds ratio against the gain in R2 for the targeted MLE of the odds ratio and risk difference
respectively.
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Figure 4: Efficiency Gain and R2

5.5 Simulations Discussion

The four simulations were relatively simple scenarios but were useful in demonstrating the following points:

• The targeted MLE shows a clear increase in both efficiency and power over the unadjusted method,
even when Q(A,W ) is not correctly specified.

• The DSA method for selecting Q(A,W ) provides a significant increase in efficiency and power over
the mis-specified fixed Q(A,W ) method. The average relative efficiencies between these two methods
ranged from 1.7 to 3.6 for sample sizes n = 50 to n = 1000 in our simulations.

• The targeted MLE circumvents the singularity issue that occurs when using the adjusted method of
extracting the coefficient from the logistic regression model Q(A,W ).

Chapter 5. Randomized Controlled Trials

218
Hosted by The Berkeley Electronic Press



• Interaction terms in the model for Q(A,W ) fit entirely into the framework of the targeted MLE.

• Estimating the treatment mechanism provides a further small increase in efficiency over targeting
only Q(A,W ).

6 Discussion

The targeted MLE provides a general framework that we applied to estimation of the marginal (unadjusted)
effect of treatment in randomized trials. We observed that the traditional method of covariate adjustment
in randomized trials using logistic regression models can be mapped, by averaging over the covariate(s),
to obtain a fully robust and efficient estimator of the marginal effect, which equals the targeted MLE.
We demonstrated that the targeted MLE does just this and results in an increase in efficiency and power
over the unadjusted method, contrary to what has been reported in the literature for covariate adjustment
for logistic regression. The simulation results showed that data-adaptive model selection algorithms such
as the DSA, which we used in this paper, or forward selection, when specified a priori should be used.
However, we showed that even adjusting by a misspecified regression model results in gain in efficiency
and power. Thus, using an a priori specified model, even if it is mis-specified, can increase the power,
and thus reduce the sample size requirements for the study. This is particularly important for trials with
smaller sample sizes. The targeted MLE framework can also address missing data, either in the outcome
as we demonstrated in section 3.5 for the risk difference, but also missingness in covariates and treatment
as well for any of the parameters of interest. In these scenarios the targeted MLE covariate may not be as
straightforward as those that were presented in this paper, but its derivation is analogue. We focused on
logistic and relative risk regression, but the methodology can be extended to any other regression models for
Q(A,W ). The targeted MLE framework can also be applied to other parameters of interest in randomized
trials such as an adjusted effect, for example by age or biomarker, and can also handle survival times as
outcomes (see van der Laan and Rubin (2006)).
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Chapter 5. Randomized Controlled Trials

5.2 Selecting Optimal Treatments Based on

Predictive Factors

The following article appears as it was originally published on the University of California,
Berkeley Division of Biostatistics Working Paper Series website in 2009,
http://www.bepress.com/ucbbiostat/paper244/.

It was later published in the book Design, Summarization, Analysis & Interpretation
of Clinical Trials with Time-to-Event Endpoints, edited by Karl E. Peace for Chapman
and Hall as Predicting Optimal Treatment Assignment Based on Prognostic Factors in Cancer
Patients in 2009.
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1 Introduction

With the increasing interest in individualized medicine there is a greater

need for robust statistical methods for prediction of optimal treatment based

on the patient’s characteristics. When evaluating two treatments, one treat-

ment may not be uniformly superior to the other treatment for all patients.

A patient characteristic may interact with one of the treatments and change

the effect of the treatment on the response. Clinical trials are also collecting

more information on the patient. This additional information on the patients

combined with the state-of-the-art in model selection allows researchers to

build better optimal treatment algorithms.

In this chapter we introduce a methodology for predicting optimal treat-

ment. The methodology is demonstrated first on a simulation and then on

a phase III clinical trial in neuro-oncology.

2 Predicting Optimal Treatment Based on Baseline

Factors

Start with a randomized controlled trial where patients are assigned to

one of two treatment arms, A ∈ {0, 1}, with Pr(A = 1) = ΠA. The main

outcome for the trial is defined at a given time point t as Y = I(T > t)

where T is the survival time. For example, the main outcome may be the

six-month progression-free rate and T is the progression time. Also collected

at the beginning of the trial is a set of baseline covariates W . The baseline

covariates may be any combination of continuous and categorical variables.
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The baseline covariates can be split into prognostic and predictive factors.

Prognostic factors are patient characteristics which are associated with the

outcome independent of the treatment given, while predictive factors are

patient characteristics which interact with the treatment in their association

with the outcome. To determine the optimal treatment, a model for how

the predictive factors and treatment are related to the outcome needs to be

estimated.

The observed data is Oi = (Wi, Ai, Yi = I(Ti > t)) ∼ P for i = 1, . . . , n.

For now assume Y is observed for all patients in the trial but this assumption

is relaxed in the next section. The optimal treatment given a set of baseline

variables is found using the W -specific variable importance parameter:

Ψ(W ) = E(Y |A = 1,W )− E(Y |A = 0,W ) (1)

Ψ(W ) is the additive risk difference of treatment A for a specific level of

the prognostic variables W . The conditional distribution of Y given W is

defined as {Y |W} ∼ Bernoulli(πY ). The subscript W is assumed on πY and

left off for clarity of the notation. Adding the treatment variable A into

the conditioning statement we define {Y |A = 1,W} ∼ Bernoulli(π+1) and

{Y |A = 0,W} ∼ Bernoulli(π−1). Again the subscript W is dropped for

clarity but assumed throughout the paper. The parameter of interest can

be expressed as Ψ(W ) = π+1 − π−1. For a given value of W , Ψ(W ) will fall

into one of three intervals with each interval leading to a different treatment

decision. The three intervals for Ψ(W ) are:

1. Ψ(W ) > 0 : indicating a beneficial effect of the intervention A = 1.
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2. Ψ(W ) = 0 : indicating no effect of the intervention A.

3. Ψ(W ) < 0 : indicating a harmful effect of the intervention A = 1.

Knowledge of Ψ(W ) directly relates to knowledge of the optimal treatment.

As noted in [1], the parameter of interest can be expressed as:

Ψ(W ) = E
((

I(A = 1)
ΠA

− I(A = 0)
1−ΠA

)
Y |W

)
. (2)

When ΠA = 0.5, the conditional expectation in equation (2) can be modeled

with the regression of Y (A− (1− A)) on W . Let Z = Y (A− (1− A)) and

since A and Y are binary variables:

Z =


+1 if Y = 1 & A = 1

0 if Y = 0

−1 if Y = 1 & A = 0

The observed values of Z follow a multinomial distribution. The parameter

Ψ(W ) will be high dimensional in most settings and the components of Ψ(W )

are effect modifications between W and the treatment A on the response Y .

The parameter can be estimated with a model Ψ(W ) = m(W |β). The func-

tional form of m(W |β) can be specified a priori, but since the components

of the model represent effect modifications, knowledge of a reasonable model

may not be available and we recommend a flexible approach called the super

learner (described in the next section) for estimating Ψ(W ). In many cases

a simple linear model may work well for m(W |β), but as the true functional

form of Ψ(W ) becomes more complex, the super learner gives the researcher
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flexibility in modeling the optimal treatment function. With the squared

error loss function for a specific model m(W |β), the parameter estimates

are:

βn = arg min
β

n∑
i=1

(Zi −m(Wi|β))2 (3)

The treatment decision for a new individual with covariates W = w is to

treat with A = 1 if m(w|βn) > 0, otherwise treat with A = 0.

A normal super learner model for m(W |β) would allow for a flexible

relationship between W and Z but these models do not respect the fact that

Ψ(W ) is bounded between −1 and +1. The regression of Z on W does

not use the information that the parameter Ψ(W ) = π+1 − π−1 is bounded

between −1 and +1. The estimates in equation (3) have a nice interpretation

since the model predicts the additive difference in survival probabilities. In

proposing an alternative method, we wanted to retain the interpretation of an

additive effect measure but incorporate the constrains on the distributions.

Starting with the parameter of interest in equation (1) we add a scaling value

based on the conditional distribution of Y given W as in:

Ψ′(W ) =
EP (Y |A = 1,W )− EP (Y |A = 0,W )

EP (Y |W )
=
π+1 − π−1

πY
(4)

Since πY = Pr(Y = 1|W ) = Pr(Z 6= 0|W ), the new parameter Ψ′(W ) =

E(Z|Z 6= 0,W ). When we restrict the data to the cases with Z 6= 0 (i.e. Y =

1) the outcome becomes a binary variable and binary regression methods can

be implemented. For example, the logistic regression model:

logit (Pr(Z = 1|Z 6= 0,W )) = m′(Wi|β) (5)
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The treatment decision is based on m′(Wi|βn) > 0 where βn is the maxi-

mum likelihood estimate for the logistic regression model. With the binary

regression setting, we are now incorporating the distribution information in

creating the prediction model, but losing information by working on a sub-

set of the data. These trade-offs depend on the probability πY and we will

evaluate both methods on the trial example below. In the next section we

propose a data-adaptive method for estimating Ψ(W ).

3 Super Learner

Many methods exist for prediction, but for any given data set it is not

known which method will give the best prediction. A good prediction algo-

rithm should be flexible to the true data generating distribution. One such

algorithm is the super learner [2]. The super learner is applied to predict the

optimal treatment based on the observed data. The super learner algorithm

starts with the researcher selecting a set of candidate prediction algorithms

(candidate learners). This list of candidate learners should be selected to

cover a wide range of basis functions. The candidate learners are selected

prior to analyzing the data; selection of the candidates based on performance

on the observed data may introduce bias in the final prediction model. A flow

diagram for the super learner algorithm is provided in figure 19.1. With the

candidate learners selected and the data collected, the initial step is to fit all

of the candidate learners on the entire data set and save the predicted values

for Ψn(W ) = mj(W |βn), where j indexes the candidate learners. The data is

then split into V equal sized and mutually exclusive sets as is typically done
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for V-fold cross-validation. Patients in the vth fold are referred to as the vth

validation set, and all patients not in the vth fold are referred to as the vth

training set. For the vth fold, each candidate learner is fit on the patients

in the vth training set and the predicted values for Ψ(W ) = mj(W |βn) for

the patients in the vth validation set are saved. This process of training the

candidate learners on the out of fold samples and saving the predicted values

in the fold is repeated for all V folds. The predictions from all V folds are

stacked together in a new data matrix Xv. With the prediction data, regress

the observed outcome Z on the columns of Xv, which represent the predicted

outcomes for each candidate learner. This regression step selects weights for

each candidate learner to minimize the cross-validated risk. With the esti-

mates, βn, from the model E(Z|Xv) = m(X|β) the super learner only saves

the weights (βn) and the functional form of the model. The super learner

prediction is then based on combining the predictions from each candidate

learner on the entire data set with the weights from the cross-validation step.

4 Extensions for Censored Data

In a prospective trial the data may be subject to right censoring. In

both methods above, right censoring leads to the outcome Z being missing.

The data structure is extended to include an indicator for observing the

outcome. Let C be the censoring time (for individuals with an observed

outcome we set C = ∞). Define ∆ = I(C > t). ∆ = 1 when the outcome

is observed and ∆ = 0 when the outcome is missing. The observed data is

the set (W,A,∆, Y∆). For the first method, we propose using the doubly
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Figure 1: Flow diagram for super learner

robust censoring unbiased transformation [3]. The doubly robust censoring

unbiased transformation generates a new variable Z∗ which is a function of

the observed data but has the additional property:

E (Z∗|W,∆ = 1) = E (Z|W )

The transformation allows estimation of the parameter Ψ(W ) by applying

the super learner on the uncensored observations with the transformed vari-

able Z∗ as the outcome. The doubly robust censoring unbiased transforma-

tion is:

Z∗ =
Z∆
π(W )

− ∆
π(W )

Q(W ) +Q(W ), (6)
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where π(W ) = Pr(∆ = 1|W ) and Q(W ) = E(Z|W,∆ = 1). Both π(W ) and

Q(W ) need to be estimated from the data. If either π(W ) or Q(W ) is consis-

tently estimated, then the prediction function E(Z∗|W,∆ = 1) = m(W |βn)

is an unbiased estimate for the true parameter Ψ(W ). The censoring mech-

anism π(W ) can be estimated with a logistic regression model or a binary

super learner on the entire data set. Similarly, Q(W ) may be fit with a lin-

ear regression model or a super learner, but on the subset of the data with

observed values for Z.

For the second method which relies on modeling E(Z|Z 6= 0,W ), the

main feature was the ability to use the knowledge of the distributions to

develop a better model. To retain the binary outcome, the doubly robust

censoring unbiased transformation will not work. An alternative method

for the right censoring which will retain the binary outcome would be in-

verse probability of censoring weighting. Inverse probability of censoring

weights uses the same π(W ) as above, but does not incorporate the other

nuisance parameter Q(W ). When applying the binary super learner for

E(Z|Z 6= 0,W,∆ = 1) the weights 1/π(W ) will be applied for both the can-

didate learners and the V-fold cross-validation steps. The super learner will

minimize the weighted loss function.

5 Simulation Example

We first demonstrate the proposed method on a simulation example

where the true value of Ψ(W ) is known. The baseline variables were all

simulated as normally distributed, Wj ∼ N(0, 1), j = 1, . . . , 10. The treat-
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ment was randomly assigned with ΠA = 0.5. The true model for the outcome

was:

Pr(Y = 1|A,W ) = g−1(0.405A− 0.105W1 + 0.182W2 + 0.039AW2 (7)

+0.006AW2W3 − 0.357AW4 − 0.020AW5W6 − 0.051AW6)

Where g−1(·) is the inverse logit function and Wj refers to the jth variable

in W . The true model was selected to include interactions between the

treatment and some of the baseline variables. With knowledge of the true

model for the outcome Y , the true value of Ψ(W ) is calculated for every

individual.

The first method involves the regression of Z on W . We applied the

super learner for m(W |β). 10-fold cross validation was used for estimating

the candidate learner weights in the super learner. The super learner for

the first method included five candidate learners. The first candidate was

ridge regression [4]. Ridge regression used an internal cross validation to

select the penalty parameter. Internal cross validation means the candidate

learner performed a V-fold cross validation procedure within the folds for

the super learner. Structurally, when the candidate learner also performs

cross validation within the super learner cross validation we have nested

cross validation; therefore, we refer to the candidate learner cross validation

as internal cross validation. The second candidate was random forests [5].

For the random forest candidate learner, 1000 regression trees were grown.

The third candidate was least angle regression [6]. An internal 10-fold cross

validation procedure was used to determine the optimal ratio of the L1 norm
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Method R Package Authors

Adaptive Regression Splines polspline Kooperberg
Least Angle Regression lars Efron and Hastie
Penalized Logistic stepPlr Park and Hastie
Random Forests randomForest Liaw and Wiener
Ridge Regression MASS Venables and Ripley

Table 1: R Packages for Candidate Learners. R is available at http://www.
r-project.org

of the coefficient vector compared to the L1 norm of the full least squares

coefficient vector. The fourth candidate was adaptive regression splines for

a continuous outcome [7]. The final candidate was linear regression. Table 1

contains reference for the R packages implemented for the candidate learners

in the super learner.

The prediction model from the super learner is:

Ψn(W ) = −0.01+7.24(Xridge
n )+1.16(Xrf

n )−0.20(X lars
n )−7.07(X lm

n )−0.03(Xmars
n )

Where Xj
n is the predicted value for Z based on the jth candidate learner.

j = ridge is the ridge regression model. j = rf is the random forests model.

j = lars is the least angle regression model. j = lm is the main effects linear

regression model. j = mars is the adaptive regression splines model. The

largest weights are for ridge regression and the linear regression model. For

example, the estimates for the linear regression model is:

X lm
n = 0.06 + 0.02W1 + 0.01W2 − 0.03W3 − 0.07W4 + 0.01W5 + 0.05W6

− 0.02W7 − 0.00W8 − 0.01W9 − 0.06W10.
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The linear regression model has the largest coefficient on W4, which is the

variable with the strongest effect modification with the treatment in the

true model (equation (7)). The second largest coefficient is on W10 which

is a variable unrelated to the outcome. The super learner helps smooth

over these errors by having multiple candidate learners. For example, W10

has a small coefficient (−0.01) in the ridge regression model. When all the

candidates are combined into the final super learner prediction model the

spurious effect estimates will often disappear resulting in a better predictor.

The third largest coefficient from the linear regression model is on W6 which

is also a strong effect modifier in the true model. To evaluate how the super

learner is performing in comparison to the other candidate learners, each

candidate learner was also fit as a separate estimate. We looked at two risk

values, first the E(Ψn(W )−Z)2 which was minimized by each algorithm. For

the simulation, the risk Ê(Z −Ψ(W ))2 = 0.540 gives a lower bound for the

risk E(Ψn(W ) − Z)2. Since the true Ψ(W ) is known in the simulation, the

risk E(Ψn(W )−Ψ(W ))2 was also evaluated. Table 2 contains the risk values

for the simulation. The super learner achieved the smallest E(Ψn(W )−Z)2

and is comparable to MARS and LARS on the risk for the true parameter

value Ψ(W ).

The super learner for the second method included three candidate learn-

ers. The first candidate was adaptive regression splines for polychotomous

outcomes [8]. The second candidate was the step-wise penalized logistic

regression algorithm [9]. The final candidate was main terms logistic regres-
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E(Ψn(W )−Ψ(W ))2 E(Ψn(W )− Z)2

Super Learner 0.012 0.544
MARS 0.012 0.549
LARS 0.012 0.549
Ridge 0.026 0.558
Linear Model 0.028 0.559
Random Forests 0.038 0.565

Table 2: Risk for all candidate learners and the super learner

sion. The super learner for the second method is:

Ψ′n(W ) = −1.20 + 1.43(Xpoly
n )− 0.50(Xplr

n ) + 1.61(Xglm
n )

Where Xj
n is the predicted value for Z based on the jth candidate learner.

j = poly is the polyclass adaptive spline model. j = plr is the penalized

logistic regression model. j = glm is the main effects logistic regression

model.

6 Example of Prediction Model on Clinical Trial

A phase III clinical trial was conducted to evaluate a novel treatment

for brain metastasis. The study recruited 554 patients with newly diagnosed

brain metastasis and the patients were randomized to receive either stan-

dard care (A = 0) or the novel treatment (A = 1). The researchers were

interested in determining an optimal treatment to maximize the probabil-

ity of surviving 6 months from treatment initiation without progression. Of

the 554 patients, 246 are censored prior to 6 months. For the 308 patients

with an observed 6 month progression time, 130 progressed or died (42.2%).
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In addition to the treatment and event time data, the researchers collected

baseline prognostic and predictive factors on every patient. We apply the

super learner to estimate a model for selecting the optimal treatment given

a patient’s baseline factors. A breakdown of the sample size and treatment

allocations available for each method is given in table 3.

A

total 0 1

Enrolled 554 275 279
Method 1 308 158 150
Method 2 130 67 63

Table 3: Number of subjects in each treatment arm at enrollment and avail-
able for each method.

6.1 Super learner for optimal treatment decisions

Both methods proposed above were applied to the data. The first method

looks for a model of Z onW treating Z as a continuous variable. The second

method looks for a model of Z on W conditional on Z 6= 0 treating the

outcome as binary.

The same super learners from the simulation example above were used

here in the trial example. The predicted model for the first method is:

Ψn(W ) = −0.01+0.02(Xridge
n )+1.21(Xrf

n )−0.84(X lars
n )−0.28(X lm

n )+0.50(Xmars
n )

Where Xj
n is the predicted value for Z based on the jth candidate learner.

j = ridge is the ridge regression model. j = rf is the random forests model.

j = lars is the least angle regression model. j = lm is the main effects linear
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regression model. j = mars is the adaptive regression splines model. The

coefficient estimates for each candidate learner from the super learner can

be interpreted as a weight for each candidate learner in the final prediction

model. Random forests has the largest absolute weight. When interpreting

the weights, be cautious of the often near collinearity of the columns of

X. To evaluate the super learner in comparison to the candidate learners,

a 10-fold cross validation of the super learner and each of the candidate

learners themselves was used to estimate E(Ψn(W )− Z)2. Table 4 contains

the risk estimates. For the trial example, both the lars algorithm and the

Method Risk

Lars 0.426
Mars 0.426
Super Learner 0.445
Ridge Regression 0.505
Random Forests 0.509
Linear Model 0.525

Table 4: 10-fold honest cross validation estimates of E(Ψn(W )−Z)2 for the
super learner and each of the candidate learners on their own.

mars algorithm outperform the super learner. As observed in the simulation,

minimizing the risk E(Ψn(W )−Z)2 should directly relate to minimizing the

risk E(Ψn(W ) − Ψ(W ))2. These cross-validation estimates may be used to

select an optimal final model for the treatment decisions.

The second method evaluates E(Z|Z 6= 0,W ) = m′(W |β). The esti-

mated super learner model for the second method is:

Ψ′n(W ) = −0.53− 0.40(Xpoly
n ) + 0.55(Xplr

n ) + 0.81(Xglm
n )
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WhereXj
n is the predicted value for Z based on the jth candidate learner. j =

poly is the polyclass adaptive spline model. j = plr is the penalized logistic

regression model. j = glm is the main effects logistic regression model.

To compare the two methods, we created a confidence interval at the mean

Predicted value of Z when at mean W level
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Figure 2: Histograms from 1000 bootstrap samples for Ψ′(W = w̄) and
Ψ(W = w̄). The number in the title bar refers to the method used.

vector forW . Let w̄ be the vector of observed means for the baseline variables

using all observations in the trial. Confidence intervals were created based

on 1000 bootstrap samples of the entire super learner. The 95% confidence

interval for m(w̄|β) based on the first method is (−0.20, 0.52). The 95% for

m(w̄|β) based on the second method is (−2.23, 1.23). Although the second

method is able to use the distributional information, the penalty for the
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smaller sample size is great (308 patients for the first method down to 130

patients for the second method). As can be seen in figure 19.2, the second

method has a wide confidence interval compared to the first method.

7 Variable Importance Measure

An additional feature of having a good prediction model is better variable

importance measures. The variables in E(Z|W ) are effect modifications and

when applying the targeted maximum likelihood estimation (tMLE) variable

importance measure [10] the results will be causal effect modification impor-

tance measures. The targeted maximum likelihood effect modification vari-

able importance allows the researcher to focus on each variable inW individ-

ually while adjust for the other variables inW . An initial variable importance

estimate is based on an univariate regression, Z∗ = β0j+β1jWj , j = 1, . . . , p

where p is the number of baseline covariates in W . The top 5 baseline vari-

ables based on the ranks of the univariate p-values is presented in table 5.

The top unadjusted effect modification variable is an indicator of whether the

patients lives in the US or Europe, followed by an indicator for the patients

being in RPA class 2, an indicator for the primary tumor being controlled,

an indicator for extracranial metastasis, and finally an indicator for the pa-

tient’s age greater than 65 years. The top 5 baseline variables from the LARS

procedure are similar to those from the univariate regression with the excep-

tion of Squamous cell indicator replacing the RPA class 2 indicator. For the

tMLE variable importance, the effect of Wj on Z is adjusted by all other

covariates inW . LetW(−j) be all covariates inW excluding the jth variable.
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The targeted maximum likelihood variable importance measure as outlined

in [11] was then applied using the predictions from the super learner as the

initial estimate of E(Z|W ). The targeted effect modification parameter is

then:

ψj = E
(
E(Z|Wj = 1,W(−j))− E(Z|Wj = 0,W(−j))

)
, j = 1, . . . , p (8)

The top 5 baseline variables are presented in table 5. The effect estimates

from the tMLE procedure can be considered causal effect modifiers. Only

extracranial mets appears in both the adjusted and unadjusted top 5 list,

although squamous cell indicator does appear in both the LARS procedure

and the tMLE procedure. The top variable (Mets Dx > 6 Mo) is an indicator

for the metastasis diagnosis occurring greater than 6 months after prvious

cancer. The tMLE list contains two indicators for histology of the tumor

cells (Squamous and Adeno carcinoma) suggesting that some tumor types

my respond better to the treatment compared to others. Comparing the

variable importance lists, the indicator for the patient being in the United

States compared to Europe is on top of the list for the univariate regression

and the lars model, but absent from the tMLE list. There is no biological

evidence for geographical location to interact with the treatment in this trial.

The variable importance based on targeted maximum likelihood is able to

appropriately adjust for the confounding on the other variables in W and

remove the US versus Europe indicator from the list of top variables. The

variable importance list from the tMLE has a better interpretation and is

informative as to which patient characteristics have a causal interaction with
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Method Baseline Variable Effect p-value

Univariate Regression US vs Europe -0.222 0.007
RPA class 2 -0.229 0.017
Primary tumor control 0.165 0.052
Extracranial mets -0.133 0.069
Age > 65 years -0.157 0.075

LARS US vs Europe -0.124 0.350
Primary tumor control 0.080 0.405
Age > 65 years -0.050 0.412
Extracranial mets -0.028 0.413
Squamous cell 0.034 0.419

tMLE Mets Dx > 6 Mo 0.864 <0.001
Squamous cell 1.012 <0.001
Adeno carcinoma 0.129 0.007
Extracranial mets -0.102 0.022
Caucasian 0.172 0.035

Table 5: Top 5 effect modifiers based on univariate regression, lars, and super
learner with targeted maximum likelihood. The standard error was based
on a bootstrap with 1,000 samples.
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the treatment.

8 Discussion

Two methods were proposed for predicting the optimal treatment based

on baseline factors. The first method involves modeling Z onW disregarding

the knowledge that E(Z|W ) is bounded between −1 and +1. The second

method incorporates the bounds, but does so at a cost in sample size by

modeling E(Z|Z 6= 0,W ). The second method predicts a scaled version of

the parameter of interest, and so is still valid for making treatment decisions.

In the simulation and trial example presented here, the loss of sample size in

the second method greatly increased the variability of the final prediction.

But both the simulation and trial example had a high fraction of patients

with Z = 0 (equivalently, Y = 0). The second method may outperform

the first method in settings where Pr(Y = 0) is very small. For the exam-

ples presented here, no problems were observed with the first method not

respecting the bounds on E(Z|W ).

In the trial example, the super learner did perform better than the main

terms linear regression based on the estimate of the risk E(Ψn(W ) − Z)2.

Even though the super learner has shown to have excellent performance

across a range of simulations [2, 12] and in various of our data analyses in

breast cancer research, there is a risk that the super learner will result in a

slight over-fit. In the data analysis we observed that the super learner was

ranked third, but competitive with the top two candidate learners, LARS

and MARS. We have also proposed an extension to the super learner outlined
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here to adaptively select the number of candidates [13] so that the weaker

candidates are not selected, which we believe will protect the super learner

against possible over-fitting, but this was not implemented in the current

data analysis yet.

We observed that the difference in sample size between the two methods

may make the second method unusable in this example, but the two methods

also differed in the treatment of right censoring. The first method incorpo-

rated the doubly robust censoring unbiased transformation while the second

method used the inverse probability of censoring weights. If the model for

Q(W ) was correctly specified, but the model for the censoring mechanism

was not consistently estimating π(W ), the doubly robust estimator would

still be unbiased but the inverse probability of censoring weighted method

will be biased. Alternatively, if π(W ) was correctly specified, but Q(W )

was inconsistent, then both methods will be unbiased. The doubly robust

transformation gives the researcher two chances to correctly the nuisance

parameters, while the inverse weighting method relies solely on the model

for π(W ). When there is uncertainty regarding the model for the censoring

mechanism, the doubly robust transformation is preferred.

The methods presented above are not limited to randomized clinical tri-

als. Optimal treatment prediction models could also be estimated from ob-

servational or registry data sets. As long as the variables needed to estimate

Pr(A = 1|W )) are collected in the study the above methods easily extend

to the non-randomized setting. Registry data sets are often larger than ran-

domized trials and therefore have more power to detect the interaction effects

necessary for predict optimal treatments.
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Simple, Efficient Estimators of Treatment Effects in Randomized

Trials Using Generalized Linear Models to Leverage Baseline

Variables

Michael Rosenblum and Mark J. van der Laan

August 26, 2009

Models, such as logistic regression and Poisson regression models, are often used to estimate treatment
effects in randomized trials. These models leverage information in variables collected before randomization,
in order to obtain more precise estimates of treatment effects. However, there is the danger that model
misspecification will lead to bias. We show that certain easy to compute, model-based estimators are asymp-
totically unbiased regardless of whether the model used is misspecified or not. Furthermore, these estimators
are locally efficient. As a special case of our main result, we consider a simple Poisson model containing only
main terms; in this case, the maximum likelihood estimate of the coefficient corresponding to the treatment
variable is an asymptotically unbiased estimator of the log rate ratio, even when the model is misspecified.
Our results demonstrate one application of targeted maximum likelihood estimation.
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1 Introduction

The appropriate use of models in analyzing the results of randomized trials has been the focus of many
recent papers (e.g. Pocock et al. (2002); Rosenbaum (2002); Tsiatis et al. (2007); Moore and van der Laan
(2007); Freedman (2007a,b, 2008); Zhang et al. (2008); Rosenblum and van der Laan (2008)). Here we
present a large class of simple to compute, model-based estimators of treatment effects–the same effects
estimated by the intention to treat estimator. Our estimators are asymptotically unbiased, and leverage
baseline variables to try to get more precision than the intention to treat estimator (though in some cases it
is possible that the intention to treat estimator has greater precision). All of our results hold even when the
models used are misspecified, that is, when the models used do not contain the data generating distribution.
This is an important property since in practice, models will often be misspecified. Our results demonstrate an
application of targeted maximum likelihood estimation, a general estimation method with broad applicability
to randomized trials and observational studies described in van der Laan and Rubin (2006).

In the next section, we describe the estimation problem being considered and present related work. Then,
in Section 3 we give a brief overview of targeted maximum likelihood methodology, of which our estimators
are one application. Our class of estimators and our main result are presented in Section 4. We show how
to construct confidence intervals and compute p-values in Section 5. Proofs of our results are given in the
Appendix.

2 Description of Estimation Problem, Assumptions, and Related
Work

We consider a randomized trial with n subjects, in which a set of baseline variables, denoted by V , are
measured. After these variables are measured, subjects are randomized with probability 1/2 to either the
treatment or control arm, independent of the baseline variables. We let A denote the treatment assignment,
with A = 1 corresponding to the treatment arm and A = 0 corresponding to the control arm. We denote
the outcome variable by Y . For each subject i, we denote their data by the vector (Vi, Ai, Yi), representing
their baseline measurements, treatment assignment, and outcome, respectively. In general, we recommend
that baseline variables that are highly predictive of the outcome should be included in the vector V .

Assumptions on the Data Generating Distribution:
We assume that the observations (Vi, Ai, Yi) are independent, identically distributed draws from an unknown
data generating distribution.1 We also assume the values of all variables are bounded. We assume that A
and V are independent, which is ensured by randomization.

Assumptions on the Form of the Generalized Linear Model:
We assume that we are using a generalized linear model with canonical link function and with linear part
containing A as a main term and containing an intercept. We assume the exponential family used is one of the
following commonly used families: Normal, Binomial, Poisson, Gamma, or Inverse Normal (see McCullagh
and Nelder (1998) for definitions of these exponential families). We denote the linear part of the generalized
linear model by η =

∑k
i=1 βjfj(A, V ), where f1(A, V ) = 1, f2(A, V ) = A, and fj are functions ofA and V that

are bounded on compact subsets of {0, 1}×Rd, where V is a d-dimensional vector of baseline variables. We
also assume the terms fj(A, V ) are linearly independent. (Linear dependencies will be detected by standard
statistical software.) Also, we assume that there exists a maximizer β∗ of the expected log likelihood that
has components with absolute values smaller than some pre-specified bound M . This can be detected, for
large enough sample size n, as described in the Appendix.

For the Gamma and Inverse Normal families, where the outcome variable is assumed to take values in
(0,∞), we assume that fj take positive values and are bounded away from 0 by some δ > 0; also for these
two families we restrict βj to take positive values and be bounded away from 0 by some δ > 0. Furthermore,

1This assumption is not guaranteed by randomization. For discussion of this issue, see (Rosenbaum, 2002; Freedman, 2008;
Rosenblum and van der Laan, 2008).
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for these families, we assume that there exists a maximizer β∗ of the expected log likelihood for which all
components of β∗ are strictly greater than δ.

The above class of generalized linear models includes (but is not limited to) the following examples:

1. Least Squares Regression: For Y continuous, the Normal model assuming E(Y |A, V ) has the form:

µ1(A, V |β) = β0 + β1A+ β2V + β3AV + β4V
2,

2. Logistic Regression: For Y binary and logit(x) = log(x/(1−x)), the following model for P (Y = 1|A, V ):

µ2(A, V |β) = logit−1 (β0 + β1A+ β2V ) ,

3. Poisson Regression: For Y a “count” (that is, Y a nonnegative integer), the Poisson (log-linear) model
with mean of Y given A, V of the form:

µ3(A, V |β) = exp (β0 + β1A+ β2V + β3AV ) .

4. Gamma Regression: For Y positive, real valued, the Gamma model with mean of Y given A, V modeled
by:

µ4(A, V |β) = 1/ (β0 + β1(1 +A) + β2 exp(V ) + β3 exp(AV )),

where all coefficients βj are assumed to be positive and bounded away from 0 by some δ > 0.

5. Inverse Normal Regression: For Y positive, real valued, the Inverse Normal model with mean of Y
given A, V modeled by:

µ5(A, V |β) = 1/
√
β0 + β1(1 +A) + β2 exp(V ),

where all coefficients βj are assumed to be positive and bounded away from 0 by some δ > 0.

We consider estimation and inference for parameters that are smooth functions of the mean effects of
being assigned to the two study arms: E(Y |A = 0) and E(Y |A = 1). This class of parameters includes the
difference in means E(Y |A = 1)−E(Y |A = 0), the ratio of means (or rate ratio) E(Y |A = 1)/E(Y |A = 0),
and the log odds ratio log P (Y=1|A=1)/(1−P (Y=1|A=1))

P (Y=1|A=0)/(1−P (Y=1|A=0)) , for example. (Throughout the paper “log” refers to
the natural logarithm.) The intention to treat estimator estimates these parameters by substituting the
sample means in the control arm and treatment arm, respectively, for E(Y |A = 0) and E(Y |A = 1). We
will denote E(Y |A = 0) and E(Y |A = 1) by E0 and E1, respectively.

Moore and van der Laan (2007) applied targeted maximum likelihood methodology to prove that certain
easy to compute estimators based on a logistic regression model are asymptotically unbiased (and locally
efficient) even when the model used is misspecified. Our results generalize this important result to a larger
class of generalized linear models that includes Normal (Gaussian) models, Poisson models with log link,
and models based on the Gamma distribution (with reciprocal link) and Inverse Gaussian distribution (with
link 1/µ2). We note that estimation of the risk difference using a Normal model with only main terms
corresponds to ANCOVA (analysis of covariance), which has been shown to be asymptotically unbiased even
when the model is misspecified (Freedman, 2007a). We also note that in the special case of logistic regression,
Freedman (2008) proved a related result under the framework of randomization inference.

Our result for the special case of a Poisson model with only main terms (see the Corollary in Section 4)
is a generalization of a result of Gail (1986) that required much stronger assumptions than used here.

Robinson and Jewell (1991) compare the precision of estimators of the marginal effect and estimators of
the conditional effect of a treatment, based on linear and logistic regression models. In this paper we focus
only on estimating marginal effects, that is, comparisons of E(Y |A = 1) and E(Y |A = 0). These are the
same quantities estimated by the intention to treat estimator. Our estimators leverage baseline variables
in order to try to get more precise (i.e. smaller asymptotic variance) estimates than the intention to treat
estimator. We note that whether marginal effects or conditional effects are more relevant will depend on the
application at hand. Though the focus of this paper is estimation and inference, certain results have been
shown for hypothesis testing, in which model-based tests have correct Type I error even when models are
misspecified (Rosenblum and van der Laan, 2008).
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3 Brief Description of Targeted Maximum Likelihood Estimation

Theorem 1 in the next section is proved using targeted maximum likelihood methodology. We give a brief
overview here; a full description is given in (van der Laan and Rubin, 2006). Targeted maximum likelihood is
a general methodology for estimation and inference. It can be used to estimate finite-dimensional, pathwise
differentiable parameters (such as those considered in this paper) as well as more general parameters including
infinite-dimensional, non-pathwise differentiable parameters.

Targeted maximum likelihood estimation has several important advantages over standard maximum
likelihood estimation and estimating function-based methodologies. When estimating parameters in the
nonparametric model2, maximum likelihood estimation based on assuming a parametric model (or based on
selecting a parametric model using a sieve) may suffer severe bias due to model misspecification; targeted
maximum likelihood estimation, on the other hand, only models the parameter of interest, thereby reducing
bias due to misspecified models of nuisance parameters. Estimating function based methodology (Robins,
1986, 1987; van der Laan and Robins, 2002), which involves only modeling the parameter of interest, still
has important limitations. These include (1) in general not having a satisfactory way to deal with mul-
tiple solutions to an estimating equation, (2) only applying to problems that can be expressed in terms
of a parameter of interest and a variation independent nuisance parameter, and (3) not being invariant to
monotone transformations of the parameter of interest. Targeted maximum likelihood does not have any of
these limitations. In addition, in many situations, targeted maximum likelihood can be simply implemented
using standard statistical software.

We now give a brief overview of the general algorithm for constructing the targeted maximum likelihood
estimator. For a given parameter of interest ψ, the targeted maximum likelihood estimator is constructed
in the following six steps: (We also give an oversimplified example, to illustrate these steps here; in the
Appendix we go through the same six steps below, in estimating the more general parameters covered in
Theorem 1 in the next section.)

1. An initial estimate p0 of the density of the data generating distribution is constructed, by any method.
For example, standard maximum likelihood estimation using a parametric model could be used to
generate p0.

2. The efficient influence curve for the parameter ψ in the nonparametric model is computed, at p0.
Methods for finding the efficient influence curve for a wide variety of parameters can be found in
(van der Laan and Robins, 2002). As an example, the efficient influence curve for the mean of random
variable Y in the nonparametric model is Y − ψ; at a given density p, the efficient influence curve
would then be Y − Ep(Y ), where Ep is the expectation with respect to the density p.

3. A parametric model with parameter ε and corresponding densities {p(ε)} is constructed that (i) equals
the initial density p0 at ε = 0 and (ii) has score at ε = 0 whose linear span contains the efficient influence
curve in the nonparametric model, at p0. Continuing with our simple example, if the parameter is
the mean of a continuous random variable Y , and the initial density p0 was chosen to be a normal
distribution with mean µ̂ equal to the sample mean and variance σ̂2 equal to the sample variance, then
one could choose as parametric model a normal model with the same variance, but with mean equal to
µ̂+ εσ̂2. As required, (i) the parametric model at ε = 0 is p0, and (ii) the score at ε = 0 is Y −Ep0(Y ),
which equals the efficient influence curve given in the previous step.

4. The parameter ε of the parametric model from the previous step is estimated using maximum likelihood
estimation. The new density p1 is then set to be the density corresponding to p(ε̂), where ε̂ is the
maximum likelihood estimate of ε. Continuing our example, since the model is a normal model, this
corresponds to estimating ε using ordinary least squares regression, and then setting p1 to be the

2By nonparametric model, we generally mean the model consisting of all continuous densities with respect to a given
dominating measure. In this paper, we also use“nonparametric model” to describe the model that makes no assumptions on
the density of the data generating distribution except that treatment A is randomized, so is independent of baseline variables
V .
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normal density with mean µ̂+ ε̂σ̂2 and variance σ̂2. Note that the values µ̂ and σ̂2 are considered fixed
values when the maximum likelihood estimate for ε is computed.

5. We then replace the initial density estimate p0 by our new density p1, and repeat steps 2-4 until the
algorithm converges to a final density p. In many cases, such as those considered in this paper, the
algorithm will have converged (that is, ε̂ = 0) after steps 2-4, and so no iterations are required (and we
say the algorithm converged in 0 steps). In the example of a single random variable Y and parameter
the mean of Y , we have such convergence immediately after steps 2-4.

6. Once the algorithm converges to a final density p, the targeted maximum likelihood estimator for the
parameter ψ is the plug-in estimator of ψ at p. Continuing our example, where ψ is the mean of Y ,
the plug-in estimator of ψ at p is the mean of Y under the density p. (See (Bickel and Doksum, 2001,
Section 2.1.2) for definition and discussion of the plug-in estimator.)

4 Main Result

Below we present our class of simple estimators based on generalized linear models that are asymptotically
unbiased even when the model used is incorrectly specified. We then give the main result of the paper in
Theorem 1. We illustrate the theorem with two examples based on Poisson regression models.

The class of estimators is constructed as follows, for any generalized linear model with canonical link
function, and any continuously differentiable function r:

1. Estimate the coefficients {βj} in the linear part of the generalized linear model using maximum likeli-
hood estimation.

2. Compute Ê0 := 1
n

∑n
i=1 µ̂(0, Vi), and Ê1 := 1

n

∑n
i=1 µ̂(1, Vi), where µ̂(a, v) is the predicted value of Y ,

based on the fit of the generalized linear model, for study arm assignment a and baseline variables v.3

3. Compute r(Ê0, Ê1); this is our estimator of the parameter r(E(Y |A = 0), E(Y |A = 1)).

4. Confidence intervals can be obtained based on estimates of the efficient influence curve (as described
in Section 5) or based on the nonparametric bootstrap.

We have the following theorem stating that the above estimator is asymptotically unbiased and locally
efficient. The theorem assumes the existence of a maximizer β∗ of the expected log-likelihood (where the
expectation is taken with respect to the data generating distribution). As proved in the Appendix, one can
detect whether such a maximizer exists, with probability tending to 1 as sample size goes to infinity.

Theorem 1: Consider any generalized linear model from the Normal, Binomial, Poisson, Gamma,
or Inverse Gaussian family, with canonical link function, in which the linear part contains the treatment
variable as a main term and also contains an intercept. Let r be any continuously differentiable func-
tion. Under the assumptions in Section 2, and assuming a maximizer β∗ of the expected log-likelihood
exists, the above procedure gives an asymptotically unbiased and locally efficient estimator for the parame-
ter r(E(Y |A = 0), E(Y |A = 1)), even when the generalized linear model is misspecified. Furthermore, the
confidence intervals constructed in Section 5 have asymptotically correct coverage, even when the model is
misspecified.

The class of estimators in Theorem 1 are derived from targeted maximum likelihood methodology (van der
Laan and Rubin, 2006), as described in the Appendix. We point out that in this special case of a random-
ized trial (the case considered throughout this paper), the particular version of the targeted maximum

3µ̂ is formally defined in the Appendix, where we also give R code for computing Ê0 and Ê1.
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likelihood estimator given in the Appendix coincides with certain g-computation estimators (Robins, 1986,
1987), doubly-robust estimators (Robins, 2000; Robins and Rotnitzky, 2001; Neugebauer and van der Laan.,
2002; van der Laan and Robins, 2002), and estimators in (Tsiatis, 2006; Zhang et al., 2008). In addition,
the estimator given in Theorem 1 solves the doubly robust estimating equation, and thereby the theory of
statistical inference developed in (van der Laan and Robins, 2002) applies, and could alternatively be used
to establish that this estimator is asymptotically unbiased and locally efficient even under model misspecifi-
cation. In general, targeted maximum likelihood estimators will differ from from g-computation estimators,
doubly-robust estimators, and estimators in (Tsiatis, 2006; Zhang et al., 2008). We also point out that
Theorem 1 holds under the slightly weaker condition that 1 and A are in the linear span of the terms in the
linear part η of the generalized linear model; this is important in applying Theorem 1 to models µ4 and µ5

listed in Section 2.
To illustrate the above theorem, consider a Poisson model with log link function, and linear part η =

β0 +β1A+β2V . We will estimate the log rate ratio of the treatment compared to the control: log(E(Y |A =
1)/E(Y |A = 0)), using this Poisson model. This corresponds to choosing the function r in the theorem
to be r(x, y) = log(y/x). We follow the steps given above the theorem to compute an estimate of the log
rate ratio. First, we use maximum likelihood estimation to produce estimates β̂0, β̂1, β̂2 for the coefficients
β0, β1, β2. Next, we compute

Ê0 :=
1
n

n∑
i=1

µ̂(0, Vi) =
1
n

n∑
i=1

exp(β̂0 + β̂2Vi)

and

Ê1 :=
1
n

n∑
i=1

µ̂(1, Vi) =
1
n

n∑
i=1

exp(β̂0 + β̂1 + β̂2Vi).

Lastly, we compute

r(Ê0, Ê1) = log(Ê1/Ê0) = log[
n∑
i=1

exp(β̂0 + β̂1 + β̂2Vi)/
n∑
i=1

exp(β̂0 + β̂2Vi)].

In this special case, we see that the above estimator can be simplified, leaving as final estimate β̂1, the
coefficient of the treatment term. Thus, the above theorem implies the following corollary:

Corollary: Consider a Poisson model with only main terms A and V (where V is a vector of pre-
randomization variables). Under the assumptions in Section 2, and assuming a maximizer β∗ of the expected
log-likelihood exists, we have β̂1, the estimate of the coefficient corresponding to the treatment term A, is an
asymptotically unbiased estimate of the log rate ratio, even when the model is misspecified. Also, the confi-
dence intervals constructed in Section 5 have asymptotically correct coverage. Furthermore, this estimator
is locally efficient in that when the Poisson model is correctly specified this estimator attains the efficiency
bound for the model that only assumes treatment assignment A is independent of baseline variables V .

As another example, consider the problem of estimating the log rate ratio using a Poisson model with log
link function, but this time with the linear part containing an interaction term: η = β0 +β1A+β2V +β3AV .
Again, we use maximum likelihood estimation to get estimates for the coefficients β0, β1, β2, β3; as above,
we use as estimator r(Ê0, Ê1), which equals

log(Ê1/Ê0) = log[
n∑
i=1

exp(β̂0 + β̂1 + β̂2Vi + β̂3Vi)/
n∑
i=1

exp(β̂0 + β̂2Vi)]

= β̂1 + log[
n∑
i=1

exp((β̂2 + β̂3)Vi)/
n∑
i=1

exp(β̂2Vi)].
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The proof of Theorem 1, given in the Appendix, applies the targeted maximum likelihood algorithm to
the application in this paper, namely, estimating a function r of the conditional means given assignment to
the treatment arm and the control arm, respectively. It turns out in this case, that when the initial density
p0 is chosen based on the maximum likelihood estimate using a generalized linear model for Y given A, V ,
and a canonical link is used, then the targeted maximum likelihood algorithm converges in zero steps (as
defined in Section 3) and has the simple form given just before Theorem 1. The reason is that the score of a
generalized linear model with canonical link function has a simple form that is closely related to the efficient
influence curve of the conditional means E(Y |A = 0) and E(Y |A = 1) in the model that is nonparametric
except for assuming A is randomized (that is, independent of baseline variables V ).

We point out that the choice of generalized linear model, including selecting which terms to include in
the linear part, should be pre-specified in the study protocol, to avoid possible data snooping in choosing a
model.

5 Statistical Inference: Computing Confidence Intervals and p-
values

We show how to compute confidence intervals and p-values for the estimator given just before Theorem 1.
We use the method from Section 4 of (Moore and van der Laan, 2007), based on estimates of the efficient
influence curve of our parameter in the nonparametric model. This involves first computing an estimate σ̂2

for the asymptotic variance of
√
n(ψ̂ − ψ), where ψ̂ = r(Ê0, Ê1) is our estimator and ψ is the (unknown)

value for the parameter r(E0, E1) that we are estimating; we describe how to compute σ̂2 below. Having
computed σ̂2, we next compute an 0.95 confidence interval (ψ̂ − 1.96σ̂/

√
n, ψ̂ + 1.96σ̂/

√
n). Also, we can

test the null hypothesis ψ = ψ0 using the test statistic T =
√
n(ψ̂−ψ0)/σ̂, which is asymptotically normally

distributed with mean 0 and variance 1 under this null hypothesis and under the regularity conditions given
in Section 2. The confidence interval and p-value computed by this method are asymptotically correct, even
when the generalized linear model used is incorrectly specified.

The above procedures rely on an estimate of the asymptotic variance of
√
n(ψ̂−ψ), which we denote by

σ̂2, and define now. It can be computed based on the partial derivatives of the function r used in defining
our parameter and on estimates of the efficient influence curve of (E0, E1) in the nonparametric model.
Let r′1, r

′
2 denote the partial derivatives of the function r with respect to the first component and second

component, respectively. For example, when our parameter is the rate ratio, then r(x, y) = y/x, and so
r′1(E0, E1) = −E1/E

2
0 , r
′
2(E0, E1) = 1/E0. Define the vector with two components:

D(p)(V,A, Y ) = (D1(p)(V,A, Y ), D2(p)(V,A, Y ))
= ((1−A)(Y − Ep(Y |A = 0, V ))/p(A = 0) + Ep(Y |A = 0, V )− Ep(Y |A = 0),

A(Y − Ep(Y |A = 1, V ))/p(A = 1) + Ep(Y |A = 1, V )− Ep(Y |A = 1)) , (1)

where Ep is the expectation with respect to the density p. The efficient influence curve for (E0, E1) in the
nonparametric model is D(p∗), where the density p∗ is that of the (unknown) data generating distribution.
(See van der Laan and Robins (2002) for the derivation of this efficient influence curve.)

As in Theorem 1, assume there exists a maximizer β∗ of the expected log likelihood of the generalized
linear model, where the expectation is with respect to the (unknown) data generating distribution. Under
this assumption, we show in the Appendix that such a maximizer is unique, and that the maximum likelihood
estimator β̂ converges to β∗. Let p(β∗) be the density of Y given A, V corresponding to the parameter β = β∗

in the generalized linear model. In terms of D and r′1, r
′
2, the asymptotic variance of

√
n(ψ̂ − ψ) is

σ2 = Ep∗ (r′1(E0, E1)D1(p(β∗)(V,A, Y ) + r′2(E0, E1)D2(p(β∗)(V,A, Y ))2 . (2)

We estimate this by

σ̂2 =
n∑
i=1

(
r′1(Ê0, Ê1)D1(p̂)(Vi, Ai, Yi) + r′2(Ê0, Ê1)D2(p̂)(Vi, Ai, Yi)

)2

,
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where p̂ is the density estimated by targeted maximum likelihood given in the Appendix. Since as shown
in the Appendix, Ep̂(Y |A = 0, V ) = µ̂(0, V ) and Ep̂(Y |A = 1, V ) = µ̂(1, V ), where µ̂(a, v) is the predicted
mean of Y given A = a, V = v based on the maximum likelihood estimate for the generalized linear model,
we have

σ̂2 =
n∑
i=1

(
r′1(Ê0, Ê1)[(1−Ai)(Yi − µ̂(0, Vi))/(1/2) + µ̂(0, Vi)− Ê0]

+ r′2(Ê0, Ê1)[Ai(Yi − µ̂(1, Vi))/(1/2) + µ̂(1, Vi)− Ê1]
)2

.

For example, when our parameter is the rate ratio, so that as argued above r′1(E0, E1) = −E1/E
2
0 , r
′
2(E0, E1) =

1/E0, we have

σ̂2 =
n∑
i=1

(
−Ê1/Ê

2
0 [(1−Ai)(Yi − µ̂(0, Vi))/(1/2) + µ̂(0, Vi)− Ê0]

+ 1/Ê0[Ai(Yi − µ̂(1, Vi))/(1/2) + µ̂(1, Vi)− Ê1]
)2

.

Having now computed σ̂2, one can use this in the formulas given in the first paragraph of this section to
compute confidence intervals and p-values.

6 Appendix: Proof of Theorem 1

We prove Theorem 1. Consider the model used throughout this paper, where the data consist of i.i.d.
observations (Vi, Ai, Yi) and the randomized treatment Ai is assumed to take values 0 and 1 with probability
1/2, independent of the baseline variables Vi. The parameter being estimated is a smooth function r of the
conditional means E(Y |A = 0) and E(Y |A = 1). The efficient influence curve for this parameter in the
nonparametric model is then a linear combination of the efficient influence curves for the conditional means
E(Y |A = 0) and E(Y |A = 1). At any given density p, these efficient influence curves are given by

D1(p)(V,A, Y ) = (1−A)(Y − Ep(Y |A = 0, V ))/p(A = 0) + Ep(Y |A = 0, V )− Ep(Y |A = 0), (3)

and
D2(p)(V,A, Y ) = A(Y − Ep(Y |A = 1, V ))/p(A = 1) + Ep(Y |A = 1, V )− Ep(Y |A = 1) (4)

respectively, where Ep is the expectation with respect to the density p.
We will use a generalized linear model with canonical link. As described in (McCullagh and Nelder,

1998), the density of such a generalized linear model can be represented, for suitable choices of functions b, c
as

exp(Y η − b(η) + c(Y, φ)), (5)

where η =
∑
j βjfj(A, V ) is the ”linear part” of the model, with terms fj(A, V ) and coefficients βj , and φ

is a dispersion parameter.4 The canonical link function g is defined as ḃ−1, the inverse of the derivative of
the function b. We let µ(A, V ) denote the mean of Y given A, V according to the density (5), where the
dependence of µ(A, V ) on β is implicit. We note that µ(A, V ) = ḃ(η(A, V )), which is proved in (Bickel and
Doksum, 2001). Also, under the assumptions in Section 2 on our families of generalized linear models with
canonical links, we have b̈(η) := d2b

dη2 > 0 for all η.

We first extract some useful information from the fact that β̂ is the maximum likelihood estimator of
the generalized linear model defined above. Let p01(Y |A, V ) denote the the maximum likelihood estimate

4For binary outcomes, the function b(η) = log(1 + eη) and c(Y, φ) = 0. For Poisson regression, in which the outcome is a

nonnegative integer, b(η) = eη and c(Y, φ) = − log Y !. Note that in both cases, b̈(η) := d2b
dη2

> 0 for all η.
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for the density of Y given A, V , using the above generalized linear model. Under the regularity assumptions
made in Section 2, we have that the derivative of the log likelihood at β̂ must be 0. The derivative of the log
of (5) is (∂η/∂β)(Y − ḃ(η)) = (∂η/∂β)(Y −Ep01(Y |Ai, Vi))), based on the fact for generalized linear models
that µ(A, V ) = ḃ(η(A, V )). Since we assumed the linear part η of the generalized linear model contains an
intercept term and also contains A as a main term5, this implies

n∑
i=1

(Yi − Ep01(Y |Ai, Vi)) = 0, (6)

and
n∑
i=1

Ai(Yi − Ep01(Y |Ai, Vi)) = 0. (7)

The targeted maximum likelihood algorithm requires an initial density estimator p0 for the data gener-
ating distribution of (V,A, Y ). It will be based on the maximum likelihood estimate β̂ from the generalized
linear model and the set of observed baseline variables {Vi}. We set

p0(V,A, Y ) = p01(Y |A, V )p02(A|V )p03(V ), (8)

where we have

• p01(Y |A, V ) is the maximum likelihood estimate for the density of Y given A, V , using the pre-specified
generalized linear model,

• p02(A|V ) = 1/2, to reflect the known randomization probabilities, and

• p03(V ) is the empirical distribution of V .

Since p03(V ) was chosen to be the empirical distribution of V , and by our choice of p02(A|V ) = 1/2, we
have
n∑
i=1

(Ep0(Y |A = 1, Vi)−Ep0(Y |A = 1)) =
n∑
i=1

Ep01(Y |A = 1, Vi)−
n∑
i=1

[(1/n)
n∑
j=1

Ep01(Y |A = 1, Vj))] = 0. (9)

Similarly, we have

n∑
i=1

(Ep0(Y |A = 0, Vi)− Ep0(Y |A = 0)) =
n∑
i=1

Ep01(Y |A = 0, Vi)−
n∑
i=1

[(1/n)
n∑
j=1

Ep01(Y |A = 0, Vj))] = 0.

(10)
We now define our parametric model {p(ε)} that satisfies conditions (i) and (ii) of step 3 of the targeted

maximum likelihood algorithm outlined in Section 3. It will involve adding a term to the linear part of the
generalized linear model and also modifying p03(V ). We let p(ε) be defined as p01,ε(Y |A, V )p02(A|V )p03,ε(V ),
where ε = (ε1, ε2, ε3, ε4), for densities p01,ε(Y |A, V ) and p03,ε(V ) defined next. First, p01,ε(Y |A, V ) is defined
in terms of the generalized linear model as exp(Y η′ − b(η′) + c(Y, φ)), where η′ = η̂ + ε1 + ε2A, and η̂ =∑
j β̂jfj(A, V ). We note that ḃ(η̂(A, V )) = Ep01(Y |A, V ), which follows from the fact that for any generalized

linear model, ḃ(η(A, V )) is the mean of Y given A, V according to the model at β, which is proved in (Bickel
and Doksum, 2001).
Next, we define

p03,ε(V ) = Cε exp(ε3(Ep01(Y |A = 0, V )− Ep01(Y |A = 0)) + ε4(Ep01(Y |A = 1, V )− Ep01(Y |A = 1)))p03(V ),

where Cε is chosen so that p03,ε(v) integrates to 1.

5In fact, it suffices that 1 and A are each in the linear span of the terms in the linear part η; this is important for applying
Theorem 1 to models µ4, µ5 listed in Section 2.
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Then p(ε) at ε = 0 equals the initial density estimator p0, and the components of the score of p(ε) at
ε = 0 equal

d

dε1
[log p(ε)]|ε=0 =

d

dε1
[log p01,ε(Y |A, V )]|ε=0 = (Y − ḃ(η̂)) = (Y − Ep01(Y |A, V )), (11)

d

dε2
[log p(ε)]|ε=0 =

d

dε2
[log p01,ε(Y |A, V )]|ε=0 = A(Y − ḃ(η̂)) = A(Y − Ep01(Y |A, V )), (12)

d

dε3
[log p(ε)]|ε=0 =

d

dε3
[log p03,ε(V )]|ε=0 = Ep01(Y |A = 0, V )− Ep01(Y |A = 0), (13)

d

dε4
[log p(ε)]|ε=0 =

d

dε4
[log p03,ε(V )]|ε=0 = Ep01(Y |A = 1, V )− Ep01(Y |A = 1). (14)

Thus, the efficient influence curves for E(Y |A = 0) and for E(Y |A = 1), (3) and (4) above, are in the linear
span of the score of p(ε) at ε = 0; this satisfies requirement (ii) in step 3 of the targeted maximum likelihood
procedure given in Section 3.

We now show that the maximum likelihood estimator of ε for the model {p(ε)}, is 0, whenever the condi-
tions of Theorem 1 hold. By our assumption that the expected log-likelihood has a unique maximizer and the
other assumptions in Section 2, we have that for sufficiently large n, the log likelihood

∑n
i=1 log p(ε)(Vi, Ai, Yi)

has a unique maximizer. By strict concavity of the log likelihood (as proved in (Rosenblum and van der
Laan, 2008, Appendix D) for our families of generalized linear models with canonical links), the maximum
likelihood estimator ε̂ is the unique value of ε for which d/dε[

∑n
i=1 log p(ε)(Vi, Ai, Yi)] = 0. Equations (6-10)

and (11-14) imply d/dε[
∑n
i=1 log p(ε)(Vi, Ai, Yi)] = 0 at ε = 0, and so ε̂ = 0 is the maximum likelihood

estimator for the model {p(ε)}. Therefore, the targeted maximum likelihood procedure converges in zero
steps. Furthermore, since the final density output by the targeted maximum likelihood algorithm is equal to
the initial density estimator p0, we have that the targeted maximum likelihood estimator of the parameter
(E(Y |A = 0), E(Y |A = 1)) is exactly as given in Theorem 1.

Theorem 1 requires the existence of a maximizer β∗ of the expected log-likelihood E(Y η−b(η)+c(Y, φ)),
where the expectation is with respect to the data generating distribution. Given the assumptions in Section 2,
this is sufficient to ensure that the the maximum likelihood estimator β̂n converges to β∗ and that

√
n(β̂n−β∗)

is asymptotically normal. This follows from the strict concavity of the expected log-likelihood for generalized
linear models with canonical links, proved in (Rosenblum and van der Laan, 2008, Appendix D).

So far we have shown that the targeted maximum likelihood estimator in our setting estimator is of the
simple form given in Section 4. We now verify that the regularity conditions given in Section 2 are sufficient
to prove all the claims in Theorem 1. To this end, we apply Theorem 1 of van der Laan and Rubin (2006),
which under conditions that we verify below, gives that the estimator r(Ê0, Ê1) is asymptotically unbiased
with asymptotic variance as defined in (2) in Section 5, and is locally efficient.

There are five conditions in Theorem 1 of van der Laan and Rubin (2006), which we verify now. We
note that we apply Theorem 1 of van der Laan and Rubin (2006) to the parameter (E0, E1) and estimator
(Ê0, Ê1). This then implies the desired results for the parameter r(E0, E1) and estimator r(Ê0, Ê1). Denote
the density p0 defined above, at sample size n, by pn0 . To apply Theorem 1 of van der Laan and Rubin
(2006), we need to show:

i. The model is convex.

ii. The parameter (E0, E1) is linear.

iii. Our estimator (Ê0, Ê1) of (E0, E1) satisfies

(Ê0, Ê1)− (E0, E1) =
1
n

n∑
i=1

D(pn0 )(Vi, Ai, Yi)− Ep∗D(pn0 )(V,A, Y ),

where Ep∗ is the expectation over the variables V,A, Y with respect to the data generating distribution,
and where pn0 is considered fixed.
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iv. D(pn0 ) is in a Donsker class with probability tending to 1.

v. Ep∗ (Di(pn0 )(V,A, Y )−Di(p(β∗))(V,A, Y ))2 converges to 0 in probability, for i ∈ {1, 2}, where D1, D2

are defined in (3) and (4).

Proof of conditions (i)-(v) above:
Condition (i) follows from our model being nonparametric except for assuming, due to randomization,

that p(A|V ) = 1/2.
Condition (ii) follows since for p1, p2 two densities in our model, and defining p3 = λp1 + (1 − λ)p2,

for λ ∈ [0, 1], we have p3(Y |A) = p3(Y,A)/p3(A) =
∫
p3(v,A, Y )dv/(1/2) = λ

∫
p1(v,A, Y )dv/(1/2) + (1 −

λ)
∫
p2(v,A, Y )dv/(1/2) = λp1(Y |A) + (1−λ)p2(Y |A). Thus, the conditional mean of Y given A under p3 is

the convex combination of these conditional means under p1 and p2, which proves linearity of the parameter
(E0, E1) in our model.

Condition (iii) follows since 1
n

∑n
i=1D(pn0 )(Vi, Ai, Yi) = 0 using the definitions (3), (4) and applying (6),

(7), (9), and (10), and since

Ep∗D1(pn0 )(V,A, Y ) = Ep∗(1−A)(Y − Epn
0
(Y |A = 0, V ))/pn0 (A = 0) + Epn

0
(Y |A = 0, V )− Epn

0
(Y |A = 0)

= Ep∗(1−A)(Y )/(1/2)− Ep∗Epn
0
(Y |A = 0, V ) + Ep∗Epn

0
(Y |A = 0, V )− Ep∗Epn

0
(Y |A = 0)

= Ep∗(1−A)(Y )/(1/2)− Ep∗Epn
0
(Y |A = 0)

= Ep∗(Y |A = 0)− Ê0

= E0 − Ê0

where the second equality follows using the fact that A and V are independent in all of our densities pn0 , and
the second to last equality follows from Ep∗ being with respect to V,A, Y and treating pn0 as fixed; a similar
derivation shows the analogous statement for Ep∗D1(pn0 )(V,A, Y ).

To show (iv), first let µβ(a, v) denote the mean of Y given A = a, V = v according to the generalized
linear model (5), which depends on β through the linear part η =

∑
j βjfj(A, V ). We will show the class of

functions {D̄α1,α2,β(v, a, y)} is Donsker, where we define

D̄α1,α2,β(v, a, y) = ((1− a)(y − µβ(0, v))/(1/2) + µβ(0, v)− α1,

a(y − µβ(1, v))/(1/2) + µβ(1, v)− α2), (15)

and we require |α1| ≤ M, |α2| ≤ M,β ∈ B, for B the set of possible β, defined in Section 2,6 which was
selected to ensure our class is over a bounded parameter set; additionally, our assumptions on boundedness
of variables and the functions fj in Section 2, combined with the functional forms of the generalized linear
models we are considering, guarantee that the first and second derivatives of D̄ with respect to v, a, y are
uniformly bounded. We can then apply the result from (van der Vaart, 1998, Example 19.9, page 272),
which implies this class of functions is a Donsker class. Since D(pn0 ) are all contained in this class, condition
(iv) above is satisfied. We note that Theorem 1 of van der Laan and Rubin (2006) only requires conditions
(i) to (iv) in order to prove consistency of the estimator (Ê1, Ê2), which we’ll use below in proving (v).

Lastly, we show (v) above holds. Let p(β∗) denote the density of Y given A, V defined in (5) corresponding
to β = β∗, for β∗ the maximizer of the expected log-likelihood E(Y η− b(η)+ c(Y, φ)), where the expectation
is with respect to the data generating distribution p∗. Note that whenever the model (5) is misspecified,
p∗ and p(β∗) will be different densities. Our theorem still holds in this case, since the only fact we assume
about p(β∗) is that it satisfies Ep(β∗)fj(A, V )(Y − µβ∗(A, V )) = 0, for all j, which follows from (5) and
β∗ being a maximizer of the corresponding expected log-likelihood. Below we let β̂n denote the maximum

6In Section 2, we assumed all components of β must have absolute value at most M for some constant M , and for the
Gamma and Inverse Normal families, B is further restricted to contain only β for which all components are positive and more
than δ for some δ > 0.
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likelihood estimator from the generalized linear model fit at sample size n. We then have the following chain
of inequalities, where we let p02(A|V ) = 1/2 and p∗03(V ) be the true density of V :

Ep∗ (D1(pn0 )(V,A, Y )−D1(p(β∗)p02p
∗
03)(V,A, Y ))2

=
∫
{(1− a)(y − µβ̂n

(0, v))/(1/2) + µβ̂n
(0, v)− Ê1

−[(1− a)(y − µβ∗(0, v))/(1/2) + µβ∗(0, v)− E1]}2p∗(v, a, y)dvdady

=
∫ (

(1− 2a)(µβ∗(0, v)− µβ̂n
(0, v)) + E1 − Ê1

)2

p∗(v, a, y)dvda

≤ 2
∫ (

[(µβ∗(0, v)− µβ̂n
(0, v))]2 + [E1 − Ê1]2

)
p∗(v, a)dvda (16)

= 2
∫ (

[(µβ∗(0, v)− µβ̂n
(0, v))]2 + [E1 − Ê1]2

)
p∗(v)dv (17)

≤ C1||β∗ − β̂n||2 + 2[E1 − Ê1]2. (18)
(19)

where the the first equality follows from definitions; the second equality follows from canceling terms and
noting that there is no longer any dependence on y; the inequality (16) follows from the bound (x + y)2 ≤
2(x2 + y2) and noting that 1− 2a is always either 1 or −1; the equality (17) follows from noting that there is
no longer dependence on a; and the last line follows from µβ(0, v) having first derivative uniformly bounded
by a constant. The last line of the above display converges to 0 in probability since by our assumptions in
Section 2, β̂n converges to β∗ in probability and also the consistency of Ê1 follows from conditions (i)-(iv)
above, as described in Theorem 1 of van der Laan and Rubin (2006). An analogous bound as just derived
proves that Ep∗ (D2(pn0 ))(V,A, Y )−D2(p(β∗))(V,A, Y ))2 converges to 0 in probability.

This completes our verification of the conditions (i)-(v) above of Theorem 1 of van der Laan and Ru-
bin (2006), which implies that the estimator (Ê1, Ê2) converges to (E(Y |A = 0), E(Y |A = 1)), and that√
n[(Ê1, Ê2)−(E(Y |A = 0), E(Y |A = 1))] is asymptotically normal with variance given by (2), and is locally

efficient in that if the generalized linear model is correctly specified, then (2) achieves the efficiency bound
for the nonparametric model. This completes the proof of Theorem 1.
�

Since the data generating distribution is unknown, one generally cannot directly check whether there
exists a maximizer β∗ of the expected log-likelihood E(Y η − b(η) + c(Y, φ)), where the expectation is taken
with respect to the data generating distribution. However, as proved in (Rosenblum and van der Laan,
2008, Appendix D), by strict concavity of the E(Y η − b(η) + c(Y, φ)), we always have either (1) there is
a unique maximizer of the expected log-likelihood or (2) the Euclidean norm of the maximum likelihood
estimator grows without bound as sample size goes to infinity. Thus, for large enough sample size n, one
will know whether there exists a maximizer β∗ of the expected log-likelihood, based on whether β̂n exceeds
a pre-specified (large) threshold.

We now give R code that computes the estimator given just before Theorem 1. The code below corre-
sponds to the specific example of a Poisson model with log link and linear part β0 + β1A+ β2V + β3AV .

# Given vectors V, A, Y of length n containing baseline variables, treatment assignment
# and outcome, respectively, compute the estimated log rate ratio
modelfit <- glm(Y ~ 1 + A + V+ A*V,family=poisson)
E_0_hat <- mean(predict.glm(modelfit, type = "response", newdata=data.frame(A=rep(0,n),V=V)))
E_1_hat <- mean(predict.glm(modelfit, type = "response", newdata=data.frame(A=rep(1,n),V=V)))
log_rate_ratio_estimate <- log(E_1_hat/E_0_hat)
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Estimating the effect of vigorous physical activity on mortality in

the elderly based on realistic individualized treatment and

intention-to-treat rules

Oliver Bembom and Mark J. van der Laan

Division of Biostatistics, University of California at Berkeley

Abstract

The effect of vigorous physical activity on mortality in the elderly is difficult to estimate using conven-
tional approaches to causal inference that define this effect by comparing the mortality risks corresponding
to hypothetical scenarios in which all subjects in the target population engage in a given level of vigorous
physical activity. A causal effect defined on the basis of such a static treatment intervention can only
be identified from observed data if all subjects in the target population have a positive probability of
selecting each of the candidate treatment options, an assumption that is highly unrealistic in this case
since subjects with serious health problems will not be able to engage in higher levels of vigorous physical
activity. This problem can be addressed by focusing instead on causal effects that are defined on the basis
of realistic individualized treatment rules and intention-to-treat rules that explicitly take into account
the set of treatment options that are available to each subject. We present a data analysis to illustrate
that estimators of static causal effects in fact tend to overestimate the beneficial impact of high levels
of vigorous physical activity while corresponding estimators based on realistic individualized treatment
rules and intention-to-treat rules can yield unbiased estimates. We emphasize that the problems encoun-
tered in estimating static causal effects are not restricted to the IPTW estimator, but are also observed
with the G-computation estimator, the DR-IPTW estimator, and the targeted MLE. Our analyses based
on realistic individualized treatment rules and intention-to-treat rules suggest that high levels of vigorous
physical activity may confer reductions in mortality risk on the order of 15-30%, although in most cases
the evidence for such an effect does not quite reach the 0.05 level of significance.
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1 Introduction

A substantial body of epidemiologic research indicates that recent and current physical activity in the
elderly are associated with reductions in cardiovascular morbidity and mortality and improvement in or
prevention of metabolic abnormalities that place elderly people at risk for these outcomes (CDC, 1989;
van Dam et al., 2002; Lee et al., 2003; Esposito et al., 2003; Rosano et al., 2005). Based on these findings,
the CDC currently recommends that elderly people engage in moderate-intensity physical activities such
as bicycling on level terrain for 30 minutes or more at least five times a week in order to maintain their
health (CDC, 1996).

While epidemiologic studies have produced compelling evidence for the health benefits provided by
such moderate-intensity physical activities, it remains a largely open question to what extent more
vigorous physical activities can offer additional benefits to the elderly. One of the main reasons for
why this question has proven difficult to investigate lies in the lack of adequate statistical methods for
estimating causal effects in this context. Current approaches in causal inference would define the causal
effect of vigorous physical activity on a health outcome of interest by comparing the distribution of that
outcome under the hypothetical scenario in which all subjects in the target population exercise at a given
activity level to the corresponding distribution under the reference scenario in which all subjects abstain
from vigorous physical activity. In order to estimate such treatment-specific counterfactual outcome
distributions from observational data, however, one has to assume not only that the investigator has
recorded all relevant confounding factors, but also that all subjects in the target population have a
positive probability of selecting each of the treatment levels under consideration. Intuitively, this latter
assumption of experimental treatment assignment (ETA) makes sense since we should not be able to
estimate the counterfactual outcome distribution corresponding to a given treatment level if there exists
a subgroup of the target population that in reality is never observed at that treatment level. In the
context of studying the benefits of vigorous physical activity in the elderly, this assumption appears
highly unrealistic since it can be expected that health problems would prevent a considerable proportion of
subjects from participating in all but the lowest levels of vigorous physical activity. From a philosophical
standpoint, it therefore does not even make sense to talk about the outcome distribution we would
observe if all subjects were assigned to higher levels of vigorous physical activity. From a more practical
standpoint, an analysis based on this approach would lead to an overestimate of the beneficial impact
of higher levels of vigorous exercise since any estimate of the corresponding counterfactual distribution
would be based solely on those subjects who are healthy enough to exercise at those levels.

van der Laan and Petersen (2007) recently proposed estimators of two kinds of causal effects that
are defined on the basis of more realistic hypothetical scenarios. The first definition is based on realistic
individualized treatment rules that, in contrast to the static rules described above, take into account a
given subject’s characteristics in order to assign a treatment level that is as close as possible to a specified
target level while still remaining a realistic option for that subject. In the context of physical activity, for
instance, we might consider hypothetical scenarios in which subjects are assigned to the highest vigorous
activity level not exceeding a specified target level that they are still realistically capable of. The causal
effect of vigorous physical activity could then be defined by comparing the outcome distribution we would
observe for different target levels to the corresponding distribution we would observe under no vigorous
physical activity. The second definition of causal effects is based on intention-to-treat rules that, like
realistic individualized treatment rules, attempt to assign subjects to a specified target level, but allow
subjects for whom this target level is not realistic to follow their self-selected treatment level rather than
assigning them to the next highest realistic level. Causal effect estimates based on such rules thus aim
to produce the results of an intention-to-treat analysis of a randomized trial in which a proportion of
subjects fail to comply with treatment assignment and instead select their own treatment level. From
a philosophical standpoint, causal effects defined on the basis of such realistic individualized treatment
rules or intention-to-treat rules are appealing since the necessary counterfactual distributions are always
well-defined. From a practical standpoint, analyses based on such rules offer the advantage of being
protected from the bias that an analysis based on static treatment rules would be subject to if the ETA
assumption is violated.

In this article, we present a data analysis examining the potential benefits of vigorous-intensity
physical activity that compares the results obtained through a conventional analysis to those obtained
by using the estimators developed in van der Laan and Petersen (2007). Our analysis illustrates that
a conventional analysis based on static treatment rules yields severely biased results that dramatically
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overestimate the true effect of higher levels of vigorous physical activity. At the same time, we show
that causal effects based on realistic individualized treatment rules and intention-to-treat rules can be
estimated without bias. The remainder of the article is organized as follows. After describing our data
source, we briefly review the counterfactual framework for causal inference and describe the various
estimators that have been proposed for estimating causal effects. We then present the details of our data
analysis and close with a brief discussion of our results.

2 Data source

Tager et al. (1998) followed a group of people aged 55 years and older living in and around Sonoma, CA,
over a time period of about ten years as part of a community-based longitudinal study of physical activity
and fitness (Study of Physical Performance and Age Related Changes in Sonomans - SPPARCS). Our
goal in analyzing the data that were collected as part of this study is to examine the effect of vigorous
LTPA as recorded at the baseline interview on subsequent five-year all-cause mortality.

Our measure of vigorous LTPA is defined based on a questionnaire in which participants were asked
how many hours during the past seven days they had participated in twelve common vigorous physical
activities such as jogging, swimming, bicycling on hills, or racquetball. Activities were assigned standard
intensity values in metabolic equivalents (METs) (Ainsworth et al., 1993); one MET approximately
equals the oxygen consumption required for sitting quietly. A continuous summary score was obtained by
multiplying these intensity values by the number of hours engaged in the various activities and summing
up over all activities considered here. The treatment variable A was then defined as a categorical version
of this summary LTPA score:

A =

8>>>>>>>><>>>>>>>>:

0 if LTPA = 0 METs

1 if 0 METs < LTPA ≤ 10 METs

2 if 10 METs < LTPA ≤ 20 METs

3 if 20 METs < LTPA ≤ 40 METs

4 if 40 METs < LTPA ≤ 60 METs

5 if 60 METs < LTPA

(1)

To compare, the current CDC recommendation for engaging in moderate-intensity physical activity for
30 minutes at least five times a week corresponds to an energy expenditure of 22.5 METs.

Apart from sex and age, the primary confounding factor of the relationship between LTPA and all-
cause mortality is likely to be given by a subject’s underlying level of general health. Healthier subjects
will not only tend to experience lower mortality risks, but are also more likely to engage in higher levels
of vigorous physical activity. To control for this source of confounding, our analysis adjusts for a number
of covariates that are intended to capture a subject’s underlying level of health. Participants were asked,
for instance, to rate their health as excellent, good, fair, or poor. Self-reported physical functioning was
defined from a series of questions, originally developed by Nagi (1976) and Rosow and Breslau (1966),
that assessed the degree of difficulty a participant experienced in various activities of daily living. On
the basis of this questionnaire, we classified a participant’s level of physical functioning as excellent,
moderately impaired, or severely impaired. In addition, participants were asked about the previous
occurrence of cardiac events such as myocardial infarctions, the presence of a number of chronic health
conditions, their smoking status, as well as a possible decline in physical activity compared to 5 or 10
years earlier. Table 1 summarizes the definition of the covariates we adjust for as potential confounding
factors.

Of the 2092 participants enrolled in the SPPARCS study, 15 did not answer all the questions needed
to define their level of vigorous physical activity; an additional 26 were missing information about at
a least one of the confounding factors described above. Our analysis is based on the remaining 2051
participants. We note that the outcome of interest, five-year survival status, was available for all study
participants so that we do not have to adjust for right censoring.
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Table 1: Definition of indicator variables that are considered as potential confounders.

Variable Definition
FEMALE Female
AGE.1 ≤ 60 years old
AGE.2 60-70 years old
AGE.4 80-90 years old
AGE.5 90-100 years old
HTL.EX Excellent self-rated health
HLT.FAIR Fair self-rated health
HLT.POOR Poor self-rated health
NRB.FAIR Moderately impaired physical functioning (0.5 ≤ NRB score ¡ 1.0)
NRB.POOR Severely impaired physical functioning (NRB score ¡ 0.5)
CARD Previous occurrence of any of the following cardiac events: Angina,

myocardial infarction, congestive heart failure, coronary by-pass
surgery, and coronary angioplasty

CHRON Presence of any of the following chronic health conditions: stroke,
cancer, liver disease, kidney disease, Parkinson’s disease, and
diabetes mellitus

SMK.CURR Current smoker
SMK.EX Former smoker
DECLINE Activity decline compared to 5 or 10 years earlier

3 Methods

The observed data are given by n i.i.d. copies of O = (W,A, Y ), where W denotes the collection of
adjustment variables, A gives the categorical physical activity level, and Y is an indicator for death in
the five years following the baseline interview. Within the counterfactual framework for causal inference,
as first introduced by Neyman (1923) and further developed by Rubin (1978) and Robins (1986, 1987),
this observed data structure O is viewed as a censored version of a hypothetical full data structure
X = (Ya : a ∈ A) that contains the outcome Ya we would have observed on this subject had she been
assigned to treatment level a for all a in the collection A = {0, 1, . . . , 5} of possible treatment levels. The
causal effect of vigorous physical activity on all-cause mortality could now be defined by comparing the
mortality risk E[Ya] we would observe if all subjects in the target population exercised at a given level
a > 0 to the corresponding mortality risk E[Y0] we would observe if all subjects abstained from vigorous
physical activity.

As mentioned previously, such mean counterfactual outcomes can only be estimated from the observed
data if the investigator has recorded all relevant confounding factors and if all subjects in the target
population have positive probability of selecting each of the treatment levels. This latter assumption of
experimental treatment assignment can be formalized by requiring that for all candidate static treatment
interventions a = 0, 1, . . . , 5, we have with probability 1.0 that

g(a |W ) ≡ P (A = a |W ) > 0. (2)

In fact, it has been shown that estimation of mean counterfactual outcomes becomes problematic even
if there exist values of a and W for which the treatment assignment probabilities g(a | W ) are not
identically equal to zero, but very close to zero (Neugebauer and van der Laan, 2005). To avoid problems
due to such a practical violation of the ETA assumption, we may hence require in practice that, for
a = 0, 1, . . . , 5, we have g(a |W ) > α with probability 1.0, with α = 0.05, for instance.

Estimators of causal effects defined on the basis of the realistic individualized treatment rules discussed
in van der Laan and Petersen (2007) do not rely on the ETA assumption. Given a target treatment level
a and a subject’s baseline covariates W , such rules assign the highest treatment level not exceeding a
that the subject is still realistically capable of. Specifically, let

D(W ) = {a ∈ A : g(a |W ) ≥ α} (3)
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denote the set of treatment options that, given baseline covariates W , are realistic for a particular subject
in the sense that she would select any one of those treatment options with a probability of at least α. A
realistic individualized treatment rule can then be defined as

d(a,W ) = max{a∗ ∈ D(W ) : a∗ ≤ a}. (4)

As with static treatment regimens, we use the notation Yd(a,W ) to denote the outcome we would have
observed on the subject had she followed the individualized rule d(a,W ), i.e. Yd(a,W ) ≡ Yã where ã =
d(a,W ). A realistic causal effect of vigorous physical activity on all-cause mortality can now be defined
by comparing the mortality risk E[Yd(a,W )] we would observe if all subjects in the target population
followed a given rule d(a,W ), a > 0, to the corresponding mortality risk E[Yd(0,W )] = E[Y0] we would
observe if all subjects abstained from vigorous physical activity. By the definition of d(a,W ), we have,
for a = 0, 1, . . . , 5, that g(d(a,W ) | W ) > α with probability 1.0, demonstrating that the equivalent of
assumption (2) is trivially satisfied in estimating the corresponding causal effects.

Under an intention-to-treat rule d(a,A,W ), subjects are assigned to a specified target treatment level
a if that treatment level represents a realistic option for them, but are allowed to follow their self-selected
treatment A otherwise:

d(a,A,W ) = I(a ∈ D(W ))a+ I(a /∈ D(W ))A. (5)

An intention-to-treat causal effect of vigorous physical activity on all-cause mortality can now be defined
by comparing the counterfactual mortality risks E[Yd(a,A,W )], a > 0, and E[Yd(0,A,W )] = E[Y0]. Note
that we have

E[Yd(a,A,W )] = E
h
YaI(a ∈ D(W ))

i
+ E

h
Y I(a /∈ D(W ))

i
. (6)

The second quantity is trivially identified by the observed data, and a ∈ D(W ) guarantees that g(a |
W ) > α with probability 1.0, ensuring identifiability of the second quantity, so that the equivalent of
assumption (2) is guaranteed to hold in the estimation of intention-to-treat causal effects. We note
that the true treatment mechanism g and therefore also the set D(W ) of realistic treatment options will
generally be unknown. In practice, it will therefore usually be necessary to substitute a given estimate
g∗ of the treatment mechanism g in the definition of D(W ).

Four different classes of estimators have been proposed for estimating mean counterfactual outcomes
corresponding to static treatment rules: G-computation estimators (Robins, 1986), inverse-probability-
of-treatment-weighted (IPTW) estimators (Robins, 2000), double robust IPTW (DR-IPTW) estimators
(van der Laan and Robins, 2003), and targeted maximum-likelihood estimators (van der Laan and Rubin,
2006), with natural analogues of all of these estimators in the context of realistic individualized treatment
rules and intention-to-treat rules. While it is well-known that the IPTW estimator can suffer from
considerable bias if the ETA assumption is violated, the remaining three estimators are in fact also
severely compromised in such situations in that they now have to rely fully on model assumptions that
cannot be tested from the data (Neugebauer and van der Laan, 2005). Since this latter phenomenon
is rarely discussed in the literature, we will provide a practical illustration by comparing the estimates
obtained by each of these four estimators for the three different causal effects defined above. We next
review the definition and implementation of these four estimators in order to be able to discuss their
behavior in more detail.

We begin with estimators of the mean counterfactual outcome ψ = E[Yd(a,W )] for a given realistic
individualized treatment rule d(a,W ). Note that the mean counterfactual outcome E[Ya] for a given
static treatment rule corresponds to the special case of setting α = 0 in the definition of D(W ). The
G-computation estimator of ψ is based on the observation that under the assumption of no unmeasured
confounders, this parameter is identified by the observed data as

ψ = E[Yd(a,W )] = EW
h
E[Y | A = a,W ]

i
. (7)

This immediately implies a substitution estimator based on estimates of the marginal distribution of W ,
P (W ), and the conditional distribution of Y given A and W , P (Y | A,W ). The first distribution can
be estimated non-parametrically by the empirical distribution of W in our sample, but estimation of
P (Y | A,W ) will generally require specification of a parametric model. In the case of a binary outcome
Y , an estimate Qn of the regression Q(A,W ) = E[Y | A,W ] based on an appropriate logistic regression
model completely defines an estimate of the conditional distribution P (Y | A,W ). The corresponding
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substitution estimator for ψ is then given by

ψG−compn =
1

n

nX
i=1

Qn(d(a,Wi),Wi). (8)

This estimator gives a consistent estimate of ψ if the model for Q(A,W ) is correctly specified.
The IPTW and DR-IPTW estimators are based on the general estimating function methodology

described in van der Laan and Robins (2003) that is based on the following three steps. First, estimating
functions for ψ are obtained assuming that we have access to the full data structure X. These estimating
functions are then mapped into functions of the observed data structure by applying an IPTW mapping.
Lastly, a class of more robust and efficient estimating functions is obtained by subtracting from these
IPTW estimating functions their projection onto the tangent space for the treatment mechanism in the
model that only makes the assumption of no unmeasured confounders. In a non-parametric model, the
only unbiased full-data estimating function for ψ is given by

DFull(X | ψ) = Yd(a,W ) − ψ. (9)

A corresponding IPTW estimating function is given by

DIPTW (O | g, ψ) =
I(A = d(a,W ))

g(A |W )
Y − ψ. (10)

The IPTW estimator ψIPTWn is defined as the solution of the estimating equation

0 =
1

n

nX
i=1

DIPTW (Oi | gn, ψ), (11)

where gn is an estimate of g that may, for example, be obtained as the maximum-likelihood estimate of
g in an appropriately specified parametric model. Specifically, this estimator is given by

ψIPTWn =
1

n

nX
i=1

I(Ai = d(a,Wi))

gn(Ai |Wi)
Yi. (12)

It gives a consistent estimate of ψ if the model for the treatment mechanism g is correctly specified.
The projection of DIPTW onto the nuisance tangent space TNUC corresponding to the treatment

mechanism under the assumption of no unmeasured confounders can be computed as

Π[DIPTW | TNUC ] = E[DIPTW | A,W ]− E[DIPTW |W ]

=
I(A = d(a,W ))

g(A |W )
Q(A,W )−Q(d(a,W ),W )

so that the DR-IPTW estimating function is given by

DDR(O | g,Q, ψ) =
I(A = d(a,W ))

g(A |W )

h
Y −Q(A,W )

i
+Q(d(a,W ),W )− ψ. (13)

The corresponding DR-IPTW estimator ψDRn is defined as the solution of the estimating equation

0 =
1

n

nX
i=1

DDR(Oi | gn, Qn, ψ). (14)

Specifically,

ψDRn =
1

n

nX
i=1

I(Ai = d(a,Wi))

gn(Ai |Wi)

h
Yi −Qn(Ai,Wi)

i
+Qn(d(a,Wi),Wi). (15)

This estimator gives a consistent estimate of ψ if the model for either g or Q is correctly specified. It is
also locally efficient in the sense that correct specification of both models yields an efficient estimator.

Like the G-computation estimator, the targeted MLE of ψ is a substitution estimator based on
estimates of the components P (W ) and P (Y | A,W ) of the observed data density. In order to avoid
relying on an a priori specified parametric model for the latter component, we may often want to

Chapter 6. Realistic Individualized Treatment Rules in Observational Studies

267
http://biostats.bepress.com/ucbbiostat/paper254



employ a data-adaptive model selection approach such as the Deletion/Substituion/Addition algorithm
(Sinisi and van der Laan, 2004) or Least Angle Regression (Efron et al., 2004) for the purposes of
estimating this conditional density. This is somewhat problematic, however, since such algorithms will
select an appropriate model based on a criterion that is aimed at estimating the nuisance parameter
P (Y | A,W ) efficiently, which in general does not lead to an efficient estimator of the parameter of
interest ψ. The targeted MLE therefore first updates the initial estimate of the observed-data density
that would be used by the G-computation estimator in a way that targets estimation of this density
at the parameter of interest and makes the corresponding substitution estimator double robust and
locally efficient. Specifically, this is achieved by formulating a parametric model indexed by a Euclidean
parameter ε through the initial estimate of the observed-data density at ε = 0 whose scores include the
components of the efficient influence curve of ψ at the initial density estimate, obtaining a maximum-
likelihood estimate of ε in this model, and updating the original density estimate accordingly.

Since this targeted maximum-likelihood approach was only recently developed by van der Laan and
Rubin (2006), we will illustrate it here in the context of estimating the parameter of interest ψ. For
this purpose, let P 0

n be an initial estimator of the observed-data density that estimates the marginal
distribution of W by the empirical distribution of W , the treatment mechanism g by an estimate g(P 0

n),
and the conditional distribution of Y given A and W by an initial fit Q(P 0

n) that can be represented in
the form of the logistic function

Q(P 0
n)(A,W ) =

1

1 + exp(−m0
n(A,W ))

. (16)

We then need to formulate a parametric fluctuation through this initial density estimate whose scores at
the initial estimate include the components of the efficient influence curve for ψ. This efficient influence
curve, given by the influence curve D(P ) of the DR-IPTW estimator

D(P ) =
I(A = d(a,W ))

g(A |W )

h
Y −Q(A,W )

i
+Q(d(a,W ),W )− ψ, (17)

can be decomposed as

D(P ) = D(P )− E[D(P ) | A,W ] +

E[D(P ) | A,W ]− E[D(P ) |W ] +

E[D(P ) |W ]− E[D(P )], (18)

corresponding to scores for P (Y | A,W ), P (A |W ), and P (W ), respectively. Specifically, we have that

D1(P ) = D(P )− E[D(P ) | A,W ]

=
I(A = d(a,W ))

g(A |W )

h
Y −Q(A,W )

i
(19)

D2(P ) = E[D(P ) | A,W ]− E[D(P ) |W ]

= 0 (20)

D3(P ) = E[D(P ) |W ]− E[D(P )]

= Q(d(a,W ),W )− ψa. (21)

Since the empirical distribution of W is a non-parametric maximum-likelihood estimator of P (W ), it in
particular equals the MLE of P (W ) in any parametric fluctuation through this initial estimate so that
we do not need to concern ourselves with updating this component of the observed-data density. Since
the parameter of interest is orthogonal to the treatment mechanism g so that D2(P ) = 0, we also do
not need to obtain an update of an initial estimate of g. As a submodel through P 0

n(Y | A,W ), we will
consider a logistic regression model that is identical to the initial fit Q(P 0

n) except for an added covariate
h(P 0

n)(A,W ):

Q(P 0
n)(ε)(A,W ) =

1

1 + exp(−m0
n(A,W )− εh(P 0

n)(A,W ))
(22)

The covariate h(P 0
n)(A,W ) needs to be chosen such that the score of this submodel at ε = 0 is equal

to D1(P 0
n), the component of the efficient influence curve corresponding to P (Y | A,W ) at the initial

density estimate. The score of the selected submodel at ε = 0 is given by

S(0) = h(P 0
n)(A,W )

“
Y −Q(P 0

n)(A,W )
”
. (23)
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Solving for h such that

S(0) = D1(P 0
n)

=
I(A = d(a,W ))

g(P 0
n)(A |W )

h
Y −Q(P 0

n)(A,W )
i

(24)

yields the solution

h(P 0
n)(A,W ) =

I(A = d(a,W ))

g(P 0
n)(A |W )

. (25)

Let εn denote the MLE of ε in Q(P 0
n)(ε), which can be obtained by simply regressing Y on h(P 0

n)(A,W )
according to a logistic regression model with offset equal to m0

n(A,W ). The targeted MLE of ψ is then
given by the substitution estimator based on the updated estimate

Q1
n(A,W ) =

1

1 + exp(−m0
n(A,W )− εnh(P 0

n)(A,W ))
(26)

of the regression Q(A,W ). Specifically, we have that

ψtMLE
n =

1

n

nX
i=1

Q1
n(d(a,Wi),Wi). (27)

To summarize, implementing this estimator thus requires initial estimates of the regression Q and the
treatment mechanism g as they would also be used by the three estimators described above, updating
the estimate for Q in a simple univariate logistic regression, and then computing the corresponding
substitution estimator of ψ. The resulting targeted MLE solves the double robust estimating equation
based on Q1

n(A,W ) and gn, i.e.

1

n

nX
i=1

I(Ai = d(a,Wi))

g(P 0
n)(Ai |Wi)

h
Yi −Q1

n(Ai,Wi)
i

+Q1
n(d(a,Wi),Wi)− ψtMLE

n = 0, (28)

so that it is in fact equivalent to the DR-IPTW estimator given in (15) with Q1
n(A,W ) substituted for

Qn(A,W ). Like the DR-IPTW estimator, the targeted MLE is therefore consistent if at least one of the
two nuisance parameters g and Q is estimated consistently. Similarly, the estimator is locally efficient in
the sense that it is efficient if both of these nuisance parameters are estimated consistently.

As mentioned previously, estimation of the mean counterfactual outcome E[Ya] corresponding to a
static treatment intervention represents a special case of the realistic individualized treatment rules con-
sidered here. G-computation, IPTW, and DR-IPTW estimators of the mean counterfactual outcome
φ ≡ E[Yd(a,A,W )] corresponding to an intention-to-treat rule are straightforward to derive and are pre-
sented in van der Laan and Petersen (2007). In order to obtain a targeted MLE of φ, we can use that by
(6) the efficient influence curve of φ in a non-parametric model can be written as the sum of the efficient
influence curve of a non-parametric estimator of φ1 = E[Y I(a /∈ D)] and the efficient influence curve of
a non-parametric estimator of φ2 = E[YaI(a ∈ D)]. These are given by

D1(P ) = I(a /∈ D)Y − φ1 (29)

and

D2(P ) = I(a ∈ D)


I(A = a)

g(A |W )

h
Y −Q(A,W )

i
+Q(a,W )

ff
− φ2, (30)

respectively, yielding

D(P ) = I(a /∈ D)Y + I(a ∈ D)


I(A = a)

g(A |W )

h
Y −Q(A,W )

i
+Q(a,W )

ff
− φ (31)

as the efficient influence curve for φ. The component of this influence curve corresponding to the score
for P (Y | A,W ) is given by

D(P )− E[D(P ) | A,W ] = I(a /∈ D)
h
Y −Q(A,W )

i
+ I(a ∈ D)


I(A = a)

g(A |W )

h
Y −Q(A,W )

iff
=


I(a /∈ D) + I(a ∈ D)

I(A = a)

g(A |W )

ffh
Y −Q(A,W )

i
. (32)
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The covariate h(P 0
n)(A,W ) needed for the univariate regression to update the initial fit for Q is thus

given by

h(P 0
n)(A,W ) = I(a /∈ D) + I(a ∈ D)

I(A = a)

g(P 0
n)(A |W )

. (33)

The problems arising if the ETA assumption is violated are most clearly seen in the case of the IPTW
estimator. By downweighting observations that were likely to have received their observed treatment and
upweighting those that were instead unlikely to have received their observed treatment, this estimator
essentially works by creating a new sample in which treatment assignment is independent of the baseline
covariates. This approach breaks down if a subgroup of the target population never selects some of
candidate treatment levels. If older, less healthy subjects, for example, are never observed to participate
in high levels of vigorous physical activity, none of the subjects in the corresponding re-weighted sample
will be older and less healthy, leading to an underestimate of the corresponding counterfactual mortality
risk under high levels of vigorous physical activity.

In the same situation, the G-computation estimator has to rely entirely on model assumptions that
cannot be tested from the observed data. Since older, less healthy subjects are never observed at higher
levels of vigorous physical activity, their conditional mean outcome E[Y | A,W ] for these exercise levels
is undefined. A corresponding estimate can never be obtained from the observed data unless one is
willing to extrapolate from the conditional mean outcomes estimated for other values of A and W . To
illustrate this point, consider the simplified example in which A is a binary indicator for a high level
of vigorous physical activity and W is an indicator for poor health. Then none of the subjects in our
target population might fall in the group with W = 1 and A = 1 so that E[Y | A = 1,W = 1]
is undefined. In order to still obtain an estimate of this quantity, we would be forced to assume an
additive model for Q according to which Q(A,W ) = β0 + β1A+ β2W . Since the non-parametric model
Q(A,W ) = β0 + β1A+ β2W + β3A×W is not identifiable, this assumption of no interaction between A
and W cannot be tested from the observed data.

Like the G-computation estimator, the DR-IPTW estimator and the targeted MLE rely entirely on
extrapolation through Q if the ETA assumption is violated. To complicate matters, however, they also
require that the estimate of g is based on a model for the treatment mechanism that satisfies the ETA
assumption, i.e. the model for g must in fact be mis-specified (van der Laan and Robins, 2003). In
summary, all four estimators of causal effects are thus severely compromised if the ETA assumption does
not hold, illustrating that the solution in such cases does not lie in turning to the G-computation or
DR-IPTW estimators for which the resulting problems are not as immediately apparent as for the IPTW
estimator, but in focusing on realistically defined causal effects that are guaranteed to be identified from
the observed data.

4 Results

The treatment mechanism was estimated by a multinomial regression model that included main-effect
terms for all indicator variables defined in table 1. The regression E[Y | A,W ] was similarly estimated
by a logistic regression model that included these same main-effect terms as well as indicator variables
for the treatment categories 1 through 5. We evaluated the goodness-of-fit of this latter model using the
Hosmer-Le Cessie test introduced by Hosmer et al. (1997) as an improvement of the Hosmer-Lemeshow
test (Hosmer and Lemeshow, 1980). This test yielded a p-value of 0.10, providing little evidence against
the assumption that this model adequately describes the data. To evaluate the fit of our treatment model,
we followed the advise of Hosmer and Lemeshow (2000) and treated this model as a set of independent
binary logistic regression models of each treatment category against the remaining categories. Applying
the Hosmer-Le Cessie test to each of these binary logistic regression models, we obtained p-values of 0.51,
0.54, 0.33, 0.27, 0.78, and 0.94, suggesting that the treatment model fits the data quite well.

Tables 2 and 3 summarize the fits we obtained for g and Q, respectively. The treatment fit reveals a
clear violation of the ETA assumption: No subjects in the oldest age group (90-100 years) are observed at
the treatment levels A = 3 and A = 5. Likewise, no subjects with poor self-rated health are observed at
the treatment levels A = 4 and A = 5. In addition, subjects with severely impaired physical functioning
are very unlikely to follow treatments A = 4 and A = 5. The fit we obtained for Q indicates that these
three groups of subjects are at considerably increased risks of mortality, suggesting that estimates of
the counterfactual mortality risks for the higher three treatment categories will be biased low. Since the
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DR-IPTW estimator and the targeted MLE both require an estimate of the treatment mechanism that
satisfies the ETA assumption, fitted treatment assignment probabilities below 0.05 were set to 0.05.

Table 2: Treatment model fit. The entries in the first column give the factor by which the relative risk of
falling in category A=1 rather than A=0 changes when the covariate under consideration is changed from 0
to 1. Entries in the remaining columns are interpreted accordingly.

A=1 A=2 A=3 A=4 A=5
AGE.1 1.16 1.57 1.37 1.32 1.44
AGE.2 1.37 1.57 1.47 1.32 1.37
AGE.4 0.74 0.94 0.83 0.83 1.02
AGE.5 0.24 1.03 0.00 1.04 0.00
HLT.EX 1.09 1.10 1.46 1.29 1.67
HLT.FAIR 0.56 0.58 0.47 0.39 0.45
HLT.POOR 0.50 0.43 0.33 0.00 0.00
NRB.POOR 0.55 0.40 0.29 0.07 0.17
NRB.FAIR 0.78 0.82 0.70 0.99 0.53
SMOKE.CURR 0.65 0.43 0.32 0.61 0.33
SMOKE.EX 1.00 1.23 1.09 1.25 1.20
CARD 0.90 1.29 1.18 0.89 1.46
CHRONIC 1.19 1.14 1.13 1.11 0.93
FEMALE 0.94 0.86 0.82 0.89 0.55
DECLINE 0.67 0.39 0.52 0.37 0.33

Table 3: Fit for Q. Estimated odds ratios for mortality along with 95% confidence intervals and p-values.

OR 95% CI p-value
AGE.1 0.12 (0.05, 0.31) ¡10e-4
AGE.2 0.43 (0.29, 0.64) ¡10e-4
AGE.4 3.41 (2.34, 4.96) ¡10e-4
AGE.5 5.74 (2.07, 15.91) ¡10e-4
HLT.EX 0.76 (0.50, 1.16) 0.2039
HLT.FAIR 2.01 (1.39, 2.93) ¡10e-4
HLT.POOR 2.84 (1.51, 5.34) 0.0012
NRB.POOR 1.94 (1.21, 3.13) 0.0063
NRB.FAIR 0.89 (0.61, 1.29) 0.5279
SMOKE.CURR 3.73 (2.22, 6.29) ¡10e-4
SMOKE.EX 1.38 (0.99, 1.94) 0.0584
CARD 1.60 (1.13, 2.26) 0.0080
CHRONIC 1.44 (1.06, 1.95) 0.0204
FEMALE 0.52 (0.37, 0.72) ¡10e-4
DECLINE 1.46 (1.05, 2.05) 0.0266
A=1 0.86 (0.55, 1.34) 0.5072
A=2 0.81 (0.51, 1.29) 0.3849
A=3 0.78 (0.47, 1.29) 0.3360
A=4 0.45 (0.18, 1.09) 0.0770
A=5 0.80 (0.37, 1.76) 0.5866

Tables 4 and 5 summarize the realistic indvidualized treatment rule and the intention-to-treat rule.
Both tables show that only about 50% of all subjects are estimated to be capable of engaging in the
highest level of vigorous physical activity. Likewise, only about 75% of all subjects are estimated to
be capable of the second highest level. These observations further underscore the severity of the ETA
violation encountered in this data set. In comparing tables 4 and 5, we note that the intention-to-treat
causal effects of high levels of vigorous physical activity are likely to be smaller than the corresponding
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realistic causal effects. Under the intention-to-treat rule d(5, A,W ), close to 25% of all subjects are
assigned to the lowest treatment level A = 0 while the corresponding realistic individualized treatment
rule d(5,W ) assigns no subjects to A = 0. In general, the realistic individualized treatment rule results
in treatment assignments closer to the specified target level than those obtained from the intention-to-
treat rule. In addition, the latter rule produces a few cases in which subjects are assigned to treatment
levels that exceed the given target level. For the sake of estimating the causal effect of vigorous physical
activity, these observations would seem to make the realistic individualized treatment rule a somewhat
more appealing option than the intention-to-treat rule.

Table 4: The realistic individualized treatment rule. A given row shows the treatment levels ã ≡ d(a,W )
that subjects were actually assigned to when the target level was set at a.

ã = 0 ã = 1 ã = 2 ã = 3 ã = 4 ã = 5
a = 0 2051 0 0 0 0 0
a = 1 11 2040 0 0 0 0
a = 2 0 41 2010 0 0 0
a = 3 0 41 97 1913 0 0
a = 4 0 41 91 441 1478 0
a = 5 0 41 91 381 454 1084

Table 5: The intention-to-treat treatment rule. A given row shows the treatment levels ã ≡ d(a,A,W ) that
subjects were actually assigned to when the target level was set at a.

ã = 0 ã = 1 ã = 2 ã = 3 ã = 4 ã = 5
a = 0 2051 0 0 0 0 0
a = 1 11 2040 0 0 0 0
a = 2 35 3 2011 1 1 0
a = 3 108 16 7 1918 2 0
a = 4 338 88 66 56 1491 12
a = 5 492 161 134 110 45 1109

As argued above, the lack of non-parametric identifiability of causal parameters under a violation
of the ETA assumption is most easily seen in the case of the IPTW estimator which is likely to suffer
from considerable bias. Wang et al. (2006) propose the following simulation-based approach for obtain-
ing an estimate of this bias: Given estimates of P (W ), g, and Q, we can simulate realizations of the
observed data structure. For this estimated data-generating distribution, the true parameter values for
the parameters of interest can be computed through G-computation. At the same time, we can obtain
a sampling distribution of IPTW estimates by applying the IPTW estimator to a large number of simu-
lated realizations of the observed data structure. Since the assumption of no unmeasured confounders is
trivially satisfied in this simulation study, any discrepancy between the mean of these estimates and the
true parameter value must reflect a violation of the ETA assumption. Table 6 summarizes the estimated
bias of the IPTW estimator of the counterfactual mortality risk for each of the three different kinds of
causal effects. The table shows that the IPTW estimator dramatically underestimates the counterfac-
tual mortality risk for static treatment interventions at the highest two activity levels, with considerable
problems even for the third highest level of activity. These observations are in agreement with our earlier
arguments according which a lack of older and less healthy subjects among the higher activity levels
should lead to an underestimate of the corresponding mortality risks. In contrast, table 6 shows only
a negligible bias for estimating such risks on the basis of realistic individualized treatment rules and
intention-to-treat rules. We stress that this diagnostic simulation should be interpreted to give not only
an estimate of the bias seen in the IPTW estimator, but, more generally, a sense of the extent to which
an ETA violation makes the causal parameters of interest non-parametrically non-identifiable. In the
present case, for instance, we would therefore also want to treat any estimates of static causal effects
offered by the G-computation, DR-IPTW, and targeted maximum-likelihood estimators as unreliable
and potentially misleading.

Given the counterfactual mortality risk estimators described in section 3, estimators of the relative
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Table 6: Estimated ETA bias for the IPTW estimator of the counterfactual mortality risk as a percentage
of the true parameter value.

Static Realistic ITT
A=0 -0.23% -0.23% -0.23%
A=1 -2.63% 0.05% -0.03%
A=2 -4.94% 0.04% 0.13%
A=3 -14.45% 0.22% 0.20%
A=4 -48.75% 1.16% 1.05%
A=5 -50.54% -0.18% 0.11%

risk (relative to A = 0) are straightforward to obtain for the G-computation, IPTW, and DR-IPTW
estimators by simply dividing the corresponding two mortality risk estimators. Since the targeted MLE
is always aimed at a particular parameter of interest, this simple approach does not work for obtaining
a targeted MLE of the relative risk of mortality. Section A in the appendix shows that this task is still
fairly straightforward, however, given the work we have already done in section 3. Table 7 summarizes
the relative risk estimates for the three different kinds of causal effects obtained by the four different
estimators.

In the analysis based on static treatment interventions, the IPTW estimator appears to provide strong
evidence for a protective effect of vigorous physical activity at the highest two levels, with an estimated 4-
fold reduction in risk for the second-highest level. The realistic and intention-to-treat analysis, however,
provide much weaker evidence for such a protective effect. As expected, the intention-to-treat causal
effect estimates tend to be closer to the null value than the corresponding realistic estimates. Given the
results of the simulation study summarized in table 6, we are led to conclude that the IPTW estimates
based on static treatment interventions dramatically overstate the beneficial impact of high levels of
vigorous physical activity.

The remaining three estimators likewise tend to estimate stronger reductions in risk in the static
analysis than in the realistic and intention-to-treat analyses, with both the DR-IPTW estimator and
the targeted MLE indicating a significant protective effect for A = 4 in the static analysis that becomes
non-significant in the realistic and intention-to-treat analyses. Interestingly, the G-computation estima-
tor also yields a smaller estimated reduction in risk for A = 4 in the latter two analyses than in the
former one, but tighter confidence intervals for the realistic and intention-to-treat analyses actually make
the corresponding causal effect estimates significant while this is not the case in the static analysis. We
speculate that the greater sampling variability observed in the static analysis is likely a result of the
extrapolation that is required to estimate the expected mortality outcome for a large number of subjects
that are never observed at the highest two treatment levels. For all four estimators, the static analysis
suggest a markedly greater mortality risk for A = 5 than for A = 4, a finding that would be quite
hard to interpret. The remaining two analyses, in contrast, provide much more compatible estimates for
these two activity levels. These observations lend credence to the idea that the static effect estimates
not only of the IPTW estimator, but also of the G-computation, DR-IPTW, and targeted maximum-
likelihood estimator ought to be treated as unreliable and potentially misleading. On the basis of the
more trustworthy realistic and intention-to-treat analyses, the data suggest that high levels of vigorous
physical activity may confer reductions in mortality risk on the order of 15-30%, although in most cases
the evidence for such an effect does not quite reach the 0.05 level of significance.

5 Discussion

The data analysis presented in this article illustrates the problems encountered in attempting to estimate
the causal effect of a static treatment intervention if the ETA assumption is violated. While it is fairly
well-known that such a violation can cause strong bias in the IPTW estimator, its effects on other
estimators of static causal effects have received little attention in the literature. With the G-computation
estimator, the DR-IPTW estimator, and the targeted MLE all relying on extrapolation from a correctly
specified model for Q and the latter two estimators in addition requiring a mis-specified model for the
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Table 7: Estimates of the relative risk of mortality (relative to A = 0) along with 95% confidence intervals
based on the bootstrap.

G-comp IPTW DR-IPTW tMLE
Static

A=1 0.90 (0.65, 1.20) 0.97 (0.68, 1.29) 0.96 (0.69, 1.28) 0.96 (0.69, 1.28)
A=2 0.91 (0.64, 1.23) 0.90 (0.60, 1.22) 0.92 (0.63, 1.27) 0.93 (0.63, 1.30)
A=3 0.88 (0.59, 1.21) 0.77 (0.44, 1.07) 0.84 (0.56, 1.14) 0.87 (0.58, 1.18)
A=4 0.59 (0.22, 1.01) 0.23 (0.06, 0.43) 0.52 (0.20, 0.92) 0.48 (0.15, 0.88)
A=5 0.86 (0.43, 1.35) 0.55 (0.21, 0.90) 0.97 (0.48, 1.50) 1.05 (0.53, 1.60)

Realistic
A=1 0.91 (0.66, 1.19) 1.00 (0.72, 1.32) 0.95 (0.70, 1.28) 0.95 (0.70, 1.28)
A=2 0.87 (0.63, 1.17) 0.97 (0.67, 1.34) 0.99 (0.66, 1.30) 1.00 (0.66, 1.32)
A=3 0.85 (0.62, 1.13) 0.81 (0.50, 1.22) 0.91 (0.59, 1.22) 0.91 (0.58, 1.23)
A=4 0.73 (0.53, 0.97) 0.58 (0.34, 1.06) 0.69 (0.40, 1.05) 0.69 (0.41, 1.05)
A=5 0.81 (0.60, 1.06) 0.66 (0.38, 1.19) 0.78 (0.47, 1.17) 0.78 (0.46, 1.20)

ITT
A=1 0.91 (0.66, 1.19) 0.99 (0.72, 1.33) 0.95 (0.70, 1.28) 0.95 (0.69, 1.28)
A=2 0.88 (0.64, 1.17) 0.98 (0.69, 1.31) 0.98 (0.67, 1.29) 0.98 (0.66, 1.30)
A=3 0.87 (0.64, 1.13) 0.85 (0.59, 1.17) 0.87 (0.61, 1.15) 0.83 (0.60, 1.14)
A=4 0.78 (0.62, 0.97) 0.85 (0.64, 1.08) 0.84 (0.63, 1.04) 0.85 (0.63, 1.10)
A=5 0.91 (0.75, 1.11) 0.96 (0.73, 1.23) 0.99 (0.73, 1.23) 1.01 (0.73, 1.30)

treatment mechanism that satisfies the ETA assumption, we argue that the results offered by these three
estimators must also be treated with great caution. Since, strictly speaking, static causal effects cannot
be identified from the observed data if the ETA assumption is violated, it should in fact make sense that
the appropriate response to this problem does not lie in turning to approaches that aim to estimate such
parameters by relying on untestable modelling assumptions, but rather in adapting the definition of the
parameter of interest in a way that makes the parameter identifiable.

This becomes particularly obvious in cases in which static causal effects are not even well-defined.
In the context of studying the causal effect of vigorous physical activity on mortality in the elderly, for
instance, it makes little sense to talk about the counterfactual outcome distribution we would observe
if all subjects were assigned to high levels of activity since serious health problems would prevent a
considerable proportion of subjects from complying with such an assignment. Causal effects defined
on the basis of realistic individualized treatment rules and intention-to-treat rules address this problem
by explicitly taking into account the set of treatment options that are realistically available to each
subject. Such effects are therefore well-defined and identifiable even if the full set of treatment options
is not available to some subjects. The estimates of such effects reported here suggest that high levels of
vigorous physical activity may confer reductions in mortality risk on the order of 15-30%, although in
most cases the evidence for such an effect does not quite reach the 0.05 level of significance. Estimates of
static causal effects, in contrast, suggest a statistically significant reduction in mortality risk on the order
of 50-75%, a finding that given the estimated bias of the IPTW estimator, must be viewed as highly
suspect.

A possible extension to the analysis we present here consists of data-adaptively selecting the value
for α in definition (3) of the set of realistic treatment options, arbitrarily set by us as α = 0.05. For
very small values of α, estimators of causal effects based on realistic individualized treatment rules and
intention-to-treat rules may still be affected by a practical violation of the ETA assumption. As the value
for α is increased, on the other hand, the corresponding causal effects become more and more different
from the static causal effect that they are in some sense intended to approximate. A more sophisticated
analysis might thus attempt to use the approach introduced by Wang et al. (2006) in order to find the
smallest value of α for which the ETA bias of the ITPW estimator is estimated to be negligible. Future
research will be required to investigate this approach further.
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A Targeted MLE of the causal relative risk

Let ψa = E[Yd(a,W )] and consider the parameter

θ =
E[Yd(a,W )]

E[Yd(0,W )]
=
ψa
ψ0
. (34)

Since we have already derived the efficient influence curve of ψa as

Dψa(P ) =
I(A = d(a,W ))

g(A |W )

h
Y −Q(A,W )

i
+Q(d(a,W ),W )− ψa, (35)

we can use the δ-method to find the efficient influence curve for θ. Specifically, we have that

θ = f(ψa, ψ0) =
ψa
ψ0

(36)

and
Df = (1/ψ0,−ψa/ψ2

0) (37)

so that the efficient influence curve for θ is given by

D(P ) = Df(Dψa(P ), Dψ0(P ))T

=
1

ψ0


I(A = d(a,W ))

g(A |W )

h
Y −Q(A,W )

i
+Q(d(a,W ),W )− ψa

ff
−

ψa
ψ2

0


I(A = d(0,W ))

g(A |W )

h
Y −Q(A,W )

i
+Q(d(0,W ),W )− ψ0

ff
=

1

ψ0

h
I(A = d(a,W ))− θI(A = d(0,W ))

iY −Q(A,W )

g(A |W )
+

1

ψ0

h
Q(d(a,W ),W )− θQ(d(0,W ),W )

i
. (38)
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The component of this influence curve corresponding to the score for P (Y | A,W ) is given by

D(P )− E[D(P ) | A,W ] =
1

ψ0

h
I(A = d(a,W ))− θI(A = d(0,W ))

iY −Q(A,W )

g(A |W )
. (39)

The covariate h(P 0
n)(A,W ) needed for the univariate regression to update the initial fit for Q is thus

given by

h(P 0
n)(A,W ) =

I(A = d(a,W ))− θI(A = d(0,W ))

g(P 0
n)(A |W )ψ0

=
I(A = d(a,W ))− ψa/ψ0I(A = d(0,W ))

g(P 0
n)(A |W )ψ0

. (40)

To obtain a feasible h(P 0
n)(A,W ), we substitute

ψa,n =
1

n

nX
i=1

Q(P 0
n)(d(a,Wi),Wi) (41)

and

ψ0,n =
1

n

nX
i=1

Q(P 0
n)(d(0,Wi),Wi) (42)

for ψa and ψ0, respectively. Let εn denote the MLE of ε in Q(P 0
n)(ε) and let

Q1
n(A,W ) =

1

1 + exp(−m0
n(W )− εnh(P 0

n)(A,W ))
. (43)

Iterate this process k times until εn has become sufficiently small. Then the targeted MLE of θ is given
by

θtMLE
n =

Pn
i=1Q

k
n(d(a,Wi),Wi)Pn

i=1Q
k
n(d(0,Wi),Wi)

. (44)

The covariate h(P 0
n)(A,W ) for the corresponding intention-to-treat relative risk parameter can similarly

be derived as

h(P 0
n)(A,W ) = I(a ∈ D)

»
1

ψ0
− ψa
ψ2

0

–
+

I(a /∈ D)

»
I(A = d(a,W ))− ψa/ψ0I(A = d(0,W ))

g0
n(A |W )ψ0

–
. (45)
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Abstract

Often biomarker analyses involve numerous variables with complicated and generally

unknown correlation structure, and biomarker detection methods aimed at identifying

causally related biomarkers often result in measures that are difficult to interpret and

nearly impossible to compare across studies. In response to the FDA call for method

regulation, we present targeted variable importance (tVIM) as a standardized method for

biomarker discovery. Based on targeted maximum likelihood theory, these estimates are

robust to model misspecification and, under specified conditions, interpretable as a causal

effect, making them reproducible across populations. In simulation, we compare tVIM

to univariate linear regression, LASSO penalized multiple regression, and randomForest

under conditions of increasing correlation. Based on ranked variable lists, tVIM coupled

with a data-adaptive model selection method is more resilient to increases in correlation,

outperforming the other methods. In application we apply the tVIM to the van’t Veer

breast cancer data. Overall, tVIM appears to rank biologically relevant genes at the top

its list. Given extreme correlations, methods to reduce bias and provide realistic gene lists

are also discussed.
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1. INTRODUCTION
The use of biomarkers in disease diagnosis and treatment has grown rapidly in recent years, as

microarray and sequencing technologies capable of detecting biological signatures have become

more effective and efficient research tools. In an attempt to create a level of quality assurance

with respect to biological and more specifically biomarker research, the FDA has called for

the development of a standard protocol for biomarker qualification [1]. Such a protocol would

define “evidentiary” standards for biomarker usage in areas of drug development and disease

treatment and provide a standardized assessment of a biomarker’s significance and biological

interpretation. This is especially relevant in clinical trials, where the protocol would prohibit

the use of unauthenticated biomarkers to determine treatment regime, resulting in safer and

more reliable treatment decisions [2]. Consequentially identifying accurate and flexible analysis

tools to assess biomarker importance is essential.

Many biomarker discovery methods only measure the association between the marker and

the biological outcome. However a significant association is often difficult to interpret and

does not guarantee that the biomarker will be a suitable and reliable drug candidate or

diagnostic surrogate. This is especially true with genomic data, where genes are often present

in multiple pathways and can be highly correlated amongst themselves. Applying association-

based methods to this data will often lead to a long and ambiguous listing of biomarkers,

which can be expensive to analyze.

Ideally, biomarker discovery analyses want to identify markers that systematically effect the

outcome through a biological pathway or mechanism, in other words markers causally related

to the outcome of interest. Once these markers are identified, they can be further analyzed

and eventually applied as potential drug targets or prognostic markers. Due to the complex

nature of the human genome, this is not a straight forward task and certain assumptions are

required to identify a causal effect.

A causal effect is often thought of in terms of an intervention on a causal diagram [3]. If

we define a causal diagram with nodes, {A,W, Y }, and conditional relationships A|W and
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Y |A,W , we can observe the causal effect of A on Y controlling for W through intervention,

setting A = a for multiple values a and observing the response Y = ya. In terms of a clinical

trial this is the equivalent to observing the response (Y ) to an assigned treatment (A = a).

Causality is only identifiable if A occurs prior to or concurrent with response Y and all nodes

in the path between A and Y are included in the diagram. This is equivalent to requiring that

there are no unmeasured confounders, or that conditional on measured W the assignment of

A is independent of Y (e.g. randomized trial). For example, often the parameter β estimated

from univariate regression E[Y |A] = βA is interpreted as a measure of importance for A.

However, by ignoring potential confounders (W) (i.e. other genes in the pathway or system),

this approach estimates a measure only interpretable as a causal effect in the case where there

are no confounding factors (all W is kept constant at all values of A). Consequently, it will

often identify genes as important which are merely correlated with causally related variables.

Identifiability issues can also arise for causal effects when for a given set W , some levels (i.e.

treatments) a for A are unlikely or not possible in the current study population. This often

arises when confounders W are highly correlated with the variable A. Consider a drug trial

for breast cancer. If the drug is assigned to people who also undergo radiation treatment and

individuals in the placebo group generally do not undergo radiation, then the effect of the

drug and radiation on the cancer cannot be distinguished. The assumption that all levels of A

are possible for any given levels of W is sometimes referred to as the experimental treatment

assumption (ETA) [4].

Multivariate methods seek to estimate the causal effect by controlling for confounders within

a model. If the parameter of interest and all confounders are correctly accounted for in the

model, and the stated assumptions hold, this method can produce an estimate of the causal

effect. Though in reality, the model is generally not correct, and high correlation among the

variables can lead to bias in the estimate. In the case of high dimensional data commonly

found in biomarker studies, the number of covariates is larger than the number of observations

making model selection a necessity.

Standard model selection methods often over-fit the data and can end up removing the
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variable of interest. More advanced methods, such as penalized regression often combat

over-fitting by using cross-validation. In particular, LASSO penalized regression uses cross-

validation to determine the amount of shrinkage for its coefficients, resulting in a high

dimensional fit where all variables have coefficient (importance) values.

Supervised learning methods, such as randomForest, are also commonly used in biomarker

discovery studies. RandomForest is a tree-based regression algorithm that exploits boosting

to reduce the variance of a bias predictor fit. Implementation of randomForest in R

(randomForest()) provides two measures of importance based on the sensitivity of the ‘out-

of-bag” error rate and node classification under perturbation of the value of the variable [5].

Though, these measures lack causal interpretation, they are often used in practice when the

data is high dimensional and over-fitting is a risk.

Both lasso and randomForest lack formal inference and depend on additional boosting for

inference. This is generally computational prohibitive in biomarker discovery analyses where

the number of variables is quite large.

In general, causal effects are often difficult if not impossible to estimate correctly, especially

in high-dimensional and highly correlated genomic data. The specific assumptions they require

(randomized treatment, experimental treatment assignment, etc.) are often only fully realized

in randomized trials, making their utility in a standard protocol limited. However, measures

which are causally interpretable in randomized trials, can still be biologically interpretable in

observation data as measures of importance.

Here, we present the typical representation of the direct causal effect as a potential measure

of biomarker importance

Ψ(P ) = E[EW[Y |A = a,W ]− E[Y |A = 0,W ]]

Given the observed data O = (A,W, Y ) ∼ P , this measure corresponds to the effect of a

biomarker (A) on the outcome (Y ), adjusting for confounders (W ). Here, A can represent a

single biomarker or set of biomarkers. This article will focus on the univariate case.
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This measure can be estimated robust to model mis-specification and with formal inference

using targeted maximum likelihood estimation [6]. Targeted Maximum Likelihood (tMLE)

methodology reduces the bias for the targeted parameter by maximizing the likelihood in a

direction which corresponds to the best estimate of the targeted parameter [6]. Consequently

we will refer to this estimate as the W-adjusted targeted variable importance (tVIM).

A major benefit of the tVIM measure is that it is a biologically interpretable measure. In the

case of a randomized trail, tVIM provides an estimate of the causal effect of A on the outcome

Y, where W would contain all variables which confound the effect of A on Y. In the case of

observational data, one can still interpret Ψ(P ) as estimated causal effect that would have

been observed under experimental conditions which only control for the given set variables,

W.

Additionally tVIM can be adapted to address ETA violations. When W is highly correlated

with A, we can use tVIM in conjunction with a correlation cut-off to provide a realistic ranking

of variables. Given a correlation cut-off, tVIM will identify causally related variables as well

as all variables the data is unable to disentangle due to the high correlation structure. The

optimal cut-off decreases bias in the estimate while still maintaining the optimal level of

reproducibility. Targeted Variable Importance measures also have formal inference and multiple

testing methods based on the influence curve which allows estimation of the overall joint

distribution without resampling [7].

Variable importance using tMLE methods has been previously presented in [8] for a binary A.

In this article, we present the semi-parametric version of variable importance, which is flexible

enough to accommodate the wide variety of biomarker data types (continuous, binary, etc.).

Though, we will primarily explore biomarker discovery with respect to gene expression data

(continuous A). This measure of variable importance was first presented in [9], and estimated

using tMLE in [6].

In this article we present tVIM as a candidate standardized measure of biomarker

importance. We demonstrate its efficacy and functionality through both simulation and

application. Simulations provide a performance assessment of tVIM under increasing levels
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of correlation. We demonstrate the accuracy in which tVIM can detect “true” variables from

amongst increasingly correlated “decoy” variables. Additionally we also evaluate the accuracy

of three commonly used methods for biomarker discovery under the same conditions, univariate

linear regression, lasso regression, and randomForest. We assess and compare these methods

based on their ROC curves (a representation of Sensitivity and Specificity) and the length

of list required to detect all “true” variables (a representation of Type I error). Methods are

applied using the current R version of lm(), lars() from library lars [10], and randomForest

from the library randomForest [11]. These versions and their implementation of the methods

are representative of the current tools available to biologists.

After introducing tVIM more formally and presenting the basics of tMLE, the simulation

study is presented. It is followed by a discussion of ETA bias which is problematic for all

methods when the data is highly correlated. We then present an application of tVIM to the

van’t Veer et al. 2002 breast cancer dataset [12]. The van’t Veer study is focused on predicting

a patient’s response to treatment given their gene expression profile. We use tVIM to determine

which genes are relevant to treatment response, providing an accurate list of input variables

for any prediction algorithm. This is followed by an overall discussion.

2. Targeted Variable Importance

The proposed standard measure of importance, tVIM, is a marginal variable importance

measure and is analogous to the variable importance (VIM) measure in [13] which was

presented for a binary A. In order to accommodate a more general A (i.e. continuous), tVIM

is based on a semi-parametric model approach. This method was first presented in van der

Laan 2005 [9], and models of this type have also been considered previously in the literature

[14, 15, 16].

Given the observed data defined as O ∼ (A,W, Y ), where A is the variable (i.e. gene) of

interest, W is the set of potential covariables (i.e. genes), and Y is the outcome of interest, we

can define a general semi-parametric model as follows
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EP [Y |A,W ] = m(A,W |β) + g(W )

where m is user specified given m(A = 0,W |β) = 0 for all β and W , and g(W ) is an unspecified

function of potential covariates W .

Using this model form for EP [Y |A,W ], we can represent the difference as

EP [Y |A = a,W ]− EP [Y |A = 0,W ] = m(a,W |β) + g(W )−m(0,W |β)− g(W )

= m(a,W |β)

and can define generally, the tVIM of a particular A on outcome Y controlling for confounders

W as

µ(a) = EW [m(a,W |β)]

This is referred to as the W-adjusted variable importance

Given a linear model for m(A,W |β) in terms of A (i.e. (m(A,W |β) = AWβ)), the

importance can be represented as the linear curve, EW [m(A = a,W |β)] = aβW E[W ], and

the tVIM becomes a simple linear combination cT A. Formal inference can be estimate by

applying the delta method. Further detail is provided in section 3 and Appendix I.

Compared to the tVIM method presented in Bembom and van der Laan 2008 [8], this model

based approach to variable importance not only accommodates a continuous A but can also

incorporate effect modification. For instance, effect modification of A by W1 can be obtained

with the following model

m(A,W |β) = βA + β1AW1

This is especially relevant in clinical trials where the research is interested in finding genes (i.e.

W1) which modify the causal effect of a given a particular treatment (A) on overall disease

response. Another benefit of tVIM for general A is the exclusion of inverse weighting making
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this measure more robust to experimental treatment assumption violations, which will be

discussed further in section 5.

In this paper we focus on the simplest linear case m(A,W |β) = Aβ, where the marginal

importance of A can be represented by single coefficient value β. This allows us to directly

compare with alternative measures of importance obtained from univariate and multivariate

regression methods. In this analysis, A is a single biomarker, however the method can be

extended to analyze a set of biomarkers {A}.

3. Targeted Maximum Likelihood for tVIM

Although a “plug-and-chug” estimate of µ(a) could be achieved using a maximum likelihood

estimate of E[Y |A,W ] (for instance from linear regression or LASSO), the estimate of µ(a)

would be unnecessarily bias. This is because the Maximum Likelihood estimate is based on

the bias-variance trade-off for estimating E[Y |A,W ], not your parameter of interest. Targeted

Maximum Likelihood (tMLE) methodology reduces the bias for the targeted parameter by

maximizing the likelihood in a direction which corresponds to the best estimate of the targeted

parameter [6], resulting in the doubly robust locally efficient estimate.

Targeted Maximum Likelihood updates an initial regression estimate E[Y |A,W ] in a

direction which targets the parameter of interest. The update is completed by regressing the

outcome on a clever covariate and setting the initial estimate of E[Y |A,W ] as an offset. The

clever covariate is determined from tMLE methodology and its derivation can be found in van

der Laan and Rubin 2006 [6] and is outlined in Appendix I.

The update is a function of E[A|W ], which is often referred to as the “treatment mechanism.”

The “treatment mechanism” is an estimate of the effect of confounders, W, on “treatment”

(or variable) A. Given correct model specification for either E[Y |A,W ] or E[A|W ], the tVIM

estimate is a consistent and asymptotically normal and linear estimate. The estimate is efficient

when both models are correctly specified (a.k.a. “locally efficient” ). This feature is referred to

as “doubly robust.” Improving the estimates of E[Y |A,W ] and E[A|W ] using data-adaptive or
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super learning algorithms will improve the overall consistency and efficiency of the estimate.

The derivation of the targeted MLE methodology for tVIM is summarized in Appendix I and

described in further detail in Tuglus and van der Laan 2008 [17].

In biomarker discovery analyses tVIM is applied to all variables within the data matrix W,

where W is a matrix of genes, SNPs, or other biological variables of interest. The method is

outlined below for a single A, with the possible covariate set W .

There are three initial components necessary for applying targeted Maximum Likelihood

methodology to estimate tVIM.

1. A model m(A,W |β) satisfying m(0,W | β) = 0 for all β and W . In this case it is defined

as m(A,W |β) = βA

2. An initial regression estimate for Q(A,W ) = E[Y |A,W ] of the form E[Y |A,W ] =

m(A,W |β) + g(W ), where g(W ) is estimated data-adaptively. We recommend using

polymars [27, 28], lars [10, 18], or DSA [25]

3. An estimate of the “treatment mechanism” G(W ) = E[A|W ], estimated data-adaptively.

Given these three components, tMLE can easily be applied in the following steps

1. Estimate the “clever covariate” which will allow us to update the initial regression in

a direction which targets the parameter of interest. In this case the clever covariate is

defined as:

r(A,W ) =
d

dB
m(A,W |β)− E[

d

dB
m(A,W |β)|W ]

which for this particular m(A,W |β) = βA simplifies to r(A,W ) = A− E[A|W ]

2. Compute the fitted values for your initial estimate of Q0
n(A,W )

3. Project Y onto r(A,W ) with offset = Q0
n(A,W ) and define the resulting coefficient as

ǫ. This is done using standard software (lm() in R) setting the offset, and projecting onto

the model Y ∼ ǫ′r(A,W ) + offset. Note there is no intercept in your model, only the

offset value.

4. Update the initial estimate β0
n = β0

n + ǫ and overall density Q1
n(A,W ) = Q0

n(A,W ) +
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ǫr(A,W ). These are now your single-step targeted estimates. Since this is a simple linear

model, the single step solution is the final solution.

5. Obtain standard error and inference for β using the empirical estimate of the conservative

influence curve. For the true parameter and tMLE updated density, β0 and Q1
0, the

empirical influence curve for a given A is defined as

ˆIC(O) = c−1D(O|β0, Q
1
0)

with scale factor c = E[ d
dβ D(O|β0, Q

1
0)] where

Dh(p0)(O) ≡ r(A,W )(Y −m(A,W |β0)−Q0(0,W ))

The covariance of β0 is asymptotically equivalent to the covariance of IC(O). Therefore

the empirical estimate of the covariance for parameter estimate βn is

Σn =
1
n

∑
ˆIC(O) ˆIC(O)

T

such that
√

n(βn − β0) ∼ N(0,Σn)

Covariance can also be estimated by bootstrap estimates of β, but this would requiring

extra computational time. If E[A | W ] is estimated consistently, then the variance

estimates based on the influence curve are consistent or asymptotically conservative.

See Tuglus and van der Laan 2008 [17] and van der Laan and Robins 2003 [26] for

supporting theory and formal proof.

6. Using the estimated covariance, test the hypothesis H0 : βn(j) = 0, using a standard

test statistic to obtain p-values.

Tn(j) =
√

nβn√
Σn(j, j)

∼
n→∞Normal(0, 1)
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Also note that inference for linear combinations can be obtained by applying the delta

method [17] (see Appendix I)

4. Simulations

In this paper we compare tVIM to three other methods commonly used for determining variable

importance in biomarker discovery analyses: univariate linear regression [18], LASSO regression

with cross-validation based model-selection - using R package lars [10], and randomForest [5] -

using R package randomForest [11]. Importance measures for univariate linear regression and

LASSO regression are represented by the associated coefficient value. RandomForest provides

two measure of importance based on the effect perturbing the variable of interest has on overall

classification error and node splits. Each is summarized briefly below.

Note that given any estimate, bootstrap sampling may be used to provide standard error

estimates and p-values. However in this analysis we choose to compare the methods based on

their current merits and accessible implementation, not on any additional processing. Also, in

biomarker discovery there are thousands of genes and bootstrap sampling is computationally

expensive and impractical.

Univariate Linear Regression (LM): Marginal variable importance is represented by the

coefficient and p-value resulting from the univariate linear regression fit, E[Y |A] = βA.

This method does not account for any confounding and will often misclassify genes

correlated with the “true” genes as significant. In most situations this importance

measure can not be interpreted in as a causal effect.

Penalized Regression - LASSO (Q): Marginal Variable Importance is represented by the

coefficient of A in LASSO main term fit of Q(A,Ws) = E[Y |A,Ws], where Ws ⊂ W

representing the subset of W found significant according to their univariate regression

on Y. LASSO is applied using R package lars [10], which does not provide any formal

inference therefore p-values are not recorded. Results are compared based on the variable
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importance measure and its rank. LASSO does attempt to account for confounding,

but will only allow for n-1 non-zero coefficient values, making its applicability to high

dimensional data limited [19]. LASSO is also maximum likelihood method which focuses

on estimating the overall distribution E[Y |A,W ] and not the parameter of interest.

Targeted Variable Importance (tVIM): Marginal Variable Importance measure is

obtained from applying targeted MLE to the initial density estimate provided by LASSO

fit Q(A,Ws). Coefficient of A is targeted directly, and p-values are provided based in the

covariance estimate of the conservative empirical influence curve. The measure will be

represented and compared in terms of the coefficient β as presented in section 2.

randomForest (RF1 and RF2): Two measures of importance, RF1 and RF2, are provided

by the R function randomForest(). The function is applied directly to the full data matrix

W using R package randomForest [11], using the default setting with 500 trees.

• RF1: RandomForest importance measure based on “out-of-bag” error rate [5, 11]

(no p-values provided)

• RF2: RandomForest importance measure based on accuracy of node split [5, 11]

(no p-values provided)

Though it does not estimate the same measure as LM, LASSO, or tVIM, randomForest

(RF) is a tree-based algorithm developed by Breiman 2001 [5] commonly used in

biomarker discovery analyses. However due to the nature of randomForest, there is

no guarantee that all biomarkers will receive a measure of importance. Also no formal

inference is available; therefore no p-values are recorded.

P-values for LM and tVIM estimates are calculated using a standard t-test and are subjected

to the Benjamini & Hochberg step-up FDR controlling procedure [20] to control for multiple

testing.

We compare methods based on their ability to produce an accurately ranked list of genes.

Often in practice, biomarkers are ranked in the order of increasing p-value, where markers with
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p-value below a particular cut-off are defined as “important.” Alternatively if no p-values are

provided, the biomarkers may be ranked by their importance measure, and the cut-off would

be based on a numeric threshold or required level of importance. Inaccuracies in these lists

and rankings often arise when the data is highly correlated. Therefore, we will evaluate each

methods ability to produce an accurate ranking under increasing levels of correlation.

We simulate data to compare the four approaches under increasing correlation levels using

a diagonal block correlation structure. The structure of the simulated data allows us to study

the effects that both correlated and uncorrelated variables have on the reported importance

of the true variables. For each approach, the biomarkers will be ranked by the resulting

importance measure and p-value (when available). The sensitivity and specificity of methods

will be compared based on both p-value and rank-based cut-off values, and will be summarized

using ROC plots. We will determine the ability of each approach to identify the true variables

and each variables true importance rank by comparing the length of list required to label all

true variables as “important.”

4.1. Simulated Data

The full data is defined as O = (W,Y ) ∼ P , with covariate matrix W and outcome Y.

Covariate matrix W consists of J=100 variables with n=300 observations simulated from a

multivariate normal distribution with block diagonal correlation structure and mean vector

created by randomly sampling mean values from {0.1, 0.2, ..., 9.9, 10.0, 10.1, ......, 50}, resulting

in K=10 independent sets of variables, each correlated according to an exchangeable correlation

structure with variance=1 and specified correlation ρTRUE . This forms a J by n matrix where

each set of ten is correlated among themselves but independent from all other variables.

Outcome Y is simulated from a main effect linear model using one variable from each of the

K sets. These K variables are designated as “true variables.” The importance of a variable is

determined by its coefficient value in simulation. Two sets of values are used: a constant value

({βk = 4 : k = 1, ..., 10}) and an increasing set ({βk = k : k = 1, ..., 10}). A normal error with

mean zero and variance σY is added as noise.
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Simulations are run for ρTRUE = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and σY = 1, 10, 20

using both sets of coefficient values. At σY = 1 all methods perform very well, resulting in

p-values much below zero. At σY = 20 all methods became largely erratic and overcome by

noise. Simulations at σY = 10 had enough variation to highlight the different strengths of each

method and are considered the most realistic noise scenario. For these reasons, only σY = 10

results are presented in full.

4.2. Methods

For clarity, we define the full set of J variables (i.e. biomarkers) as W ∗, where A can be viewed

as a single variable A = W ∗
j in W ∗, and the remaining variables are defined as the covariate

set W = W ∗
−j , for all j = 1 . . . J . Importance measures according to the five methods outlined

previously (LM, LASSO(Q), tVIM, RF1, and RF2) are calculated for each individual variable

(i.e. biomarker), A.

We first apply univariate regression to all J biomarkers, estimating E[Y |A] = βLM
A A. We

record each βLM
A , as the LM importance measure along with its associated p-value, and

adjust for multiple testing using Benjamini & Hochberg step-up FDR controlling procedure

[20] applied using the mt.rawp2adjp() R function in package multtest [21].

To facilitate estimation in LASSO, we first reduce the possible covariate set W , to only

those variables which are univariate significant with marginal LM adjusted p-value less than

α = 0.05. We define this reduced set for a given A as Ws, and apply LASSO penalized

regression to the covariate set {A,Ws}, giving us an initial estimate Q(A,Ws) = E[Y |A,Ws].

The coefficient of A from the LASSO fit is recorded as the LASSO (Q) importance measure, and

this fit is then used as the initial estimate for tMLE. We use the R library lars implementation

of LASSO [10, 18], which does not provide formal inference therefore p-values are not recorded.

We estimate G(W ) = E[A|W ] using LASSO as well citing that the additive main effect form

of a LASSO derived model accurately reflects the correlation structure of the data giving us a

correct estimate of G(W ). This guarantees under minimal ETA violations that we will obtain

a consistent estimate due to the double robust nature of the tVIM measure [6]. We record the
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updated tVIM measure as well as its respective p-values. All p-values are adjusted for multiple

testing using the Benjamini - Hochberg step-up FDR controlling procedure [20].

RandomForest is applied directly to the full data W, and importance measures RF1 and RF2

are calculated internally. Importance measures for randomForest cannot be directly compared

because they are not on the same scale as LM, LASSO (Q), or tVIM estimate. Instead we

compare based on importance rank.

4.3. Results

For each {ρ, σY } set, simulations of 100 are completed. Recorded importance measures and p-

values are translated into a list of ranks, and the ranks are averaged over the 100 iterations. A

rank of one being the largest importance value or smallest p-value. Sensitivity and Specificity

calculations for each simulation are also determined for each individual iteration and averaged

across the 100 iterations to produce the final estimates.

Simulation results are summarized here in terms of Area Under the Curve (AUC) and Length

of List. Additional measures of performance (Type I error, Power, accuracy of importance rank

and value) can be found in Appendix I and in the original technical report [17].

Analysis found no appreciable difference when ranking by measure or p-value for LM and

tVIM in these simulations, therefore results in terms of measure will be presently in more

detail allowing us to include LASSO (Q) and RandomForest measures in all comparisons.

4.3.1. Area Under the Curve (AUC) The simulations are set up to test the ability of each

method to detect (or classify) the true important variables. The overall performance of a

classifier is often summarized in terms of the AUC, the Area Under the Curve derived from

the basic ROC curve, which plots the true positive rate (Sensitivity) by the false positive rate

(1-Specificity) [22]. Under pure noise conditions AUC = 0.5, indicating that at any threshold

the false positive and true positive rate are equal (random classifier). The more convex the

curve becomes, the higher the AUC, and the better the classifier, and a perfect classifier will

have AUC=1. Here, we use the R function AUCi() from R package ROC which uses integrate()
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to calculate the AUC [23]. The calculated AUC values are plotted versus correlation for each

of the five methods using importance measure importance rank, and p-values when available

for correlations, ρTRUE = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 (Figure 1).

Figure 1: AUC value from ROC curves by ρ = 0, ..., .9 completed for (top) ranking by measure
(middle) ranking by p-value, and (bottom) p-value cut-off. The later two only contain values for linear
regression and tVIM ( σY = 10 )Note: minimum AUC is 0.5, maximum and optimum is AUC=1.
Simulation is done with σY = 10 for n=300 with total number of variables at 100 of which 10 are
truly related to the outcome. At zero correlation, LASSO (Q), tVIM, and LM perform perfectly with
AUC=1. Plots are shown for constant β = 4, but results are comparable when β = {1, ..., 10}.

From Figure 1, we can see that tVIM performs well up to ρ = 0.6, performing only

marginally better than Q for ρ > 0.2, but with AUC visibly greater than randomForest and

LM as correlation increases. As expected LM is most susceptible to increases in correlation,

performing perfectly when correlation is zero, but falling consistently as correlation increases,

reaching below 0.8 by ρ = 0.5.
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4.3.2. Average Length of List We can also compare the methods based on the average length

of list required to detect all “true” variables. Having a short and accurate list allows the

biologist to spend money analyzing the top genes with confidence, knowing that the most

important genes are at the top of the list.

The average required list length to find all 10 “true” variables is plotted versus correlation for

all five measures and two p-value average ranked lists. These plots are shown for both constant

βtrue = 4, and βtrue = {1 . . . 10}. The more detailed required length of list for k = 1, ..., 10 true

variables for each available ranked list (rank by measure, rank by p-value) at each correlation

level as well as plots of the average rank and importance value can be found in Tuglus and

van der Laan 2008 [17] and Appendix II.

Figure 2: Total length of list required to have all
ten true variables in the list by ρ = 0, ..., .9, ranking
by importance measure. ( σY = 10 ) Results for
univariate regression (LM), LASSO (Q), targeted
Variable Importance with LASSO (tVIM) and two
randomForest based importance measures (RF1,
RF2) are shown. Here βTRUE is constant at 4.

Figure 3: Total length of list required to get all ten
true variables by ρ = 0, ..., .9, ranking by p-value. (
σY = 10 ) Results for univariate regression (LM),
and targeted Variable Importance with LASSO
(tVIM) are shown. Here βTRUE is constant at 4.

Length of list is a direct reflection of Type I error or false discovery rate. We see that overall

tVIM performs well up to correlations of 0.9, though the improvement over LASSO is less

clear when βTRUE is constant (Figures 2, 3). In the case where βTRUE = {1, ..., 10} (Figures

4, 5), the improvement of tVIM over LASSO is more pronounced, but detection of the first
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Figure 4: Total length of list required to have all
ten true variables in the list by ρ = 0, ..., .9, ranking
by importance measure. ( σY = 10 ) Results for
univariate regression (LM), LASSO (Q), targeted
Variable Importance with LASSO (tVIM) and two
randomForest based importance measures (RF1,
RF2) are shown. Here βTRUE is set at {1, ..., 10}.

Figure 5: Total length of list required to get all ten
true variables by ρ = 0, ..., .9, ranking by p-value. (
σY = 10 ) Results for univariate regression (LM),
and targeted Variable Importance with LASSO
(tVIM) are shown. Here βTRUE is set at {1, ..., 10}.

variable (with the lowest β value) is difficult for all methods. When ranking by measure or

p-value, all methods have their lowest list length around 20 variables while the total number

of variables expected is 10. In contrast, when β was constant at value 4, the lowest list length

was near its minimum at 10 (Figures 2, 3). The shift in list length most likely due to the

importance value for the variable associated with β = 1. At such a high noise level (σY = 10),

the lower importance values are more difficult to distinguish from the noise. This is apparent

by comparing the average importance rank and average importance value for the variable with

β = 1 (see Appendix II). The rank is much higher than 10, but the value is close to one as it

should be.

In general, tVIM has the shortest list and is less affected than any other methods by

increases in correlation. Increases above the minimal list length were seen for both random

forest and univariate regression methods at correlation values greater than 0.4, with random

forest faring better at higher correlations. When ranking by p-value and similar trend for

univariate regression was apparent.
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4.4. Discussion - Simulations

These simulations address each methods ability to accurately identify the causally related

genes as the correlation among variables increases. Though tVIM performs better than the

three other methods, it is still sensitive to more extreme correlations (0.7-0.9). Our simulations

show only a small increase in bias for the measure of the true variables at higher correlations

(see Appendix II). However, in practice, high correlation can adversely effect the tVIM estimate

due to violation of the experimental treatment assumption. The increased length of the variable

list when ranked by importance measure at correlation 0.8 and 0.9 indicates that tVIM cannot

distinguish the true variable from among a group of variables when correlation is very high.

5. Experimental Treatment Assumptions and Consequences of its Violation

When variables are highly correlated with the variable of interest A, ETA violations often

occur, which reduces the ability to estimate the effect accurately. Formally, the Experimental

Treatment Assumption (ETA) states that the probably of A given W must always be positive

for all possible sets (a,W ), (P (A|W ) > 0 ∀(a,W )) [4]. In other words all values of A must

be possible given any observed set of values W , and no W can be a perfect predictor of A.

If either is invalid, estimation of the effect of A will require extrapolation. This introduces

bias and, if the ETA violation is extreme enough, can result in a non-identifiable importance

estimate.

If our semi-parametric model is correct extrapolation is less of a concern. However in practice,

we cannot assume a correct semi-parametric model. In the more realistic case, where we view

our importance parameter as a projection onto a working semi-parametric model, violations

of ETA can result in a highly sensitive estimate of Q(A,W ) leading to instability in the

importance (parameter) estimate.

Variable importance measures are also effected by ETA violations through the form of the

empirical influence curve used in targeted Maximum Likelihood Estimation (see Appendix
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I). The methods for binary A presented in Bembom et al 2009 [8] use inverse weights of

the treatment mechanism ( 1
P (A=a|W ) ) for the tMLE update and inference calculation. When

the P (A = a|W ) becomes very small from ETA violation, these weights explode leading

to unreliable importance estimates. In comparison, the effect of ETA violation on the semi-

parametric variable importance presented here is less extreme, but still a concern. It’s influence

curve is weighted by (A − E[A|W ]) (for the univariate case), which effectively downplays

observations responsible for ETA violations (see Appendix I). Under large ETA violation, the

measure is only accounting for a small subset of the observations making it a less applicable

and interesting importance.

ETA violations can often be avoided if the “problem” variables (the variables highly

correlated with the gene of interest A), are removed from the set of confounders (W ). One

simple method is to apply a correlation cut-off, where all W whose correlation with A is greater

than a particular correlation (ρδ), are removed from the set of possible confounders for variable

A prior to the application of tVIM method. We explored this briefly through simulation.

In simulation study analogous to the previous set-up, a correlation cut-off was applied to

subset Ws for each A before LASSO analysis. In this scenario, Ws is restricted to all Wi ∈ Ws

where cor(Wj ,Wi) < ρδ, for various cut-offs ρδ = {0.5, 0.75, 0.9, 1}. We applied this method

to our simulated datasets from the previous section. Results showed that such a restriction

resulted in the elimination of relevant Wi from the estimate of E[Y |A,Ws]. In other words

when Ad is a decoy variable highly correlated with a true variable Wt. Restrictions on the

covariate set remove Wt from the possible covariate set for Ad, resulting in Ad having a higher

and more significant importance that it would have otherwise.

In other words, a restriction of ρδ will result the algorithm identifying all true variables as

well as variables whose correlation with the true variables is higher than ρδ. Once we select

ρδ, we are conceding that variables with correlations greater than ρδ cannot be teased apart

to determine the true underlying (important) variable. By applying the correlation cut-off

we are redefining our parameter. It is no longer the singular effect of A. Instead, we admit

that given the data, the true important variable cannot be targeted when the data is highly
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correlated and redefine our measure as a correlation-based Wδ-adjusted importance where Wδ

is a newly defined subset of W based on the correlation cut-off. Given this new definition of the

parameter, important variables according to the Wδ-adjusted method include all important

variables as well as all variables whose correlation to a important variable is greater than a

particular delta cut-off.

Therefore we must be careful when selecting ρδ, it must high enough to reduce bias from ETA

violation, but low enough to acquire all information on the causal effects allowed by the data,

which maintains the greatest level of reproducibility. If ρδ is higher than necessary, the list will

contain decoy variables that could have been discounted using the available data. This would

decrease the reproducibility of the measures in other populations. The relationship between

the decoy variables and the causal variables (distribution of W) is not necessarily constant

across populations while the causal mechanism (distribution of Y |W ) can be assumed to be

(i.e. the mechanisms of disease are consistent across all populations). Including decoy variables

that could otherwise have been discounted adds unnecessary uncertainty when applying the

final results to other populations. A method was proposed in Bembom et al. 2008 [13], which

defines an analytical formula for identifying these “problem” variables data-adaptively for

each A. This reduces the bias while detecting the most accurate gene set allowed by the data,

maintaining reproducibility.

In this article, we apply the correlation cut-off (ρδ = {0.5, 0.75}) to the breast cancer

application, where the truth is unknown, and the data is noisy. In practice it is reasonable to

label all potentially relevant variables as important when their effects cannot be disentangled.

Setting a correlation cut-off explicitly specifies and acknowledges the method’s threshold to

detect the important variables among highly correlated confounders. We recommend that

future applications use a larger set of ρδ values and provide importance measures and rankings

for all variables given each ρδ, or data-adaptively select ρδ using the methods outlined in

Bembom et al. 2008 [13].
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6. Application

6.1. van’t Veer et al (2002)

The response to standard chemotherapy among breast cancer patients can drastically vary

even among women with a common stage of breast cancer at initial diagnosis. Chemotherapy

is a very long and difficult treatment process, and though it is known to reduce the occurrence

of metastases in 70-80% of patients, for the remaining 30-20% there is little or no response.

Knowing a priori a probability of response to treatment for a given patient would aid doctors

in determining a more optimal and efficient treatment plan, reducing patient discomfort and

the cost of expensive trail-and-error treatment regimes. This is reflective of the current trend

towards the development of individualized or “patient-tailored” treatments.

The study in [12] attempts to develop a classifier predicting treatment response to adjuvant

chemotherapy among breast cancer patients based on their pre-treatment (at diagnosis) genetic

profile. Given that there are over 20,000 protein-coding genes in the human genome, developing

a predictor requires first reducing the data to a set of relevant genes. Here we present an

application of tVIM as a method to identify these genes. Unlike linear regression and other data

mining algorithms (randomForest, etc.), tVIM targets the causal effect instead of estimating

only an association based on a predictive fit. We propose using tVIM to determine this subset

of genes prior to the application of the prediction algorithm Super Learner [24].

The initial dataset contains 98 patients with similar stages of breast cancer at the time

they enter the study. All patients are exposed to adjuvant chemotherapy. It is unknown if any

other treatment methods (i.e. radiation, surgery, etc.) are applied and to what extent. For the

purposes of the van’t Veer analysis, the patients are assumed to be part of the same treatment

arm. We continue with that assumption. Of the 98 patients, 34 develop metastases within 5

years (bad responders, Y=1), while 44 remain disease free (good responders, Y=0) [12].

6.1.1. Analysis For computation considerations we reduced our dataset to genes whose raw

p-values from univariate linear regression were less than or equal to 0.05 (2254 genes) or those
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which had a randomForest importance value greater than zero. We also did not include genes

with more than 80% of their values missing, which left us with a total of 4446 genes. All

missing data is imputed with the column mean (average gene expression over all patients).

The maximum number of missing values for any gene was five.

This analysis mirrors the procedure implemented in the previous simulations. Univariate

linear regression is applied to all genes. The covariate set W for each A prior to correlation

cut-off includes all genes among the 4446 whose raw univariate linear regression p-value was

less than or equal to 0.01 (540 genes). In application where we do not known the truth and

the data is especially noisy with a complex correlation structure, we expect that we will not

be able to disentangle the effects of many of the genes from one another. To minimize bias

due to ETA violations, we apply a simple correlation cut-off of ρδ = {0.5, 0.75}. Applying the

correlation cut-off results in all potentially relevant genes labeled as important.

As in simulation we model the importance as m(A,Ws|β) = βA for all A. For the initial

Q we use a polynomial spline fit which allows for more complex structure of g(Ws). We

recommend using this or a similar data-adaptive algorithm such as DSA [25] over LARS/Lasso

in application, since in reality the structure of Q may have more than just additive main effects.

We also estimate G(Ws) using polymars [27].

In this application the outcome is binary, therefore we interpret our tVIM measure as an

approximate estimate of the excess risk.

m(A = a,Ws|β) = E[Y |A = a,Ws]− E[Y |A = 0,Ws] = βa

The model-based approach outlined in this paper uses standard gaussian regression for

our estimate and update of E[Y |A,Ws]. However for the purposes of variable importance,

we believe the final list of ranked VIM measures and p-values are still relevant for a binary

outcome. Future work is focused on the development of a more generalized model-based VIM

approach which will allow us to use generalized linear regression methods.

Updated tVIM measures and p-values from t-tests are recorded and we adjust for multiple
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testing using Benjamini & Hochberg (1995) step-up FDR controlling procedure [20]. In

application, we recommend selecting all genes with adjusted p-values less than or equal to an

appropriate cut-off (we use a standard cut-off of 0.05), and then ranking this set of genes by

their absolute tVIM measure to achieve the final importance ranking of genes. Genes significant

at the 0.05 level can be used as input to a prediction algorithm such as the Super Learner [24].

Results are shown in Tables I and II.

6.1.2. Results Once the univariate linear regression p-values were adjusted for multiple

testing, there were no statistically significant genes at the 0.05 level, however for tVIM there

were 197 and 204 genes when correlation cut-off was set at 0.5 and 0.75 respectively. In table

I and table II we show the top 10 genes with the highest significance among those statistically

significant at the 0.05 level.

Table I: Targeted VIM using correlation cut-off of ρδ = 0.5: Top 10 ranked genes according
to absolute importance measures among significant genes according to a p-value cut-off
of 0.05.
p-value tVIM GeneID Description/Function

0.00E+00 6.455
GALNT14
(AA165698)

UDP-N-acetyl-alpha-D-
galactosamine: polypeptide N-
acetylgalactosaminyltransferase 14

0.00E+00 6.164 AIP aryl hydrocarbon receptor interacting
protein

3.03E-05 3.517 LRTM1 leucine-rich repeats and transmembrane
domains 1

2.33E-07 3.125 ZBTB22 zinc finger and BTB domain containing 22
6.94E-08 3.111 (AI524306) unknown

0.00E+00 -2.843
FBXO41
(AA524093)

F-box protein 41

1.58E-06 -2.714 VAMP3 vesicle-associated membrane protein 3
(cellubrevin)

2.26E-02 -2.590 ERGIC1 (AI248720) endoplasmic reticulum-golgi intermediate
compartment (ERGIC) 1

3.27E-03 2.564 CALCOCO1 sarcoma antigen nysar3
4.38E-02 2.546 NRG2 neuregulin 2

6.1.3. Discussion Among the two top 10 lists, there are six common genes. Four of these

genes, GALNT4, AIP, ZBTB22, and FBXO41, have been associated with chemotherapy
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Table II: Targeted VIM using correlation cut-off of ρδ = 0.75: Top 10 ranked genes according
to absolute importance measures among significant genes according to a p-value cut-off of
0.05.

p-value tVIM GeneID Description/Function

0.00E+00 6.455
GALNT14
(AA165698)

UDP-N-acetyl-alpha-D-
galactosamine: polypeptide N-
acetylgalactosaminyltransferase 14

0.00E+00 5.906 AIP aryl hydrocarbon receptor interacting
protein

0.00E+00 3.703 LRTM1 leucine-rich repeats and transmembrane
domains 1

3.23E-08 3.609 (AI524306) unknown
1.70E-08 3.331 ZBTB22 zinc finger and BTB domain containing 22
1.68E-06 -3.001 METTL1 methyltransferase like 1
6.94E-04 2.950 EIF4G1 eukaryotic translation initiation factor 4

gamma, 1
9.88E-03 2.932 SH2D3C SH2 domain containing 3C

0.00E+00 -2.843
FBXO41
(AA524093)

F-box protein 41

1.05E-04 2.719 CTLA4 cytotoxic T-lymphocyte-associated protein
4

resistance in peer-reviewed literature. Beyond these 4, there are 3 other genes in table I with

correlation cut-off at 0.5 ( VAMP3, CALCOCO1, and NRG2) and 3 others in table II with

correlation cut-off at 0.75 ( EIF4G1, SH2D3C, and CTLA4) making it 7 out of 10 relevant

genes in both lists. Variations between the two gene lists for a particular A indicate that

additional genes are removed from the covariate set for when reducing the correlation cut-off

from 0.75 to 0.5. After adjusting for multiple testing no genes were identified as significant

based on univariate linear regression (lowest p-value 0.43).

GALNT14, which is listed first (with highest tVIM) in both tables, has been recently

acknowledge as an informative biomarker for Apo2/TRAIL - based cancer therapy [29]. The

Apo2/TRAIL - based cancer therapy falls into the class of apoptosis activating therapies -

therapies which activate or enforce programmed cell death. Apoptosis regulates cell number

in normal tissues. When apoptosis is no longer active, the tissue is considered malignant.

Alternatively anthracycline, a common drug used in adjuvant chemotherapy, inhibits the

topoisomerase II - alpha religation reaction leading to cytotoxic cell damage and death; while
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the taxane class drugs (also common in adjuvant chemotherapy) inhibits cell division [30]. A

major benefit of the Apo2/TRAIL ligand is that it preferentially induces apoptosis in cancer

cells over normal cells [29]. A recent study, Wagner et al. 2007 [31], has shown that GALNT14

levels determine the sensitivity of tumor cells to apoptosis induced by Apo2L/TRAIL ligand.

Increased expression of GALNT14 increases tumor cell response to this ligand making it a

beneficial biomarker for sensitivity to Apo2/TRAIL - based cancer therapy. Among the patients

in this study, exposed to adjuvant chemotherapy, we find GALNT14 up-regulated among the

“bad-responders.” Given the results of Wagner et al. 2007 [31] this could indicate that a

Apo2/TRAIL - based cancer therapy may have been more beneficial for these patients. In

addition to GALNT14, our results indicate that AIP, which is also known to reduce apoptosis

[32, 33], is up-regulated among “bad responders” and has the second highest VIM values in

both lists.

Beyond the apoptosis-related genes, we also see various indictors of drug resistance. ZBTB22

binds to Cul3 forming a complex in the Ubiquitin system and elevated Cul3 has been identified

as an indicator of drug resistance [34]. The over-expression of EIF4G1 has been directly

identified as an indictor of chemotherapy resistance [31]. SH2D3C interacts with BCAR and

partially responsible for resistance to anti-estrogen therapy in breast cancer cells [35]. Our

results indicate that all three are elevated in bad responders. In addition, CALCOCO1 has

been identified as a potential target for cancer vaccines [36]. Anitbodies of CTLA-4 activate

anti-tumor response in breast cancer cells. - drugs targeting this mechanism are in clinical

trails [37]. NRG2 interacts with the Erbb family (including the HER-2 receptor) and induces

cell growth among breast cancer cells [38]. All three again are found elevated in bad responders

in our analysis. Also, FBXO41 has been found to be significant and important in numerous

other biomarker discovery analyses, including ours, as an indicator of good prognosis [39].

Another interesting, though confusing result is the elevated expression of VAMP3 among

“good responders.” Past research has identified VAMP3 as an indicator of drug resistance

[40]. It’s possible that the specific chemotherapy treatment chosen was correct for patients

with elevated VAMP3. Specifics are unknown.
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7. Conclusion
In both simulation and application we see the necessity for a standard method. Results vary

widely leading to long lists and confusion, which list to use? In this paper we propose using

tVIM as a standard method for biomarker discovery. In simulation it has proven resilient

to increases in correlation, controlling type I error. It also provides an interpretable and

meaningful measure of importance, which given an appropriate study design is interpretable

as an estimate of a causal effect.

By targeting the causal effect, the measures obtained by tVIM are less sensitive to changes

in the covariate distribution and therefore more reproducible in any population given it has the

same conditional distribution of Y |W . This allows tVIM measures to be generalizable across

microarray platforms that may have different noise levels. This reproducibility is essential for

any standardized method, increasing confidence in diagnostic and treatment decisions based

on these measures. In other words, if the causal effect between gene A and the response is

correctly estimated in a population, it will be applicable to other populations. If instead we

attribute the effect to gene B which is highly correlated to the causal gene A in the first

population the correlation between gene B and gene A is not necessarily consistent in the

other populations making the measure effect inapplicable in those populations. For instance if

people in the second population have a cold, and gene B is related to immune response. It’s

levels may be much higher and no longer correlated in the same degree with the level of gene

A. Making inferences on the disease state from the level of gene B erroneous.

In comparison, common univariate linear regression is highly susceptible to increases in type

I error due to increased correlation among variables. And though LASSO/LARS provides

improvement, using tMLE to update its estimate increases the accuracy in the importance

estimate and rank (See Appendix (B)) and provides the correct asymptotic inference [9].

In application, tVIM identifies genes biologically related to chemotherapy resistance as well

as genes which indicate a possible mechanism of treatment for “poor responders” based on

up-to-date biological information. These promising results and the relevance of the gene list
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supports the use of tVIM for biomarker discovery and as a pre-screening method for prediction.

It is simple to implement and understand and is adaptable most data types including binary

variables, survival outcome, and longitudinal data [6]. This accuracy, reproducibility, and

flexibility of the tVIM method make it an strong candidate for a standardized biomarker

discovery method.

Future work for tVIM will focus on developing variable importance methods for non-gaussian

outcomes (binary Y), as well as methods for identifying the best correlation cut-off for each

variable, A. Applying a correlation cut-off in practice reduces the bias in the tVIM estimate

due to potential ETA violations. However, the difference between the lists for tVIM correlation

cut-off 0.5 and 0.75 affirm the need for a method which identifies the proper cut-off for a given

gene. Having too low of a cut-off neglects controlling for the appropriate genes to achieve an

estimate of the causal effect, decreasing its reproducibility across populations. Having too high

a cut-off leads to ETA violations which increase bias in our importance estimate. We also will

explore methods which help piece apart or at the very least elucidate the relationship among

a group of heavily correlated variables in relation to a response.
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APPENDIX

I. Targeted Maximum Likelihood

Targeted Maximum Likelihood (tMLE) methodology maximizes the likelihood in a direction which

targets the parameter of interest using the appropriate bias-variance trade-off tMLE.

We defined

µ(a) = EW [m(A = a, W |β)]
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with the estimate at a particular A=a defined as

µ(a) =
1

n

nX
i=1

[m(a, Wi|β)]

where m(.) models the effect

m(a, W |β) = EP [Y |A = a, W ]− EP [Y |A = 0, W ])

When A is binary, IPTW and DR-IPTW [9, 6] methods may be used to estimate µ(A) without

model assumptions. When A is more general, it requires specification of a model m(A, W |β(P )) that

satisfies m(A = 0, W |β(P )) = 0, where the true β0 = β(P0).

Targeted MLE methodology creates a path through the true density p0, represented as the hardest

sub-model p0(ǫ). The hardest submodel p0(ǫ) is selected to only vary Q(p)(Y |A, W ), with score equal

to Dh(p0
n) at ǫ = 0. This sub-model is explicitly derived in [6].

Where Dh(p0
n) is the efficient influence curve as defined according to the following theorem

Theorem 1. (From Yu et al. 2003 [16]) For parameter p → β(p) in model M = {p : Ep(Y |A, W ) −
Ep(Y |A = 0, W ) = m(0, W |β(p)), satisfying m(0, W |β) = 0 for all β ∈ IRd the orthogonal complement

of the nuisance tangent space is

T⊥nuis(p) = {Dh(p) : h}

where

Dh(p)(O) ≡ {h(A, W )− Ep(h(A, W )|W )}(Y −m(A, W |β(p))− Ep(Y |A = 0, W ))

The efficient influence curve or canonical gradient is then defined as

Dhopt(p)(O) = {hopt(A, W )− Ep(hopt(A, W )|W )}(Y −m(A, W |β(p))− Ep(Y |A = 0, W ))

where

hopt =
1

σ(A, W )

8<: d

dβ
m(A, W |β)−

E
h

1
σ(A,W )

d
dβ

m(A, W |β)|W
i

E
h

1
σ(A,W )

|W
i

9=;
and V ar(Y |AW ) = σ(A, W ). If we assume V ar(Y |A, W ) = V ar(Y |W ), then a more practical form
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of hopt is available

h∗opt =
1

σ(A, W )


d

dβ
m(A, W |β)− E

»
d

dβ
m(A, W |β)|W

–ff

where G(W ) = E(A = a|W ) and Q(a, W ) = EP (Y |A = a, W ) are nuisance parameters. The double

robust nature of the estimating function gives EP0D(O|β0, Q, G) = 0, providing a consistent estimate

of β, if either of the nuisance parameters (G(W ) and Q(A, W )) is specified correctly.

Note when ρ > 0, the experimental treatment assumption (ETA) (i.e. P (Wj |W−j) = P (Wj)) no

longer holds. However due to the nature of the simulated data where all variables are simulated from

a multivariate normal, the dependency can be accurately modeled using a main term linear model

due to the simple correlation structure (i.e. E(Wj |W−j) = βW W−j).

Given an initial estimate of the density p0
n = Q0(A, W ), and defining the hardest sub-model p0(ǫ|p0

n),

p0(ǫ|p0
n) is maximized with respect to ǫ, substituting in the new estimate ǫn, the updated density

p1 = p0(ǫn|p0
n), is the new targeted density. In some cases iteration is necessary (substituting the

new density estimate as initial density estimate and solving again for ǫ). By maximizing p0(ǫ|p0
n) for

ǫ, tMLE maximizes the likelihood in the direction of the parameter of interest µ, making the final

density estimate the solution to Pn(Dh(O)) = 0 as well.

Assuming a normal distribution for Q(p0
n)(Y |A, W ) with mean Q(p0

n)(A, W ) = Ep0
n
(Y |A, W )

and variance σ2(Q0
n)(A, W ), the hardest sub-model which updates the original Q(p0

n)(Y |A, W ) in

a direction which estimates the parameter of interest well, can be defined as

Q(p)(ǫ)(Y |A, W ) = f0

„
Y −m(A, W |β0

n(ǫ))−Q0
n(ǫ)(W )

σ(A, W )

«
where f0 represents the standard normal density with updated parameters β0

n(ǫ) = β0
n(Q0

n) + ǫ and

θ0
n(ǫ) = θ0

n(Q0
n) + ǫT r(W ) where

r(p0
n)(W ) =

E
h

1
σ(A,W )

d
dβ

m(A, W |β)|W
i

E
h

1
σ(A,W )

|W
i

if we assume, with only some loss in efficiency that σ(A, W ) = σ(W ), then the above reduces to

r∗(p0
n)(W ) = E

»
d

dβ
m(A, W |β)|W

–
The proper form of r(W) shown above is found by equating the score of Q(p)(ǫ) in terms of ǫ at
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ǫ = 0 to the efficient influence curve Dhopt(p
0
n).

The likelihood for Q(p)(ǫ) can now be maximized for ǫ using standard weighted least squares,

updating the initial estimates of β and θ, providing the new targeted estimate of the overall density

as well as the parameter of interest β. Given a linear model m(A, W |β) in β, a closed form solution

for ǫ does exist and standard weighted linear regression software packages such as lm() in R may be

used.

I.1. Inference and Testing

Asymptotically tMLE is equivalent to solving

EP (Dh(O|β, Q, G)) = 0

where Dh(O|β, Q, G) is the efficient influence curve, making formal inference dependent on the

influence curve still applicable to TMLE derived estimates.

The covariance matrix for β can be estimated using the conservative influence curve, The

conservative influence curve is defined as,

IC(O) =
D(O|β0, Π, θ)

E[ d
dβ

D(O|β0, Π, θ)]

where
√

n(βn − β0) ∼ N(0, Σn)

asymptotically with covariance equal to

Σn =
1

n

X
ˆIC(O) ˆIC(O)

T

Covariance can also be estimated by bootstrap estimates of β, but this would requiring extra

computational time. In this study, we know that G(W ) is correct, therefore estimates based on the

influence curve are consistent.

Testing H0 : β0(j) = 0, p-values can be determined using test statistic

Tn(j) =

√
nβn(j)p
Σn(j, j)

∼
n→∞

N(0, 1)

Testing for significance of the marginal variable importance curve when the effect of A is modified
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by Wi (i.e E[m(A = a, W = a|β)] = β0a + βaE[Wi]) is completed by testing the null hypothesis

H0 : cT β0 = 0, where c is the appropriate vector of A and W corresponding to m(.). Test statistic

becomes Tn(j) =
√

ncT βn(j)√
cT Σn(j,j)c

which is asymptotically distributed N(0,1).

II. Additional Simulation results

Previous performance measures are focused on determining how well the methods rank the true

variables with respect to all variables. Average importance measures showcase the ability of each

method to not only distinguish true variables from decoys, but also properly determine the magnitude

of importance accurately

The average importance value is plotted versus actual value for LM, Q (LASSO), and tVIM methods

at each correlation level. This is only relevant for LM, Q, and tVIM, which are on the same scale as

the simulated importance measures.

When the actual importance values are easily distinguished for the 10 truly dependent variables,

such as when β = 1, ..., 10, we can distinguish the importance of the true variables relative to other

true variables. When β = 1, ..., 10, average rank and importance should lie on the x=y line when

plotting average rank or measure by true importance value.

The difference between the true measure/rank versus the estimated average measure/rank is

summarized by calculating the mean squared deviation of the estimated values from the true values.

These measures are plotted versus correlation providing a visual representation of the effect correlation

among the covariates has on the overall accuracy of each method.

II.1. Average Importance Value

II.1.1. Average Importance Rank We can see clearly that the variables with β = 1 and 2 are

harder for all methods to pinpoint and rank accurately.
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Figure 6: Average importance value for each of ten true variables with importance values = 1,...,10.
Plots included for all ρ = 0, ..., .9. Only linear regression, LASSO, and tVIM are analyzed since RF
values are not necessarily on the same scale as the true level of importance. ( σY = 10 )
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Figure 7: Mean square error difference between average importance values and true values at
ρ = 0, ..., .9. This relates to Figure 7.
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Figure 8: Average importance rank for each of ten true variables with actual ranks = 1,...,10. Plots
included for all ρ = 0, ..., .9, ranking by measure. ( σY = 10 ). Comparing the methods by rank allows
us to include RF1 and RF2 in the comparison even though their measures are on a different scale
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Figure 9: Mean square error difference between average importance ranks and true ranks at
ρ = 0, ..., .9, when ranking by measure. This relates to Figure 9. Comparing the methods by rank
allows us to include RF1 and RF2 in the comparison even though their measures are on a different
scale.
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estimation: Application to the treatment of

antiretroviral resistant HIV infection.
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Abstract

Researchers in clinical science and bioinformatics frequently aim to learn which of a
set of candidate biomarkers is important in determining a given outcome, and to rank
the contributions of the candidates accordingly. This article introduces a new approach
to research questions of this type, based on targeted maximum likelihood estimation
of variable importance measures.

The methodology is illustrated using an example drawn from the treatment of HIV
infection. Specifically, given a list of candidate mutations in the protease enzyme of
HIV, we aim to discover mutations that reduce clinical virologic response to antiretro-
viral regimens containing the protease inhibitor lopinavir. In the context of this data
example, the article reviews the motivation for covariate adjustment in the biomarker
discovery process. A standard maximum likelihood approach to this adjustment is
compared with the targeted approach introduced here. Implementation of targeted
maximum likelihood estimation in the context of biomarker discovery is discussed, and
the advantages of this approach are highlighted. Results of applying targeted maxi-
mum likelihood estimation to identify lopinavir resistance mutations are presented and
compared with results based on unadjusted mutation-outcome associations as well as
results of a standard maximum likelihood approach to adjustment.

The subset of mutations identified by targeted maximum likelihood as significant
contributors to lopinavir resistance is found to be in better agreement with current
understanding of HIV antiretroviral resistance than the corresponding subsets identified
by the other two approaches. This finding suggests that targeted estimation of variable
importance represents a promising approach to biomarker discovery.
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1 Introduction

Researchers in bioinformatics, biostatistics, and related fields are often faced with a
large number of candidate biomarkers and aim to assess their importance in relation
to a given outcome. Examples include the identification of single nucleotide poly-
morphisms associated with the development of cancers, identification of HLA types
associated with disease progression rates, and the identification of viral mutations that
contribute to reduced susceptibility to drug therapy. In some cases, the goal may be to
select from a list of candidates those biomarkers with underlying causal relationships
to the outcome. In others, the researcher may wish to rank the importance of a set of
candidate biomarkers in terms of their contributions to determining the outcome.

In this article we introduce a novel method for biomarker discovery based on tar-
geted maximum likelihood estimation of variable importance measures (VIMs) [15]. As
we discuss, the marginal association of a candidate biomarker with the outcome may
not reflect the biomarker’s mechanistic or prognostic significance. For example, a viral
mutation may be associated with poor response to a given drug without playing any
mechanistic role in resistance, as a result of covariates that both predict the presence
of the mutation and affect the outcome via an alternative pathway. VIMs provide a
means to rank candidate biomarkers based on their association with a given outcome,
controlling for a large number of additional covariates [13]. Specifically, given a binary
candidate biomarker A, an outcome Y , and a list of covariates W , the W -adjusted VIM
is defined as EW (E(Y |A = 1,W ) − E(Y |A = 0,W )). If one is willing to assume that
the measured covariates W are sufficient to control all confounding of the effect of A
on Y , then the VIM can be interpreted as the average causal effect of the biomarker on
the outcome. In the absence of such an assumption, the VIM remains an interpretable
summary measure of the importance of the biomarker after controlling for specified
covariates.

Several approaches are available to estimate VIMs. Perhaps the most common ap-
proach is based on maximum likelihood estimation of the conditional expectation of the
outcome given the candidate biomarker and covariates. This conditional expectation
is then evaluated at A = 1 and A = 0 for each subject, and the difference is averaged
across the population. Such an approach corresponds to the G-computation formula
of Robins [9] applied at a single time point.

In this article, we show how a recent advance in statistical methodology, targeted
maximum likelihood estimation, can improve on this standard approach. Targeted
maximum likelihood estimation involves a simple one-step adjustment to an initial
estimate of the conditional expectation of the outcome given the biomarker and covari-
ates. This adjustment reduces bias in the estimate of the VIM and improves robustness
to mis-specification of the likelihood. The theoretical basis for targeted maximum like-
lihood estimation was recently published by van der Laan and Rubin [15]. Here, we
demonstrate how this work can be applied in practice to improve standard approaches
to biomarker discovery. Throughout the article, emphasis is placed on practical under-
standing and implementation of the methods described.

Targeted maximum likelihood is illustrated using an original data example drawn
from the treatment of antiretroviral resistant HIV-infection. Using observational clin-
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ical data, we aimed to determine which of a set of candidate viral mutations affect
clinical virologic response to the antiretroviral drug lopinavir, and to rank the impor-
tance of these mutations for drug-specific resistance. The resulting ranking can be
used to inform interpretation of viral genotypes, and to aid clinicians in selecting new
antiretroviral treatment regimens with a greater probability of virologic success.

1.1 Outline.

The article has the following structure. Section 2 introduces the data application and
provides background on the research question and the data structure. In Section 3, we
discuss methods for biomarker discovery, and compare estimation of unadjusted and
adjusted associations between the candidate biomarker and the outcome (E(Y |A =
1)−E(Y |A = 0) and EW (E(Y |A = 1,W )−E(Y |A = 0,W )), respectively). Section 4
presents the targeted maximum likelihood approach to estimation of W -adjusted VIMs,
and compares it to a standard (or G-computation) approach. Implementation and
inference using the targeted approach are discussed both generally and in the context
of the data example. Section 5 presents the results of the data analysis, in which the
importance of candidate mutations was assessed using unadjusted, G-computation,
and targeted estimates of VIMs. We compare the results of these methods, and discuss
them in the context of current understanding of HIV antiretroviral resistance. Section
6 concludes with a discussion.

2 Application: Identification of HIV mutations

associated with decreased viral susceptibility to

lopinavir.

2.1 Research Question.

Virus resistant to antiretroviral drugs frequently evolves during treatment of HIV infec-
tion and can result in disease progression if new therapies are not initiated. Designing
an effective salvage therapy regimen for an individual infected with resistant virus re-
quires choosing drugs to which the virus infecting that individual remains sensitive.
Tests of viral resistance are now available to help guide salvage regimen design. How-
ever, interpretation of the results of resistance tests for the purposes of guiding salvage
regimen drug choice remains complex.

Assays of viral susceptibility to antiretroviral drugs fall into two general categories:
phenotype-based and genotype-based. Phenotypic resistance tests directly quantify
in vitro drug susceptibility using recombinant virus, while genotypic resistance tests
are performed by sequencing the genes for the viral protease and reverse transcriptase
enzymes, the targets of the major antiretroviral classes. While genotypic tests are less
expensive, less complex, and faster to perform than phenotypic tests, interpretation of
the results of genotypic tests requires linking patterns of viral mutations to in vivo and
in vitro resistance.
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Data from several sources have been used to inform interpretation of viral genotype.
Observed associations between the presence of specific viral mutations and patients’
treatment histories suggest that these mutations have been selected for over the course
of therapy and likely contribute resistance to the specific drugs used. In vitro experi-
ments have also provided insight into the role of individual mutations in determining
drug-specific viral susceptibility. Such experiments include observation of viral evolu-
tion in the presence of antiretroviral drugs, and tests of the ability of mutated viruses to
replicate in the presence of drug. The resulting data on links between viral mutations
and susceptibility to antiretroviral drugs have been combined to create rule-based al-
gorithms for the interpretation of genotype data. Examples include the French ANRS
(National Agency for AIDS Research) algorithm [4], the Rega algorithm [7], and the
Stanford HIVdb program [11]. The Stanford algorithm in particular provides drug-
specific estimates of viral susceptibility using a weighted scoring system for mutations
thought to be associated with resistance. Viral susceptibility to an entire regimen is
calculated by summing susceptibility scores for each drug in the regimen, yielding a
genotypic susceptibility score (GSS). The International AIDS society (IAS) also pub-
lishes an annual drug-specific list of mutations thought to affect viral resistance [6].

Ultimately, the goal of such algorithms is to identify mutations with large impacts
on clinical drug response. We aimed to use data from an observational clinical cohort
to rank a list of candidate resistance mutations based on their importance in conferring
resistance to specific antiretroviral drugs. For the sake of illustration, we focused on
resistance to the commonly used protease inhibitor (PI) drug lopinavir. Rankings
like the one presented here can be used to inform current genotype interpretation
algorithms, with the aim of improving selection of salvage antiretroviral drug regimens
for patients infected with resistant HIV virus.

2.2 Data.

Study sample and inclusion criteria.

Analyses were based on observational clinical data that were primarily drawn from
the Stanford drug resistance database and supplemented with data from an ongoing
collaboration with the Kaiser Permanente Medical Care Program, Northern California.
Currently, the Stanford database contains longitudinal data on over 6,000 patients.
Data collected include use of antiretroviral drugs, results of viral genotype tests, and
measurements of plasma HIV RNA level (viral load) and CD4 T cell count collected
during the course of clinical care.

We identified all Treatment Change Episodes (TCEs) in this database that involved
initiation of a salvage regimen containing lopinavir. A TCE was defined using the
following inclusion criteria: 1) change of at least one drug from the patient’s previous
antiretroviral regimen; 2) availability of a baseline viral load and genotype within 24
weeks prior to the change in regimen; and, 3) availability of an outcome viral load 4-36
weeks after the change in regimen and prior to any subsequent changes in regimen.

TCEs were excluded if no candidate resistance mutations were present in the base-
line genotype, if the subject had no past experience of PI drugs prior to the current
regimen, or if the newly initiated regimen included hydroxyurea, any experimental an-
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tiretroviral drugs, or any PI drugs other than lopinavir (apart from the low dose of
ritonavir that is always given with lopinavir). If a single baseline genotype had several
subsequent regimen changes that met inclusion criteria as TCEs, only the first of these
regimen changes was included in analyses. Multiple TCEs, each corresponding to a
unique baseline genotype, treatment changes, and outcome, were allowed from a single
individual; the resulting dependence between TCEs was accounted for in the derivation
of standard errors and p-values.

Data structure.

Baseline genotype was summarized as a vector A of binary variables Aj that indicate
the presence of a specific mutation in the protease enzyme of HIV (the viral target
of lopinavir). We considered as candidate biomarkers all mutations assessed by the
Stanford HIVdb algorithm to be potentially related to resistance to any approved PI
drug (http://hivdb.stanford.edu, accessed 7/18/2006). In total, we considered 30
candidate PI mutations. In the sections that follow, we describe methods for estimating
the importance of a single candidate biomarker A. In applying these methods to
the data example, each of the candidate mutation Aj , for j = 1, ..., 30, was assessed
separately; however, for simplicity we suppress the subscript j.

Antiretroviral regimens generally combine drugs from more than one class. The
following characteristics of the non-PI component of the salvage regimen were included
in the set W of adjustment variables: indicators of use of each of 13 non-PI drugs;
number of drugs used in each major non-PI class (nucleoside reverse transcriptase
inhibitors or NRTI, and non-nucleoside reverse transcriptase inhibitors or NNRTI);
number of drugs and number of classes used in the salvage regimen for the first time;
use of an NNRTI drug in the salvage regimen for the first time; and number of drugs
switched between the previous and salvage regimen.

W also included the following covariates collected prior to the baseline genotype:
indicators of past treatment with each of 30 antiretroviral drugs; number of drugs used
in each of the three major drug classes (PI, NRTI, and NNRTI); history of mono or
dual therapy; number of past drug regimens; date of earliest antiretroviral therapy;
highest prior viral load; lowest prior CD4 T cell count; and most recent (baseline) viral
load.

Summaries of non-PI mutations in the baseline genotype (i.e. mutations in the
reverse transcriptase enzyme targeted by the NRTI and NNRTI classes) were also
included in the covariate set W . Known NRTI and NNRTI resistance mutations present
at baseline were summed. In addition, susceptibility scores (standardized to a 0-1 scale)
were calculated for each non-PI antiretroviral drug using the Stanford HIVdb scoring
system. These susceptibility scores were included both as individual covariates and
as interactions with indicators of the use of their corresponding drugs in the salvage
regimen. Finally, these interaction terms were summed to yield a non-PI GSS, which
summarized the activity of the non-PI component of the regimen.

The outcome of interest, clinical virologic response, could be conceived as either a
binary indicator of success (defined as achievement of a final viral load below the assay’s
lower limit of detection of 50 copies/mL), or as a continuous measure such as the change
in final log10 viral load over baseline log10 viral load. The analyses reported here used
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a hybrid of these two approaches, aiming to capture the strengths of each. Specifically,
given a baseline measurement Y0 and a follow-up measurement Y1 of log10 viral load,
the outcome of interest Y was defined as follows: If Y1 was above the lower limit of
detection (Y1 > 1.7), then Y = Y1−Y0; if Y1 was below the detectability limit, however,
we imputed Y as the maximum decrease in viral load detected in the population, which
was -4.2 log. Under this definition, both large drops in viral load from a high baseline
and any achievement of an undetectable viral load (regardless of baseline) were treated
as clinical successes. When several viral loads were measured between 4 and 36 weeks
after regimen change, the first was used; duration from initiation of the salvage regimen
until outcome measurement was included in the adjustment set W .

In summary, each TCE contained a baseline viral genotype, summarized in a vector
A of binary variables defining the presence or absence of each of a list of candidate
PI resistance mutations, a new antiretroviral regimen containing lopinavir initiated
following the genotype, and an outcome Y capturing the change in log10 viral load at
4-36 weeks (measured before any subsequent changes in regimen) over baseline log10

viral load. In addition, each TCE contained a set W of adjustment variables, which
included summaries of the non-PI mutations in the viral genotype, as well as covariates
collected both prior to and following the genotype. We aimed to rank the candidate
PI-mutations based on their impact on clinical outcome. In the sections that follow,
we discuss several general approaches to research questions of this type, and discuss
their implementation in the context of this data example.

3 Background: Statistical methods for biomarker

discovery

3.1 Marginal vs. adjusted biomarker-outcome associa-
tions.

One straightforward approach to biomarker discovery is to assess the unadjusted as-
sociation between each candidate biomarker and the outcome, or in other words, to
estimate E(Y |A = 1)− E(Y |A = 0) for each candidate A. In some settings the unad-
justed association may be the quantity of interest, particularly when biomarkers can
be experimentally manipulated. For example, if the researcher is able to induce specific
mutations in a virus without altering other key covariates and then to compare viral
replication in the presence and absence of each mutation, then assessment of marginal
associations may be an appropriate approach.

In others settings, however, the marginal association between a candidate biomarker
and the outcome can be misleading, or fail to capture the underlying mechanistic
relationship of interest. When dealing with observational or clinical data, covariates
are often present that are both associated with the candidate biomarker and also affect
the outcome via a pathway independent of the biomarker. Such covariates are known
in the epidemiologic literature as confounders.

The HIV data example illustrates how confounding of a biomarker effect can occur.
HIV-infected patients with a given mutation may disproportionately include subjects
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with an extensive treatment history. Because past treatment can strongly affect the
presence of other mutations, past treatment patterns can cause a viral mutation with
no effect on resistance to occur commonly with mutations that do strongly affect re-
sistance. The candidate mutation may thus appear to confer resistance when in fact
it is simply acting as a marker for past treatment history and the presence of other
mutations. The picture is further complicated by the fact that in HIV infection, past
mutations can be “archived” and remain present only in latent virus. Such archived
mutations are not observable, but can still impact clinical response. We aimed to cap-
ture information about these archived mutations via covariates describing a subject’s
treatment history prior to initiation of the salvage regimen. In the HIV application,
then, controlling for the presence of other mutations and for past treatment history
allows us to isolate to what extent any decreased virologic response we observe is due
to the presence of the candidate mutation being considered.

In the absence of residual confounding, the W -adjusted VIM EW (E(Y |A = 1,W )−
E(Y |A = 0,W )) corresponds to the mean causal effect of the biomarker on the out-
come [13]. In the HIV example, if one is willing to assume that the measured covariates
W are sufficient to control for confounding, adjustment can be used to estimate the
causal effect of each candidate mutation on virologic response, defined as the mean
difference in outcome that would have been observed if the researcher had somehow
induced each mutation to be present versus absent in the entire study population.
Depending on one’s philosophy regarding causal effects, however, one may not be com-
fortable estimating the effect of a covariate on which one cannot intervene. Such a
non-experimental scenario arises frequently in the context of biomarker discovery; it is
often not possible, even theoretically, to “set” the level of a candidate biomarker and
then to observe the change in outcome.

It also may not be possible to assume that all confounding is controlled for. Ad-
ditional confounders may be unknown or simply unmeasured. In addition, even if the
measured covariates W control adequately for confounding, it will not be possible to
adjust for all covariates W if there is insufficient variation, or experimentation, in the
occurrence of the candidate biomarker within strata of W . For example, if a mutation
always occurs among subjects with a specific treatment history, then there is not suffi-
cient information in the data to estimate the difference in clinical response that would
be seen in the presence versus absence of the mutation in this sub-population. In the
data example, the candidate PI mutations were highly collinear; as a result, for a given
candidate mutation, we were unable to adjust for the presence of the other candidate
PI mutations.

When estimation of the causal effect of a candidate biomarker is not feasible, ad-
justment of the association between biomarker and outcome for a set of covariates W
often remains desirable. The quantity E(Y |A = 1,W = w) − E(Y |A = 0,W = w) is
interpretable as the difference in mean outcome in the presence versus absence of the
candidate biomarker among subjects or observations with the same values of all covari-
ates (W = w), and the VIM is simply the mean of these differences with respect to the
empirical distribution of W . Adjustment for covariates W may be desirable as a means
to reduce (rather than eliminate) the dependence of the biomarker-outcome association
on the confounding structure of the data, resulting in a parameter that comes closer to
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reflecting an underlying mechanistic relationship of interest. In addition, unlike unad-
justed associations, the W -adjusted VIM EW (E(Y |A = 1,W )−E(Y |A = 0,W )) does
not depend on the joint distribution of A and W , and can thus provide more robust
findings when applied to populations with similar marginal distributions of W but dis-
tinct confounding structures. For example, populations where antiretroviral treatment
has been used differently in the past may have different relationships between a can-
didate protease resistance mutation and the mutations present in other viral enzymes.
Controlling for past treatment and the presence of other mutations aims to improve
the chances that protease mutations identified as important to virologic response in
the current dataset will remain important in future treatment settings.

3.2 Adjustment for post-biomarker covariates.

Selecting which covariates to adjust for when estimating the VIM requires careful
thought and substantial background knowledge about the specific data application to
which the method is being applied. We discussed above the need in the HIV data
example to control for at least two types of baseline covariates, treatment history prior
to salvage regimen initiation and the presence of non-PI mutations. However, in some
settings it may also be desirable to adjust for covariates that occur after, and may be
affected by, the candidate biomarker of interest.

In the HIV data example, the non-PI drugs contained in the salvage regimen, as-
signed after assessment of viral genotype, may differ according to the presence of a
candidate mutation. Such a scenario could arise, for example, if the clinician observed
a mutation known to result in high-level resistance, and in response increased the po-
tency of the subject’s background (non-PI) regimen. To the extent that differences in
background regimen impact clinical response, they have the potential to obscure drug
resistance caused by the candidate mutation. In the causal inference framework, this
scenario can be viewed as a (spurious) indirect effect of the mutation. Our aim is to
estimate the direct effect of the mutation on clinical response, blocking any possible
effect the presence of the mutation might have on the clinician’s choice of background
salvage regimen.

One option is to simply include post-biomarker covariates together with baseline
covariates in the covariate set W . However, interpretation of the resulting W -adjusted
VIM requires careful thought in the context of the specific data example to which it is
being applied. Let Wb denote baseline covariates (occurring prior to the biomarker A),
and let Z denote covariates occurring after, and affected by, A. At an individual level,
the quantity E(Y |A = 1, Z = z,Wb) − E(Y |A = 0, Z = z,Wb) corresponds (under
assumptions on confounders - see [10]) to the effect of the biomarker on the outcome
holding the intermediate variables Z at a fixed level. The mean of these individual
effects provides a population summary: EW (E(Y |A = 1, Z = z,Wb)−E(Y |A = 0, Z =
z,Wb)). In the HIV example, this quantity would correspond with estimating the
mean difference in virologic response if the researcher induced a candidate mutation
to be present versus absent, and assigned a salvage regimen with fixed characteristics
regardless of the presence of the mutation.
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If one is willing to assume the absence of interaction between A and Z, then

EWb
(E(Y |A = 1, Z = z,Wb)− E(Y |A = 0, Z = z,Wb))
= EZWb

(E(Y |A = 1,Wb, Z)− E(Y |A = 0,Wb, Z)). (1)

In other words, averaging over the empirical distribution of the post-biomarker covari-
ates, Z, will not alter the estimated VIM, and thus the direct effect of interest can
be estimated by simply including post-biomarker covariates together with baseline co-
variates in the adjustment set W . In the HIV example, the no-interaction assumption
corresponds with assuming that the effect (or adjusted VIM) for each candidate PI
mutation does not differ depending on the characteristics of the background regimen,
a reasonable assumption given that PI mutations are not expected to affect response
to non-PI drugs. In the analyses reported, characteristics of the (non-PI) background
regimen were therefore included in the adjustment set W .

An additional common post-biomarker covariate is the duration between assessment
of the biomarker and measurement of the outcome. To the extent that this duration is
variable, differs depending on the presence of the biomarker, and affects the outcome,
it has the potential to obscure the VIM of interest. In the HIV example, the outcome
viral load was assessed between 4 and 36 weeks following salvage regimen initiation, and
viral loads observed sooner following salvage initiation were likely to be higher. If the
presence of a candidate mutation affected the time at which viral load was monitored,
duration until the outcome was monitored could thus serve as an additional source
of a spurious indirect effect. In the analyses reported in this article, time until viral
load assessment was included as a covariate in W , according to the following rationale:
1) If the presence of the candidate mutation did not affect duration until outcome
assessment, this duration could not serve as a source of an indirect effect, and inclusion
of duration as a covariate did not require any additional assumptions; however, given
the association between duration and the outcome, the inclusion of this covariate would
be expected to improve efficiency. 2) If the presence of the candidate mutation did
affect duration until outcome assessment, we wished to control for this indirect effect;
inclusion of duration as a covariate allowed us to do this, again under the no interaction
assumption (interpretable in this case as assuming that the effect of the mutation on
virologic response did not vary over time). We note that inclusion of duration until
outcome assessment is one possible way to address a potentially informative censoring
mechanism; alternatives, such as the use of inverse probability weights [14], are beyond
the scope of this article.

In summary, depending on the data application, inclusion of post-biomarker covari-
ates in the adjustment set W may be warranted. However, such a decision requires
careful consideration of the interpretation of the resulting W -adjusted VIM. In the
following section, we return to the estimation of this parameter.

3.3 A traditional approach to the estimation of variable
importance measures.

A common approach to the estimation of W -adjusted VIMs focuses on estimation of
the conditional expectation E(Y |A,W ) of the outcome given the biomarker and covari-
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ates, using standard maximum likelihood estimation. Given an estimate of E(Y |A,W ),
the VIM can be estimated by simply evaluating this object at the values A = 0 and
A = 1, and averaging the resulting differences across the population. Such an ap-
proach of intervening on the likelihood corresponds to the G-computation formula of
Robins [9], applied in the setting of a single time-point. Frequently, the number of
covariates W is large and the functional form of E(Y |A,W ) is unknown. Multiple
algorithms are available to learn this form data-adaptively; examples include classi-
fication and regression trees [3], random forests [2], least angle regression [5], and
the Deletion/Substitution/Addition (D/S/A) algorithm [12]. Either cross-validation
or some form of penalization of the likelihood are generally used to select the level
of model complexity providing the optimal bias-variance trade-off for the purposes of
prediction; in the case that Y is continuous, this corresponds to selecting the level of
complexity which minimizes the mean squared error.

Such an approach is appropriate if the goal of the analysis is to find the optimal
predictor of the outcome Y given A and W . However, biomarker discovery often aims
instead to evaluate a list of candidate biomarkers, rank them in terms of importance,
and identify those significantly associated with the outcome. When the goal of analysis
is to estimate the W -adjusted VIM for each of the candidate biomarkers, a different
estimation approach may be warranted. To understand why, consider the HIV data
example.

The number of covariates in this application, as in many biomarker applications, is
very large, consisting of multiple mutations, salvage regimen characteristics, baseline
characteristics of the subject such as viral load and CD4 count, and the subject’s
past antiretroviral treatment experience. A conventional approach would attempt to
choose the model that best predicts virologic response as a function of the candidate
mutation and these covariates. Given the large number of covariates, a reasonable
approach would be to apply some data-adaptive regression algorithm to select this
model. However, standard data-adaptive approaches aim to achieve the optimal bias-
variance tradeoff for the entire conditional expectation of Y given A and W . Because
the VIM is a much smoother parameter, a model fit for the purpose of prediction will
generally not provide the best bias-variance trade-off for the purpose of estimating
the VIM. Furthermore, a predictor constructed using conventional methods is likely
to involve multiple terms that do not contain the candidate mutation; for example,
baseline viral load and CD4 T cell count are likely to make important contributions
to virologic response regardless of mutation profile. Mis-specification of such terms
in, for example, a traditional multivariable regression model can result in bias in the
estimated effect of the mutation, even under the null hypothesis of no mutation effect.

In summary, in the context of biomarker discovery, prediction is often not the
underlying goal of analysis. Traditional approaches invest in achieving a good fit for the
entire conditional expectation of Y given A and W ; however such a fit is not targeted
at the biomarker-specific VIM of interest. In contrast, targeted maximum likelihood
estimation of the VIM, introduced in the following section, allows the researcher to
focus on the importance of each mutation in turn, reducing bias in the adjusted VIM
estimate and improving robustness to mis-specification of the model for E(Y |A,W ).
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4 Targeted maximum likelihood estimation.

In this section, we provide a practical overview of targeted maximum likelihood esti-
mation of variable importance measures. The formal statistical theory behind targeted
maximum likelihood has been published elsewhere [15]. Here, our aim is to make
this material practically accessible to the practitioner who wishes to apply targeted
maximum likelihood estimation to improve biomarker discovery.

The density of the observed data O = (W,A, Y ) is defined by the marginal distri-
bution of covariates W , the conditional distribution P (A|W ) of the biomarker given
covariates, and the conditional distribution P (Y |A,W ) of the outcome Y given A and
W . Unlike standard approaches to VIM estimation (which rely entirely on estimat-
ing E(Y |A,W )), targeted maximum likelihood estimation also involves estimation of
P (A|W ). This estimate of the conditional distribution of the biomarker given covari-
ates is used to update an initial estimate of E(Y |A,W ) in such a way that evaluating
the updated estimate at A = 1 and A = 0 and taking the empirical mean results in
an estimator of the W -adjusted VIM with reduced bias and improved robustness to
model mis-specification.

Denote our parameter of interest, the W -adjusted VIM, by

θ ≡ EW
[
E(Y |A = 1,W )− E(Y |A = 0,W )

]
. (2)

To ensure that this parameter is well-defined, we will assume that

0 < P (A = 1|W ) < 1 (3)

with probability one, or in other words, that some variation in the biomarker exists
within each stratum of W .

We first summarize the basic steps involved in targeted maximum likelihood es-
timation of θ before going on to discuss each in detail, illustrated in the context of
the data example. Implementation of the targeted maximum likelihood involves the
following steps:

1. Estimating the conditional expectation of Y given A and W . We denote this
initial estimate Q0

n(A,W ).

2. Estimating the conditional distribution of the biomarker given covariates. We
denote this estimate g0

n(A,W ).

3. For each subject, calculating a specific covariate, based on the subject’s observed
values for A and W and using the estimate g0

n(A,W ). We denote this covariate
h(A,W ).

4. Updating the initial regression Q0
n(A,W ) by adding the covariate h(A,W ) and

estimating the corresponding coefficient by maximum likelihood, holding the re-
maining coefficient estimates fixed at their initial values. We denote this updated
regression Q1

n(A,W ).

5. Evaluating the updated regression at A = 1 and A = 0 to get two predicted
outcomes for each subject and taking the empirical mean of the difference across
the population to obtain a targeted estimate of the VIM.

Chapter 7. Biomarker Discovery

330
Hosted by The Berkeley Electronic Press



4.1 An initial estimate of E(Y |A,W ).

The first step in targeted maximum likelihood estimation consists of obtaining an initial
estimate of the conditional expectation E(Y |A,W ) of Y given A and W , as one would
do in a standard G-computation approach to variable importance estimation. The
number of covariates W will often be large, and the functional form for E(Y |A,W )
will often be unknown. In this case, as discussed in Section (3.3), a range of data-
adaptive approaches are available to obtain an estimate Q0

n(A,W ).
In the HIV data example, we were faced with a large number of candidate co-

variates, detailed in Section 2.2. These included mutations other than the candidate
mutation of interest (incorporated both as individual covariates and summarized using
measures such as drug-specific susceptibility scores), various summaries of past treat-
ment history, baseline laboratory data on CD4 T cell count and viral load, time until
outcome assessment, and summary measures of the background regimen and its esti-
mated activity given baseline genotype. To reduce the size of the adjustment set W ,
we first performed a dimension reduction based on the unadjusted association of each
candidate covariate with the outcome Y ; the covariates with the 50 smallest p-values
were retained.

Following this dimension reduction, we applied the D/S/A algorithm [12] to obtain
an initial estimate Q0

n(A,W ) based on the remaining 50 covariates. The D/S/A algo-
rithm is a data-adaptive algorithm for polynomial regression that generates candidate
predictors as linear combinations of polynomial tensor products in continuous and/or
binary covariates. These candidate estimators are indexed by the number and com-
plexity of the terms, and the optimal candidate is selected using cross-validation. In
estimating E(Y |A,W ), the D/S/A algorithm considered candidate estimators with up
to two-way interaction terms and a maximum quadratic order for each term. Specifi-
cally, E(Y |A,W ) was modelled by first selecting a model for E(Y |W ) with a maximum
of 10 terms, then adding the term A to the selected model, and finally re-running the
algorithm to select a model for E(Y |A,W ), forcing previous terms to be in the model
and allowing the D/S/A algorithm to add up to 5 new terms.

This initial estimate of E(Y |A,W ) was evaluated at A = 1 and A = 0, and
the empirical mean of the difference was used to estimate VIMs according to the G-
computation approach. In other words, the G-computation estimate of the VIM was
given by

θG−compn =
1
n

n∑
i=1

Q0
n(1,Wi)−Q0

n(0,Wi). (4)

The targeted maximum likelihood estimate of the VIM also made use of this initial
estimate Q0

n, updated according to the following steps.

4.2 Estimation of P (A|W ).

The next step in the targeted estimation of VIMs consists of estimating the conditional
distribution of A given W . In the current application, A is binary so that a logistic
regression model can be used for this purpose. In fitting such a model, we first em-
ployed the same dimension reduction on W as used in fitting E(Y |A,W ). We then
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used the D/S/A algorithm to data-adaptively select an appropriate logistic regression
model for the probability of having the candidate mutation given W . The D/S/A
algorithm was run with a maximum of two-way interactions, a maximum quadratic
order for each term, and a maximum of ten terms. The practical performance of the
targeted maximum likelihood estimator can be improved somewhat by ensuring that
no estimated treatment probabilities g0

n(A,W ) are very close to zero; here, we do so
by setting estimated treatment probabilities smaller than 0.01 to 0.01.

4.3 Calculation of h(A,W ) and update of Q0
n(A,W ).

Using the resulting estimate g0
n(A,W ), the next step is to calculate the following co-

variate, denoted h(A,W ), for each subject:

h(A,W ) ≡
(
I(A = 1)
g0
n(1,W )

− I(A = 0)
g0
n(0,W )

)
. (5)

A one-step adjustment to the initial regression estimate Q0
n(A,W ) is performed by

adding the covariate h(A,W ) to this regression and obtaining a maximum likelihood
estimate εn of the corresponding coefficient ε, holding all other coefficient estimates
fixed at their initial values. The estimate εn can thus be obtained by regressing Y on
h(A,W ) using Q0

n(A,W ) as an offset. The updated estimate Q1
n(A,W ) is then given

by
Q1
n(A,W ) = Q0

n(A,W ) + εnh(A,W ). (6)

The corresponding targeted estimate of the marginal VIM is given by

θT−MLE
n =

1
n

n∑
i=1

Q1
n(1,Wi)−Q1

n(0,Wi). (7)

The targeted maximum likelihood estimator is thus identical to the G-computation es-
timator described above except that it is based on the updated regression fit Q1

n(A,W )
rather than the initial fit Q0

n(A,W ).

4.4 Advantages of targeted maximum likelihood estima-
tion.

Standard approaches to the estimation of variable importance rely entirely on the
estimation of the conditional expectation of the outcome given the biomarker and
covariates. The approach presented here provides a means to target this regression
estimate specifically at the parameter of interest (in this case the W -adjusted VIM).
In the context of the HIV data, for example, targeted maximum likelihood estima-
tion of W -adjusted variable importance allows us to obtain a targeted estimate of the
significance of each candidate resistance mutation in turn.

If the initial estimate of E(Y |A,W ) is based on standard multivariable or logis-
tic regression, implementing the targeted maximum likelihood estimator is simply a
matter of adding a covariate to the initial regression and estimating the corresponding
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coefficient by maximum likelihood. The result of this single-step adjustment is a reduc-
tion in bias for the parameter of interest [15]. In addition, the targeted VIM estimate
has improved robustness to model mis-specification in comparison to a G-computation
estimate based on the initial regression fit. Specifically, the G-computation estimator is
consistent only if the model for E(Y |A,W ) is correctly specified. In contrast, the tar-
geted maximum likelihood estimator is consistent if the model for either E(Y |A,W )
or P (A|W ) is correctly specified. This added robustness is particularly valuable in
contexts where the dependence of the biomarker on covariates is easier to model than
the dependence of the outcome on biomarker and covariates.

Standard errors estimates and p-values for the targeted maximum likelihood VIM
estimator can be obtained using the non-parametric bootstrap. This approach provides
a straightforward means to address dependence between observations, as occurred in
the data example because a single subject could contribute more than one TCE to
the analyses. The non-parametric bootstrap also offers an opportunity to perform re-
sampling-based approaches to multiple testing without substantial additional computer
time.

5 Results: Identification of HIV mutations as-

sociated with decreased viral susceptibility to lopinavir.

In this section, we present the results of applying three different approaches to assess the
importance of each of a set of candidate PI mutations in determining clinical virologic
response to lopinavir:

1. Estimation of the unadjusted association E(Y |A = 1) − E(Y |A = 0), based on
univariate regression of Y on A.

2. Estimation of the W -adjusted VIM EW (E(Y |A = 1,W )−E(Y |A = 0,W )), based
on the G-computation estimator (4).

3. Estimation of the W -adjusted VIM EW (E(Y |A = 1,W )−E(Y |A = 0,W )), based
on the targeted maximum likelihood estimator (7).

Four hundred and one TCEs among 372 subjects involved initiation of a salvage
regimen containing lopinavir and met all of our inclusion criteria. The frequency of
the various candidate PI mutations among these TCEs is summarized in Table 1. Here
and subsequently, mutations are denoted by the position of the change in the HIV pro-
tease enzyme, followed by a letter indicating the amino acid that has been substituted
(e.g. 53LY refers to a substitution of leucine or tyrosine at protease position 53). As
discussed in Section 3 and stated formally in equation (3) in Section 4, adjustment for
covariates W requires that there be variation in the presence of the biomarker within
strata of W . In order to help ensure sufficient variation and the ability to control ade-
quately for confounding, we estimated VIMs only for those mutations which occurred
in at least 20 TCEs; among the mutations that had to be excluded based on this crite-
rion are the important lopinavir resistance mutations 50V, 84C, and 88S. In addition,
we assessed the extent of variation among the remaining mutations by examining the
fitted probabilities g0

n(A,W ). For a few of these mutations, most notably 54LMST

Chapter 7. Biomarker Discovery

333
http://biostats.bepress.com/ucbbiostat/paper254



Table 1: Frequency of candidate protease inhibitor mutations among the 401 TCEs included
in the analysis. VIMs were estimated only for those mutations which occurred in at least 20
TCEs. For those mutations present in at least 20 TCEs, % Violations gives the percentage of
TCEs with fitted mutation probabilities < 0.05 or > 0.95; a high percentage may reflect a lack
of variation in the distribution of the mutation that can lead to unreliable VIM estimates.

Mutation Frequency % Violations
10FIRVY 217 3%
16E 9 –
20IMRTVL 115 0%
23I 4 –
24IF 16 –
30N 45 64%
32A 0 –
32I 21 58%
33F 44 51%
36ILVTA 141 0%
46ILV 143 0%
47V 17 –
48VM 16 –
48AST 1 –
50V 5 –
50L 0 –
53LY 33 0%
54LMST 36 84%
54VA 84 0%
63P 311 5%
71TVI 181 0%
73CSTA 66 35%
82AFST 100 6%
82MLC 4 –
84AV 73 28%
84C 2 –
88DTG 44 36%
88S 9 –
90M 171 0%
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and 30N, a high proportion of the fitted probabilities were less than 0.05 or greater
than 0.95, suggesting that they may not exhibit enough variation within strata of W
to allow for reliable VIM estimation. The results presented for these mutations should
thus be interpreted with care.

It was not clear based on background knowledge whether the presence of mutations
affected the duration until the outcome viral load was measured. We investigated
this potential dependence by using box plots to compare the distribution of outcome
monitoring times in the presence versus absence of each mutation. These plots did
not suggest any major differences in the distribution of monitoring times according to
the presence or absence of any mutation. In addition, we fit a data-adaptive model
of the conditional hazard of viral load monitoring over time in order to examine the
potential dependence of monitoring on the presence of candidate mutations and baseline
covariates. The data-adaptively selected model included as single covariate the time
that had elapsed since initiation of the new treatment regimen. Together, these findings
suggest that the presence of particular mutations did not strongly affect monitoring
time, reducing concern regarding the assumption that mutation effect was constant
over time (discussed in Section 3.2).

Table 2: Estimated VIMs and associated p-values for candidate PI mutations. Score refers to
the resistance score assigned to a mutation by the Stanford HIVdb scoring system (accessed
on 7/18/2006).

Mutation Score Unadjusted G-comp T-MLE

VIM p-value VIM p-value VIM p-value
10FIRVY 2 0.56 < 0.01 0.28 0.12 0.26 0.30
20IMRTVL 2 0.46 0.02 0.39 0.04 0.37 0.04
30N 0 -1.09 < 0.01 -0.60 0.03 -0.20 0.72
32I 10 0.80 0.01 0.63 0.03 0.81 < 0.01
33F 5 0.83 < 0.01 0.49 0.05 1.12 0.02
36ILVTA 1 0.29 0.10 0.39 0.03 0.39 0.04
46ILV 11 0.44 0.01 0.18 0.32 0.13 0.60
53LY 3 0.54 0.04 0.32 0.28 0.32 0.33
54LMST 10 0.67 0.01 0.15 0.55 0.16 0.72
54VA 11 0.86 < 0.01 0.69 < 0.01 0.61 < 0.01
63P 2 0.10 0.57 -0.02 0.90 -0.07 0.72
71TVI 2 0.34 0.03 0.24 0.13 0.24 0.17
73CSTA 2 0.79 < 0.01 0.61 0.02 0.46 0.36
82AFST 20 0.68 < 0.01 0.49 0.02 0.64 < 0.01
84AV 11 0.50 0.02 0.25 0.19 0.49 0.04
88DTG 0 -0.86 < 0.01 -0.50 0.05 -0.37 0.33
90M 10 0.52 < 0.01 0.45 0.02 0.45 0.02

Table 2 summarizes the unadjusted associations and estimates of the W -adjusted
VIM based on the G-computation and targeted approaches, along with associated p-
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Table 3: Candidate PI mutations ranked according to the p-values of three distinct VIM
estimates. Score refers to the resistance score assigned to a mutation by the Stanford HIVdb
scoring system (accessed on 7/18/2006). Mutations marked with an asterisk have a negative
VIM estimate, suggesting that they contribute to an improved rather than diminished virologic
response.

Score Unadjusted G-comp T-MLE

Mutation Score Mutation p-value Mutation p-value Mutation p-value
82AFST 20 30N∗ < 0.001 54VA < 0.001 82AFST 0.001
54VA 11 54VA < 0.001 82AFST 0.018 54VA 0.003
46ILV 11 82AFST < 0.001 90M 0.019 32I 0.003
84AV 11 33F < 0.001 73CSTA 0.019 90M 0.024
90M 10 10FIRVY 0.001 32I 0.033 33F 0.024
32I 10 73CSTA 0.001 30N∗ 0.033 36ILVTA 0.035
54LMST 10 88DTG∗ 0.001 36ILVTA 0.034 84AV 0.037
33F 5 90M 0.003 20IMRTVL 0.043 20IMRTVL 0.039
53LY 3 32I 0.014 33F 0.051 71TVI 0.174
10FIRVY 2 46ILV 0.015 88DTG∗ 0.051 10FIRVY 0.301
73CSTA 2 54LMST 0.015 10FIRVY 0.123 53LY 0.330
20IMRTVL 2 84AV 0.016 71TVI 0.130 88DTG∗ 0.330
71TVI 2 20IMRTVL 0.016 84AV 0.193 73CSTA 0.361
63P 2 71TVI 0.034 53LY 0.277 46ILV 0.600
36ILVTA 1 53LY 0.039 46ILV 0.321 63P∗ 0.719
30N 0 36ILVTA 0.097 54LMST 0.551 30N∗ 0.719
88DTG 0 63P 0.574 63P∗ 0.898 54LMST 0.719

value. Table 3 shows three different rankings for the set of candidate mutations, based
on the p-values generated by each of the three approaches. The mutation ranking
generated by the current Stanford scoring system is included for comparison. Inference
was based on non-parametric bootstrap sampling, respecting the subject rather than
the TCE as the independent unit of analysis. The resulting p-values were adjusted for
multiple testing using the Benjamini-Hochberg method [1] to control the false discovery
rate (aiming to ensure that the expected proportion of false positives was 0.05).

Among the 17 candidate PI mutations considered here, the Stanford scoring system
identifies the following seven mutations as major contributors to lopinavir resistance:
82AFST, 54VA, 46ILV, 84AV, 90M, 32I, and 54LMST; the remaining ten mutations are
thought to make minor or no contributions to resistance. The unadjusted association
analysis yielded significant p-values for all but two of the candidate PI resistance muta-
tions (36ILV and 63P). The significant subset thus included eight mutations thought to
have a minor or no effect on lopinavir resistance. Among these were the mutations 30N
and 88DTG, both estimated to be significantly protective. The protective association
of 30N with the outcome was in fact ranked the most important of the unadjusted
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associations. In addition, multiple mutations considered by current knowledge to have
only minor effects on resistance (for example, 33F, 10FIRV and 73CST) ranked higher
than most of the known major lopinavir resistance mutations (such as 90M, 32I, and
54LMST).

After adjusting for covariates using G-computation, fewer mutations were identi-
fied as significant, and the resulting ranking agreed to a greater extent with current
knowledge. Specifically, this approach identified eight mutations as having a significant
impact on lopinavir resistance, with an additional two mutations found to be border-
line significant (p-values of 0.051 for 33F and 88DTG). This group of ten mutations
includes both four of the seven major lopinavir resistance mutations and six mutations
thought to make minor or no contributions to resistance. In particular, we note that
the mutations 30N and 88DGT were still identified as having a protective effect.

Targeted maximum likelihood estimation of the adjusted VIM provided the ranking
in best agreement with current knowledge. The significant subset of mutations identi-
fied by this approach included five of the seven major known mutations, and only three
minor mutations (33F, 36ILV, 20IMRTV). The mutation considered most important
for lopinavir resistance, 82AFST, was ranked highest, followed by three major known
lopinavir resistance mutations (32I, 54AV and 90M). Unlike G-computation, targeted
maximum likelihood also identifies the major lopinavir resistance mutation 84AV as a
significant contributor to resistance. In addition, unlike the other two approaches, it
did not rank either 88DGT or 30N as significantly protective. Two mutations thought
to be important for lopinavir resistance, 46ILV and 54LMST, were not identified by
targeted VIM estimation. However, Table 1 shows that for the mutation 54LMST, 84%
of observations had fitted mutation probabilities < 0.05 or > 0.95, suggesting a lack of
variation in 54LMST within strata of W that may lead to unreliable VIM estimates.
In addition, in vitro experiments examining the effect of 46ILV on viral phenotype
suggest that this mutation may in fact be less important for lopinavir resistance than
previously thought [8].

6 Discussion.

6.1 HIV resistance mutations.

The current article discussed how targeted maximum likelihood estimation of variable
importance measures can be used in biomarker discovery. Motivation for the method,
details of its implementation, and interpretation of results were illustrated using an
example from the treatment of HIV infection. We estimated the importance of each
of a set of candidate PI mutations for clinical virologic response to treatment with the
commonly used PI drug lopinavir, adjusted for covariates including treatment history,
the presence of non-PI mutations, and characteristics of the background regimen.

Our analysis suggests that targeted maximum likelihood estimation of VIM repre-
sents a promising new approach for studying the effects of HIV mutations on clinical
virologic response to antiretroviral therapy. The subset of mutations identified by this
approach as significant contributors to lopinavir resistance was in better agreement
with current knowledge than the subsets identified by an unadjusted analyses or the
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G-computation approach. Specifically, the unadjusted analysis identified as significant
all but two of the candidate mutations, including eight mutations thought to have a
minor or no effect on lopinavir resistance. G-computation reduced the significant sub-
set to four of the seven mutations thought to make major contributions to lopinavir
resistance, while still including six mutations thought to make only a minor or no con-
tribution to resistance. In contrast, the significant subset of mutations identified by
targeted maximum likelihood included five of the seven major known mutations and
only three minor mutations. In addition, the specific ranking provided by targeted
VIM estimation also agreed better with current understanding than did the rankings
generated with alternative methods.

While targeted VIM estimates were able to replicate most known findings, they also
suggested that the mutation 46ILV may be less important in determining resistance
to lopinavir than previously thought. As mentioned in Section 5, this finding has
some support from in vitro studies [8], suggesting that a more detailed investigation of
the role of this mutation may be warranted. Taken as a whole, the promising results
reported here suggest that further application of the targeted VIM approach may result
in improvements to existing genotypic interpretation algorithms.

6.2 Targeted maximum likelihood.

As illustrated in this article, targeted maximum likelihood estimation offers an im-
provement in robustness over conventional likelihood-based approaches that is straight-
forward to implement using standard statistical software. Specifically, the approach
remains consistent if we mis-specify how virologic response depends on the mutation
and all covariates, but correctly model how the presence of the mutation depends on
covariates. The resulting targeted VIM estimates provide a means to both rank candi-
date biomarkers and to identify a subset of biomarkers as relevant for a given outcome.
The current article focused primarily on VIM for a continuous outcome. Generaliza-
tion to a binary outcome modelled using logistic regression is straightforward, as was
mentioned briefly. The method can further be generalized to alternative approaches
for obtaining an initial estimate of E(Y | A,W ).

The double robust variable importance estimator introduced by van der Laan [13]
provides similar advantages to the targeted VIM estimate in terms of improved robust-
ness to model mis-specification. However, the targeted approach has several practical
advantages. Many practitioners are more familiar with regression-based approaches,
as used by the targeted estimator, than with the estimating function methodology em-
ployed by the double robust estimator. In addition, the targeted maximum likelihood
VIM estimator can in many cases be implemented using standard software, in a natu-
ral extension of common regression approaches. These practical advantages, together
with the improvement in robustness, make targeted maximum likelihood estimation of
variable importance a promising new approach to biomarker discovery.
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Abstract

If estimates of the effect of a treatment variable on an outcome of interest are to be adjusted for a
set of possible confounding factors, it is necessary to rely on the assumption of experimental treatment
assignment (ETA) according to which each experimental unit has positive probability of being observed
at any of the possible levels of the treatment variable regardless of the values the confounding factors
may take on. Even if this assumption is only practically violated in the sense that certain values of the
confounding factors cause some treatment levels to become not impossible, but at least highly unlikely,
the adjusted variable importance parameter often becomes poorly identified in finite samples.

We introduce an algorithm that is intended to make variable importance estimation more robust
with respect to violations of the ETA assumption. Two different identifiability criteria are proposed
for deciding when an adjusted variable importance parameter cannot be reliably estimated from the
data. These criteria are then used to identify a maximal set of adjustment variables for which the ETA
assumption appears reasonably well satisfied. A more efficient estimator of the parameter corresponding
to the selected adjustment set is then sought by selecting from among estimators making use of even
smaller adjustment sets by minimizing an estimate of the mean squared error for the selected parameter.

A simulation study aimed at evaluating the benefits of this latter step suggests that it can lead to
efficiency gains on the order of 100% if the ETA assumption is violated to some extent and to efficiency
gains on the order of 35% if the ETA assumption is well approximated. The proposed algorithm is
applied to the problem of identifying mutations in the protease enzyme of HIV that have an effect
on virologic response to the commonly used antiretroviral drug lopinavir. While both unadjusted and
fully adjusted analyses yield unsatisfactory results, the subset of significant mutations identified by the
algorithm introduced here includes eight of the 12 known major lopinavir resistance mutations as well as
two mutations that are thought to increase susceptibility to lopinavir. Two of the four major mutations
not identified in our analysis occurred very rarely in our data set, giving the algorithm low power to
detect any impact on virologic response. Recent in vitro experiments suggest that the other two major
mutations not identified here may in fact be less important in determining lopinavir resistance than
previously thought. The excellent agreement of the results reported here with current understanding of
lopinavir resistance suggest that variable importance estimation based on data-adaptive selection of the
adjustment set represents a promising new approach for studying the effects of HIV mutations on clinical
virologic response to antiretroviral therapy as well as for biomarker discovery in general.
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1 Introduction

Many applications in modern biology measure a large number of genomic or proteomic covariates and
are interested in assessing the impact of each of these covariates on a particular outcome of interest. In a
study of HIV-positive patients, for example, a researcher may genotype the virus infecting each patient
to ascertain the presence or absence of a large number of mutations, in the hope of identifying mutations
that affect how a patient’s plasma HIV RNA level (viral load) responds to a new drug regimen. Along
with an estimate of the impact of each mutation on viral load, the researcher would generally like to
have a measure of the statistical significance of these estimates in order to identify those mutations that
are most likely to be genuinely related to the outcome. Such information could then be used to inform
the decision of which drugs should be included in the regimen of a patient with a particular pattern of
mutations.

The simplest way of assessing the impact of a particular mutation on viral load would be to compare
the virologic response among patients whose virus has the mutation to that among patients whose virus
does not. If we find that patients in the first group respond much more poorly to a particular drug
regimen, a clinician might be inclined not to give this regimen to a new patient entering his office who
has this mutation. Patients in the first group are, however, also quite likely to differ from those in
the second group in terms of the remaining mutations as well as other measured clinical covariates. The
mutation of interest may, for example, be very common among patients who have previously failed several
similar drug regimens, making them far more likely to also fail the current one, but very rare among
other patients. If the clinician’s new patient comes from a population that differs from our original study
population in that the mutation is not associated with having previously failed similar drug regimens,
we might be wrong to conclude that the regimen under consideration would be a poor choice in this
situation. Since the impact of the mutation of interest on viral load is confounded by the remaining
mutations as well as other clinical covariates, such unadjusted estimates thus do not generalize to a new
population in which the mutation of interest and the confounding factors are related to each other in a
different way.

We might thus be interested in estimating the impact of a given mutation on viral load that is not due
to associations of this mutation with any of the other measured covariates. Specifically, we might ask:
What difference in virologic response would we observe if we could somehow give every patient in our
study population the mutation interest, holding the remaining covariates fixed at their current values,
as opposed to the scenario in which we give none of the patients this mutation, holding again other
covariates fixed? Any observed difference could then not be due to differences of the two populations
with regard to the remaining covariates and would thus be more likely to generalize to a new population
in which the mutation of interest and the other covariates may be related to each other differently.

While such adjusted variable importance estimates are thus often more interesting than the corre-
sponding unadjusted estimates, they also rely on an additional assumption in order to be identifiable from
the collected data. Specifically, the assumption of experimental treatment assignment (ETA) requires
that the adjustment variables cannot take on a set of values such that the group of patients corresponding
to those values shows no variation in the mutation of interest. This assumption would be violated if,
for example, there existed a second mutation that always occurred in concordance with the mutation of
interest. Since we would never observe patients that exhibited each of the two mutations in the absence
of the other one, it would be impossible to disentangle the individual effects of these two mutations,
precluding us thus from estimating their impact on viral load adjusting for the other mutation.

More commonly, the set of adjustment variables may contain covariates that are not perfectly pre-
dictive of the mutation of interest, but that still determine the presence or absence of that mutation in
a nearly deterministic fashion. A second mutation may, for example, be so strongly correlated with the
mutation of interest that 99% of patients with this second mutation also exhibit the mutation of interest.
In such instances, a substantial amount of data would be required before the adjusted variable impor-
tance of the mutation of interest could be estimated in any reliable way. In smaller samples, it could
easily occur by chance that we observe no patients that are discordant for these two mutations, again
precluding us from obtaining an adjusted variable importance estimate. To distinguish this scenario
from the one described in the previous paragraph, we refer to it as a practical rather than a theoretical
violation of the ETA assumption.

Under either of these two violations of the ETA assumption, the desired adjusted variable importance
is not identifiable from the data at hand, making any estimates of this parameter unreliable and hard to
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interpret. A practical ETA violation, for example, often causes such estimates to become unstable and
highly variable. An analysis that under such circumstances still aims to rank mutations based on adjusted
variable importance estimates is thus bound to lead to unsatisfying results. Suppose, for example, that
a mutation with no impact on viral load is strongly correlated with a second mutation that itself has a
considerable impact. The practical ETA violation caused by this correlation would likely lead to highly
variable and thus statistically non-significant adjusted variable importance estimates for both mutations.
In this case, more useful results could be obtained by turning to variable importance estimates that do
not attempt to adjust for the other mutation. This approach would likely yield significant estimates for
both mutations, allowing the investigator to conclude that at least one of these two mutations has an
impact on viral load. While we would have to acknowledge that we cannot disentangle the individual
contributions of the two mutations, such a qualified identification of two mutations would generally seem
preferable to the conclusion drawn from a fully adjusted analysis, according to which neither mutation
would seem important in determining viral load.

These considerations suggest that it would be useful to have a criterion that could give the investigator
a sense of the extent to which the variable importance parameter corresponding to a proposed adjustment
set is identifiable from the data at hand. If this criterion suggested that the parameter corresponding
to the full adjustment set was not well identified, it could then also be used to identify a smaller, more
workable adjustment set. In this paper, we propose two criteria that can be used for this purpose, one
based on the diagnostic for ETA bias developed by Wang et al. (2006), and one based on closed-form
asymptotic bias estimates proposed by Bembom and van der Laan (2007a). In addition, we propose an
approach for defining a sequence of nested candidate adjustment sets that, in combination with a given
identifiability criterion, can be used to select an appropriate adjustment set data-adaptively.

Even if the variable importance parameter corresponding to a particular adjustment set is identified
reasonably well by the data at hand, it may be advantageous to base estimation of this parameter on an
adjustment set that in fact excludes additional covariates.The adjustment set defining the parameter of
interest may, for example, contain a covariate that is a good predictor of the mutation under consideration,
but only a weak predictor of viral load. Such a covariate will often be only a weak confounder of the
relationship between the mutation and viral load, but can still lead to a mild practical violation of the
ETA assumption that would cause the variable importance estimator to become more variable. Not
adjusting for this covariate could thus, at the price of a slight increase in bias, offer a considerable
reduction in variability, thus leading to an overall reduction in mean squared error. In this paper, we
propose an approach that, given an adjustment set defining the parameter of interest, can be used
to evaluate whether such additional exclusions from the adjustment set can be expected lead to more
efficient estimates of that parameter. For the sake of clarity, we will refer to the adjustment set defining
the parameter of interest, as selected based on a given identifiability criterion, as the targeted adjustment
set; the possibly smaller adjustment set used in estimating this parameter, on the other hand, will be
referred to as the effective adjustment set. The effective adjustment set is thus nested in the targeted
adjustment set, which in turn is nested in the full adjustment set.

To summarize, this paper proposes an algorithm for variable importance estimation that first selects
a targeted adjustment set defining the parameter of interest before then selecting an effective adjustment
set that will be used in the estimation of this parameter. While the first step is aimed at making
adjusted variable importance estimation robust to violations of the ETA assumption, the primary goal
of the second step is to optimize efficiency. The remainder of the paper is organized as follows. In
the next section, we review the formal definition of adjusted variable importance parameters as well as
several estimators that have been proposed for these parameters. In section 3, we describe two different
identifiability criteria that can be used for selecting the targeted adjustment set. The following section
introduces our proposal for selecting the effective adjustment set. The possible efficiency gains that can
be achieved by data-adaptively selecting the effective adjustment set are examined in a simulation study
in section 5. Both steps of the proposed algorithm are then studied in an applied data analysis in section
6 that is aimed at ranking mutations in the protease enzyme of HIV based on their impact on virologic
response to antiretroviral regimens containing the protease inhibitor lopinavir. We close with a brief
discussion of possible extensions to the methodology described here.

Chapter 7. Biomarker Discovery

344
Hosted by The Berkeley Electronic Press



2 Variable importance parameters and estimators

We consider the common point-treatment data structure consisting of n i.i.d. copies of O = (W,A, Y ),
where W = (W1, . . . ,Wd) denotes the collection of measured confounders, A gives the treatment variable,
and Y is the outcome of interest. For now we assume that A is binary. We would ideally like to estimate
the marginal variable importance θ of A on Y controlling for W :

θ ≡ E
h
E[Y |A = 1,W ]− E[Y |A = 0,W ]

i
. (1)

This parameter is identified by the data under the ETA assumption according to which we have with
probability 1.0 that, for a ∈ {0, 1},

P (A = a|W ) > 0. (2)

If there exists a w1 such that P (W = w1) > 0 and P (A = a|W = w1) = 0 for a = 0 or a = 1, we say that
the ETA assumption is theoretically violated. If (2) holds but there exists a w2 such that P (W = w2) > 0
and P (A = a|W = w2) ≈ 0 for a = 0 or a = 1, we say that the ETA assumption is practically violated.

We are here interested in identifying a maximal subset W t of W such that we have with probability
1.0 that, for a ∈ {0, 1},

P (A = a|W t) > ε > 0, (3)

assuring that the W t-specific ETA assumption is neither theoretically nor practically violated. This in
turn guarantees that the marginal variable importance of A on Y controlling for W t can be identified
from the data.

To identify the subset W t, we first define a sequence of nested candidate adjustment sets. Since
violations of the ETA assumption are caused by covariates that are highly predictive of A, we define these
candidate adjustment sets based on a ranking of the confounders by their squared sample correlation with
A. Specifically, each candidate adjustment set W (δ) will contain the δd covariates in W that have the
lowest squared sample correlations with A, 0 ≤ δ ≤ 1. For this purpose, let ρ2

n(Wj , A) denote the squared
sample correlation between Wj and A and let q(δ) denote the δ quantile of ρ2

n(W1, A), . . . , ρ2
n(Wd, A).

Then we can define W (δ) = (Wj : ρ2
n(Wj , A) ≤ q(δ)) as the collection of confounders with squared

sample correlations no greater than the δ quantile q(δ) of squared sample correlations. The marginal
variable importance parameter θ(δ) corresponding to a candidate adjustment sets W (δ) is given by

θ(δ) ≡ E
h
E[Y |A = 1,W (δ)]− E[Y |A = 0,W (δ)]

i
. (4)

Several estimators of such marginal variable importance parameters have been proposed (van der
Laan, 2006). These estimators can typically be written as functions of the two nuisance parameters
g(δ)(A,W ) ≡ P (A|W (δ)) and Q(δ)(A,W ) ≡ E[Y |A,W (δ)]. Assume that we have available preliminary
estimates gn(δ) and Qn(δ) of these nuisance parameters; gn(δ) may, for example, be obtained through
a logistic regression of A on W (δ). Two popular variable importance estimators are then given by the
G-computation estimator

θG−compn (δ) =
1

n

nX
i=1

Qn(δ)(1,Wi)−Qn(δ)(0,Wi) (5)

and the Inverse-Probability-of-Treatment-Weighted (IPTW) estimator

θIPTWn (δ) =
1

n

nX
i=1

h
I(Ai = 1)− I(Ai = 0)

i Yi
gn(δ)(Ai,Wi)

. (6)

The G-computation estimator yields valid estimates of θ(δ) if Q(δ) is estimated consistently; the IPTW
estimator instead relies on consistent estimation of g(δ).

Recently a targeted maximum-likelihood estimator of θ(δ) has been proposed that gives consistent
estimates as long as either g(δ) or Q(δ) is estimated consistently (van der Laan and Rubin, 2006). This
estimator is identical to the G-computation estimator (5) except that it is based on an updated regression
fit Q1

n(δ)(A,W ) rather than the initial fit Qn(δ)(A,W ). The updated estimate Q1
n(δ) is obtained in a

straightforward manner by adding the covariate

h(δ)(A,W ) =

„
I(A = 1)

gn(δ)(1,W )
− I(A = 0)

gn(δ)(0,W )

«
(7)
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to the original regression fit and obtaining a maximum likelihood estimate εn(δ) of the corresponding
coefficient ε(δ), holding all other coefficient estimates fixed at their initial values. The estimate εn(δ) can
thus be obtained by regressing Y on h(δ)(A,W ) using Qn(A,W ) as an offset. The updated regression
fit Q1

n(δ)(A,W ) is then given by

Q1
n(δ)(A,W ) = Qn(δ)(A,W ) + εn(δ)h(δ)(A,W ). (8)

The corresponding targeted maximum-likelihood estimate of θ(δ) can be obtained as

θT−MLE
n (δ) =

1

n

nX
i=1

Q1
n(δ)(1,Wi)−Q1

n(δ)(0,Wi). (9)

This estimator solves the estimating equation

0 =
1

n

nX
i=1

DDR(Oi|gn(δ), Q1
n(δ), θ(δ)) (10)

corresponding to the double robust estimating function

DDR(O|g(δ), Q(δ), θ(δ)) =
h
I(A = 1)− I(A = 0)

iY −Q(δ)(A,W )

g(δ)(A,W )
+

Q(δ)(1,W )−Q(δ)(0,W )− θ(δ). (11)

Under regularity conditions, the targeted maximum likelihood estimator is therefore asymptotically linear
if at least one of the two nuisance parameters g(δ) and Q(δ) is estimated consistently (van der Laan and
Robins, 2003). If both nuisance parameters are estimated consistently, the influence curve of the estimator
is given by

ICT−MLE(O|g0(δ), Q0(δ), θ0(δ)) = c−1DDR(O|g0(δ), Q0(δ), θ0(δ)), (12)

where g0(δ0), Q0(δ), and θ0(δ) denote the true values of the corresponding parameters and the standard-
izing constant c is given by

c = − ∂

∂θ(δ)
EDDR(O|g0(δ), Q0(δ), θ(δ))

˛̨̨
θ(δ)=θ0(δ)

= 1 (13)

The asymptotic linearity of θT−MLE
n (δ) under these conditions,

√
n(θT−MLE

n (δ)− θ0(δ)) =
1√
n

nX
i=1

ICT−MLE(Oi|g0(δ), Q0(δ), θ0(δ)) + op(1), (14)

implies in particular that

√
n
“
θT−MLE
n (δ)− θ0(δ)

”
⇒ N

“
0, σ2(δ) = V ar(ICT−MLE(O|g0(δ), Q0(δ), θ0(δ))

”
. (15)

An estimate σ2
n(δ) of σ2(δ) can be obtained as the sample variance of ICT−MLE(O|gn(δ), Q1

n(δ), θT−MLE
n (δ)),

allowing us to construct an asymptotic 95% confidence interval for θ(δ) as

θT−MLE
n (δ)± 1.96

r
σ2
n(δ)

n
. (16)

If g(δ) is estimated consistently but Q(δ) is not, inference based on this approach is conservative (van der
Laan and Robins, 2003).

Since the nuisance parameter g(δ) appears in the denominator of the covariate h(δ)(A,W ), the tar-
geted maximum-likelihood estimator can become quite unstable if some of the estimated treatment prob-
abilities are close to zero, i.e. if the ETA assumption is practically violated. Its practical performance
can often be improved somewhat by selecting a small value ε such as ε = 0.01 and setting estimated
treatment probabilities gn(δ)(A,W ) < ε equal to ε.

We may also obtain a more stable estimator of θ(δ) if we are willing to assume that the regression
function E[Y |A,W (δ)] does not contain any interactions between A and W (δ). In that case, we have
that

θ(δ) ≡ E
h
E[Y |A = 1,W (δ)]− E[Y |A = 0,W (δ)]

i
= E[Y |A = 1,W (δ)]− E[Y |A = 0,W (δ)]. (17)
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Under this additional modelling assumption, the targeted maximum-likelihood estimator of θ(δ) no longer
requires inverse weighting. Specifically, assume that we have available an estimate gn(δ) and Qn(δ) of
the relevant nuisance parameters, with Qn(δ) satisfying the additional modelling assumption so that it
can be written as Qn(δ) = βn(δ)A + rn(W (δ)) = θ(δ) + rn(W (δ)) for some function rn(·) of W (δ). As
before, the targeted maximum-likelihood estimator is based on an updated estimate Q1

n(δ) of Q(δ) that
is obtained by adding a particular covariate h(δ)(A,W ) to that initial fit. In this case, that covariate is
given by

h(δ)(A,W ) = A− gn(δ)(1,W ). (18)

The updated fit for Q(δ) can then be written as Q1
n(δ) = [βn(δ)+εn(δ)]A+r1n(W (δ)) so that the targeted

maximum-likelihood estimator of θ(δ) is given by

θT−MLE
n (δ) = βn(δ) + εn(δ). (19)

In distinction to the non-parametric targeted maximum-likelihood estimator discussed previously, we will
refer to this estimator as the model-based targeted maximum-likelihood estimator. This estimator solves
the estimating function

0 =
1

n

nX
i=1

D(δ)(Oi|gn(δ), r1n(δ), θ(δ)) (20)

corresponding to the estimating function

D(δ)(O|g(δ), r(δ), θ(δ)) =
h
A− g(δ)(1,W )

ih
Y − θ(δ)− r(δ)(A,W )

i
. (21)

Inference can thus again be based on the influence curve of this estimator. In this case, the standardizing
constant c is given by

c = − ∂

∂θ(δ)
ED(O|g0(δ), r0(δ), θ(δ))

˛̨̨
θ(δ)=θ0(δ)

= A− g0(δ)(1,W ). (22)

3 Selection of the targeted adjustment set

While the performance of all four estimators described above can be severely compromised if the ETA
assumption is violated (Bembom and van der Laan, 2007b), the problems become most apparent in the
case of the IPTW estimator. Unlike the other three estimators that under such circumstances can also
rely on extrapolation through a correctly specified model for the regression Q(δ), the IPTW estimator is
based entirely on inverse weighting by an estimate of the treatment mechanism g(δ), making it thus highly
susceptible to violations of the ETA assumption. Under a theoretical violation, a subgroup of the target
population is never observed at one of the possible treatment levels, preventing the re-weighting approach
from successfully adjusting for confounding and thus resulting in biased estimates. Under a practical
violation, observations with very small estimated treatment probabilities gn(δ) and corresponding large
weights tend to dominate the remainder of the sample so that the estimator becomes highly variable.
In addition, it has been shown that a practical violation of the ETA assumption can in fact also cause
the IPTW estimator to become biased in finite samples Neugebauer and van der Laan (2005). These
considerations suggest that the finite-sample bias of this estimator is a useful measure of the degree to
which a departure from the ETA assumption has caused the adjusted variable importance parameter
θ(δ) to become non-identifiable from the data at hand.

Wang et al. (2006) propose the following simulation-based approach for obtaining an estimate of
this bias: The empirical distribution of W (δ) along with the nuisance parameter estimates gn(δ) and
Qn(δ) define an estimate Pn(δ) of the data-generating distribution P (δ) for the observed data structure
O(δ) = (W (δ), A, Y ). Under Pn(δ), the true value of the adjusted variable importance parameter θ(δ)
can be obtained by G-computation as

θ(Pn(δ)) =
1

n

nX
i=1

Qn(δ)(1,Wi)−Qn(δ)(0,Wi). (23)
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At the same time, we can obtain a sampling distribution of IPTW estimates θIPTWn,1 (δ), . . . , θIPTWn,K (δ) by
applying the IPTW estimator to a large number K of realizations of the observed data structure O(δ)
that were simulated under Pn(δ). The finite-sample bias of the IPTW estimator can then be estimated
in a straightforward manner by

BETAsim (δ) =
1

K

KX
k=1

θIPTWn,k (δ)− θ(Pn(δ)). (24)

A possible limitation of this parametric bootstrap approach lies in its reliance on a large number of
simulated data sets. First, such simulations can be computationally intensive so that the approach would
not scale well to applications in which the group of candidate input variables for which we aim to obtain
variable importance estimates is large. Second, unless an enormous number of data sets are simulated,
the bias estimates can be expected to be quite sensitive to the exact number of simulated data sets used.

A computationally more tractable closed-form measure of finite-sample non-identifiability may be
based on the following argument. A common recommendation for increasing the stability of IPTW
estimators under practical ETA violations is to truncate the inverse-probability-of-treatment weights
1/gn(δ)(A,W ) by some truncation constant M , thus using weights wtM = min(M, 1/gn(δ)(A,W ))
instead. Under a practical ETA violation, the use of such truncated weights can lead to a dramatic
reduction in the variability of the IPTW estimator, but it typically also increases its bias. As long as at
least some of the truncated weights wtM are strictly less than the original weights 1/gn(δ)(A,W ), the
IPTW estimator will in fact often become asymptotically biased. Under a data-generating distribution
that satisfies the ETA assumption, however, the estimated treatment probabilities gn(δ)(A,W ) are clearly
bounded away from zero so that M would have to be chosen quite small for the truncated weights to
become different from the original weights. Modest levels of truncation corresponding to a reasonably
large value of M thus typically do not cause the IPTW estimator to become asymptotically biased if the
ETA assumption is satisfied. These considerations suggest that the extent to which the ETA assumption
is violated can also be quantified by the asymptotic bias of the IPTW estimator under modest truncation.

Bembom and van der Laan (2007a) recently derived a closed-form estimate for this bias as a function
of the truncation constant M . Letting gM,n(δ) ≡ max(gn(δ),M), this estimate is given by

BETAM (δ) =

nX
i=1

Qn(δ)(1,Wi)
gn(δ)(1,Wi)− gM,n(δ)(1,Wi)

gM,n(δ)(1,Wi)
−

nX
i=1

Qn(δ)(0,Wi)
gn(δ)(0,Wi)− gM,n(δ)(0,Wi)

gM,n(δ)(0,Wi)
(25)

While this identifiability criterion is more computationally tractable than the simulation-based finite-
sample bias estimate, it also requires the user to supply an appropriate truncation level M . The smaller
M is chosen, the more sensitive BETAM (δ) will be to practical ETA violations. At the same time, M should
be chosen large enough to ensure that BETAM (δ) = 0 under a data-generating distribution that satisfies
the ETA assumption. Since the IPTW estimator can tolerate larger weights as sample size increases, it
would seem reasonable to make the selected truncation level a function of the sample size. One particular
proposal would be to select M such that no observation in the sample would have a weight greater than
some proportion p of the sum of all weights, where sensible choices for p corresponding to fairly modest
levels of truncation might lie in the range from 0.05 to 0.20. We will examine the sensitivity of this
proposed identifiability criterion to the exact choice of M in our data analysis in section 6.

It remains to define a reference with respect to which we evaluate the magnitude of the estimated
bias BETAsim (δ) or BETAM (δ). A simple choice might be to consider the corresponding point estimate
θT−MLE
n (δ). Since the adjusted point estimates can become quite unreliable, however, if the ETA as-

sumption is violated, we suggest to use the unadjusted variable importance estimate θT−MLE
n (0) instead.

The targeted adjustment set W t = W (δt) can now be selected by choosing δt to be the largest value of
δ, 0 ≤ δ ≤ 1, such that the estimated bias is no greater than some proportion Bmax of the unadjusted
variable importance estimate. Here Bmax is another user-supplied parameter, with reasonable choices
likely to be made in the range from 0.10 to 0.50. We note that since the selection of θ(δt) is made without
knowledge of the point estimates θT−MLE

n (δ), inference for θ(δt) as based on the influence curve remains
valid.
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4 Selection of the effective adjustment set

Given a targeted adjustment set W (δt), we now aim to select an effective adjustment set W e = W (δe)
such that the corresponding estimator θT−MLE

n (δe) has minimal mean squared error for estimating the
targeted parameter θ(δt). In many cases, the effective adjustment set will be equal to the targeted
adjustment set, but if the targeted parameter still suffers from a mild practical ETA violation, it is
possible that a smaller effective adjustment set will lead to a more efficient estimator.

The mean squared error for an estimator of θ(δt) can be decomposed into the square of its bias and its
variance. Since we will focus here on the non-parametric and model-based targeted maximum-likelihood
estimators, the latter component can be estimated in a straightforward way based on the influence of
these estimators (see section 2). We will use our estimates of the data-generating distributions Pn(δ)
to obtain an estimate of the bias incurred by using a subset W (δ) of W (δt) in estimating θ(δt). Under
Pn(δt), the true parameter value of θ(δt) is given by the G-computation estimate

θ(Pn(δt)) =
1

n

nX
i=1

Qn(δt)(1,Wi)−Qn(δt)(0,Wi) = θG−compn (δt). (26)

Under Pn(δ), δ ≤ δt, the true parameter value of θ(δ) is likewise given by

θ(Pn(δ)) =
1

n

nX
i=1

Qn(δ)(1,Wi)−Qn(δ)(0,Wi) = θG−compn (δ). (27)

The desired bias can thus be estimated by the difference of the two relevant G-computation point esti-
mates:

Btn(δ) = θG−compn (δ)− θG−compn (δt) (28)

We can now select δe as the minimizer over 0 ≤ δ ≤ δt of the corresponding mean squared error estimate

MSEtn(δ) =
h
Btn(δ)

i2
+ Vn(δ), (29)

where Vn(δ) is an estimate of the variance of θT−MLE
n (δ) as based on the influence curve of that estimator.

Since the selection of θ(δe) is based on knowledge of the point estimates θG−compn (δ), honest inference
for the resulting estimator would have to take into account that it was selected from among several
candidate estimators, specifically with the goal of minimizing mean squared error. Inference based on
the influence curve of θT−MLE

n (δe) may thus be somewhat optimistic since it ignores the data-adaptive
selection of the estimator. Honest inference could be obtained based on a bootstrap procedure that
includes this estimator selection step. Since we have that Btn(δt) = 0, we note, however, that θ(δe) can
be expected to converge to θ(δt) so that inference based on the influence curve of θT−MLE

n (δe) remains
asymptotically valid.

5 Simulation study

The selection of the targeted adjustment set is a question of selecting the scientific parameter of interest.
The practical performance of the proposed approach to this problem is therefore better illustrated in an
applied data analysis than in a simulation study. In this section, we present a simulation study that is
aimed at examining to what extent the performance of the non-parametric and model-based targeted
maximum-likelihood estimators of a given targeted variable importance parameter θ(δt) can be improved
by the data-adaptive selection of an effective adjustment set W (δe).

For this purpose, we consider a point-treatment data structureO = (W,A, Y ), withW = (W1, . . . ,W10)
containing ten potential confounding factors, A denoting a binary treatment variable, and Y representing
a continuous outcome of interest. Given a treatment mechanism g0(A | W ) and the regression function
Q0(A,W ), the observed data structure was generated as follows:

1. Generate W1, . . . ,W10 as independent random uniform variables over the interval [0, 1].

2. Generate the observed treatment variable A from the conditional distribution of A given W , g0(A |
W ).

3. Generate the observed outcome Y as Y = Q0(A,W ) + ε with ε ∼ N(0, 1).
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We consider the two different treatment mechanism

logit
“
g1,0(A |W )

”
= W3 −W4 + 2W5 − 2W6 + 2W7 − 2W8 − 3W9 + 4W10 (30)

and
logit

“
g2,0(A |W )

”
= W3 −W4 + 2W5 − 2W6 + 2W7 − 2W8 − 2W9 + 2W10. (31)

The regression function Q0(A,W ) is given by

Q0(A,W ) = A+ 2W2 + 2W3 + 2W4 +W7 +W8 + 0.1W9 + 0.1W10. (32)

We thus have two different data-generating distributions (g1,0, Q0) and (g2,0, Q0). The targeted parameter
is given by the fully adjusted marginal variable importance

θ = E
h
E[Y |A = 1,W ]− E[Y |A = 0,W ]

i
. (33)

Under (g1,0, Q0), the covariates W9 and W10 are strong predictors of A so that they may cause a moderate
practical violation of the ETA assumption. Since they have only a weak effect on Y , omitting these two
covariates from the effective adjustment set might therefore lead to a considerable reduction in the
variability of the estimator, at the price of only a slight increase in bias. Data-adaptive selection of an
effective adjustment set can therefore be hoped to lead to a significant increase in efficiency under this
data-generating distribution. Under (g2,0, Q0), W9 and W10 are only moderate predictors of A so that
much smaller efficiency gains might be expected under this data-generating distribution.

Table 1: Mean squared error of the non-parametric and model-based targeted maximum-likelihood estimators
using either the targeted adjustment set or a data-adaptively selected effective adjustment set.

Non-parametric Model-based
Targeted Effective Targeted Effective

(g1,0, Q0)
n = 100 16.7632 0.0917 0.0758 0.0670
n = 500 0.0312 0.0140 0.0138 0.0131
n = 2500 0.0051 0.0025 0.0027 0.0025

(g2,0, Q0)
n = 100 1.9750 0.0828 0.0645 0.0621
n = 500 0.0168 0.0125 0.0119 0.0116
n = 2500 0.0030 0.0022 0.0022 0.0021

Table 1 summarizes the mean-squared errors for the non-parametric and model-based targeted maximum-
likelihood estimators of θ using either the targeted adjustment set or a data-adaptively selected effective
adjustment set for three different sample sizes. As expected, the fully adjusted non-parametric estimator
is more sensitive to practical ETA violations than the fully adjusted model-based estimator, with its vari-
ance being considerably greater under (g1,0, Q0) than under (g2,0, Q0). Consequently, the non-parametric
estimator also benefits much more strongly from the data-adaptive selection of an effective adjustment
set, with efficiency gains relative to the fully adjusted estimator of roughly 100% under (g1,0, Q0) and
35% under (g2,0, Q0) for sample sizes of n = 500 and greater. The enormous efficiency gains observed
for this estimator for n = 100 suggest a considerable practical ETA violation that in practice might have
resulted in the selection of a smaller targeted adjustment set. The efficiency gains for the model-based
estimators are slight compared to those for the non-parametric estimator. Since the assumption of no
interaction between A and W is satisfied in this simulation study, the model-based estimator is typi-
cally more efficient than the non-parametric estimator. We note, however, that the performance of the
two estimators based on a data-adaptively selected effective adjustment set is comparable, especially as
sample size increases, which is another testament to the considerable efficiency gains achieved by the
non-parametric estimator.
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6 Data analysis

In this section we apply the methodology described above to the task of identifying mutations in the
protease enzyme of HIV that modulate how well the virus can replicate in the presence of a particular
antiretroviral drugs, and thus how well a patient responds to that drug. A considerable number of
such drugs are available for treating patients infected with HIV, with the main mechanistic classes
consisting of protease inhibitors (PIs), nucleotide and nucleoside reverse transcriptase inhibitors (NRTIs),
and nonnucleoside reverse transcriptase inhibitors (NNRTIs). While a patient is being treated with a
particular combination of these drugs, the virus frequently acquires a number of mutations that reduce its
susceptibility to that drug regimen, requiring the patient to be switched to a new regimen that the virus
remains sensitive to. When faced with this situation, clinicians frequently genotype the virus to ascertain
the presence or absence of a large number of mutations that are thought to contribute to the resistance
to various drugs (Shafer et al., 2000). This practice motivates us here to identify in a systematic way
mutations that have a strong impact on a patient’s virologic response to a new drug treatment and that
could thus guide a clinician in designing a salvage therapy regimen on the basis of genotypic test results.

The effect of viral mutations on virologic response to therapy can be seriously confounded by a
patient’s treatment history. Past treatment regimens exert a strong selection pressure on viral evolution,
thus affecting the probability that a given mutation is observed. In addition, treatment history can have
an independent impact on virologic response by resulting in archived, or latent, virus carrying unobserved
mutations that affect response to subsequent treatment regimens. As a result, an unadjusted association
observed between a given mutation and treatment response may in fact be due to the presence of other
mutations, both observed and unobserved. Treatment strategies vary across populations and evolve
over time, potentially resulting in distinct mutation distributions. Thus, control of confounding due to
treatment history is needed to ensure that the estimated importance of a given mutation can be more
readily generalized to populations other than the original study population.

Similarly, we would also like to adjust for the presence of additional mutations. Mutations conferring
resistance to drugs of a class different from that targeted by the mutation of interest, thus affecting
a distinct viral enzyme, can typically be controlled for without much difficulty. However, mutations
conferring resistance to the same drug class, thus affecting the same viral enzyme, are often so strongly
correlated that the corresponding adjusted variable importance parameter is subject to a severe ETA
violation. This is due to the fact that, while correlation between mutations affecting distinct viral
enzymes occurs primarily as a result of past treatment patterns, correlation between mutations in the
same enzyme often occurs as part of an evolutionary pathway towards resistance to drugs targeting that
enzyme. Previous analyses have typically addressed this problem by categorically not adjusting for any
mutations affecting the same viral enzyme as the mutation under consideration (Bembom et al., 2007).
One might expect, however, that only a subset of the mutations affecting the same viral enzyme are
so strongly correlated with the mutation under consideration as to cause serious ETA problems so that
data-adaptive selection of the adjustment set might lead to variable importance estimates that typically
suffer from less confounding than those obtained in earlier analyses.

6.1 Data source

Analyses were based on a data set, described previously in Bembom et al. (2007), consisting of observa-
tional clinical data that were primarily drawn from the Stanford drug resistance database and supple-
mented with data from an ongoing collaboration with the Kaiser Permanente Medical Care Program,
Northern California. Currently, the Stanford database contains longitudinal data on over 6,000 patients.
Data collected include use of antiretroviral drugs, results of viral genotype tests, and measurements of
viral load as well as CD4 T cell count collected during the course of clinical care.

For the sake of illustration, we focus on resistance to the commonly used PI drug lopinavir. We
identified all Treatment Change Episodes (TCEs) in this database that involved initiation of a salvage
regimen containing lopinavir. A TCE was defined using the following inclusion criteria: 1) change of at
least one drug from the patient’s previous antiretroviral regimen; 2) availability of a baseline viral load
and genotype within 24 weeks prior to the change in regimen; and, 3) availability of an outcome viral
load 4-36 weeks after the change in regimen and prior to any subsequent changes in regimen.

TCEs were excluded if no candidate resistance mutations were present in the baseline genotype, if the
subject had no past experience of PI drugs prior to the current regimen, or if the newly initiated regimen
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included hydroxyurea, any experimental antiretroviral drugs, or any PI drugs other than lopinavir (apart
from the low dose of ritonavir that is always given with lopinavir). If a single baseline genotype had several
subsequent regimen changes that met inclusion criteria as TCEs, only the first of these regimen changes
was included in analyses. Multiple TCEs, each corresponding to a unique baseline genotype, treatment
changes, and outcome, were allowed from a single individual; the resulting dependence between TCEs
was accounted for in the derivation of standard errors and p-values. Based on these inclusion criteria, we
identified 401 TCEs among 372 subjects that were included in our analyses. We considered as candidate
biomarkers all mutations assessed by the Stanford HIVdb algorithm to be potentially related to resistance
to any approved PI drug (http://hivdb.stanford.edu, accessed 9/1/2007). Including only mutations
that occurred in at least two TCEs, we are faced with a total of 26 candidate PI mutations.

Antiretroviral regimens generally combine drugs from more than one class. The following character-
istics of the non-PI component of the salvage regimen were therefore included in the set W of potential
adjustment variables: indicators of use of each of 13 non-PI drugs; number of drugs used in each major
non-PI class; number of drugs and number of classes used in the salvage regimen for the first time; use
of an NNRTI drug in the salvage regimen for the first time; and number of drugs switched between the
previous and salvage regimen. W also included the following covariates collected prior to the baseline
genotype: indicators of past treatment with each of 30 antiretroviral drugs; number of drugs used in
each of the three major drug classes (PI, NRTI, and NNRTI); history of mono or dual therapy; number
of past drug regimens; date of earliest antiretroviral therapy; highest prior viral load; lowest prior CD4
T cell count; and most recent (baseline) viral load.

The covariate set W also included indicators for the presence or absence of PI mutations other than
the mutation of interest itself as well as indicators for the presence or absence of known NRTI and NNRTI
mutations. In addition, we included summaries of the non-PI mutations in the baseline genotype. Known
NRTI and NNRTI resistance mutations present at baseline were summed. Furthermore, susceptibility
scores (standardized to a 0-1 scale) were calculated for each non-PI antiretroviral drug using the Stanford
HIVdb scoring system. These susceptibility scores were included both as individual covariates and as
interactions with indicators of the use of their corresponding drugs in the salvage regimen. Finally, these
interaction terms were summed to yield a non-PI genotypic susceptibility score (GSS), which summarized
the activity of the non-PI component of the regimen. The set of potential adjustment variables W
included a total of 163 variables.

The outcome of interest, clinical virologic response, could be conceived as either a binary indicator
of success (defined as achievement of a final viral load below the assay’s lower limit of detection of 50
copies/mL), or as a continuous measure such as the change in final log10 viral load over baseline log10 viral
load. The analyses reported here used a hybrid of these two approaches, aiming to capture the strengths
of each. Specifically, given a baseline measurement Y0 and a follow-up measurement Y1 of log10 viral load,
the outcome of interest Y was defined as follows: If Y1 was above the lower limit of detection (Y1 > 1.7),
then Y = Y1 − Y0; if Y1 was below the detectability limit, however, we imputed Y as the maximum
decrease in viral load detected in the population, which was -4.2 log. Under this definition, both large
drops in viral load from a high baseline and any achievement of an undetectable viral load (regardless
of baseline) were treated as clinical successes. When several viral loads were measured between 4 and
36 weeks after regimen change, the first was used; duration from initiation of the salvage regimen until
outcome measurement was included in the adjustment set W .

6.2 Variable importance estimation

The goal of our analysis was to estimate the impact of each of the 26 candidate PI mutations on Y ,
adjusting for as many elements of W as possible, and to rank the mutations based the statistical evidence
for a non-zero variable importance. For this purpose we focus on the non-parametric and model-based
targeted maximum-likelihood estimators described in section 2. We compare the results based on data-
adaptively selected targeted and effective adjustment sets to those based on unadjusted and fully adjusted
analyses.

Covariates that are not predictive of the outcome of interest neither confound the effect of a mutation
on viral nor have the potential to increase the precision with which that effect can be estimated. Hence
we first carried out a dimension reduction step aimed at identifying those covariates in W that appear
to be associated with viral load. For this purpose, we examined the univariate association between
each baseline covariate Wj and Y using a univariate repeated-measures regression. In this manner, we
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obtained p-values for the null hypotheses that a given covariate is independent of Y . Since the collection
of candidate baseline covariates was sizeable, these marginal p-values were adjusted for the simultaneous
performance of multiple hypothesis tests using the approach developed by Benjamini and Hochberg (1995)
for controlling the false discovery rate (FDR). Out of the 163 variables contained in W , we retained a
total of 51 that remained significantly associated with Y at a significance level of 0.05.

Following this dimension reduction, we applied the Deletion/Substitution/Addition (D/S/A) algo-
rithm (Sinisi and van der Laan, 2004) to obtain estimates of the two nuisance parameters g(δ) and Q(δ).
The D/S/A algorithm is a data-adaptive algorithm for polynomial regression that generates candidate
predictors as linear combinations of polynomial tensor products in the candidate explanatory variables.
These candidate estimators are indexed by the number and complexity of the terms, and the optimal
candidate is selected using cross-validation. A version of the D/S/A algorithm was employed that relied
solely on addition moves to generate candidate estimators, thus making it similar to a forward regression
approach except that the size of the estimator is selected by cross-validation rather than by p-values; dele-
tion and substitution moves were omitted to reduce computational complexity. The algorithm considered
candidate estimators consisting of up to 20 terms.

Given a set of candidate explanatory variables, two-way interactions were explored based on repeated-
measures regression models aimed at predicting Y as function of two candidate explanatory variables as
well as the corresponding interaction term. Two-way interaction terms that were significant at an FDR-
adjusted significance level of 0.05 were explicitly included in the set of candidate explanatory variables.
The D/S/A algorithm was then allowed to consider estimators consisting only of main-effect terms taken
from that set of candidate explanatory variables. This approach of not considering candidate estimators
involving arbitrary two-way interactions is motivated not only by computational considerations, but also
by the observation that such estimators are typically far more variable than those based on main-effect
terms only, thus often leading to the selection of estimators including only main-effect terms. Including
important interaction terms explicitly in the set of explanatory variables can thus be hoped to alleviate
the discontinuity in variability seen in moving from estimators consisting of only main-effect terms to
those involving also two-way interactions, thus increasing the chance that important two-way interaction
terms will be selected in the final estimator.

Since we are interested in estimating the effect of a given mutation A on Y , we would like A to be
included in the regression model for E[Y |A,W ]. Forcing A into the model and then allowing the D/S/A
algorithm to add elements of W is problematic, however, since adjustment variables that are strongly
correlated with A may contribute little to the accurate prediction of Y once A is included in the model.
Such an approach might thus lead to important confounding factors being omitted from the model. We
therefore first allow the D/S/A algorithm to data-adaptively select a linear regression model for E[Y |W ]
before then re-fitting that model with A added to the selected explanatory variables.

The D/S/A algorithm was also used to select an appropriate logistic regression model for the treatment
mechanism g(δ). The selection criterion of minimizing cross-validated risk employed by the D/S/A
algorithm for selecting the size of the estimator is aimed at selecting an estimator with good prediction
properties. Optimizing the bias-variance trade-off for this purpose often leads to estimators consisting
of only a small number of terms, causing the selected regression fit for g(δ) to give an unrealistically
optimistic impression of the extent to which the ETA assumption is satisfied. For this reason, it is
typically advisable to use somewhat more non-parametric estimates of the treatment mechanism for the
task of assessing the validity of the ETA assumption (Wang et al., 2006). We therefore selected the size
of the regression fit for g not as the minimizer of cross-validated risk, but rather as the largest size such
that the corresponding cross-validated risk was no more than 25% above the minimal cross-validated
risk. Theoretical arguments in fact imply that such slight overfits of the treatment mechanism will in
first order also increase the efficiency of the resulting variable importance estimator (van der Laan and
Robins, 2003). Overfits may in theory negatively affect the performance of the estimator through second-
order terms if some of the estimated treatment probabilities become very close to zero, but the variable
importance algorithm proposed here addresses that problem by selecting a targeted adjustment set for
which the ETA assumption is well approximated. In addition, we set estimated treatment probabilities
smaller than 0.01 to 0.01.

Point estimates based on the approach presented in section 2 for a sample of n i.i.d. observations
remain valid in the context of repeated measures. The efficiency of the estimator might be improved
by optimizing the weights given to individual observations on basis of an estimated correlation matrix
for observations obtained from the same subject, as is done in generalized estimating equations Liang
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and Zeger (1986), but given the small number of repeated measures in the data set at hand we simply
give equal weights to all observations. Estimation is thus based on estimating functions that are a sum
over all the observations contributed by a single subject. Assuming that the number of observations
contributed by each subject is non-informative, inference can be based in a straightforward manner on
these modified estimating functions.

6.3 Unadjusted and fully adjusted variable importance estimates

Among the 26 candidate PI mutations considered here, the Stanford scoring system identifies the following
12 mutations as major contributors to lopinavir resistance: 50V, 82AFST, 46ILV, 54VA, 54LMST, 84AV,
32I, 47V, 48VM, 82MLC, 84C, and 90M; the remaining 14 mutations are thought to make minor or no
contributions to resistance. Here and subsequently, mutations are denoted by the position of the change
in the HIV protease enzyme, followed by a letter indicating the amino acid that has been substituted
(e.g. 53LY refers to a substitution of leucine or tyrosine at protease position 53).

The unadjusted variable importance analysis, summarized in table 2, yielded significant p-values for all
but eight of the candidate PI resistance mutations. Four of these eight mutations occurred in fewer than
10 TCEs so that the analysis had low power to detect an impact of these mutations on viral load. Among
these four mutations were two mutations, 82MLC and 84C, that are thought to have a major effect on
lopinavir resistance. The significant subset includes the remaining 10 known major lopinavir resistance
mutations, but also eight mutations thought to make minor or no contributions to resistance. Among
these were the mutations 30N, 88DTG, and 88S, all estimated to be significantly protective. Under the
Stanford scoring system, mutations only receive a score if they are thought to increase resistance to a
particular drug so that these findings are not necessarily in disagreement with the scores of zero assigned
to these three mutations by that system. It seems quite plausible that mutations may also decrease the
fitness of the virus and thus lead to improved virologic response. In fact, in vitro experiments examining
the effect of different mutations on viral phenotype suggest that 30N and 88S may in fact have a negative
impact on the fitness of the virus (Rhee et al., 2006). The significant subset still contains five mutations,
however, that are estimated to be associated with considerably worse virologic response, but are not
considered major lopinavir drug resistance mutations by the Stanford scoring system (33F, 73CSTA,
10FIRVY, 20IMRTVL, and 71ITV). Two of these, 33F and 73CSTA, are in fact ranked among the five
most important mutations by the unadjusted analysis, illustrating that an analysis not addressing the
issue of confounding can lead to rather noisy results.

An analysis based on the non-parametric targeted maximum-likelihood estimator adjusting for the
full set W of potential confounders, summarized in table 3, identifies only five mutations as having a
major effect on virologic response to lopinavir (50V, 84C, 16E, 32I, and 48VM). In agreement with the
Stanford scoring system, the two mutations 50V and 32I are estimated to lead to decreased susceptibility
to lopinavir. The mutation 16E, estimated to lead to considerably improved fitness of the virus in the
presence of lopinavir, is not thought to be a major contributor to lopinavir drug resistance. The remaining
two mutations 84C and 48VM, finally, are thought to be major contributors, but are in fact estimated
to lead to increased susceptibility to lopinavir. The ranking produced by this analysis is thus hard to
reconcile with current understanding of HIV antiretroviral resistance, illustrating that a fully adjusted
analysis can lead to unreliable results if the ETA assumption is violated. A fully adjusted analysis
based on the model-based targeted maximum-likelihood estimator, summarized in table 4, identified
no mutations with a statistically significant impact on virologic response. These findings are similarly
unsatisfying and show that a violation of the ETA assumption cannot be adequately addressed by turning
to a more stable estimator that is based on additional modelling assumptions.

6.4 Data-adaptive selection of the targeted and effective adjustment
sets

In this section, we examine the variable importance estimates obtained by data-adaptive selection of
the targeted and effective adjustment set. In section 3, we proposed two different criteria for selecting
the targeted adjustment set, one based on a simulation aimed at estimating the finite-sample bias of
the IPTW estimator, the other based on a closed-form estimate of the asymptotic bias of a modestly
truncated IPTW estimator. The latter criterion depends on a user-supplied choice for the parameter
p that defines the desired truncation level based on the maximum proportion of the sum of all weights
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Table 2: Unadjusted estimates variable importance estimates ranked by p-value. The table also shows the
resistance score assigned to a mutation by the Stanford HIVdb scoring system (accessed on 9/1/2007) and
the frequency of the mutation among the 401 treatment change episodes.

Rank Mutation Score Freq Estimate SE p-value
1 30N 0 45 -1.12 0.23 0.0000
2 54VA 11 84 0.86 0.18 0.0000
3 50V 20 5 1.98 0.44 0.0001
4 33F 5 44 0.84 0.21 0.0005
5 73CSTA 2 66 0.81 0.22 0.0012
6 88DTG 0 44 -0.89 0.25 0.0012
7 82AFST 20 100 0.62 0.18 0.0016
8 10FIRVY 2 217 0.54 0.16 0.0022
9 90M 10 171 0.54 0.16 0.0028
10 47V 10 17 1.18 0.36 0.0029
11 54LMST 11 36 0.69 0.24 0.0110
12 88S 0 9 -0.74 0.27 0.0134
13 32I 10 21 0.80 0.30 0.0146
14 20IMRTVL 0 115 0.46 0.18 0.0182
15 46ILV 11 143 0.43 0.17 0.0182
16 84AV 11 73 0.49 0.20 0.0219
17 71TVI 2 181 0.36 0.16 0.0312
18 48VM 10 16 0.77 0.35 0.0378
19 53LY 3 33 0.53 0.26 0.0601
20 24IF 2 16 0.69 0.36 0.0691
21 36ILVTA 0 141 0.32 0.18 0.0919
22 23I 0 4 0.68 1.02 0.5950
23 63P 0 311 0.09 0.19 0.7297
24 82MLC 10 4 0.30 0.95 0.8123
25 16E 0 9 -0.05 0.50 0.9308
26 84C 10 2 0.15 1.74 0.9308
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Table 3: Fully adjusted non-parametric variable importance estimates ranked by p-value. The table also
shows the resistance score assigned to a mutation by the Stanford HIVdb scoring system (accessed on
9/1/2007) and the frequency of the mutation among the 401 treatment change episodes.

Rank Mutation Score Freq Estimate SE p-value
1 50V 20 5 0.95 0.08 0.0000
2 84C 10 2 -2.92 0.08 0.0000
3 16E 0 9 0.90 0.25 0.0021
4 32I 10 21 0.26 0.07 0.0021
5 48VM 10 16 -0.26 0.07 0.0021
6 88S 0 9 -0.35 0.15 0.0708
7 33F 5 44 1.17 0.51 0.0823
8 54VA 11 84 0.55 0.28 0.1583
9 84AV 11 73 0.44 0.28 0.3457
10 53LY 3 33 0.51 0.38 0.4573
11 30N 0 45 -0.22 0.18 0.5307
12 47V 10 17 0.76 0.65 0.5307
13 10FIRVY 2 217 -0.22 0.21 0.6000
14 23I 0 4 -0.86 1.01 0.7144
15 73CSTA 2 66 0.20 0.25 0.7144
16 82AFST 20 100 -0.25 0.36 0.7824
17 82MLC 10 4 -0.33 0.61 0.9031
18 20IMRTVL 0 115 0.08 0.19 0.9098
19 36ILVTA 0 141 0.09 0.22 0.9098
20 90M 10 171 0.20 0.46 0.9098
21 63P 0 311 -0.09 0.29 0.9120
22 88DTG 0 44 -0.17 0.53 0.9120
23 46ILV 11 143 -0.04 0.21 0.9371
24 54LMST 11 36 -0.04 0.22 0.9371
25 71TVI 2 181 0.02 0.18 0.9651
26 24IF 2 16 0.00 0.27 0.9967
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Table 4: Fully adjusted model-based variable importance estimates ranked by p-value. The table also shows
the resistance score assigned to a mutation by the Stanford HIVdb scoring system (accessed on 9/1/2007)
and the frequency of the mutation among the 401 treatment change episodes.

Rank Mutation Score Freq Estimate SE p-value
1 50V 20 5 1.35 0.54 0.2621
2 54VA 11 84 0.57 0.25 0.2621
3 16E 0 9 0.45 0.36 0.6008
4 24IF 2 16 0.54 0.31 0.6008
5 30N 0 45 -0.38 0.31 0.6008
6 33F 5 44 0.36 0.31 0.6008
7 36ILVTA 0 141 0.24 0.19 0.6008
8 47V 10 17 0.57 0.52 0.6008
9 48VM 10 16 -0.44 0.36 0.6008
10 53LY 3 33 0.30 0.26 0.6008
11 73CSTA 2 66 0.39 0.25 0.6008
12 88S 0 9 -0.47 0.33 0.6008
13 32I 10 21 0.37 0.36 0.6102
14 10FIRVY 2 217 -0.16 0.18 0.7016
15 20IMRTVL 0 115 0.08 0.16 0.8481
16 54LMST 11 36 0.17 0.30 0.8481
17 63P 0 311 -0.07 0.18 0.8481
18 71TVI 2 181 0.06 0.15 0.8481
19 84AV 11 73 0.11 0.22 0.8481
20 84C 10 2 -0.38 0.80 0.8481
21 88DTG 0 44 0.11 0.30 0.8481
22 90M 10 171 0.13 0.19 0.8481
23 23I 0 4 -0.23 1.22 0.9214
24 82MLC 10 4 -0.18 0.79 0.9214
25 46ILV 11 143 0.02 0.18 0.9275
26 82AFST 20 100 0.03 0.26 0.9275
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that any one weight is allowed to reach. We first examine the sensitivity of the proposed algorithm to
different choices for selecting the targeted adjustment set. Table 5 summarizes the targeted adjustment
level δt selected by the simulation-based criterion as well as by the closed-form criterion for three different
choices of p. Overall, the choices made by the four different approaches are in good agreement with each
other, with major discrepancies observed only for the mutation 24IF. As is to be expected, larger choices
for p, corresponding to milder truncation levels, decrease the sensitivity of the closed-form criterion and
thus tend to lead to slightly larger targeted adjustment levels, although the effect is not too strong over
the range of candidate values for p considered here.

Table 5: The targeted adjustment level δt selected based on the simulation-based criterion BETA
sim (δ) as well

as based on the asymptotic criterion BETA
M (δ) for p = 0.05, p = 0.10, and p = 0.20. The maximally tolerated

proportion of bias relative to the unadjusted estimate, Bmax, is set to 0.25.

Mutation Simulation p = 0.05 p = 0.10 p = 0.20
10FIRVY 1.0 1.0 1.0 1.0
16E 0.0 0.0 0.0 0.0
20IMRTVL 1.0 1.0 1.0 1.0
23I 0.0 0.3 0.3 0.3
24IF 0.3 0.1 0.7 0.7
30N 0.5 0.5 0.5 0.5
32I 0.5 0.5 0.5 0.5
33F 0.8 0.7 0.8 0.9
36ILVTA 1.0 1.0 1.0 1.0
46ILV 1.0 1.0 1.0 1.0
47V 0.5 0.5 0.7 0.7
48VM 0.5 0.5 0.5 0.5
50V 1.0 1.0 1.0 1.0
53LY 0.9 0.8 0.9 0.9
54LMST 0.3 0.3 0.3 0.5
54VA 1.0 0.8 0.9 0.9
63P 0.4 0.6 0.6 0.6
71TVI 1.0 1.0 1.0 1.0
73CSTA 0.7 0.6 0.7 0.7
82AFST 0.8 0.7 0.7 0.8
82MLC 0.0 0.2 0.2 0.2
84AV 0.5 0.5 0.8 0.8
84C 0.0 0.0 0.0 0.0
88DTG 0.8 0.7 0.7 0.8
88S 0.0 0.2 0.4 0.4
90M 1.0 1.0 1.0 1.0

Table 6 summarizes the mutations that are identified as having a significant impact on virologic
response if the targeted adjustment level is selected based on the same four different approaches. Again,
the results are good agreement with each other, especially for those mutations that are thought to have
major effect on virologic response. These findings, together with the results displayed in table 5, thus
suggest that the proposed algorithm is fairly robust with respect to choices made at this step.

Table 7 summarizes the number of mutations that are statistically significant at the 0.05 level if the
effective adjustment is either set equal to the targeted adjustment or selected data-adaptively based on
the mean-squared-error criterion described in section 4. As seen already in the simulation study, the gains
achieved by the non-parametric estimator are considerably larger than those achieved by the model-based
estimator. The non-parametric estimator becomes more sensitive to the approach taken for selecting the
targeted adjustment set if the effective adjustment set is not selected data-adaptively, with the number
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Table 6: Mutations that have a statistically significant impact on viral load at the 0.05 significance level.
Significant mutations are shown by check marks for the non-parametric (NP) as well as model-based (MOD)
estimator and targeted adjustment levels δt selected based on the simulation-based criterion BETA

sim (δ) as well
as based on the asymptotic criterion BETA

M (δ) for p = 0.05, p = 0.10, and p = 0.20. The maximally tolerated
proportion of bias relative to the unadjusted estimate, Bmax, is set to 0.25. The effective adjustment set is
selected data-adaptively. The table also shows the resistance score assigned to a mutation by the Stanford
HIVdb scoring system (accessed on 9/1/2007) and the frequency of the mutation among the 401 treatment
change episodes.

Mutation Score Freq Simulation p = 0.05 p = 0.10 p = 0.20
10FIRVY 2 217
16E 0 9
20IMRTVL 0 115
23I 0 4
24IF 2 16 X X X
30N 0 45 X X X X
32I 10 21 X X X X
33F 5 44
36ILVTA 0 141
46ILV 11 143
47V 10 17 X X X X
48VM 10 16 X X X X
50V 20 5 X X X X
53LY 3 33
54LMST 11 36 X X X X
54VA 11 84 X X X X
63P 0 311
71TVI 2 181
73CSTA 2 66
82AFST 20 100 X X X X
82MLC 10 4
84AV 11 73 X X X X
84C 10 2
88DTG 0 44
88S 0 9 X X X X
90M 10 171
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of significant mutations identified by that estimator ranging from three to eight depending on the choice
of the identifiability criterion. The model-based estimator, on the other hand, remains relatively stable
with respect to that choice even if the effective adjustment set is not selected data-adaptively.

Table 7: Number of mutations that are statistically significant at the 0.05 significance level if the effective
adjustment set is selected data-adaptively versus being set equal to the targeted adjustment set. Results are
shown for the non-parametric and model-based estimator as well as for the targeted adjustment set selected
based on the simulation-based criterion BETA

sim (δ) as well as based on the asymptotic criterion BETA
M (δ) for

p = 0.05, p = 0.10, and p = 0.20. The maximally tolerated proportion of bias relative to the unadjusted
estimate, Bmax, is set to 0.25.

Non-parametric Model-based
Targeted Effective Targeted Effective

Simulation 8 11 13 13
p = 0.05 8 10 11 12
p = 0.10 4 11 11 13
p = 0.20 3 11 10 11

Tables 8 and 9 summarize the variable importance estimates obtained by the algorithm proposed
here, selecting the targeted adjustment by the closed-form criterion with p = 0.05. The non-parametric
estimator identifies 10 mutations with a statistically significant impact on viral load. With the exception
of 32I and 88S, all of these 10 mutations are also significant if the effective adjustment set is not selected
data-adaptively. Among the 10 identified mutations are eight of the 12 major known drug resistance
mutations for lopinavir (50V, 48VM, 47V, 54LMST, 32I, 54VA, 84AV, and 82AFST) as well as two
mutations that are estimated to increase susceptibility to lopinavir (30N and 88S), a finding that, as
mentioned earlier, is in agreement with in vitro experiments examining the effect of different mutations
on viral phenotype (Rhee et al., 2006). The same experiments suggest that the mutations 46ILV and
90M, two of the four major mutations not identified by this analysis, may in fact be less important for
lopinavir resistance than previously thought. The remaining two important mutations not identified here,
82MLC and 84C, occurred among only four and two of the 401 TCEs used in this analysis, respectively,
so that the analysis had very low power for finding a significant impact of these mutations on viral load.
Overall, the results reported here are thus in excellent agreement with current understanding of HIV
antiretroviral resistance.

The variable importance estimates obtained by the model-based estimator are overall very similar to
those obtained by the non-parametric estimator. The significant subset is identical except that the major
mutation 84AV is missing and the three minor mutations 33F, 73CSTA, and 88DTG are included. With
the exception of 88S, all of the identified 12 mutations are also significant if the effective adjustment set
is not selected data-adaptively. The mutation 88DTG is estimated to increase susceptibility to lopinavir
so that inclusion of this mutation is not necessarily in disagreement with the Stanford scoring system.
The remaining three differences between the significant subset identified here and that described for
the non-parametric estimator, however, cause the results for the model-based estimator to be in not
quite as strong an agreement with current knowledge about lopinavir drug resistance as those for the
non-parametric estimator.

For each of the mutations identified by the non-parametric estimator as a having a significant impact
on viral load, table 10 summarizes which of the other significant mutations could not be adjusted for in
obtaining an adjusted variable importance estimate. The table illustrates that adjustment for all other
mutations is in fact difficult in most cases. Individual contributions to drug resistance are particularly
hard to disentangle since mutations thought to decrease sensitivity to lopinavir are typically positively
correlated with each other, but negatively with those mutations thought to increase sensitivity. For most
candidate PI mutations it is still possible, however, to adjust for the majority of the other mutations.
This may explain why the results reported here are in better agreement with current understanding of
lopinavir resistance than those reported in previous analyses that categorically did not adjust for any
other candidate PI mutations (Bembom et al., 2007). It seems somewhat surprising that even mutations
with relatively small marginal correlations with the mutation of interest could sometimes not be adjusted
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Table 8: Data-adaptively adjusted non-parametric variable importance estimates ranked by p-value. The
targeted adjustment level is selected based on the asymptotic bias estimate BETA

M (δ) for a truncated IPTW
estimator. The parameters p and Bmax are set to 0.05 and 0.25, respectively. The effective adjustment set
is selected data-adaptively. δt and δe give the proportion of potential confounders contained in the targeted
and effective adjustment set, respectively. The table also shows the resistance score assigned to a mutation
by the Stanford HIVdb scoring system (accessed on 9/1/2007) and the frequency of the mutation among the
401 treatment change episodes.

Rank Mutation Score Freq Estimate SE δt δe p-value
1 50V 20 5 0.95 0.08 1.0 1.0 0.0000
2 48VM 10 16 1.20 0.18 0.5 0.5 0.0000
3 47V 10 17 1.62 0.25 0.5 0.4 0.0000
4 30N 0 45 -1.12 0.22 0.5 0.5 0.0000
5 54LMST 11 36 0.60 0.17 0.3 0.3 0.0025
6 32I 10 21 0.89 0.26 0.5 0.3 0.0027
7 88S 0 9 -0.74 0.27 0.2 0.0 0.0230
8 54VA 11 84 0.43 0.16 0.8 0.8 0.0251
9 84AV 11 73 0.44 0.17 0.5 0.5 0.0251
10 82AFST 20 100 0.38 0.15 0.7 0.6 0.0389
11 53LY 3 33 0.56 0.25 0.8 0.3 0.0521
12 73CSTA 2 66 0.54 0.24 0.6 0.5 0.0521
13 24IF 2 16 0.64 0.32 0.1 0.1 0.0947
14 33F 5 44 0.55 0.29 0.7 0.7 0.1068
15 36ILVTA 0 141 0.27 0.15 1.0 0.5 0.1333
16 90M 10 171 0.30 0.17 1.0 0.8 0.1333
17 88DTG 0 44 -0.32 0.29 0.7 0.7 0.4034
18 10FIRVY 2 217 -0.22 0.21 1.0 1.0 0.4333
19 20IMRTVL 0 115 0.13 0.15 1.0 0.9 0.5338
20 82MLC 10 4 0.47 0.58 0.2 0.2 0.5402
21 63P 0 311 -0.06 0.16 0.6 0.5 0.8915
22 23I 0 4 0.24 0.85 0.3 0.3 0.9133
23 16E 0 9 -0.05 0.50 0.0 0.0 0.9516
24 46ILV 11 143 0.01 0.18 1.0 0.9 0.9516
25 71TVI 2 181 0.02 0.18 1.0 1.0 0.9516
26 84C 10 2 0.15 0.87 0.0 0.0 0.9516
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Table 9: Data-adaptively adjusted model-based variable importance estimates ranked by p-value. The
targeted adjustment level is selected based on the asymptotic bias estimate BETA

M (δ) for a truncated IPTW
estimator. The parameters p and Bmax are set to 0.05 and 0.25, respectively. The effective adjustment set
is selected data-adaptively. δt and δe give the proportion of potential confounders contained in the targeted
and effective adjustment set, respectively. The table also shows the resistance score assigned to a mutation
by the Stanford HIVdb scoring system (accessed on 9/1/2007) and the frequency of the mutation among the
401 treatment change episodes.

Rank Mutation Score Freq Estimate SE δt δe p-value
1 30N 0 45 -0.93 0.23 0.5 0.5 0.0007
2 48VM 10 16 1.00 0.24 0.5 0.5 0.0007
3 50V 20 5 1.67 0.43 1.0 0.9 0.0009
4 54VA 11 84 0.62 0.16 0.8 0.6 0.0009
5 47V 10 17 1.03 0.30 0.5 0.5 0.0025
6 32I 10 21 0.85 0.26 0.5 0.5 0.0043
7 82AFST 20 100 0.46 0.16 0.7 0.6 0.0120
8 54LMST 11 36 0.54 0.19 0.3 0.3 0.0146
9 88S 0 9 -0.74 0.27 0.2 0.0 0.0179
10 73CSTA 2 66 0.52 0.22 0.6 0.6 0.0390
11 88DTG 0 44 -0.57 0.24 0.7 0.7 0.0390
12 33F 5 44 0.53 0.23 0.7 0.7 0.0419
13 24IF 2 16 0.67 0.31 0.1 0.1 0.0642
14 36ILVTA 0 141 0.30 0.15 1.0 0.5 0.0938
15 53LY 3 33 0.41 0.24 0.8 0.7 0.1410
16 84AV 11 73 0.22 0.17 0.5 0.5 0.3073
17 10FIRVY 2 217 -0.16 0.18 1.0 1.0 0.5457
18 20IMRTVL 0 115 0.14 0.15 1.0 0.9 0.5457
19 23I 0 4 0.68 1.02 0.3 0.0 0.6545
20 90M 10 171 0.13 0.19 1.0 1.0 0.6545
21 82MLC 10 4 0.39 0.62 0.2 0.2 0.6567
22 46ILV 11 143 0.06 0.16 1.0 0.8 0.8080
23 71TVI 2 181 0.06 0.15 1.0 1.0 0.8080
24 16E 0 9 -0.05 0.50 0.0 0.0 0.9308
25 63P 0 311 -0.03 0.17 0.6 0.6 0.9308
26 84C 10 2 0.15 1.74 0.0 0.0 0.9308
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for. Perhaps it is only when several of these mutations are adjusted for simultaneously that ETA problems
arise.

Table 10: Other PI mutations not adjusted for among those mutations statistically significant at the 0.05
level. Results are based on the non-parametric estimator using a targeted adjustment set selected based on the
asymptotic criterion with p = 0.05 and Bmax = 0.25. The effective adjustment set is selected data-adaptively.
If the entry in a cell is empty, the variable importance estimate for the mutation in that row was adjusted for
the mutation in that column. If the entry is not empty, the mutation in that column could not be adjusted
for and the entry shows the sample correlation between the two relevant mutations.

30N 32I 47V 50V 54LMST 54VA 82AFST 84AV 88S
30N -0.12 -0.20 -0.13
32I 0.62 0.28 0.25
47V 0.62 0.41 0.08
48VM -0.07 0.32 0.16 0.18 0.32
50V
54LMST 0.28 0.41 -0.14 0.21
54VA 0.58
82AFST -0.20 0.25 0.58
84AV -0.13 0.21
88S -0.04 -0.03 -0.02 -0.08 -0.09 -0.03

7 Discussion

In this paper, we propose a data-adaptive algorithm intended to increase the robustness of variable
importance estimation with respect to violations of the ETA assumption. The algorithm is based on
one of two identifiability criteria for selecting a targeted adjustment set as well as a mean-squared-error
criterion for selecting an effective adjustment set. The data analysis shows very clearly the importance of
selecting an appropriate targeted adjustment set as both unadjusted and fully adjusted analyses lead to
unsatisfactory results. The fact that the algorithm chose not to adjust for some variables that have quite
small marginal correlations with the mutation of interest suggests that serious practical ETA violations
may be much more common than previously thought and underscore the need to assess the validity of
this assumption. This point is particularly important since many conventional approaches to biomarker
discovery such as regression analysis typically do not reveal such problems through sharply inflated
standard errors as seen with the non-truncated IPTW and targeted maximum-likelihood estimator, thus
not giving the investigator any warning that the parameter of interest may be poorly identified from the
observed data.

The data analysis and the simulation study also illustrate the potential gains in efficiency that can
be achieved by selecting the effective adjustment set data-adaptively. In the data analysis, the proposed
algorithm for selecting both adjustment sets data-adaptively identified a subset of mutations that is in
excellent agreement with current understanding of lopinavir resistance, in better agreement, in particular,
than previous analyses that categorically excluded other candidate PI mutations from the adjustment
set. These findings suggest that variable importance estimation based on data-adaptive selection of the
targeted and effective adjustment sets represents a promising new approach for studying the effects of
HIV mutations on clinical virologic response to antiretroviral therapy as well as for biomarker discovery
in general.

A number of possible extensions of the methodology discussed in this article exist. First, the approach
can be applied in a straightforward way to the estimation of causal effects in the point-treatment setting
by use of marginal structural models (Robins et al., 2000). In addition, the methodology can be extended
to longitudinal data structures. In that case, selection of the targeted adjustment set would need to be
based on the parametric-bootstrap approach for estimating the finite-sample bias of the IPTW estimator
since closed-form asymptotic bias estimates for truncated IPTW estimators are not currently available for
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the longitudinal setting. Selection of the effective adjustment set would still be based on G-computation
point estimates that now, however, would also need to be obtained through a Monte-Carlo simulation.
Some care would need to be taken in defining a nested sequence of candidate adjustment sets for each
time point. It might be preferable to not consider different candidate adjustment sets for different time
points, but instead to define identical candidate adjustment sets across time points.

In face of the small marginal correlations between some of the treatment variables and other candidate
PI mutations that could not be adjusted for, it might be useful to explore alternative criteria for defining
the sequence of candidate adjustment sets. This may be less important in cases in which the ETA
assumption is satisfied, but once the adjustment set is large enough to result in an appreciable violation,
it might be advantageous to add covariates to the adjustment set directly based on the effect that they
would have on the identifiability criterion.

As mentioned in section 4, inference based on the influence curve may be somewhat optimistic in finite
samples if the effective adjustment set is selected data-adaptively. Future research is needed to compare
inference based on this approach to inference based on an honest bootstrap procedure to quantify the
extent to which the use of the former might be problematic. We note, however, that even in situations
in which such p-values may be systematically optimistic, they would be still be useful for obtaining a
meaningful ranking of the candidate biomarkers.
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Abstract

Case-control sampling is an extremely common design used to gen-
erate data to estimate effects of exposures or treatments on a binary
outcome of interest when the proportion of cases (i.e., binary outcome
equal to 1) in the population of interest is low. Case-control sampling
represents a biased sample of a target population of interest by sampling
a disproportional number of cases. Case-control studies are also com-
monly employed to estimate the effects of genetic markers or biomarkers
on phenotypes.

In this article we present a general method of estimation relying on
knowing the incidence probability, conditional on the matching variable
if matching is used.

Our general proposed methodology, involving a simple weighting
scheme of cases and controls, maps any estimation method for a param-
eter developed for prospective sampling from the population of interest
into an estimation method based on case-control sampling from this
population.

We show that this case-control weighting of an efficient estimator for
a prospective sample from the target population of interest maps into an
efficient estimator for matched and unmatched case-control sampling.
In particular, we show how application of this generic methodology
provides us with double robust locally efficient targeted maximum like-
lihood estimators of the causal relative risk and causal odds ratio for
regular case control sampling and matched case control sampling.
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1 Introduction.

Case-control sampling is an extremely common design used to generate data
to estimate effects of exposures or treatments on a binary outcome of interest
when the actual population proportion of cases (i.e. binary outcome equal to
1) is small. As a consequence, it is of interest to present estimators of causal
effects or variable importance parameters based on case-control data.

1.1 Formulation of case-control estimation problem.

Let’s first formulate the statistical problem. For the sake of concreteness and
illustration, our formulation will focus on a case-control point treatment data
structure with baseline covariates in which one is concerned with estimation
of the causal effect or variable importance of the treatment variable on the
binary outcome. Our initial formulation will assume that the variables are
not subject to missingness or censoring. Our general methods are straightfor-
ward extensions and apply to general case control data structures, including
censored data structures and time-dependent longitudinal data structures.

Experimental unit of interest. Let O∗ = (W,A, Y ) ∼ P ∗0 represent the
experimental unit and corresponding distribution P ∗0 of interest, consisting of
baseline covariates W , a subsequent monitored treatment/exposure variable
A, and a ”final” binary outcome Y .

Causal or variable importance parameter of interest. Suppose one
is concerned with statistical inference regarding a particular euclidean valued
variable importance or causal effect parameter ψ∗0 = Ψ∗(P ∗0 ) ∈ IRd of this
distribution P ∗0 . For example, one might be interested in the marginal causal
additive effect of a binary treatment A ∈ {0, 1} defined as

ψ∗0 ≡ E∗0{E∗0(Y | A = 1,W )− E∗0(Y | A = 0,W )} = E∗0(Y1)− E∗0(Y0)

= P ∗0 (Y1 = 1)− P ∗0 (Y0 = 1),

where the latter causal effect interpretation of this parameter of P ∗0 requires the
notion of treatment specific counterfactual outcomes Y0, Y1, viewing (W,A, Y =
YA) as a time-ordered missing data structure on the full data structure (W,Y0,
Y1), and one needs to assume the randomization assumption stating that A
is independent of Y0, Y1, given W . The latter causal parameter formulation
ψ∗0 can also be viewed as a W -adjusted variable importance (of variable A)
parameter of the true regression of Y on A,W , in which case there is no need
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to assume the time ordering (W ⇒ A ⇒ Y ), the missing data structure as-
sumption, or the randomization assumption, and the adjustment set W is user
supplied (and does thus not need to correspond with the set of all confounders
of A): see van der Laan (2006) for a general formulation of variable importance
parameters and its direct relation to causal effect parameters.
One can also define the parameter of interest as a causal relative risk

ψ∗0 =
E∗0E

∗
0(Y | A = 1,W )

E∗0E∗0(Y | A = 0,W )
=
EY1

EY0

=
P (Y1 = 1)

P (Y0 = 1)
,

or a causal odds ratio,

ψ∗0 =
P (Y1 = 1)P (Y0 = 0)

P (Y1 = 0)P (Y0 = 1)
,

or their variable importance analogue.
We will use these particular marginal causal effects or marginal variable im-

portance parameters as our main examples in order to illustrate our proposed
methodology for case-control data, including our proposed targeted maximum
likelihood estimation methodology.

Model for target probability distribution. A model for O∗ is obtained
by modelling this distribution of O∗: for example, one might know that A is
independent of W , one might know the actual distribution (treatment mech-
anism) P ∗0 (A = a | W ), or one might assume a marginal structural model

E∗0(Ya | V ) = E∗0(E∗0(Y | A = a,W ) | V ) = m(a, V | β∗0),

where V ⊂ W denotes some user supplied potential effect modifier of interest,
and m(· | β) some parameterization modelling the causal effect of the inter-
vention A = a on the outcome Y , conditional on V . If one wishes to avoid
making causal assumptions, the marginal structural parameter represents the
effect of a change in variable A on the mean outcome of Y within subgroups
V = v, controlling for potential confounders W . We will denote such a model
for P ∗0 with M∗: i.e., it is assumed that P ∗0 ∈M∗.

Case-control sampling and its probability distribution. If one would
sample n i.i.d. observations O∗1, . . . , O

∗
n ∼ P ∗0 , then we could (e.g.) apply the

locally efficient targeted MLE of ψ∗0 (see e.g. van der Laan and Rubin (2006)
or Moore and van der Laan (2007)), or one could use double robust estimating
function methodology (van der Laan and Robins (2002)).
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However, this so called prospective sampling scheme is often considered
impractical and ineffective in situations in which the probability P ∗0 (Y = 1)
on the event Y = 1 (say disease) is very small. For example, if the proportion
of diseased in the population of interest is one in hundred thousand, then one
would have to sample millions of observations in order to have some cases (i.e,
Yi = 1) in the sample. This sparsity of cases in the population of interest is
precisely the typical motivation for case-control sampling.

We will distinguish between two types of case-control sampling: indepen-
dent or un-matched case-control sampling and matched case-control sampling.
In both cases, the marginal distribution of the cases and the marginal distribu-
tion of the controls is completely determined by the population (i.e. prospec-
tive sampling) distribution P ∗0 of the random variable (W,A, Y ) of interest.

Independent Case-Control Sampling. One first samples a case by sam-
pling (W1, A1) from the conditional distribution of (W,A), given Y = 1. Sub-
sequently, one samples J controls (W j

0 , A
j
0) from the conditional distribution

of (W,A), given Y = 0, j = 1, . . . , J . It is allowed that these J control obser-
vations are dependent as long as their marginal distributions are indeed equal
to the conditional distribution of W,A, given Y = 0.

This results in an experimental unit observed data structure:

O = ((W1, A1), (W j
0 , A

j
0 : j = 1, . . . , J)) ∼ P0,

where we denote the sampling distribution of this data structure O described
above with P0. Thus, a case control data set will consists of n independent
and identically distributed observations O1, . . . , On with sampling distribution
P0 described above. That is, we treat the cluster consisting of one case and
J controls as the experimental unit, and the marginal distribution of the case
and controls are specified as above by P ∗0 .

Matched Case-Control Sampling. One specifies a categorical matching
variable M ⊂ W . One first samples a case by sampling (M1,W1, A1) from the
conditional distribution of (M,W,A), given Y = 1. Subsequently, one samples
J controls (M j

0 ,W
j
0 , A

j
0) from the conditional distribution of (M,W,A), given

Y = 0,M = M1. That is, with probability equal to 1 we have M j
0 = M1,

j = 1, . . . , J . It is allowed that these J control observations are dependent
as long as their marginal distributions are indeed equal to the conditional
distribution of M,W,A, given Y = 0,M = M1.

This results in an experimental unit data structure:

O = ((M1,W1, A1), (M j
0 = M1,W

j
0 , A

j
0 : j = 1, . . . , J)) ∼ P0,
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where we denote the sampling distribution of this data structure O described
above with P0. Thus, a matched case-control data set will consists of n in-
dependent and identically distributed observations O1, . . . , On with sampling
distribution P0 described above. That is, we treat the cluster consisting of one
case and the J matched controls as the experimental unit, and the marginal
distribution of the case and J controls are specified as above by P ∗0

We will also refer to the independent case-control experiment and the
matched case-control experiments as Case-Control Design I and Case-Control
Design II, respectively.

Extensions. Our methods naturally handle the case that J is random and
thus varies per experimental unit, assuming that the marginal distributions of
cases and controls, conditional on J = j, do not depend on j. In the situation
that a case was never coupled to a set of controls one can artificially create
such couplings, and apply our methods, and one could average over a variety
of sensible coupling schemes. The latter shows that if the true independent
case control design simply involves sampling a set of cases and an independent
set of controls, without any coupling, then our case control weighting methods
show that one should weight each case by q0 and each control by (1 − q0)/J̄ ,
where J̄ is the number of controls divided by the number of cases. In the
discussion we show the simple extension of our methods to some variations on
these case-control designs I and II, such as pair-matched case-control designs,
case-control sampling within strata, and counter-match case control designs.
We also note here that our sampling model for O∗ corresponds with sampling
with replacement from a particular population with population distribution
P ∗0 . Such a model is appropriate if the size of the total population is large
relative to sample size n.

The estimation problem. The statistical problem is now to estimate the
parameter ψ0 = Ψ∗(P ∗0 ) of the population distribution P ∗0 ∈M∗ of (W,A, Y ),
known to be an element of some specified modelM∗, based on the case-control
data set O1, . . . , On ∼ P0.

Known or sensitivity analysis parameters/weights. We define

q0 ≡ P ∗0 (Y = 1) and q0(δ |M) ≡ P ∗0 (Y = δ |M),

as the marginal probability of being a case, and the conditional probability of
being a case/non-case, conditional on the matching variable. It is assumed that
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these probabilities are between 0 and 1. In addition, we define the quantity

q̄0(M) ≡ q0
P ∗0 (Y = 0 |M)

P ∗0 (Y = 1 |M)
= q0

q0(0 |M)

q0(1 |M)
.

We note that q̄0(M) is determined by q0 and q0(1 | M) = P ∗0 (Y = 1 | M),
and we also note that E0q̄0(M1) = 1− q0. These two quantities q0 and q̄0(M)
(for matched case-control studies) will be used to weight the cases and controls
to obtain valid estimation procedures.

In order to be able to identify the wished causal parameters, for case-control
design I, we only need to assume q0 is known, and, for matched case-control
design II, we assume q0 and q̄0(m) for each m are known. However, we note
here that for matched case-control designs one can also assume that q0 and

r0(m) ≡ P ∗0 (Y = 0,M = m)

(instead of q̄0(1 | m)) are known We note that, given r0(m), q̄0(m) is known
up till a simple to estimate nuisance parameter P (M1 = m):

q̄0(m) =
r0(m)

P0(M1 = m)
.

As a consequence, our case-control weighted estimation procedures using q0,
q̄0(m) still apply in settings in which one assumes q0 and r0(m) are known, by

replacing q̄0(m) by its estimate r0(m)
1
n

∑n

i=1
I(M1i=m)

.

Observed data model. In this article, we will assume that q0 is known,
and that, for matched case-control designs we also assume that q̄0(M), or
equivalently, q0(1 | m) = P ∗0 (Y = 1 | M = m) is known for each m. In our
accompanying technical report we show that if the ”treatment mechanism”
g∗0(a | w) = P ∗0 (A = a | W = w) is known, as it would be in a case control
study nested in a randomized trial, then we can estimate the relative risk or
odds ratio parameters without a need to know (any of) q0 or q̄0(M).

The model M∗, possibly including the knowledge q0 or q̄0(M), imply now
models for the marginal distribution of the cases (M1,W1, A1) and the marginal
distributions of the controls (M1,W

j
2 , A

j
2), j = 1, . . . , J . The model M∗

does not imply much, if anything, about the dependence structure among
(M1,W1, A1), (M1,W

j
2 , A

j
2), j = 1, . . . , J , beyond the fact that, for matched

case-control studies, all its components (i.e., the case and control observa-
tions) share a common variable M1. Let M be the model for the observed
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data distribution P0 compatible with M∗ (i.e., its marginals are specified by
P ∗0 ).

One possible and probably very common modelM is to assume that, given
the first draw (M1,W1, A1) from (M,W,A), given Y = 1, the control obser-
vations are all independent draws from the specified conditional distributions.
Note that in this latter model the marginal distributions for the case and con-
trol observations implied by P ∗ describe now the whole case-control sampling
distribution P , so that we can write M = {P (P ∗) : P ∗ ∈ M}, where P (P ∗)
is the distribution of O implied by P ∗.

Other possible models might specify in another manner, or not specify
at all, the dependence structure and could, for example, be represented as
{P (P ∗, η) : P ∗ ∈M∗, η}, where the nuisance parameter η in combination with
P ∗ describes the complete joint distribution of case and control observations
(M1, Z1), (M1, Z

j
2 : j = 1, . . . , J) compatible with its marginal distributions

implied by P ∗.
We note that knowing q0 does not put restrictions on the data generating

distribution P0 since one conditions on Y = 1, but for case-control design I
it does allow identification of the wished parameters by expressing them as a
function of the distribution of the observed case-control data-structure and q0.
Similarly, for matched case-control designs, knowing q0 and r0(·) does not put
restrictions on the data generating distribution P0 for matched case-control
designs, but it allows one to express the wished parameter as a function of the
distribution of the data and (q0, r0). It remains to be investigated if knowing
q0 and q̄0 puts a restriction on the data generating distribution for matched-
case-control designs.

1.2 Overview of article.

In Section 2 we present our general solution to the estimation problem for these
two types of case control designs I and II, which weights the cases and con-
trols with q0 and (1− q0)/J (q̄0(M)/J for case control design II), respectively,
and then applies a method developed for prospective sampling to estimate the
parameter of interest (e.g., targeted maximum likelihood estimators or esti-
mating equations for the causal effect or variable importance parameter ψ0 of
interest), as if the data was directly drawn from the population distribution
P ∗0 of interest. In other words, each estimating function for ψ∗0 or likelihood for
P ∗0 in the underlying modelM∗ maps into a ”case-control”-weighted estimat-
ing function or likelihood for the observed data model M (whatever nuisance
parameter specification P (P ∗, η) it might have beyond the description of its
marginal distributions in terms of P ∗).
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Beyond the weighting, we point out that one should aim to select the best
among these case-control weighted estimating equations/procedures for the ob-
served case-control data. In Section 3 we show the important and convenient
result that case-control weighting of the efficient procedure for the parameter
of interest (as formalized by the efficient influence curve) in the prospective
sampling model M∗ maps into the efficient procedure for the observed case-
control data modelM. This implies, in particular, that case-control weighting
of the locally efficient targeted maximum likelihood estimator developed for
prospective sampling model M∗ results in a locally efficient targeted max-
imum likelihood estimation procedure for case-control sampling. In general,
the power of our generic method is that one can map the estimation procedures
developed for prospective sampling into highly or fully efficient estimation pro-
cedures for case-control sampling. In particular, our method is now able to
fully exploit software developed for prospective sampling.

To summarize, in Section 2 and Section 3 we establish general proper-
ties of our case-control weighted mapping from estimating functions/influence
curves/gradients for the parameter of interest for model M∗ into estimating
functions/influence curves/gradients for the parameter of interest for the ob-
served data model M, showing that 1) the case-control weighting does map
each parameter-specific influence curve for the model M∗ into a parameter-
specific influence curve for model M, 2) it maps the efficient influence curve/
canonical gradient for model M∗ into the efficient influence curve/canonical
gradient for model M, and 3) that our case-control weighting inherits any
robustness of estimating functions/influence curves for model M∗.

We suggest that even in cases that q0 (or q0(1 |M) for matched case control
designs) is unknown, it is of interest to present these estimators and inferences
for an interval of possible q0-values, thereby presenting a sensitivity analysis.

As an example we show that indeed for case-control design I the case-
control weighted targeted maximum likelihood estimator is indeed a locally
efficient double robust estimator. This implementation of a targeted maximum
likelihood estimators needs to guarantee that the initial maximum likelihood
fit of the logistic regression P ∗0 (Y = 1 | A,W ) is proportional to q0, which
is a requirement for these double robust estimators to not suffer from a large
variance due to the singularity q0 ≈ 0. The latter is precisely guaranteed by
our case-control weighting method.

These double robust targeted maximum likelihood estimators rely on know-
ing the incidence probability q0 and, for case-control design II, q̄0(M), beyond
either a correctly specified model for Q∗(A,W ) = P ∗0 (Y = 1 | A,W ) or a
correctly specified model for g∗0(a | W ) = P ∗0 (A = a | W ).

In Section 4, we end this article with a discussion and point out a number
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of extensions. Various technical proofs are deferred to the Appendix.

1.3 Some relevant literature.

Case-control studies are probably one of the most commonly used designs, if
not the most used design. For example, searching for case-control analysis on
PubMed resulted in a list of 56,000 articles. Their use is not limited to pub-
lic health applications; case-control studies are also frequently performed in
econometric applications (See Manski and Lerman (1977), Manski and McFad-
den (1981), Cosslett (1981)). Logistic regression is the most commonly used
model in the literature for case-control studies. Conditional logistic regression
is the prominent method in the literature for matched case-control studies and
the statistical methodology goes back to the early 80’s.

We will discuss these two methods briefly as well as related IPTW methods,
as it goes without saying that an overview of the literature in this area is not
possible. However, our proposed general methodology is not covered by the
current literature, as far as we know.

Some of the key papers on logistic regression in standard case-control stud-
ies are Anderson (1972), Prentice and Pyke (1979), Breslow (1996), and Bres-
low and Day (1980). Breslow et al. (2000) establish asymptotic efficiency of
the standard maximum likelihood estimator ignoring the case-control sam-
pling. The most frequently cited sources for conditional logistic regression for
matched case-control studies are Breslow and Day (1980), Holford et al. (1978),
and Breslow et al. (1978). Various books considering case-control studies are
Schlesselman (1982), Collett (1991), Jewell (2004), Rothman and Greenland
(1998), and Hosmer and Lemeshow (2000), among others.

Cohort studies differ from case-control studies in that they sample exposed
(A = 1) and unexposed (A = 0) individuals rather than diseased (Y = 1) and
non-diseased (Y = 0). When cohort studies are matched, they are matched
based on the exposure variable in an effort to reduce the bias found in obser-
vational studies. There has been much work in this area, particularly in the
analysis and matching of cohort studies, by W.G. Cochran, D.B. Rubin, P.R.
Rosenbaum, and N. Thomas. A collection of this work can be found in Rubin
(2006). A thorough discussion of cohort study design can also be found in
Rothman and Greenland (1998).

The method of adding an intercept to a standard logistic regression fit,
and, in that manner, estimating effects different from the odds-ratio has been
presented in the literature (see e.g. Anderson (1972), Prentice and Breslow
(1978), Greenland (1981), Morise et al. (1996), Wachholder (1996), Greenland
(2004)).

Chapter 8. Case-Control Studies

376
Hosted by The Berkeley Electronic Press



Matched case-control studies are most frequently handled with conditional
logistic regression models, but these designs and methods also have limitations.
Firstly, it does not allow estimation of the effect of the matching variable on
the diease (see, Schlesselman (1982), Rothman and Greenland (1998)): Any
variable used for matching cannot be studied as a risk factor, since cases and
controls are constrained to be equal with respect to the variables that are
matched. Secondly, matching can hurt the precision if the matching variable
is correlated with the exposure variable and not disease, which is often called
over-matching. Finally, as we remarked from the start, these methods are
by necessity heavily model based, while the methods presented here, relying
on knowing the case-control weights, allow double robust locally efficient esti-
mation in semiparametric models, thereby allowing the use of methods which
minimize the reliance of the inference on unknown model assumptions.

Robins (1999) discusses the approximately correct IPTW-method for esti-
mation of the unknown parameters in a marginal structural logistic regression
model for a direct effect analysis based on standard case-control data under the
assumption that the population proportion of cases, q0, is small. We also refer
to Newman (2006) for an IPTW-type approach for fitting marginal structural
models based on case-control data. Mansson et al. (2007) investigate a vari-
ety of IPTW and propensity score methods in case-control studies through a
simulation study, which includes the IPTW estimator for the logistic marginal
structural model.

Notation. We introduce now some useful notation. Let O∗ → D∗(O∗) repre-
sent an estimating function or loss function for O∗ that can thus be used to esti-
mate the parameter of interest of P ∗0 based on an i.i.d sample ofO∗. This article
is concerned with mapping this function D∗ into an estimating function of loss
function for this same parameter of interest, but now based on sampling O (i.e.,
a biased sample forO∗). Given such a functionD∗(O∗), we define a case-control
weighted version Dq0(O) ≡ q0D

∗(W1, A1, 1) + 1
J

∑J
j=1 q̄0(M1)D∗(W j

2 , A
j
2, 0) of

D∗, which is now a function of the observed experimental unit O. We define
the expectation operator P0,q0D

∗ = P0Dq0 , which thus simply takes the ex-
pectation of the case-control weighted function Dq0(O) w.r.t. P0. Similarly,
we define the empirical expectation Pn,q0D

∗ = PnDq0 as the empirical mean
of the case-control weighted Dq0 , where Pn is the empirical distribution of
O1, . . . , On. We apply this notation to both case-control designs, where for
case-control design I q̄0(M1) reduces to 1− q0.
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2 Case-Control weighting of estimation proce-

dures developed for prospective sampling.

Throughout this section, we will make the convention that q̄0(M) reduces to
1 − q0 in the case control design I, so that we can state our results for both
the regular case-control design I and the matched case-control design II in one
formula.

We start out with stating the theorem which proves that the case-control
weighting maps a function of O∗ into a function of the case-control data struc-
ture O, while preserving the expectation of the function.

Definition 1 (Case-control weighted function) Given a D∗(O∗) = D∗(W,
A, Y ) we define the case-control weighted version of D∗ as

Dq0(O) ≡ q0D
∗(M1,W1, A1, 1) +

1

J

J∑
j=1

q̄0(M1)D∗(M1,W
j
2 , A

j
2, 0),

where in the special case of Case Control Design I, we have q̄0(M) = 1− q0.

Theorem 1 (Unbiased estimating function mapping) Let D∗(O∗) =
D∗(W,A, Y ) be a function so that P ∗0D

∗ ≡ EP ∗
0
D∗(O∗) = 0. Then P0Dq0 = 0.

In particular, in Case Control Design I,

Dq0(0) ≡ q0D
∗(W1, A1, 1) + (1− q0)

1

J

J∑
j=1

D∗(W j
2 , A

j
2, 0)

satisfies P0Dq0 = 0.
In more generality, for any function D∗ and corresponding case control

weighted function Dq0, we have

P0Dq0 = P ∗0D
∗.

Proof. We provide the proof for case-control design II and we suppress the
index q0 in Dq0 . The same proof applies to case-control design I. First, we note
that P0q0D(M1,W1, A1, 1) =

∫
M1,W1,A1

D(M1,W1, A1, 1)P ∗0 (M1,W1, A1, Y =
1). Secondly, we note that

P0q̄0(M1)D(M1,W
j
2 , A

j
2, 0) =∫

m,w,aD(m,w, a, 0)q̄0(m)P0(M1 = m)P ∗0 (W = w,A = a |M = m,Y = 0),
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where we also need to note that P0(M1 = m) = P ∗0 (M = m | Y = 1). We have

q̄0(m)P0(M1 = m)P ∗0 (W = w,A = a |M = m,Y = 0)

=
q̄0(m)P ∗

0 (M=m|Y=1)P ∗
0 (W=w,A=a,M=m,Y=0)

P ∗
0 (Y=0,M=m)

= P ∗0 (M = m,W = w,A = a, Y = 0).

This proves that

P0D =
∫
M1,W1,A1

D(M1,W1, A1, 1)P ∗0 (M1,W1, A1, Y = 1)
+ 1
J

∑J
j=1

∫
M1,W2,A2

D(M1,W2, A2, 0)P ∗0 (M1,W2, A2, Y = 0)
= P ∗0D = 0.

This completes the proof. 2

In the next section we establish general properties of this mapping which
help us to understand the generality and optimality of the statistical approach
for dealing with case-control sampling implied by this mapping. In this section
we focus on the statistical (i.e., methodological) implications of this mapping
for the analysis of case-control data,

2.1 Preservation of robustness of case-control weighted
functions.

If a function D∗ satisfying P ∗0D(P ∗0 ) = 0 also satisfies the robustness property
P ∗0 (D(P ∗)) = 0 for any P ∗ ∈ M∗

1 ⊂ M∗ for a submodel M∗
1, then the same

robustness w.r.t. to misspecification of P ∗0 applies to Dq0 since, for P ∗ ∈M∗
1,

P0Dq0(P
∗) = P ∗0D(P ∗) = 0 .

In particular, double robust estimating functions for censored and causal
inference data structures and models M∗, as presented in general in van der
Laan and Robins (2002), are mapped into double robust case-control weighted
estimating functions.

In the remainder of this section we outline the general statistical methods
implied by the case-control weighted mapping. Estimating function method-
ology developed for prospective sampling immediately implies now, through
the case-control weighted mapping, estimating function methodology for case-
control sampling. In particular, in view of the general estimating function
theory presented in van der Laan and Robins (2002) it follows that the case
control mapping is a mapping from estimating functions (or gradients, see
van der Laan and Robins (2002)) developed for a model for P ∗0 into estimating
functions based on case-control sampling from P0. For details we refer to our
technical report, and here we suffice with an illustration.
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2.2 Example: Case-control weighted double robust es-
timating function.

Let’s illustrate this estimating function method by constructing a double ro-
bust estimator of the additive causal effect ψ∗0 = E(Y1−Y0) for a nonparamet-
ric model M∗ for the distribution P ∗0 of (W,A, Y ). Let g∗0(A | M,W ) denote
the conditional distribution of A, given W , and let Q∗0(M,W,A) denote the
conditional probability of Y , given M,W,A, under P ∗0 .

The double robust efficient estimating function for sampling from P ∗0 is
given by

D∗(ψ∗, g∗, Q∗)(O∗) =

{
I(A = 1)

g∗(1 |M,W )
− I(A = 0)

g∗(0 |M,W )

}
(Y −Q∗(M,W,A))

+Q∗(M,W, 1)−Q∗(M,W, 0)− ψ∗, (1)

where g∗ and Q∗ represent candidates for the nuisance parameters g∗0 and Q∗0
of this estimating function for ψ∗0.

It is double robust in the sense that

E∗0D
∗(ψ∗0, g

∗, Q∗)(O∗) = 0 if either g∗ = g∗0 or Q∗ = Q∗0,

and in both cases one needs that g∗(1 | W )g∗(0 | W ) > 0 a.e. Let D∗(g∗, Q∗)
be defined so that D∗(ψ∗, g∗, Q∗) = D∗(g∗, Q∗)− ψ∗.

The weighted double robust estimating function for case-control data is
thus given by:

Dq0(ψ
∗, g∗, Q∗)(O) = q0D

∗(ψ∗, g∗, Q∗)(M1,W1, A1, 1)

+
q̄0(M1)

J

J∑
j=1

D∗(ψ∗, g∗, Q∗)(M1,W
j
2 , A

j
2, 0),

or we can define it as

Dq0(ψ
∗, g∗, Q∗)(O) = q0D

∗(g∗, Q∗)(M1,W1, A1, 1)

+
q̄0(M1)

J

J∑
j=1

D∗(g∗, Q∗)(M1,W
j
2 , A

j
2, 0)− ψ∗.

This estimating function is now also double robust for case control data:

E0Dq0(ψ
∗
0, g
∗, Q∗) = 0 if either g∗ = g∗0 or Q∗ = Q∗0,

and in both cases one needs that g∗(1 | W )g∗(0 | W ) > 0 a.e.
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The solution ψn of the case-control weighted estimating equation:

PnDq0(g
∗
n, Q

∗
n)− ψ∗ = 0

exists in closed form and is given by:

ψn =
1

n

n∑
i=1

q0D
∗(g∗n, Q

∗
n)(M1i,W1i, A1i, 1)

+
q̄0(M1i)

J

J∑
j=1

D∗(g∗n, Q
∗
n)(M1i,W

j
2i, A

j
2i, 0).

This estimator is now consistent if either g∗n consistently estimates g∗0 or Q∗n
consistently estimates Q∗0, which explains why it is called double robust.

Under some extra appropriate regularity conditions, this estimator is also
asymptotically linear and thereby has a normal limit distribution (see van der
Laan and Robins (2002) for general ”central limit” theorems for solutions
of estimating equations). In particular, if g∗n consistently estimates g∗0 and
Q∗n consistently estimates Q∗0, then, under appropriate regularity conditions,
ψn is asymptotically linear with influence curve Dq0(g

∗
0, Q

∗
0, ψ0) and is thus

asymptotically efficient. The estimators g∗n and Q∗n can be based on case-
control weighting of maximum likelihood estimators for the prospective model,
as presented in next subsection.

Statistical behavior of double robust estimator when cases are rare.
Inspection of this influence curve Dq0 sheds some light on the statistical be-
havior of this double robust estimator for the important case that q0 ≈ 0 is
very small. In particular, we are interested in how well one can estimate the
relative effect ψ0/q0, since ψ0 is itself very small. It follows that, in general,
the influence curve of ψn/q0 as an estimator of ψ0/q0 will blow up for small
values q0, except if it guaranteed that Q∗n = q0Q

#
n for some bounded estimator

Q#
n . Therefore, in our proposed targeted maximum likelihood or double robust

estimator we propose such estimators based on either case-control weighted lo-
gistic regression fits or intercept adjusted logistic regression fits (see Section 2
accompanying technical report).

2.3 Case-control weighted loss functions.

Our case-control weighting can also be used to map loss functions for the un-
derlying model M∗ into loss functions for the observed data model M. In
particular, we can construct a case-control weighted log likelihood loss func-
tion.
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Theorem 2 (Case Control Weighted Log-Likelihood Loss function)
Define the following case-control weighted log-likelihood loss function for the
density p∗0 of O∗ under sampling of O ∼ P0:

L(p∗, O) = q0 log p∗(M1, Z1, 1) + q̄0(M1)
1

J

J∑
j=1

log p∗(M1, Z
j
2 , 0).

In particular, in Case Control Design I, we have

L(p∗, O) = q0 log p∗(M1, Z1, 1) + (1− q0)
1

J

J∑
j=1

log p∗(M1, Z
j
2 , 0).

We have
p∗0 = arg max

p∗
E0L(p∗, O),

where the argmax is taken over all densities p∗. That is, the density maximizing
the expectation of the loss function L(p∗, O) is unique and given by the density
p∗0 of O∗.

The proof of this theorem is similar to the proof of Theorem 1 and is
therefore omitted.

2.4 Case-control weighted maximum likelihood estima-
tion.

Given a specified model M∗ for p∗0, we can estimate P ∗0 with the case-control
weighted maximum likelihood estimator:

p∗n = arg max
p∗∈M∗

n∑
i=1

L(Oi, p
∗).

The implementation of this weighted maximum likelihood estimator simply
involves assigning weights q0 to the cases, assigning weights q̄0(M1i)/J to the
corresponding J controls, and then implementing the maximum likelihood es-
timator for prospective sampling (i.e. treating the sample of cases and controls
as an i.i.d sample of P ∗0 ), thus ignoring the case control sampling.

For example, let’s consider the point treatment data structureO∗ = (M,W,
A, Y ). Consider a nonparametric model for the marginal distribution of W ,
Q∗W , a model {g∗η : η} for g∗0(A | M,W ), and a model {Q∗θ : θ} for the
conditional distribution P ∗0 (Y = 1 |M,W,A) = Q∗0(M,W,A).
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The case-control weighted maximum likelihood estimator of the marginal
distribution of W is now the weighted empirical distribution of the pooled sam-
ple (W1i, (W

j
2i : j = 1, . . . , J)). Similarly, the case-control weighted maximum

likelihood estimator of g∗0(A | W ) is given by

ηn = arg max
η

n∑
i=1

q0 log g∗η(A1i |M1i,W1i) +
q̄0(M1i)

J

J∑
j=1

log g∗η(A
j
2i |M1i,W

j
2i),

and the case-control weighted maximum likelihood estimator of Q∗0(M,W,A)
is given by

θn = arg max
θ

n∑
i=1

q0 logQ(M1i,W1i, A1i)+
q̄0(M1i)

J

J∑
j=1

log(1−Q(M1i,W
j
2i, A

j
2i)).

Indeed, it follows that each of these case-control weighted maximum like-
lihood estimators can be implemented by assigning the two weights q0 and
q̄0(M1) to the cases and controls, respectively, and apply the standard maxi-
mum likelihood estimator of the density p∗0 under prospective sampling.

Given the weighted maximum likelihood estimators Q∗1n and Q∗n, described
above, the corresponding substitution estimator of EYa = EQ∗

1
Q∗(W,a) is

given by

ψn(a) =
1∑n

i=1{q0 + q̄0(M1i))}
n∑
i=1

q0Q
∗
n(M1i,W1i, a)+

q̄0(M1i)

J

J∑
j=1

Q∗n(M1i,W
j
2i, a).

In particular, these estimators of EY0 and EY1 now map into an estimator
ψn(1)/ψn(0) of the relative risk EY1/EY0.

2.5 Case-control weighted targeted maximum likelihood
estimation.

Targeted maximum likelihood estimation is a general methodology introduced
in van der Laan and Rubin (2006) and illustrated with a variety of examples.
The case-control weighting allows us now to provide a case-control weighted
targeted maximum likelihood estimation methodology targeting the parameter
of interest.

Specifically, let D∗(P ∗0 ) be the efficient influence curve of the parameter
Ψ∗ :M∗ → IRd. Consider an initial estimator P ∗0n of P ∗0 based on O1, . . . , On

such as a case-control weighted maximum likelihood estimator according to
a working model within M∗. Let {P ∗n(ε) : ε} be a submodel of M∗ with
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parameter ε satisfying that the linear span of its score at ε = 0 includes
D∗(P ∗0n ). Let ε1n be the case-control weighted maximum likelihood estimator
of ε:

ε1n = arg maxPn,q0 log p∗0n (ε).

This yields an update P ∗1n = P ∗0n (ε1n) of the initial estimator P ∗0n . We iterate
this updating process till step k at which εkn ≈ 0 and we denote the final update
with P ∗n . By the score condition, this final estimator solves the case-control
weighted efficient influence curve:

0 = Pn,q0D
∗(P ∗n) = PnDq0(P

∗
n)

up till numerical precision (see van der Laan and Rubin (2006)). We refer
to ψn = Ψ∗(P ∗n) as the case-control weighted targeted maximum likelihood
estimator of ψ0.

One particular approach for establishing the asymptotics of this estimator
is obtained under the assumption that D∗(P ∗) = D∗(ψ∗, η∗) for some nuisance
parameter, thereby assuming an estimating function representation for the ef-
ficient influence curve. (This assumption is not necessary at all to establish the
same asymptotics: see van der Laan and Rubin (2006).) In this case, it follows
that the targeted maximum likelihood estimator ψn solves PnDq0(ψn, η

∗
n) = 0

so that one can establish asymptotic linearity of ψn and derive its influence
curve under relatively standard differentiability and empirical process condi-
tions.

In particular, if η∗n is a consistent estimator of a η∗0 satisfying P0Dq0(ψ0, η
∗
0) =

0, then under such standard conditions, asymptotic consistency and asymp-
totic linearity can be established. For example, if η∗0 = η(P ∗0 ) is the true
parameter, then ψn will have influence curve given by Dq0(ψ0, η

∗
0).

2.6 Case-control weighted targeted MLE of marginal
causal effect for case control data.

We will illustrate the targeted maximum likelihood estimator for the parameter
ψ0 = EY1 − EY0 and the nonparametric model M∗ for the point treatment
data structure (W,A, Y ) ∼ P ∗0 .

Recall that the double robust estimating function/efficient influence curve
of Ψ under i.i.d sampling from P ∗0 is given by

D∗(g∗, Q∗)(M,W,A, Y ) =

{
I(A = 1)

g∗(1 |M,W )

I(A = 0)

g∗(0 |M,W )

}
×(Y −Q∗2(M,W,A))
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+Q∗2(M,W, 1)−Q∗2(M,W, 0)−Ψ(Q∗)

≡ D∗1(g∗, Q∗)(M,W,A, Y ) +D∗2(Q∗)(M,W ),

where Q∗ = (Q∗1, Q
∗
2) represents both the marginal distribution Q∗1 of W and

the conditional distribution Q∗2 of Y , given A,W . We note that D∗(g∗, Q∗)
can also be represented as an estimating function for ψ since D∗(g∗, Q∗) =
D∗(Ψ(Q∗), g∗, Q∗), as we did above.

LetQ∗02n be an initial estimator ofQ∗20(A,W ) = P ∗0 (Y = 1 | A,W ) according
to a particular working model Qw for Q∗20: for example,

Q∗02n = arg max
Q∗

2∈Qw

n∑
i=1

q0 logQ∗2(A1i,W1i) +
q̄0(M1i)

J

J∑
j=1

log(1−Q∗2(Aj2i,W
j
2i)),

or the logistic regression based estimator Q∗n,q0 using an intercept adjustment
in terms of log q0/(1−q0) presented in Section 2 of the accompanying technical
report.

Given a model G for g∗0, let g∗n be the corresponding weighted MLE:

g∗n = arg max
g∈G

n∑
i=1

q0 log g(A1i | W1i) +
q̄0(M1i)

J

J∑
j=1

log g(Aj2i | W j
2i).

Similarly, let Q∗1n be the nonparametric weighted MLE:

Q∗1n = arg max
Q1

n∑
i=1

q0 log dQ1(W1i) +
q̄0(M1i)

J

J∑
j=1

log dQ1(W j
2i),

where the maximum is over all discrete distributions which put mass on W1i

and W2i, i = 1, . . . , n. It follows that Q∗1n is a discrete distribution which
puts mass q0/n on W1i, i = 1, . . . , n, and puts mass q̄0(M1i))/(nJ) on W j

2i,
j = 1, . . . , j, i = 1, . . . , n.

Given any Q∗, g∗, let {Q∗2g∗(ε) : ε} be a model through Q∗2 at ε = 0 and
satisfying that the span of its score at ε = 0 includes the component D∗1(g∗, Q∗)
of the efficient influence curve of Ψ under i.i.d. sampling from P ∗Q∗,g∗ . For
example,

d

dε
log

{
Q∗2g∗(ε)

Y (1−Q∗2g∗(ε))1−Y }∣∣∣∣∣
ε=0

= D∗1(g∗, Q∗).

This can be achieved with the following fluctuation function of Q∗2:

logitQ∗2g∗(ε) = logitQ∗2 + εZ(g∗),
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where

Z(g∗) ≡
{

I(A = 1)

g∗(1 |M,W )
− I(A = 0)

g∗(0 |M,W )

}
.

Given the estimator g∗n of g∗0, consider the fluctuation function {Q∗02ng∗n(ε) :
ε} and let ε0n be its weighted MLE:

ε0n = arg max
ε

n∑
i=1

q0 logQ∗02ng∗n(ε)(A1i,W1i)+
q̄0(M1i)

J

J∑
j=1

log(1−Q∗02ng∗n(ε)(Aj2i,W
j
2i)),

which can be computed with standard logistic regression software.
The first step targeted MLE is now defined as

(g∗n, Q
∗
1n, Q

∗1
2n = (g∗n, Q

∗
1n, Q

0
2n(ε0n)).

The k-th step targeted MLE is given by (g∗n, Q
∗
1n, Q

∗k
2n = Q∗k−1

2n (εk−1
n )), where,

for k = 0, . . .

εkn = arg max
ε

n∑
i=1

q0 logQ∗k2ng∗n(ε)(A1i,W1i)+
q̄0(M1i)

J

J∑
j=1

log(1−Q∗k2ng∗n(ε)(Aj2i,W
j
2i)).

The corresponding k-th step targeted MLE of ψ0 is defined as ψkn = Ψ(Q∗kn ) ≡
Ψ(Q∗1n, Q

∗k
2n). In this particular application, it follows that convergence occurs

in one step so that ψn = Ψ(Q∗1n ).
The case-control weighted double robust estimating function for case con-

trol data is given by:

Dq0(g
∗, Q∗)(O) = q0D

∗(g∗, Q∗)(M1,W1, A1, 1)

+
q̄0(M1)

J

J∑
j=1

D∗(g∗, Q∗)(M1,W
j
2 , A

j
2, 0),

and the targeted MLE (g∗n, Q
∗
n) solves

0 =
n∑
i=1

Dq0(g
∗
n, Q

∗
n)(Oi).

Statistical inference for ψn can be derived from the corresponding estimating
equation 0 =

∑n
i=1D(ψn, g

∗
n, Q

∗
n)(Oi) solved by the targeted MLE ψn = Ψ(Q∗n).
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2.7 Double robust locally efficient targeted MLE of treat-
ment specific mean, causal relative risk and odds
ratio for case control design I.

Let Q̃∗n be defined as a standard logistic regression fit ignoring the case control
sampling. Subsequently, we map this into our estimator Q∗n,q0 of Q∗0 by adding

the intercept log c(q0) to the log odds of Q̃∗n.
We now construct an ε-fluctuation Q∗n,q0(ε) through the corresponding lo-

gistic regression fit Q∗n,q0(Y | A,W ) satisfying

d

dε
logQ∗n,q0(ε) = D∗(Q∗n,q0 , g

∗
n),

where D∗(Q∗, g∗) is the efficient influence curve of the bivariate parameter
(Ψ(Q∗)(0),Ψ(Q∗)(1)) (i.e. EY0, EY1). This can be done by adding a two
dimensional extension ε(I(A = 1)/g∗n(1 | W ), I(A = 0)/g∗n(0 | W )) to the log
odds of the logistic regression fit Q∗n,q0 .

Let

εn = arg max
ε

∑
i

q0 logQ∗(W1i, A1i) + (1− q0)
1

J

∑
j

log(1−Q∗(W j
2i, A

j
2i))

be the case control weighted maximum likelihood estimator of ε, which can be
fitted with standard logistic regression software again. The one-step targeted
MLE of Q∗0 is now defined as Q∗n ≡ Q∗n,q0(εn).

Since the update of the MLE Q∗n,q0 only depends on g∗n which does not
change, it follows that this one-step targeted MLE Q∗n already solves the case-
control weighted efficient influence curve estimating equation:

0 =
∑
i

q0D
∗(Q∗n, g

∗
n)(W1i, A1i, 1) + (1− q0)

1

J

∑
j

D∗(Q∗n, g
∗
n)(W j

2i, A
j
2i, 0)

≡ ∑
i

Dq0(Q
∗
n, g
∗
n)(Oi),

so that the generally prescribed iteration for targeted MLE is not needed.
The resulting targeted maximum likelihood estimator Ψ(Q∗n) = EQ∗

W,n
Q∗n(a,

W ), with Q∗W,n = q0Q
∗
W1,n

+ (1− q0)Q∗W2,n
being the case control weighted em-

pirical distribution of the covariate vector W , solves now the double robust
estimating equation 0 =

∑
iDq0(Q

∗
n, g
∗
n,Ψ(Q∗n))(Oi) (where we now use the

estimating function representation of D∗q0), and is therefore a double robust
estimator in the sense that it is consistent and asymptotically linear if either
Q∗n is consistent or g∗n is consistent.
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The same statistical properties are now established for the corresponding
causal relative risks and odds ratios, where one uses that Q∗n = Q∗n,q0(εn), just
like Q∗n,q0 , equals q0 times a bounded estimator Q#

n so that the standard error
of this double robust targeted MLE is proportional to q0 (divided by

√
n).

3 Case-control weighting of efficient procedure

yields an efficient procedure for both case-

control designs I and II.

In this section we state and show the remarkable nice result that assigning the
case-control weights to the case-control sample and then applying an efficient
procedure developed for prospective sampling actually yields an efficient pro-
cedure. These results are presented and derived for both case-control designs.

3.1 Case-control weighted mapping maps gradients into
gradients.

Consider a target parameter Ψ∗ :M∗ → IRd at P ∗ in modelM∗. The class of
all regular asymptotically linear estimators of Ψ∗(P ∗) at P ∗ can be character-
ized by their influence curves, and their influence curves constitute the set of
gradients of the pathwise derivative of Ψ∗ at P ∗ given a rich class of parametric
fluctuations through P ∗. In particular, an estimator is asymptotically efficient
at P ∗ if and only if its influence curve equals the canonical gradient, that is,
the unique gradient which is also an element of the tangent space generated
by the scores of the class of parametric fluctuations. As a consequence of these
general and powerful results an estimation problem is essentially characterized
by the class of gradients and the canonical gradient. In particular, the class of
gradients yields the class of wished estimating functions to construct double
robust locally efficient estimators (van der Laan and Robins (2002)) and the
canonical gradient provides the fundamental ingredient of the double robust
locally efficient targeted maximum likelihood estimator.

This motivates us to identify the class of gradients, and, in particular, the
canonical gradient, of the parameter Ψ∗ in the case-control sampling model
M = {P (P ∗, η) : P ∗ ∈ M∗, η} implied by the model M∗ for the probability
distribution P ∗ of interest and possible specification of dependence as identified
by the η parameter, assuming that this parameter Ψ∗ can be identified from
case-control sampling.
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The following theorem establishes that the case-control weighting does pro-
vide a mapping from the set of all gradients of the parameter Ψ∗ :M∗ → IRd

at P ∗ in model M∗ into a set of gradients of Ψ : M → IRd defined as
Ψ(P (P ∗, η)) = Ψ∗(P ∗) at P (P ∗, η) in modelM = {P (P ∗, η) : P ∗ ∈M∗, η} for
parameters Ψ∗ which are identifiable from P (P ∗, η) (e.g. by being a function
of q0 or q̄0(M)). Since the class of all gradients of a parameter defined on a
model represents the class of all possible influence curves of regular asymp-
totically linear estimators (see e.g, Bickel et al. (1993)), this result teaches us
that the case-control weighting does map any estimation procedure developed
for ψ∗0 based on prospective data into a corresponding estimation procedure
based on case-control data, at least, from an asymptotic point of view.

In addition, since the case-control weighted mapping is 1-1, it also teaches
us that it maps into a very rich set of estimation procedures for case-control
data, if not all estimation procedures of interest: Indeed, we will show in the
next subsections that the case-control weighted gradient mapping maps, in
particular, into the optimal canonical gradient/efficient influence curve.

If the parameter of interest Ψ∗(P ∗) is only identified from P = P (P ∗, η) if
q0 and (for matched case-control designs) q̄0 is known, then one needs to define
the parameter as a parameter indexed by the known q0 and q̄0(M): Ψ∗ = Ψ∗q0 .

We start with providing a useful definition of a gradient of a pathwise
derivative.

Definition 2 We define a gradient of pathwise derivative of the parameter
Ψ∗ : M∗ → IRd at P ∗ in model M∗ as a function D∗(P ∗) satisfying for each
of the submodels {P ∗S∗(ε) : ε} ⊂ M∗ through P ∗ at ε = 0 with score S∗ at ε = 0
(within the class of submodels through P ∗ specified)

d

dε
Ψ∗(P ∗S∗(ε))

∣∣∣∣∣
ε=0

= − d

dε
P ∗D(P ∗S∗(ε))

∣∣∣∣∣
ε=0

.

Consider a parameter Ψ∗ : M∗ → IRd which is identified in model M =
{P = P (P ∗, η) : P ∗ ∈ M∗, η}, and corresponding parameter Ψ : M → IRd

defined as Ψ(P (P ∗, η)) = Ψ∗(P ∗).
By the same definition of a gradient above, a gradient of the pathwise

derivative of the parameter Ψ :M→ IRd at P = P (P ∗, η) in model M is de-
fined as a function D(P ∗, η) of O satisfying for each sub-model {P (P ∗S∗(ε), ηS1(ε)) :
ε} ⊂ M implied by a submodel {P ∗S∗(ε) : ε} through P ∗ and a nuisance sub-
model {ηS1(ε) : ε} through η indexed by S1,

Ψ∗(P ∗S∗(ε))|ε=0 = − d

dε
PD(P ∗S∗(ε), ηS1(ε))

∣∣∣∣∣
ε=0

.
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Given this definition of a gradient we obtain the following theorem.

Theorem 3 Given a P ∗ ∈ M∗, a class of sub-models {P ∗S∗(ε) : ε} ⊂ M∗

through P ∗ at ε = 0 indexed by S∗, with score S∗, we have for each of these
submodels

d

dε
PDq0(P

∗
S∗(ε))

∣∣∣∣∣
ε=0

=
d

dε
P ∗D∗(P ∗S∗(ε))

∣∣∣∣∣
ε=0

, (2)

where it is assumed that the left and right derivative exist.
By (2) it follows that any gradient D∗(P ∗) of Ψ∗ :M∗ → IRd at P ∗ ∈M∗

is mapped into a gradient Dq0(P
∗) of Ψ :M→ IRd at P = P (P ∗, η) (for each

η) in the model M.

This last statement is an immediate consequence of (2) and the fact that
Dq0(P

∗) does only depend on P = P (P ∗, η) through P ∗ (and thus not through
η), so that the derivatives along nuisance models {η(ε) : ε} are zero, as re-
quired.

We now note that under extremely weak regularity conditions, the above
definition of a gradient D∗(P ∗) of the pathwise derivative exactly agrees with
the definition of a gradient of the pathwise derivative of Ψ∗ : M∗ → IRd

in efficiency theory (e.g., Bickel et al. (1993)), and similarly for Ψ. Namely,
the equivalence follows if the second equality below holds (the first follows
since D∗(P ∗) ∈ L2

0(P ∗)): for the function P ∗ → D∗(P ∗) ∈ L2
0(P ∗) and each

submodel {P ∗(ε) : ε} (for each P ∗ ∈M∗) we have

1

ε
P ∗D∗(P ∗(ε)) = −1

ε

∫
D∗(P ∗(ε))

dP ∗(ε)− dP ∗
dP ∗(ε)

dP ∗(ε)

= −P ∗D∗(P ∗)S(P ∗) + o(1),

where S(P ∗) is the score d
dε

log dP ∗(ε)/dP ∗
∣∣∣
ε=0

of the submodel {P ∗(ε) : ε}.
For the interested reader, the following analogue theorem states the result

in terms of the gradient of the pathwise derivative as in efficiency theory. That
is, it provides the regularity condition under which we have that if D∗(P ∗) is
a gradient of Ψ∗ at P ∗, then Dq0(P

∗) is a gradient of the path-wise derivative
of Ψ at P (P ∗, η).

Theorem 4 Assume Ψ : M → IRd satisfies Ψ(P (P ∗, η)) = Ψ∗(P ∗) for all
P ∗ ∈M∗ and η.

Assume P ∗ → D∗(P ∗) is a gradient of the pathwise derivative of Ψ∗ :
M∗ → IRd in the sense that it satisfies for each member of a class of submodels
{P ∗S∗(ε) : ε} through P ∗ ∈M∗ at ε = 0 with score S∗

d

dε
Ψ∗(P ∗S∗(ε))

∣∣∣∣∣
ε=0

= − d

dε
P ∗D∗(P ∗S∗(ε))

∣∣∣∣∣
ε=0

,
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and the right-hand side equals P ∗D∗(P ∗)S∗, where it is assumed the derivative
on the left and right-hand side exist.

Assume P ∗ → Dq0(P
∗) satisfies for each submodel {P (ε) = P (P ∗(ε), η(ε)) :

ε} ⊂ M through P (P ∗, η) at ε = 0 (implied by the class of submodels {P ∗S∗(ε)}
and {ηS1(ε)}) with score S(P ) that

− d

dε
PDq0(P

∗(ε))

∣∣∣∣∣
ε=0

= PDq0(P
∗)S(P ).

The latter is a regularity condition since

1

ε
PDq0(P

∗(ε)) = −1

ε

∫
Dq0(P

∗(ε))
dP (ε)− dP
dP (ε)

dP (ε)

= −PDq0(P
∗)S(P ) + o(1),

where S(P ) is the score d
dε

log dP (ε)/dP
∣∣∣
ε=0

of the submodel {P (ε) : ε}.
Then, Ψ : M → IRd is pathwise differentiable in the sense that for each

of the submodels {P (ε) = P (P ∗(ε), η(ε)) : ε} ⊂ M through P (P ∗, η) at ε = 0
with score S(P ) we have

d

dε
Ψ(P (ε))

∣∣∣∣∣
ε=0

= PDq0(P )S(P ),

and Dq0(P ) is a gradient of the pathwise derivative.
Thus, for each gradient D∗(P ∗) of the pathwise derivative of Ψ∗ : M∗ →

IRd satisfying the above mentioned regularity conditions, the corresponding
Dq0(P

∗) is a gradient of the pathwise derivative of Ψ :M→ IRd.

Proof. We have

Ψ(P (ε))−Ψ(P )

ε
=

Ψ∗(P ∗(ε))−Ψ∗(P ∗)
ε

= − d

dε
P ∗D∗(P ∗(ε))

∣∣∣∣∣
ε=0

+ o(1)

= − d

dε
PDq0(P

∗(ε))

∣∣∣∣∣
ε=0

+ o(1)

= PDq0(P
∗)S(P ) + o(1).

This proves that Ψ : M → IRd defined as Ψ(P (P ∗, η)) = Ψ∗(P ∗) is pathwise
differentiable at P = P (P ∗, η) ∈ M and that Dq0(P

∗) is a gradient of this
pathwise derivative. 2
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Thus, the above result shows that each gradient D∗(P ∗) for Ψ∗ :M∗ → IRd

is mapped into a gradient Dq0(P
∗) for Ψ : M = {P (P ∗, η) : P ∗ ∈ M∗, η} →

IRd defined as Ψ(P (P ∗, η)) = Ψ∗(P ∗). We note that this gradient mapping is
not affected by the particular choice (i.e., model of dependence structure of case
and control observations) of model M = {P (P ∗, η) : P ∗ ∈M∗, η} compatible
with M∗. Thus, for example, for case-control design I, our mapping from
gradients into gradients for modelM is the same for the independence model
assuming the case and controls are all independent as it is for a particular
dependence model.

A particular case is that Ψ∗ : M∗ → IRd is defined on a nonparametric
model M∗. In this case, there exists only one gradient for model M∗ so that
one just needs to determine the canonical gradient D∗(P ∗) of Ψ∗ at P ∗ and
map it into its case-control weighted version Dq0(P

∗), which, by our results in
the next section, equals the canonical gradient of Ψ at P (P ∗, η).

Remark. Since q0 is a non-identifiable parameter for both case-control de-
signs (so that knowledge of q0 does not restrict the distribution of the data
structure O), this implies that 1) for each gradient D∗(P ∗) for model M∗,
the corresponding Dq0(P

∗) is a gradient in the model M also including the
knowledge that q0 is known (even if that knowledge was not included inM∗),
or, equivalently, the class of all gradients {D∗h(P ∗) : h} at P ∗ for modelM∗ is
mapped into a class {Dh,q0 : h} of gradients at P = P (P ∗) for model M also
including q0 is known.

For matched case-control design II, if we define our parameter as Ψ∗q0 ,
indexed by q0 and q̄0(M) (treating them as known and fixed), then the case-
control weighting maps the class of all gradients of this parameter for model
M∗ into the class of gradients of this parameter for model M = {P (P ∗, η) :
P ∗ ∈ M∗, η}. If the observed data model is the same with and without the
restriction that (q0, q̄0(M)) is known in the model M∗, then the canonical
gradient in the model M will be the same as the canonical gradient of the
model also including the knowledge of (q0, q̄0(M)).
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3.2 Independence models for case-control designs I and
II to derive efficiency results.

We consider the independence model M so that M = {P (P ∗) : P ∗ ∈ M∗},
where for case-control design I, we have

dP (P ∗)(W1, A1, (W
j
2 , A

j
2 : j)) = dP ∗(W1, A1 | Y = 1)

J∏
j=1

dP ∗(W j
2 , A

j
2 | Y = 0),

(3)
and, for case-control design II, we have

dP (P ∗)(M1,W1, A1, (M1,W
j
2 , A

j
2 : j)) = dP ∗(M1,W1, A1 | Y = 1)

J∏
j=1

dP ∗(W j
2 , A

j
2 |M = M1, Y = 0).

= dP ∗M(M1)dP ∗(W1, A1 |M = M1, Y = 1)
J∏
j=1

dP ∗(W j
2 , A

j
2 |M = M1, Y = 0). (4)

Our results immediately generalize to modelsM for which the densities of
the distributions P (P ∗, η) factorize as

dP (P ∗, η) = dP1(P ∗)dP2(η),

where dP1(P ∗) is given by the independence likelihood (3) or (4), and P ∗ and
η are variation independent. This follows from the fact that such models the
tangent space contains the tangent space of the independence model, and our
proof of the wished result is based on showing that the case-control weighted
efficient influence curve is a member of the tangent space and thereby equals
the efficient influence curve for the model M.

Our results in this section show that the case-control weighting of the
canonical gradient for the prospective sampling modelM∗ yields the canonical
gradient for the parameter of interest Ψ based on case-control sampling model
M. Our results rely on the assumption that (the typically very large/semipara-
metric)M∗ corresponds with (i.e., equals the intersection of) separate models
for P ∗0 (W,A | Y = δ) for δ ∈ {0, 1} for case-control design I, and that M∗

corresponds with (i.e., equals the intersection of) separate models for P ∗0 (W,A |
Y = δ,M = m) for δ ∈ {0, 1} and m varying over the support of the matching
variable M .

As a consequence of our results, our proposed case-control weighted tar-
geted maximum likelihood estimator for variable importance and causal effect

Chapter 8. Case-Control Studies

393
http://biostats.bepress.com/ucbbiostat/paper254



parameters, involving selecting estimators of Q∗0 and g∗0, under appropriate
regularity conditions guaranteeing the wished convergence of the standardized
estimator to a normal limit distribution, is efficient if both of these estimators
are consistent, and remains consistent if one of these estimators is consistent.

We note that the working-model to obtain the initial model based maxi-
mum likelihood estimators in our double robust targeted maximum likelihood
estimator is obtained by modeling the factors of

dP ∗(W,A, Y ) = dP ∗(W )dP ∗(A | W )dP ∗(Y | A,W ),

which does thus not correspond with separate models for dP ∗(W,A | Y = δ)
as we ”required” for the actual model M∗ in order to make sure that the
case-control weighted canonical gradient is a canonical gradient. In order to
understand the rational of this discrepancy we provide the following explana-
tion.

It happens to be that the efficient influence curve for our parameter of
interest Ψ for an underlying model M∗ identified by separate models for
P (W,A | Y = δ) has a double robust representation in terms of Q∗0 and g∗0,
while it does not have a double robust representation w.r.t. to say P (W,A | Y )
or factors thereof. To fully exploit this double robust representation of the ef-
ficient influence curve of our parameter of interest, one should base estimation
of the unknowns parameters of the efficient influence curve on the latter rep-
resentation, and that is why we proposed our particular double robust locally
efficient targeted maximum likelihood estimators.

Alternatively, we could use a targeted maximum likelihood estimator based
on initial estimators based on working models for P (W,A | Y = δ), δ ∈ {0, 1}:
in this manner we would obtain generalized locally efficient double robust
estimators where the double robustness is stated in terms of the models for
Q∗0 and g∗0 implied by the models for P (W,A | Y = δ).

3.3 Case-control weighting of canonical gradient yields
canonical gradient: Case Control Design I.

Firstly, we present the theorem for case-control design I.

Theorem 5 Consider case-control design I. Assume that the modelM∗ allows
independent variation of P ∗(W,A | Y = 1) and P ∗(W,A | Y = 0).

Let D∗(P ∗) be the canonical gradient of the pathwise derivative Ψ∗ :M∗ →
IRd at P ∗ ∈ M∗, let M = {P (P ∗) : P ∗ ∈ M∗} be the independence model
defined by (3), and let Ψ : M → IRd satisfy Ψ(P (P ∗)) = Ψ∗(P ∗) for all
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P ∗ ∈ M∗. Assume the regularity conditions for P ∗ → D∗(P ∗) of Theorem 4
apply so that it follows that Ψ is pathwise differentiable at P ∗ and Dq0(P

∗) is
a gradient of this pathwise derivative.

We have that Dq0(P
∗) is the canonical gradient of the pathwise derivative

of Ψ :M→ IRd.

We already knew that, if we set D∗(P ∗) equal to the canonical gradient (or
any other gradient) of Ψ∗ :M∗ → IRd, then its case-control weighted version
Dq0(P

∗) is a gradient of Ψ : M → IRd. The surprising and important extra
result is that this Dq0(P

∗) actually equals the canonical gradient. That is,
for case-control design I, the case-control weighted gradient mapping does not
only map gradients into gradients, it also maps the optimal canonical gradient
for modelM∗ into the optimal canonical gradient for the observed data model
M for case-control data.

Remark regarding q0 known in modelM∗. Since q0 is a non-identifiable
parameter based on case-control sampling (design I), assuming q0 is known in
model M∗ puts no restriction on the observed data model M. As a conse-
quence, the efficient influence curve for the parameter Ψ : M → IRd is the
same for the model M∗ in which this quantity is known as it is in the model
in which this quantity is unknown.

3.4 Example of efficient method for case-control de-
sign II based on stratified efficient method for case-
control design I.

Before we present our general analogue result for case-control design II, it
is helpful to consider an example for case-control design II. Consider the
data structure O∗ = (M,W,A, Y ) ∼ P ∗0 and let M∗ be a nonparametric
model. Consider case-control design II, in which our observed data O =
((M1,W1, A1), ((W j

2 , A
j
2) : j = 1, . . . , J)). Suppose we wish to estimate ψ∗0 =

E∗0Y1 = E∗0E
∗
0(Y | A = 1,M,W ) and that q0(δ | m) = δP ∗0 (Y = 1 | M =

m) + (1 − δ)P ∗0 (Y = 0 | M = m) is known. Recall that the efficient influ-
ence curve for this parameter Ψ∗ : M∗ → IR in model M∗ at P ∗ is given by
D∗(Q∗, g∗)−ψ∗ = I(A = 1)/g∗(1 |M,W )(Y −Q∗(M,W,A)) +Q∗(M,W, 1)−
ψ∗.

Consider the following general approach for estimation of ψ∗0 based on data
generated by a case-control design II:
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• Apply the case-control weighted targeted MLE for case-control design
I to the subsample {i : M1i = m} to estimate the conditional version
ψ∗0(m) = E∗(Y1 | M = m) of the parameter ψ∗0. Thus this corresponds
with weighting the cases with q0(1 | m) = P ∗0 (Y = 1 | M = m) and the
controls with q0(0 | m) = P ∗0 (Y = 0 |M = m) and applying the standard
prospective targeted MLE based on an initial estimator of Q∗0(m, a, w) =
P ∗0 (Y = 1 | m, a, w) and g∗0(a | m,w) = P ∗0 (A = a | M = m,W = w).
By our results for case-control design I, we know that this estimator
yields a double robust locally efficient estimator of ψ0(m).

This case-control weighted targeted maximum likelihood estimator of
ψ0(m) based on the subsample {i : M1i = m} solves the m-specific case-
control weighted efficient influence curve equation 0 = PnD

∗
m,q0

(Q∗n, g
∗
n)−

Ψ∗(Q∗n)(m) and can thus be represented as

ψn(m) =

∑
i I(M1i = m)Dm,q0(Q

∗
n, g
∗
n)(Oi)∑

i I(M1i = m)
, (5)

where

Dm,q0(Q
∗, g∗)(O) =

q0(1 | m)
{

I(A1=1)
g∗0(1|m,W1)

(1−Q∗(m,W1, 1)) +Q∗(m,W1, 1)
}

+ q0(0|m)
J

{
I(Aj2=1)

g∗(1|m,W j
2 )

(0−Q∗(m,W j
2 , A

j
2, 1)) +Q∗(m,W j

2 , A
j
2, 1)

}
.

The rational behind the consistency of this estimator ψn(m) follows di-
rectly from the identity

E(Y1 |M = m) =
E0Dm,q0(Q

∗
0, g
∗
0)(O)I(M1 = m)

P0(M1 = m)
.

• Now, note that

P ∗0 (M = m) = P0(M1 = m)
q0

q0(1 | m)
.

Thus, one maps ψn(m) into an estimator of ψ0 by averaging it w.r.t. to
q0/q0(1 |M1i)Pn(M1 = m):

ψn =
∑
m

{
1

n

n∑
i=1

I(M1i = m)
q0

q0(1 |M1i)

}
ψn(m)

=
1

n

n∑
i=1

∑
m

q0

q0(1 | m)
I(M1i = m)Dm,q0(Q

∗
n, g
∗
n)(Oi),
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where we used (5).

Again, the rational of this estimator of ψ0 follows immediately from the
following derivation:

E0
∑
m

q0
q0(1|m)I(M1 = m)Dm,q0(Q∗0, g∗0)

= E0
q0

q0(1|M1)DM1,q0(Q∗0, g∗0)

= E0
q0

q0(1|M1)

{
q0(1 |M1)D∗(M1,W1, A1, 1) +

∑
j
q0(0|M1)

J D∗(M1,W
j
2 , A

j
2, 0)

}
= E0q0D

∗(M1,W1, A1, 1) + q̄0(M1)
J

∑
j D
∗(M1,W

j
2 , A

j
2, 0)

= E∗0Y1,

where we suppressed the dependence of D∗ = D∗(Q∗, g∗) on Q∗, g∗.

• We conclude that this estimator ψn of ψ∗0 corresponds with solving our
proposed case-control weighted efficient influence curve equation PnDq0,q̄0−
ψ = 0, where

Dq0,q̄0(O) = q0D
∗(M1,W1, A1, 1) +

q̄0(M1)

J

∑
j

D∗(M1,W
j
2 , A

j
2, 0).

We conclude that this general approach for estimation of ψ∗0 of applying
the case-control weighted targeted MLE ψn(m) of case-control design I to the
sub-sample {i : M1i = m} to estimate the analogue ψ∗0(m) of the parameter of
interest ψ∗0 (i.e., the same function but now applied to the conditional P ∗0 (· |
M = m)), and subsequently averaging ψn(m) w.r.t. q0/q0(1 | m)Pn(M1 = m),
corresponds with using our for case-control design II proposed case-control
weighting Dq0,q̄0 of the efficient influence curve D∗ for modelM∗. This suggests
that Dq0,q̄0 is indeed also, just as we showed for case-control design I, the
efficient influence curve. Our results below confirm this.

3.5 Case-control weighting of canonical gradient yields
canonical gradient: Matched Case Control Design.

For case-control design II, we establish the same result.

Theorem 6 Consider case-control design II. In this theorem we use the nota-
tion: Dq0,q̄0(P

∗) = q0D
∗(P ∗)(M1,W1, A1, 1)+ q̄0(M1)

J

∑
j D
∗(P ∗)(M1,W

j
2 , A

j
2, 0).

Assume that the modelM∗ allows independent variation of P ∗(W,A | Y =
δ,M = m) for δ ∈ {0, 1} and possible outcomes m of M under P ∗0 .

Let D∗(P ∗) be the canonical gradient of the pathwise derivative Ψ∗ :M∗ →
IRd at P ∗ ∈ M∗, let M = {P (P ∗) : P ∗ ∈ M∗} be the independence model

Chapter 8. Case-Control Studies

397
http://biostats.bepress.com/ucbbiostat/paper254



defined by (4), and let Ψ : M → IRd satisfy Ψ(P (P ∗)) = Ψ∗(P ∗) for all
P ∗ ∈M∗.

Assume the regularity conditions for P ∗ → D∗(P ∗) of Theorem 4 apply so
that it follows that Ψ is pathwise differentiable and Dq0,q̄0(P

∗) is a gradient of
this pathwise derivative at P (P ∗) ∈M.

Then, Dq0,q̄0(P
∗) is the canonical gradient of the pathwise derivative of

Ψ :M→ IRd.

3.6 Selecting the efficient influence curve of unrestricted
target parameter.

In order to define an identifiable parameter Ψ(P (P ∗)) = Ψ∗(P ∗) of the case-
control data generating distribution, one often needs to define Ψ∗ as indexed
by the known q0 and possibly q̄0 parameters. We denote such a parameter
with Ψ∗q0 :M∗ → IRd to stress its dependence on these known fixed quantities.
Our results above for case-control designs I and II above prove that if D∗(P ∗)
is the canonical gradient of Ψ∗q0 at P ∗, then the case-control weighted Dq0(P

∗)
is the canonical gradient of Ψ : M → IRd, where Ψ(P (P ∗)) = Ψ∗q0(P

∗) for
all P ∗ ∈ M. The following theorem shows that one can typically replace
D∗(P ∗) by the canonical gradient of the path-wise derivative of the unrestricted
Ψ∗(P ∗) = Ψq(P ∗)(P

∗).

Theorem 7 Consider the two pathwise differentiable parameters Ψ∗r0 :M∗ →
IRd indexed by a fixed r0 = r(P ∗0 ) (e..g, representing q0 and q̄0), and a corre-
sponding parameter Ψ∗ : M∗ → IRd defined as Ψ∗(P ∗) = Ψ∗r(P ∗)(P

∗). Thus,
Ψ∗r0(P

∗
0 ) = Ψ∗(P0).

Assume that for all the sub-models {P ∗(ε) : ε} for which d
dε
r(P ∗(ε))

∣∣∣
ε=0

= 0,

we have
d

dε
Ψ∗(P ∗(ε))

∣∣∣∣∣
ε=0

=
d

dε
Ψ∗r0(P

∗(ε))

∣∣∣∣∣
ε=0

.

Assume that the fixed parameter r0 in Ψ∗r0 is locally non-identifiable at P ∗

in the model M in the sense that the tangent space at P (P ∗) ∈ M generated

by the submodels {P ∗(ε) : ε} at P ∗ for which d
dε
r(P ∗(ε))

∣∣∣
ε=0

= 0 equals the

tangent space at P (P ∗) ∈ M generated by all submodels used in definition of
pathwise derivative of Ψ∗r0 :M∗ → IRd.

If the conditions of Theorem 5 or Theorem 6 apply for this choice Ψ∗r0 :

M∗ → IRd, then we also have, if D∗(P ∗) is the canonical gradient of Ψ∗ at P ∗,
then the case-control weighted Dq0(P

∗) is the canonical gradient of Ψ :M→
IRd.
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Proof. This result is shown as follows. Let D∗ be the canonical gradient of
Ψ∗ : M∗ → IRd and let D∗1 be the canonical gradient of Ψ∗q0 : M∗ → IRd.
As a consequence of the first assumption, we have for all scores S of all these
submodels P ∗(ε) not changing q0 (in first order),

〈D∗, S〉P ∗ = 〈D∗1, S〉P ∗ .

So, if we restrict our class of sub-models at P ∗ in the definition of the path-
wise derivative to these sub-models in M∗ not varying r0 (which globally
corresponds with restricting M∗ to all P ∗ with r(P ∗) = r0, but path-wise
differentiability at P ∗ only depends on local thickness of model at P ∗), then we
have that the canonical gradient for the corresponding class of submodels for
the observed data model is given by the case-control weighted Dq0(P

∗) and the
latter also equals the case-control weighted D1q0(P

∗). So under this restriction
on the class of submodels through P ∗ we have equality of the two case-control
weighted canonical gradients corresponding with D∗ and D∗1. Now, by using
that this restriction on the class of submodels does not change the tangent
space for the observed data models, and therefore does not affect the canonical
gradient representation at P (P ∗) of the parameter Ψ in the observed data
modelM. Thus this Dq0(P

∗), which equals D1q0(P
∗), also equals the canonical

gradient for the class of all submodels used in the actual definition of the
pathwise derivative. This completes the proof of the theorem. 2

Since q0 is non-identifiable for case-control design I it follows that case-
control weighting of the canonical gradient of the unrestricted parameter Ψ∗

also yields the wished canonical gradient of Ψ. The same would apply for
the matched case-control design, if enforcing the restriction (q0, q0(1 | m) =
P ∗0 (Y = 1 |M = m)) inM∗ does not reduce the observed data tangent space,
but this remains to be verified.

3.7 Proof of Theorems 5 and 6.

We already know that for both designs Dq0(P
∗) (defined as Dq0,1−q0(P

∗) for
design I and defined as Dq0,q̄0 for design II) is a gradient of the pathwise
derivative of Ψ at P (P ∗). Therefore, it remains to show that Dq0(P

∗) is an
element of the tangent space T (P (P ∗)) ⊂ L2

0(P (P ∗)) defined as the closure of
the linear span of the scores of each of the submodels {P (ε) : ε} within the
Hilbert space L2

0(P (P ∗)).
In the Appendix we have a separate section establishing these results for

both designs, stating that if we select D∗(P ∗) as the canonical gradient of Ψ∗

at P ∗ and the modelM∗ allows independent variation of P (W,A | Y = δ) for

Chapter 8. Case-Control Studies

399
http://biostats.bepress.com/ucbbiostat/paper254



Design I and independent variation of P (W,A | M = m,Y = δ) for Design
II, then Dq0(P

∗) is an element of the tangent space at P (P ∗) in the observed
case-control data model M.

Here we provide a summary of the proof for case-control design I in order
to provide the reader with an understanding of these results.

Since D∗(P ∗) is a canonical gradient it equals a score d
dε
dP ∗(ε)/dP ∗

∣∣∣
ε=0

for a particular submodel {P ∗(ε) : ε} at ε = 0, or it can be arbitrarily well
approximated by such a sequence of scores. We first consider the case that
D∗(P ∗) is itself a score.

The tangent space under the independence model for a nonparametric
model M∗ is an orthogonal sum of the Hilbert space T1(P ) = {S1(W1, A1) :
S1} of functions of (W1, A1) with mean zero, and the Hilbert space T2(P ) =
{∑j S2(W j

2 , A
j
2) : S2} with S2(W j

2 , A
j
2) having mean zero, j = 1, . . . , J . For an

actual modelM∗ these two Hilbert spaces are replaced by sub-spaces spanned
by the scores of the allowed sub-models {P ∗(ε) : ε} through P ∗. That is, T1(P )

consists of (and is generated by) functions d
dε
dP ∗(ε)
dP ∗ (W1, A1 | Y = 1)

∣∣∣
ε=0

, and

T2(P ) consists of (and is generated by) functions
∑
j
d
dε
dP ∗(ε)
dP ∗ (W j

2 , A
j
2 | Y = 0)

∣∣∣
ε=0

,

j = 1, . . . , J . We assumed that the marginal distributions P ∗(W,A | Y = 1)
and P ∗(W,A | Y = 0) are independently varied by these submodels, so that
indeed the tangent space is an orthogonal sum of T1(P ) and T2(P ).

For notational convenience, we introduce the notation ε0 = 0. LetD∗(P ∗) =
d
dε0

dP ∗(ε0)
dP ∗ (W,A, Y ) be a score. Since q0 is non-identifiable, we can assume that

p∗(ε)(Y = 1) = q0 for all ε. It follows that

q0D
∗(P ∗)(W1, A1, 1) = q0

1

p∗(W1, A1, 1)

d

dε0
p∗(ε0)(W1, A1, 1)

= q0
1

p∗(W1, A1 | Y = 1)q0

d

dε0
p∗(ε0)(W1, A1 | Y = 1)q0

= q0
1

p∗(W1, A1 | Y = 1)

d

dε0
p∗(ε0)(W1, A1 | Y = 1)

∈ T1(P ∗),

since the latter term equals q0 times a score of P (ε)(W1, A1) at ε = 0 (which
in particular has mean zero).
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Again, using that P ∗(ε)(Y = 0) = 1− q0 for all ε,

(1− q0)D∗(P ∗)(W j
2 , A

j
2, 0) = (1− q0) 1

p∗(W j
2 ,A

j
2,0)

d
dε0
p∗(ε0)(W j

2 , A
j
2, 0)

= (1− q0) 1

p∗(W j
2 ,A

j
2|Y=0)(1−q0)

d
dε0
p∗(ε0)(W j

2 , A
j
2 | Y = 0)p∗(ε)(Y = 0)

= (1− q0) 1

p∗(W j
2 ,A

j
2|Y=0)

d
dε0
p∗(ε0)(W j

2 , A
j
2 | Y = 0)

≡ (1− q0)S2(W j
2 , A

j
2),

where the latter term equals is 1 − q0 times a score of P (ε)(W j
2 , A

j
2) at ε = 0

(which, in particular, has mean zero). It follows that

(1− q0)

J

∑
j

D∗(P ∗)(W j
2 , A

j
2, 0) =

1− q0

J

∑
j

S2(W j
2 , A

j
2) ∈ T2(P (P ∗)).

This proves that for case-control design I, if D∗(P ∗) is a score, then

Dq0(P
∗)(O) = q0D

∗(P ∗)(W1, A1) +
1− q0

J

∑
j

D∗(P ∗)(W j
2 , A

j
2)

is a score itself, and thus an element of the tangent space T (P ).
Suppose now that D∗(P ∗) = limm→∞D∗m(P ∗) ∈ T ∗(P ∗), where Dm(P ∗) ∈

L2
0(P ∗) is a score. Then, for each m, we have Dmq0(P

∗) ∈ L2
0(P (P ∗)) is a score.

To show that Dq0(P
∗) ∈ L2

0(P ∗) is a score requires thus that the case-control
mapping D∗ → Dq0 , as a mapping from L2

0(P ∗) into L2
0(P (P ∗)) is continuous.

This is trivially established. This proves that indeed Dq0(P
∗) is an element of

the tangent space T (P (P ∗)). This completes the proof for case-control design
I.

The proof for case-control design II is more delicate and provided in detail
in the Appendix.

4 Summary, discussion and extensions.

We provide a generic approach for locally efficient estimation such as targeted
maximum likelihood estimation of any parameter based on matched and un-
matched case-control designs, which relies on specification of one or two non-
identifiable parameters/scalars q0 and, for matched case-control designs, q0(1 |
m) = P ∗0 (Y = 1 |M = m).

These non-identifiable parameters could be known or they could be set in a
sensitivity analysis, for example, in the case that these parameters are known
to be contained in a particular interval. In the Appendix below we illustrate
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how to handle the case that q0 is replaced by a user supplied estimator based
on an independent data set, and a standard error of this estimate of the true
prevalence probability is provided.

Our approach is remarkably simple since it only requires weighting the
cases by q0 and the controls by 1− q0 or q̄0(M1) and then applying a method
developed for prospective sampling. Moreover, our approach has the remark-
able convenient feature that applying the case-control weighting to an optimal
method for the prospective sample results in an optimal method for indepen-
dent and matched case-control designs.

We also showed how the case-control weighting for matched case-control
designs corresponds with applying the case-control weighting for the standard
unmatched case-control design for each sub-sample defined by a category for
the matching variable to obtain the analogue conditional parameter, condi-
tional on the matching variable category, and subsequently averaging these
results over the matching variable categories to get the wished marginal pa-
rameter. This helps us to understand that our somewhat strange looking
weights for the control observations in a matched case-control study are ac-
tually just as sensible as the much easier to understand weights for standard
case-control designs.

In our accompanying technical report we worked out the case-control weight-
ed targeted maximum likelihood estimators in a number of important applica-
tions involving estimation of variable importance and causal effect parameters.
In addition, in our accompanying technical report we showed for both types
of case-control designs how standard maximum likelihood logistic regression
fits can be adjusted by using these known quantities to estimate conditional
probabilities P ∗0 (Y = 1 | A,W ) with a standard error which is proportional to
q0 divided by the square root of the sample size, so that the acquired precision
results in stable estimators of such challenging parameters as relative risk and
odds-ratios at q0 ≈ 0.

We believe that in many applications the marginal population proportion
of cases, q0, could be known, at least within close approximation, but it does
require an effort to understand the target population the cases are sampled
from. The literature supporting the use of q0 in case-control studies goes back
more than 50 years (See Cornfield (1951), Cornfield (1956)). Even 25 years
ago, Greenland (1981) noted that “improvements in disease surveillance have
produced more reliable estimates of disease incidence in many populations.”
Another relevant publication discussing the use of q0 in case-control analysis
is Benichou and Wacholder (1994).

In matched case-control studies in which one uses a matching variable with
a large number of categories, then the value of the population proportion of
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cases within each matching category might not be known. In that case, if
the number of matching categories is large, a sensitivity analysis would likely
be too cumbersome. On the other hand, even for such matched case-control
samples, using the case-control weighting for design I might already provide
an important bias reduction so that our methods only relying on q0 will likely
still provide a useful set of tools. Off course, this would require some validation
that ignoring the matching does not cause severe bias.

During the design of a case-control study, we recommend to keep in mind
that knowing these population proportion of cases for each matching category
make the convenient and double robust efficient estimation of any causal effect
and variable importance parameter possible (through the methods presented
here) without restrictive assumptions such as the no-interaction assumption
and parametric model form for conditional logistic regression models. This
insight might help and motivate people to design case-control studies in which
the required case-control weights are known or approximately known so that
a sensitivity analysis is possible.

In addition, we note that the binary Y conditioned upon in the case-control
sampling does not need to be an outcome of interest. For example, the random
variable of interest might be a right-censored data structure O∗ = (W,A, T̃ =
min(T,C)), with T survival, C censoring, W covariates and A treatment, and
in the case-control sampling we might condition upon a person having been
observed to fail or not by time τ : Y = I(T̃ ≤ τ). In such an application the
parameter of interest might be the causal effect of A on T .

To summarize, , by knowing q0, one has available more efficient and more
robust (i.e., double robust) targeted maximum likelihood estimators, targeting
an identifiable parameter, and one does not have to restrict oneselves to odds-
ratio parameters.

We now consider a few direct extensions and applications of our method-
ology.

Frequency matching. Frequency matching in case-control studies is typ-
ically defined as running a case-control design I within each strata M = m.
In this case one can estimate any causal parameter ψ0(m) of the conditional
distribution of O∗, given M = m, by assigning weights q0(1 | m) to the cases
and q0(0 | m)/J to the corresponding J controls. Thus our methods for case-
control design I can be applied to each strata M = m. In particular, this
yields a locally efficient double robust targeted maximum likelihood estimator
of ψ0(m) for each m. In order to estimate the marginal parameter ψ0 one
would need an estimate of the marginal distribution of M , which cannot be
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identified based on knowing q0(1 | m) only, so that other knowledge will be
needed such as the marginal population distribution of M . Either way, one
can always estimate causal parameters such as E(Ya | M = m) for each m or
the corresponding variable importance measure. If the number of categories of
the matching variable is large, then a sensible strategy for estimation of ψ0(m)
is to assume a model ψ0(m) = f(m | β0) and obtain a pooled locally efficient
targeted maximum likelihood of β0 based on all observations.

Pair matching. Pair matching in case-control studies is typically described
as, for each matching category, sample a case and a set of controls. So this
description agrees with frequency matching except that the number of cate-
gories can be very large. Therefore, we should now always assume a model
ψ0(m) = f(m | β0) and obtain a pooled locally efficient targeted maximum
likelihood of β0 based on all observations.

Without the knowledge of q0(1 | m), one would use conditional logistic
regression models, and, as noted in Jewell (2006) page 258, these methods
do not allow estimation of the association of M with Y , while if one knows
the population proportion q0(1 | m) we can estimate every parameter of the
population distribution, conditional on M = m.

Counter matching. Finally, another type of matching in case-control stud-
ies is called counter-matching, which involves sampling a control with an expo-
sure (maximally) different from the exposure of the case. Formally, we can de-
fine this sampling scheme as follows. The observation O = ((M1, Z1), (M2, Z2))
on each experimental unit is generated as 1) sample (M1, Z1) from the con-
ditional distribution of (M,Z), given Y = 1, and 2) sample (M2, Z2) from
the conditional distribution of (M,Z), given M = m∗(M1) and Y = 0, where
m∗(m) maps a particular outcome m into a counter-match m∗(m) in the out-
come space for M . Similarly, this is defined for the case that one samples J
controls counter-matched to the case. The population distribution of interest is
the distribution P ∗0 of O∗ = (M,Z, Y ) and we are concerned with estimation of
a particular parameter ψ∗0 of this distribution P ∗0 based on a counter-matched
case-control sample O1, . . . , On. In this case, given that D∗(M,Z, Y ) satisfies
P ∗0D

∗ = 0, we have
E0Dq0,q̄∗0 (O) = 0,

where the case-control weighted version of D∗ is defined as

Dq0,q̄0(O) = q0D
∗(M1, Z1, 1) + q̄∗0(M)D∗(m∗(M1), Z2, 0),
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with

q̄∗0(m) = (1− q0)
P ∗0 (M = m∗(m) | Y = 0)

P ∗0 (M = m | Y = 1)
.

Note that if m∗(m) = m is the identity function, then indeed q̄∗0 = q̄0. The
non-identifiable component of the control-weight q̄∗0 is P ∗0 (M = m∗(m), Y = 0),
or, assuming q0 is known, P ∗0 (M = m∗(m) | Y = 0), while the denominator
P ∗0 (M = m | Y = 1) = P0(M1 = m) can be empirically estimated. Since
in many applications the control observations are relatively easily accessible,
one might use a separate sample of controls to estimate these proportions
P ∗0 (M = · | Y = 0) having a certain value for the (counter-)matching variable
M among the controls. So under the condition that these weights q0, q̄

∗
0 are

known (or set in a sensitivity analysis), our results in this article can be applied
to counter-matched case-control designs by just replacing q̄0 by q̄∗0.

Propensity score matching design. A commonly used design is the fol-
lowing. One samples from the units that received treatment. For each treated
unit, one finds a matched non-treated unit, where the matching is done based
on a fit of the so called propensity score. The goal of this design is to create a
sample in which the confounders are reasonably balanced between the treated
and untreated units. This design can formally be described as follows. The
random variable of interest is O∗ = (W,A, Y ) ∼ P ∗0 , and one is typically con-
cerned with estimation of a causal effect such as E∗0{E∗0(Y | A = 1,W )−E∗0(Y |
A = 0,W )}. Let M ≡ Π∗(W ) be a summary measure of W which is suppos-
edly an approximation of the propensity score Π∗0(W ) = P0(A = 1 | W ) (e.g.,
estimated from external data). One samples (M1 = Π∗(W1),W1, Y1) from
the conditional distribution of (W,Y ), given A = 1, and one samples one or
more (M2 = Π∗(W2),W2, Y2) from the conditional distribution of (W,Y ), given
M = M1and A = 0.

One now wishes to use n i.i.d. observations on the observed experimental
unit O = ((W1, Y1), (W2j, Y2j : j)) representing a treated unit and one or more
propensity score matched untreated units to estimate the causal parameter of
interest.

Notice that we can immediately apply the methodology presented in this
article by defining the Y as the A and the matching variable M is playing
the role of Π∗(W ). As a consequence, one can use any method developed for
sampling from (W,A, Y ) by using our ”case control” weights q0 = P ∗0 (A =

1) for the treated units, and q̄0(W ) = q0
P ∗

0 (A=0|M)

P ∗
0 (A=1|M)

for the untreated units.

Thus, to correct for the biased sampling one will need to know the actual
true treatment mechanism/propensity score P ∗0 (A = 1 | W ). Thus, under
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the assumption that this propensity score is known or can be estimated based
on an external data source, one can apply any method for estimation of the
wished causal effect for standard sampling by applying these weights to the
treated and untreated units. Off course, for the sake of statistical inference
and model selection (say, based on cross-validation) one should respect the fact
that the independent and identically distributed observations are O1, . . . , On,
and not the treated and untreated units.

General biased sampling. Finally, we like to discuss the implications of
the proposed optimal case-control weighting for general biased sampling mod-
els with known probabilities for the conditioning events, where optimal refers
to the fact that the case-control weighting maps an efficient procedure for
an unbiased sample into an efficient procedure for the biased sample. The
following generalization of our method for case-control design I applies to
general biased sampling. Consider a particular target probability distribu-
tion P ∗0 representing the unbiased sampling distribution and its corresponding
random variable O∗ ∼ P ∗0 . Suppose now that the outcome space for the ran-
dom variable O∗ is partitioned by a union of events Aj, j = 1, . . . , J : i.e.
Pr(O∗ ∈ ∪jAj) = 1 and the sets Aj are pairwise disjoint. Let the experi-
mental unit for the observed data be (O1, . . . , OJ), where Oj ∼ O∗ | O∗ ∈ Aj
is a draw from the conditional distribution, given O∗ ∈ Aj, j = 1, . . . , J .
For simplicity, we enforced here equal number of draws, but this can be gen-
eralized to having different number of draws from each conditional distribu-
tion. Let q0(j) = P ∗0 (O∗ ∈ Aj) ∈ (0, 1) and suppose these probabilities are
known. Weighting observation Oj with q0(j) for j = 1, . . . , J , and applying a
method developed for the unbiased sample will yield valid estimators. We also
conjecture that under appropriate similar conditions as we assumed for case-
control sampling, this weighting will be optimal in the sense that assigning
these weights to an efficient estimation procedure for i.i.d. samples of P ∗0 will
yield an efficient estimation procedure based on the biased sampling model.
Given our interpretation of case-control weighting for matched case-control
sampling in terms of case-control weighting for standard case-control studies
conditional on the matching category, we suggest that weighting for matched
case-control sampling can be generalized to matched biased sampling in gen-
eral (say matched on a draw M1 from the first biased sampling distribution).

Another commonly employed study is a case-control sample nested within a
cohort. In addition, it is then common that one collects additional information
on the case-control sample relative to the information collected in the original
cohort sample. Our results are not covering this important problem for which
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a rich literature exist (see e.g., Robins et al. (1994)).

Appendix: Incorporating variability/uncertain-

ty in the user supplied prevalence probability

q0.

In this section we wish to illustrate that our general case-control weighted
estimation methodology directly generalizes to the case that q0 is replaced by
an estimate q̂ (based on an independent sample) with a user supplied standard
error σ. For the sake of illustration, consider the independent case-control
design and let Dq0(O | ψ) = q0D(W1, A1, 1 | ψ) + (1− q0)/J

∑
j D(W j

0 , A
j
0, 0 |

ψ) be a case-control weighted estimating function applied to an estimating
function D(O∗ | ψ) for the parameter of interest ψ0 = Ψ(P ∗0 ) of the target
distribution P ∗0 . Let the case-control weighted estimator Ψ̂(q0, Pn) be defined
as a solution of the estimating equation

0 = PnDq0(O | ψ) =
1

n

n∑
i=1

Dq0(Oi | ψ),

where Pn denotes the empirical distribution.
The case-control weighted estimator ψn based on q̂ of ψ0 can now be rep-

resented as Ψ̂(q̂, Pn). Under regularity conditions, the estimator Ψ̂(q0, Pn)
(as consider in our article) using the true prevalence probability q0 is asymp-
totically linear with influence curve IC0 = − d

dψ0
P0Dq0(ψ0)−1Dq0(ψ0), using

short-hand notation. The actual estimator Ψ̂(q̂, Pn) can now be decomposed
as

Ψ̂(q̂, Pn)− ψ0 = Ψ̂(q̂, Pn)− Ψ̂(q̂, P0) + Ψ̂(q̂, P0)− Ψ̂(q0, P0)

≈ Ψ̂(q0, Pn)− Ψ̂(q0, P0) + Ψ̂(q̂, P0)− Ψ̂(q0, P0),

where the approximation involves a second order term of q̂ − q0 and Pn − P0.
The first difference equals (Pn−P0)IC0 +oP (1/

√
n) and is thus asymptotically

normally distribution with mean zero and covariance matrix Σ0 = E0IC0IC
>
0 .

The second difference is independent of this first asymptotically normal term
and, by the delta-method, can be approximated by q̂ − q0 times the gradient
a0 of q → Ψ̂(q, P0):

Ψ̂(q̂, P0)− Ψ̂(q0, P0) = (q̂ − q0)
d

dq0

Ψ̂(q0, P0) = (q̂ − q0)a0.
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Thus, this term behaves as a normally distributed vector with mean zero and
variance elements σ2a0, where a0 = d

dq0
Ψ̂(q0, P0). We can conclude that our

standardized estimator
√
n(Ψ̂(q̂, Pn)− ψ0) converges in distribution to

N(0,Σ + σ2a0a
>
0 ),

where Σ = E0IC0(O)IC>0 (O) is the covariance matrix of the normal limit
distribution of the estimator Ψ̂(q0, Pn) based on the known prevalence proba-
bility.

In general, this general template shows that we can incorporate the stan-
dard error σ of a user supplied estimate q̂ by simply adding the matrix σ2a0a

>
0

to the covariance matrix of our case-control weighted estimator Ψ̂(q̂, Pn) we
would use if q̂ is treated as known, where a0 is the gradient of q → Ψ̂(q, P0) at
q0.

For the sake of concreteness, we will now provide an expression of the
gradient a0 of the derivative of q → Ψ̂(q, P0) at q = q0 in the above setting.
Note that Ψ̂(q, P0) is defined as the solution in ψ of H0(q, ψ) = P0Dq0(ψ) = 0.

By the implicit function theorem, this shows that the gradient of q → Ψ̂(q, P0)
is given by:

a0 = − d

dψ0

H0(q0, ψ0)−1 d

dq0

H0(q0, ψ0)

= − d

dψ0

H0(q0, ψ0)−1P0(D1 −D0),

where we defined D1(O) = D(1,W1, A1) and D0(O) = 1
J

∑
j D(0,W j

0 , A
j
0). One

can estimate a0 by replacing the expectations by empirical means, and thereby
construct confidence intervals and p-values based on Σn + σ2ana

>
n , where Σn

is an estimator of the covariance matrix Σ0 and an is the estimator of a0.

Appendix: Extension to case-control incidence

density sampling.

An alternative commonly employed case-control sampling design involves reg-
ular case-control sampling from a population at risk at time t, where the
outcome is now defined at time t, across various time points t (see e.g., Roth-
man and Greenland (1998)). Such designs can be carried out at only a few
discrete time points or they could evolve in continuous time.

For example, one might sample breast cancer cases and controls in year
2000 among the population at risk of breast cancer, and one would repeat
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such a case-control sample at years 2001 and 2002. Note that the outcome
is now different depending on the year one samples, since being a case in the
case-control sample at year (e.g.) 2000 requires being diagnosed with breast
cancer in year 2000. Another type of example would be to sample one or more
controls at the time a case occurs among the subjects at risk right before the
case occurred.

One issue with this kind of case-control sampling is that the sampling
population might change over time due to an influx of new subjects over time,
so that the change in sampling population over time cannot only be modeled by
censoring and the occurrence of failures within a well defined target population
at the first time point. Alternatively, one defines a target population at the first
time point and one samples cases and controls at time t among the subjects in
this target population that are still at risk right before time t (i.e., the subjects
that have not failed or been censored, yet), thereby ignoring any possibly influx
of subjects over time.

We now wish to discuss some possible applications of our case-control
weighting methodology to these types of case-control sampling designs. Firstly,
the most straightforward and direct application is to treat the case-control
sample at time t as a separate case-control sample and immediately apply
our case-control weighting to estimate any parameter of the population dis-
tribution one samples from at time t. Of course, this requires a large enough
case-control sample at each time point t so that these t-specific parameters
are estimated at a reasonable precision. Note also that the knowledge of the
case-control weights now requires knowing the marginal probability of being a
case for the sampling population at time t, at each of the sampling times t. If
one is willing to assume that these t-specific parameters (e.g. causal effect of
a treatment on outcome) follow a parametric trend in t, then one can pool all
the t-specific estimates to obtain a smoother estimation procedure that might
result in significant gains in variance. For example, maybe it is appropriate
to believe that the population is stationary in time t, that is, somehow the
influx of new subjects and loss of existing subjects due to censoring or fail-
ure balances out so that the sampling population at time t does not change
over time. In that case, one might assume that the t-specific parameters are
constant in t.

We now wish to consider how we might generally apply pooling across
time while using our case-control weighting to handle such incidence density
sampling designs. Here, we will focus on a single target population so that
one is concerned with estimation of a single well defined parameter of a target
population of interest.

Consider the case that the outcome of interest is a time till event T . For
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notational convenience, we will assume that T is discrete on time points t =
0, 1, . . . , τ . Suppose that in a prospective sample one would observe O∗ = (T̃ =
min(C, T ),∆ = I(T̃ = T ), X̄(T̃ )), where C is a right-censoring time and X̄(s)
denotes the history up till time s of the time dependent process t → X(t):
X̄(s) = (X(u) : u ≤ s), where X(t) includes the indicator dY (t) ≡ I(T = t) of
the failure time event at time t. Let P ∗0 denote the probability distribution of
this right-censored data structure O∗. Suppose that the parameter of interest
is Ψ(P ∗0 ) which will typically represent a parameter of the full data distribution
of X such as a causal effect of a treatment A assigned at time 0 on the time
till event T .

In the case that the outcome is a time till a rare event one might employ a so
called incidence density case-control sampling design. That is, at time t, among
the population at risk defined by all the individuals with R(t) = I(T̃ ≥ t) = 1,
one samples a case from the conditional distribution of O∗, given dY (t) = 1
and R(t) = 1, and one samples one or more controls from the conditional
distribution of O∗, given dY (t) = 0 and R(t) = 1. Note that one can replace
dY (t) by the observed data quantity dY (t) = I(T̃ = t,∆ = 1). Let’s denote
the observed data structure sampled at time t, consisting of a case and one or
more controls, as

Ot = (O1t, O0tj, j = 1, . . . , J),

where O1t denotes the data structure on the case and O0tj denotes the data
structure on the j-th control. Suppose one samples n(t) i.i.d observations of
Ot at time t, t = 0, . . . , τ , resulting in a total sample Oti, i = 1, . . . , n(t),
t = 0, . . . , τ .

Let R(t)D(t, O∗) be an estimating function or loss function for the prospec-
tively sampled unit O∗, t = 0, . . . , τ . An estimating function or loss function
based on sampling O∗ itself can always be represented as

∑
tR(t)D(t, Ō∗(t)),

where Ō∗(t) = X̄(min(t, C)) denotes the observed history up till time t, which
is assumed to include the censoring event if it occurs before time t. Specifically,
we have

D(O∗) =
∑
t

E(D | X̄(min(t, C)))− E(D | X̄(min(t− 1, C)))

=
∑
t

R(t)
{
E(D | X̄(min(t, C))− E(D | X̄(min(t− 1, C)))

}
,

where X̄(min(t, C)) represents the history one observes up till time t, and
thus it is assumed that X̄(min(t, C)) also includes observing the censoring
event time C if C occurs before time t

The following lemma shows how the case-control weighting can be applied
to this t-specific estimating function of O∗ which typically represents just one
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term R(t)D(t, O∗) of the full estimating function D(O∗) =
∑
tR(t)D(t, O∗)

one would use if one would sample O∗ prospectively.

Lemma 1 Define

Dq0(t, Ot) ≡ q0(t)D(t, O1t) + q̄0(t)
1

J

J∑
j=1

D(t, O0tj),

where

q0(t) ≡ P ∗0 (dY (t) = 1, R(t) = 1)

q̄0(t) ≡ P ∗0 (dY (t) = 0, R(t) = 1).

We have
E0Dq0(t, Ot) = E∗0R(t)D(t, O∗).

In particular, if we redefine q0(t) = P (dY (t) = 1 | R(t) = 1) and q̄0(t) =
1− q0(t), then

E0Dq0(t, Ot)P
∗
0 (R(t) = 1) = E∗0R(t)D(t, O∗).

If censoring is non-informative, then the weights q0(t) = P ∗0 (dY (t) = 1 |
R(t) = 1) = P ∗0 (dY (t) = 1 | T ≥ t) reduce to the marginal hazard of T at
time t. Thus, if censoring is non-informative, then this case-control weighting
would require knowing the marginal failure time distribution of T .

Proof of Lemma. We have

E0Dt(Ot) = E0q0(t)D(t, 1, O∗1) + q̄0(t)
1

J

J∑
j=1

D(t, 0, O∗0j)

=
∫
D(t, 1, O∗1)q0(t)P ∗0 (O∗ | dY (t) = 1, R(t) = 1)

+
1

J

J∑
j=1

∫
D(t, 0, O∗)q̄0(t)P ∗0 (O∗ | dY (t) = 0, R(t) = 1)

=
∫
O∗
D(t, 1, O∗)P ∗0 (O∗, dY (t) = 1, R(t) = 1)

+
1

J

J∑
j=1

∫
O∗
D(t, 0, O∗)P ∗0 (O∗, dY (t) = 0, R(t) = 1)

=
∫
O∗,R(t)

R(t)D(t, 1, O∗)P ∗0 (O∗, dY (t) = 1, R(t))

+
∫
O∗,R(t)

R(t)D(t, 0, O∗)P ∗0 (O∗, dY (t) = 0, R(t))

=
∫
O∗,dY (t),R(t)

R(t)D(t, dY (t), O∗)P ∗0 (O∗, dY (t), R(t)).
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This proves the lemma. 2

Even though one only applies the t-specific component R(t)D(t, O∗) of the
full estimating function to the case, the following lemma shows that one can
often use the control observation sampled at time t for the later time point
estimating functions without any need for weighting or coupling them to the
case sampled at time t.

Lemma 2 Assume E0(D(s,O∗) | R(s) = 1) = 0 for all s. Given a t, for
s > t, we have for the control observations O0t

E0R(s)D(s,O0t) = 0

Proof. We have for s > t

E0R(s)D(s,O0t) = E0(R(s)D(s,O∗) | R(t) = 1, dY (t) = 0)
= E0(E0(R(s)D(s,O∗) | R(s), R(t) = 1, dY (t) = 0) | R(t) = 1, dY (t) = 0)
= E0(P0(R(s) = 1 | R(t) = 1, dY (t) = 0)
×E0(R(s)D(s,O∗) | R(s) = 1, R(t) = 1, dY (t) = 0) | R(t) = 1, dY (t) = 0)
= P0(R(s) = 1 | R(t) = 1, dY (t) = 0)
×E0(E0(R(s)D(s,O∗) | R(s) = 1) | R(t) = 1, dY (t) = 0)
= P0(R(s) = 1 | R(t) = 1, dY (t) = 0)E0(D(s,O∗) | R(s) = 1)
= 0.2

Thus, given an estimating function D(O∗ | ψ) =
∑
tR(t)D(t, O∗ | ψ) for the

parameter ψ∗0 based on sampling from P ∗0 , an estimating equation for the total
sample from the actual biased sampling data generating distribution P0 can
now be constructed as:

0 =
∑
t

n(t)∑
i=1

q0(t)D(t, O1ti) + q̄0(t)
1

J

J∑
j=1

D(t, O0tji | ψ)

+
∑
t

n(t)∑
i=1

∑
s>t

1

J

∑
j

R(s)D(s,O0sji | ψ).

The last term represents the non-coupled contributions of the control obser-
vations at time points after the time point t at which the control unit was
sampled. Here q0(t) = P (dY (t) = 1 | R(t) = 1) and q̄0(t) = P (dY (t) =
0 | R(t) = 0) = 1 − q0(t). If the estimating function is indexed by nuisance
parameters, then these need to be estimated.
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Not conditioning on being at risk. In the above form of incidence density
sampling, sampling a case corresponds with conditioning on a subject being
at risk and being a true case at time t (i.e., a failure at time t). In the
following lemma we employ the same design but in which sampling a case
corresponds with only conditioning on having an observed event at time t, and
thus not conditioning on being at risk at time t. The advantage of this type of
design is that one can now case-control weight the complete estimating function
D(O∗) =

∑
tR(t)D(t, O∗) one would use in prospective/unbiased sampling of

O∗. The lemma provides the correct case control weighting and it is now a
direct corollary of our case-control weighting results established in this article.

Lemma 3 Let dY (t) = I(T̃ = t,∆ = 1). Let O1t be a draw from con-
ditional distribution of O∗, given dY (t) = 1, and let O0tj be i.i.d draws
from the conditional distribution of O∗, given dY (t) = 0, j = 1, . . . , J . Let
Ot = (O1t, (O0tj : j)) be the total observation consisting of a case and J con-
trols.

Given a function O∗ → D(O∗), define

Dq0(t, Ot) ≡ q0(t)D(O1t) + q̄0(t)
1

J

J∑
j=1

D(O0tj),

where

q0(t) ≡ P0(dY (t) = 1)

q̄0(t) ≡ P0(dY (t) = 0).

We have
E0Dq0(t, Ot) = E∗0D(O∗).

Thus, given an estimating function D(O∗ | ψ) =
∑
tR(t)D(t, O∗ | ψ) for

the parameter ψ∗0 based on sampling from P ∗0 , an estimating equation for the
total sample from the actual biased sampling data generating distribution P0

can now be constructed as

0 =
∑
t

n(t)∑
i=1

q0(t)D(O1ti | ψ) + q̄0(t)
1

J

J∑
j=1

D(O0tji | ψ),

q0(t) = P (dY (t) = 1) and q̄0(t) = P (dY (t) = 0) = 1− q0(t). If the estimating
function is indexed by nuisance parameters, then these need to be estimated.

If there is censoring, then, even if censoring is independent, q0(t) is also
a function of the censoring mechanism for the prospective data structure O∗,
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which might be viewed as a disadvantage of such weights. Again, we note that
the case-control weighting requires knowing these marginal incidence prob-
abilities q0(t) across all time points t to which one applies the case control
sampling.

Matched case-control incidence density sampling. Since the weights
of our lemmas are directly implied by our case-control weights used in this
article, it is also clear how we can generalize the above lemmas to matched
case-control incidence density sampling in which one matches the controls by
also conditioning on a matching variable being equal to the matching variable
of the case.

An example: Estimation of conditional hazards based on incidence
density case-control sampling. Consider a target population of individ-
uals, and suppose that the data structure O∗ on a sampled individual consists
of baseline covariates W , a treatment variable A, and a right-censored sur-
vival time T , so that O∗ = (W,A, T̃ = min(T,C),∆ = I(T̃ = T ). Suppose
we are concerned with estimation of an intensity E(dY (t) | F̄ (t), A,W ) of the
counting process Y (t) = I(T̃ ≤ t,∆ = 1) w.r.t to history F̄ (t), A,W , where
F̄ (t) represents the failure and censoring history up till time t. If censor-
ing is conditionally independent of T given A,W , then this intensity equals
I(T̃ ≥ t)E(I(T ∈ dt) | T ≥ t, A,W ), that is, it equals the conditional haz-
ard of T , given A,W . It is common to assume a Cox-proportional hazards
or logistic regression model, depending on T being continuous (or finely dis-
crete) or discrete. For the sake of illustration, let’s consider a parametric
model αβ(t | F̄ (t), A,W ) for this intensity E(dY (t) | F̄ (t), A,W ) indexed by
a finite dimensional parameter β. Under sampling from O∗ it is known how
to construct a good estimator of β0. In particular one can apply maximum
likelihood estimation where the likelihood for a single observation O∗ is given
by

∏
t Pβ(dY (t) | W,A, F̄ (t)) in which

Pβ(dY (t) | W,A, F̄ (t)) =
αβ(t | W,A, F̄ (t))dY (t)(1− αβ(dY (t) | W,A, F̄ (t))1−dY (t)

represents the Bernoulli likelihood corresponding with the model αβ. Let
R(t)Dβ(t, dY (t),W,A, F̄ (t)) be defined as t-specific term R(t) logPβ(dY (t) |
W,A, F̄ (t)) of the log-likelihood

∑
tR(t) logPβ(dY (t) | W,A, F̄ (t)) of O∗.

Consider now a case-control incidence density sampling design in which
at time t one samples a case from the conditional distribution of O∗, given
that dY (t) = 1, R(t) = 1, and one or more controls from the conditional
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distribution of O∗, given that dY (t) = 0, R(t) = 1. Let Ot = (O1t, (O0tj : j))
denote the coupled case and control observations. As above, let n(t) denote
the number of such observations one samples at time t: Oti, i = 1, . . . , n(t).
For notational convenience, let’s assume that one samples a single control for
each case: i.e., J = 1. As case-control weighted log-likelihood, augmented
with the control observation contributions for later time points, we obtain:

Ln(β) =
∑
t

n(t)∑
i=1

q0(t)Dβ(t, 1,W1ti, A1ti, F̄1ti(t))

+q̄0(t)Dβ(t, 0,W0ti, A0ti, F̄0ti(t))

+
∑
t

n(t)∑
i=1

∑
s>t

R(s)Dβ(s, 0,W0ti, A0ti, F̄0ti(s)).

The time-specific case-control weights are q0(t) = P (T̃ = t,∆ = 1 | T̃ ≥ t)
and q̄0(t) = 1− q0(t). If censoring C is independent of T , then q0(t) = P (T =
t | T ≥ t) is the marginal hazard of T . One can now apply standard maximum
likelihood estimation to this log-likelihood, which can be carried out with
standard software.

This case-control weighted log-likelihood can also be written down for a
semi-parametric Cox-proportional hazards model, and, again, the correspond-
ing maximum likelihood estimator can be found by using standard maximum
likelihood estimation software developed for fitting a Cox-model based on
prospective sampling.

Finally, in an anologue fashion we can now obtain case-control weighted
targeted maximum likelihood estimators of particular parameters of this in-
tensity such as marginal causal effects of A on T , but we reserve this for future
work.

Appendix: Tangent space results proving case-

control weighted canonical gradient of prospec-

tive sampling model equals canonical gradient.

Our results in this section show that the case-control weighted canonical
gradient for the prospective sampling model M∗ yields the canonical gra-
dient for the parameter of interest Ψ in the actual case-control sampling
model. These results rely on the following assumption. The (typically very
large/semiparametric) model M∗ corresponds with (i.e., equals the intersec-
tion of) separate models for P ∗0 (W,A | Y = δ) for δ ∈ {0, 1} for case-control
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design I, and, for case-control design II,M∗ corresponds with (i.e., equals the
intersection of) separate models for P ∗0 (W,A | Y = δ,M = m) for δ ∈ {0, 1}
and m varying over the support of the matching variable M . As a consequence
of this canonical gradient representation our proposed case-control weighted
targeted maximum likelihood estimator, involving selecting estimators of Q∗0
and g∗0, under appropriate regularity conditions guaranteeing the wished con-
vergence to a normal limit distribution, is efficient if both of these estimators
are consistent, and remains consistent if one of these estimators is consistent.

The results are stated in an incremental fashion thereby building up the
proof of the final wished result. As a consequence, most stated results do not
require a proof but can be straightforwardly verified.

Tangent space for case-control design I. We start out with presenting
the tangent space for case-control design I.

Theorem 8 (Tangent space for case-control design I) Consider case-
control design I and the independence model M described by (3),

dP (P ∗)(O) = P ∗(W1, A1 | Y = 1)
∏
j

P ∗(W j
2 , A

j
2 | Y = 0),

and let T ∗(P ∗) denote the tangent space at P ∗ in model M∗. The tangent
space at P (P ∗) in model M is given by

TI(P
∗) ={

S∗(W1, A1, 1)− E∗(S∗ | Y = 1) +
∑
j{S∗(W j

2 , A
j
2, 0)− E∗(S∗ | Y = 0)}

}
,

where S∗ varies across T ∗(P ∗).

Since this tangent space is expressed in terms of the tangent space of the
underlying model M∗ we now need to understand the tangent space of M∗.
The following theorem fully characterizes this tangent space for models M∗

described by separate models for P (W,A | Y = δ) for δ ∈ {0, 1}.

Theorem 9 (Tangent space for underlying model M∗) Consider the
data structure O∗ = (W,A, Y ) and model M∗ for its probability distribution.
We make the following assumption onM∗: LetM∗ = ∩δM∗(δ), whereM∗(δ)
is a model for P ∗0 (W,A | Y = δ) indexed by (possibly infinite dimensional)
parameter θ(δ), for each δ ∈ {0, 1}, and assume that θ(δ) for different choices
of δ are variation independent parameters.
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If the marginal distribution q0(δ) = P (Y = δ) of Y is known in modelM∗,
then, we can represent T ∗(P ∗) as

T ∗(P ∗) =
∑
δ

T ∗δ (P ∗), (6)

where the latter sum-space is an orthogonal sum, and T ∗δ (P ∗) denotes the tan-
gent space generated by θ(δ), which can be represented as

T ∗δ (P ∗) = {I(Y = δ) (S∗(W,A, δ)− E(S∗ | Y )) : S∗ ∈ T ∗(P ∗)} .

If q0(δ) is unknown and modelled, then

T ∗(P ∗) = L2
0(P ∗Y )⊕∑

δ

T ∗δ (P ∗), (7)

where L2
0(P ∗Y ) is the Hilbert space of functions of Y with mean zero and finite

variance w.r.t. P ∗. We also note that for a S∗ ∈ L2
0(P ∗), the projection of S∗

on T ∗δ (P ∗) is given by

Π(S∗ | T ∗δ (P ∗)) = I(Y = δ) (S∗(W,A, δ)− E(S∗ | Y )) ,

and the projection of S∗ onto T ∗(P ∗) described by the orthogonal decomposition
(7) is given by

S∗ = E(S∗ | Y ) +
∑
δ

Π(S∗ | T ∗δ (P ∗)).

Tangent space for case-control design II. We now present the tangent
space for matched case-control design II.

Theorem 10 (Tangent space for case-control design II) Consider case-
control design II and the independence model M described by (4),

dP (P ∗)(O) = P ∗(M1)P ∗(A1,W1 | Y = 1,M1)
∏
j

P ∗(Aj2,W
j
2 | Y = 0,M1),

and let T ∗(P ∗) denote the tangent space at P ∗ in model M∗. The tangent
space at P (P ∗) in model M is given by

TII(P ∗) = L2
0(M1)⊕{

S∗(Z1, 1)− E∗(S∗ |M = M1, Y = 1) +
∑
j{S∗(Zj2 , 0)− E∗(S∗ |M = M1, Y = 0)}

}
,

where S∗ varies across T ∗(P ∗), Z1 = (M1,W1, A1) and Zj
2 = (M1,W

j
2 , A

j
2).
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Since this tangent space is characterized in terms of the underlying tangent
space T ∗(P ∗) for modelM∗ we now fully characterize the latter tangent space
for models M∗ described by separate models for P ∗(W,A | M = m,Y = δ)
for the different values of m and δ.

Theorem 11 (Tangent space for model M∗ including matching vari-
able) We make the following assumption on the model M∗: Suppose that
M∗ = ∩m,δM∗(m, δ), where M∗(m, δ) is a model for P ∗0 (W,A | M = m,Y =
δ) indexed by (e.g., infinite dimensional) parameter θ(m, δ), for each δ ∈ {0, 1}
and possible outcome m for M , and it is assumed that θ(m, δ) are variation
independent parameters.

If q0(δ | m) = P (Y = δ | M = m) is known and the marginal distribution
of M is unspecified in model M∗, then, we can represent T ∗(P ∗) as

T ∗(P ∗) = L2
0(M)⊕∑

m,δ

T ∗m,δ(P
∗), (8)

where the latter sum-space is an orthogonal sum, and T ∗m,δ(P
∗) denotes the

tangent space generated by θ(m, δ), which can be represented as

T ∗m,δ(P
∗) = {I(M = m,Y = δ) (S∗(m,W,A, δ)− E(S∗ |M,Y )) : S∗ ∈ T ∗(P ∗)} .

If the conditional distribution q0(δ | m) of Y , given M , is unknown and
modeled, then

T ∗(P ∗) = L2
0(P ∗M)⊕ T ∗(q0)⊕∑

m,δ

T ∗m,δ(P
∗), (9)

where T ∗(q0) denotes the tangent space generated by the scores of the param-
eters of q0(δ | m). We also note that for a S∗ ∈ L2

0(P ∗), the projection onto
T ∗m,δ(P

∗) is given by

Π(S∗ | T ∗m,δ(P ∗)) = I(M = m,Y = δ) (S∗(m,W,A, δ)− E(S∗ |M,Y )) ,

and, under the assumption that q0(δ | m) is unspecified, the projection of S∗

onto T ∗(P ∗) described by the orthogonal decomposition (9) is given by

S∗ = E(S∗ |M) + {E(S∗ | Y,M)− E(S∗ |M)}+
∑
m,δ

Π(S∗ | T ∗m,δ(P ∗)).
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Special score for case-control design I. We will later show that the case-
control weighted canonical gradient is in the tangent space TI(P

∗) by selecting
a special choice S∗ ∈ T ∗(P ∗) defined in the next result. The following result
shows that this special choice is indeed a member of T ∗(P ∗).

Result 1 Let O∗ = (W,A, Y ) ∼ P ∗0 ∈ M∗ and assume that the tangent
space T ∗(P ∗) at P ∗ ∈ M∗ is given by orthogonal decomposition (7). Given a
D∗ ∈ T ∗(P ∗), we have

S∗(W,A, Y ) = q0(Y ) {D∗(W,A, Y )− E∗(D∗ | Y )}
∈ T ∗(P ∗).

The same applies if q0(0) is replaced by q0(0)/J .

Proof. Firstly, we note that for each δ, Π(D∗ | Tδ(P ∗)) ∈ T ∗(P ∗), and by
linearity of the space Tδ(P

∗) (i.e., closure under multiplication by scalar) we
have that q0(δ)Π(D∗ | T ∗δ (P ∗)) ∈ T ∗(P ∗). By linearity of T ∗(P ∗), it follows
thus that ∑

δ q0(δ)Π(D∗ | T ∗δ (P ∗))
=
∑
δ q0(δ)I(Y = δ) (D∗(W,A, δ)− E∗(D∗ | Y ))

= q0(Y ) (D∗(W,A, Y )− E∗(D∗ | Y ))
= S∗(W,A, Y )
∈ T ∗(P ∗).

This completes the proof. 2

Special score for case-control design II. For case-control design II, we
need a similar result.

Result 2 Consider the model O∗ = (M,W,A, Y ) ∼ P ∗0 ∈M∗ and let T ∗(P ∗)
denote the tangent space at P ∗ ∈ M∗ and assume it satisfies orthogonal de-
composition (9). Given a D∗ ∈ T ∗(P ∗), we have

S∗m(M,W,A, Y ) ≡ I(M = m)q0(Y | m) {D∗(m,W,A, Y )− E∗(D∗ |M,Y )}
∈ T ∗(P ∗). (10)

The same result applies if we replace q0(0 | m) by q0(0 | m)/J .
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Proof. Firstly, we note that for each m, δ, Π(D∗ | Tm,δ(P ∗)) ∈ T ∗(P ∗), and
by linearity of the space Tm,δ(P

∗) (i.e., closure under multiplication by scalar)
we have that q0(δ | m)Π(D∗ | T ∗m,δ(P ∗)) ∈ T ∗(P ∗). By linearity of T ∗(P ∗), it
follows thus that∑

δ q0(δ | m)Π(D∗ | T ∗m,δ(P ∗))
=
∑
δ q0(δ | m)I(M = m,Y = δ) (D∗(m,W,A, δ)− E∗(D∗ |M,Y ))

= I(M = m)q0(Y | m) (D∗(m,W,A, Y )− E∗(D∗ |M,Y ))
= S∗m(M,W,A, Y )
∈ T ∗(P ∗).

This completes the proof. 2

Case-control weighted score equals a score, case-control design I.
We are now ready to establish our wished results showing that the case-control
weighted canonical gradient of the prospective sampling model is an element
of the tangent space for the observed data model M.

Theorem 12 (Case-control weighted score is a score, Design I) Con-
sider case-control design I, its independence model M described by (3), and
assume the tangent space T ∗(P ∗) of M∗ at P ∗ satisfies the orthogonal decom-
position (7).

If D∗ ∈ T ∗(P ∗), then

Dq0(O) = q0D
∗(W1, A1, 1) +

(1− q0)

J

∑
j

D∗(W j
2 , A

j
2, 0) ∈ TI(P ∗).

Specifically, if we set

S∗(W,A, Y ) = q0(Y ) {D∗(W,A, Y )− E∗(D∗ | Y )} ∈ T ∗(P ∗),

where q0(Y ) = I(Y = 1)q0 + I(Y = 0)(1− q0)/J , then

Dq0(O) = S∗(W1, A1, 1)− E∗(S∗(W,A, Y ) | Y = 1)

+
∑
j

{S∗(W j
2 , A

j
2, 0)− E∗(S∗(W,A, Y ) | Y = 0)}.

(Here, we use the fact for J = 1, E∗(S∗ | Y = 1) + E∗(S∗ | Y = 0) = 0.)

This establishes the wished corollary stating that the case-control weighted
canonical gradient for the prospective sampling model yields the canonical
gradient for the case-control sampling model M.
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Corollary 1 Consider case-control design I, its independence model M de-
scribed by (3), and assume the tangent space T ∗(P ∗) of M∗ at P ∗ satisfies the
orthogonal decomposition (7).

Suppose that D∗(P ∗) is the canonical gradient of Ψ∗ : M∗ → IRdΨ∗, and
let Ψ :M→ IRd at P (P ∗) ∈M, satisfy Ψ(P (P ∗)) = Ψ∗(P ∗).

Assume that the corresponding case-control weighted Dq0 (satisfies the reg-
ularity conditions such that it) is a gradient for Ψ at P (P ∗). Then Dq0 is the
canonical gradient of Ψ at P (P ∗).

Case-control weighted score is a score, Case-Control Design II. We
establish the same type result for case-control design II.

Theorem 13 (Case-control weighted score is a score, Design II) Con-
sider case-control design II, its independence model M described by (4), and
assume the tangent space T ∗(P ∗) of M∗ at P ∗ satisfies the orthogonal decom-
position (9).

For any D∗ ∈ L2(P ∗), we have

Dq0,q̄0(O) ≡ q0D
∗(M1,W1, A1, 1) + q̄0(M1)

1

J

∑
j

D∗(M1,W
j
2 , A

j
2, 0)

=
∑
m

q0

q0(1 | m)
I(M1 = m)D∗m,q0 ,

where

D∗m,q0(O) ≡ q0(1 | m)D∗(m,W1, A1, 1) +
q0(0 | m)

J
D∗(m,W j

2 , A
j
2, 0).

For each m, and D∗ ∈ T ∗(P ∗), we have

I(M1 = m)D∗m,q0 ∈ TII(P ∗)
so that it follows that

Dq0,q̄0(P
∗) ∈ TII(P ∗).

Let q0J(δ | m) = q0(1 | m)δ + (1− δ)q0(0 | m)/J . Specifically, if we set

S∗m(M,W,A, Y ) = I(M = m)q0J(Y | m) {D∗(m,W,A, Y )− E∗(D∗ |M,Y )} ,
which is an element of T ∗(P ∗) by (10) above, then

I(M1 = m)D∗m,q0(O) = S∗m(M1,W1, A1, 1)− E∗(S∗m |M,Y = 1)

+
∑
j

{S∗m(M1,W
j
2 , A

j
2, 0)− E(S∗ |M,Y = 0)}

∈ TII(P
∗).
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Here we use that for any D∗ ∈ L2
0(P ∗),

q0(1 | m)E∗(D∗ |M = m,Y = 1) + q0(0 | m)E(D∗ |M = m,Y = 0) = 0.

This gives us the wished result.

Corollary 2 (Case-control weighted canonical gradient is a canonical
gradient, Design II) Consider case-control design II, its independence model
M described by (4), and assume the tangent space T ∗(P ∗) ofM∗ at P ∗ satisfies
the orthogonal decomposition (9).

If D∗(P ∗) is the canonical gradient of Ψ∗ :M∗ → IRd at P ∗, then

Dq0,q̄0 ≡
∑
m

q0

q0(1 | m)
I(M1 = m)D∗m,q0

∈ TII(P
∗).

Thus, under the conditions for which which Dq0,q̄0(P
∗) is a gradient of

Ψ : M → IRd at P (P ∗) ∈ M, satisfying Ψ(P (P ∗)) = Ψ∗(P ∗) for specified
parameter Ψ∗ : M∗ → IRd, we also have that Dq0,q̄0(P

∗) is the canonical
gradient of Ψ at P (P ∗).
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Abstract

Researchers of uncommon diseases are often interested in assessing
potential risk factors. Given the low incidence of disease, these stud-
ies are frequently case-control in design, as this allows for a sufficient
number of cases to be obtained without extensive sampling and can
increase efficiency. However, these case-control samples are then bi-
ased since the proportion of cases in the sample is not the same as the
population of interest. Methods for analyzing case-control studies have
focused on utilizing logistic regression models that provide conditional
and not causal estimates of the odds ratio. This article will demonstrate
the use of the prevalence probability and case-control weighted targeted
maximum likelihood estimation (MLE), as described by van der Laan
(2008), in order to obtain causal estimates of the parameters of interest
(risk difference, relative risk, and odds ratio). It is meant to be used as
a guide for researchers, with step-by-step directions to implement this
methodology. We will also present simulation studies that show the im-
proved efficiency of the case-control weighted targeted MLE compared
to other techniques.
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1 Introduction

Case-control study designs are frequently used in public health and medical
research to assess potential risk factors for disease. These study designs are
particularly attractive to investigators researching rare diseases (i.e. proba-
bility of having the disease ≈ 0), as they are able to sample known cases of
disease, versus following a large number of subjects and waiting for disease
onset. Case-control studies can also yield increases in efficiency. However,
case-control sampling is a biased sampling method; bias occurs due to the dis-
proportionate number of cases in the sample versus the population of interest.
Researchers commonly employ the use of a logistic regression model, treat-
ing the sample as a prospective sample, and estimate the conditional odds
ratio of having disease given the exposure of interest and measured covari-
ates. If one would like to estimate marginal causal effects, which correspond
with the traditional parameters of interest in randomized trials, there is now a
nonparametric double robust locally efficient procedure available. In van der
Laan (2008), methodology for this marginal causal effect estimation theory in
case-control designs is illustrated in detail. These techniques rely on knowl-
edge of the true prevalence probability P ∗0 (Y = 1) ≡ q0 to eliminate the bias
of the case-control sampling design. This methodology can be used in con-
junction with other available procedures that handle censoring, missingness,
measurement error, and other issues that are persistent in prospective and
retrospective studies.

When possible, the population under study should be clearly defined. As
such, the prevalence and incidence probabilities are then truly basic informa-
tion about a population of interest. Given the availability of city, state, and
national databases for many diseases, including many cancers, knowledge of
the prevalence and incidence probabilities is now increasingly realistic. The
literature, going back to the 1950’s, supports this (see Cornfield (1951) and
Cornfield (1956)). Nested case-control studies can also take advantage of the
prevalence or incidence probability available in the full cohort study. The ap-
propriateness of the use of the prevalence versus the incidence probability will
depend on the nature of the case-control study design. The use of the these
probabilities to eliminate the bias of case-control sampling design has previ-
ously been discussed as update to a logistic regression model with the intercept
log q0/(1− q0) (Anderson, 1972; Prentice and Breslow, 1978; Greenland, 1981;
Morise et al., 1996; Wacholder, 1996; Greenland, 2004). When the appropri-
ate probability, or an estimate of the probability, is available, our procedure
(van der Laan, 2008) can be implemented. In situations where data on the
population of interest may be sparse, the use of a range for the probability is
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still beneficial.
An existing method for causal inference in case-control study designs, dis-

cussed by Robins (1999) and Mansson et al. (2007), involves the use of the
exposure mechanism (also known as the propensity score or treatment mech-
anism in other literature) among control subjects as a weight to update a
logistic regression of disease status on exposure. This inverse probability of
treatment weighted (IPTW) marginal structural model does not require the
knowledge of prevalence probability, only that the prevalence probability is
close to zero. We will discuss this and other existing methods for analysis
of case-control studies while stressing our new case-control weighting method
that utilizes the prevalence probability.

The procedure, case-control weighted targeted maximum likelihood esti-
mation, “targets” the parameter of interest rather than the distribution of
interest. We use extra information, the estimate of the conditional distribu-
tion of the exposure given covariates among cases and controls (which we refer
to as the exposure mechanism), to update an initial estimate of P ∗0 (Y | A,W ).
The procedure is double robust and locally efficient: it performs well as long as
P ∗0 (Y | A,W ) or P ∗0 (A | W ) is correctly specified, is consistent if either of these
models are correctly specified, and efficient if both are correctly specified. Our
case-control weighting scheme successfully maps estimation methods designed
for prospective sampling into methods for case-control sampling. It also pro-
duces efficient estimators when its prospective sample counterpart is efficient.
For theoretical development of this new methodology, we will refer to van der
Laan (2008). This article discusses case-control weighted targeted maximum
likelihood for cumulative study designs with the prevalence probability and
will focus on applications of the case-control weighting scheme in unmatched
(independent) studies. For an extension of the methodology to matched case-
control studies, see van der Laan (2008) and Rose and van der Laan (2008).
Theory for incidence-density sampling with the incidence probability is also
presented as an appendix in van der Laan (2008).

1.1 Case-Control Estimation

For ease of reference throughout the remainder of this article, we will present
basic notation for understanding of the case-control estimation problem here.
Let us define O∗ = (W,A, Y ) ∼ P ∗0 as the experimental unit and corresponding
distribution P ∗0 of interest, which consists of baseline covariates W , an expo-
sure variable A, and a binary outcome Y that defines case or control status.
(For prospective studies, the exposure variable A would be referred to as the
“treatment” variable.) P ∗0 therefore represents the population from which all
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cases and controls will be sampled. One might be interested in several marginal
causal effect parameters, including the causal risk difference, relative risk, and
odds ratio. For causal effect parameter ψ∗0 = Ψ∗(P ∗0 ) ∈ IRd of P ∗0 ∈ M∗ and
binary exposure A ∈ {0, 1}, these parameters are defined as:

ψ∗0,RD ≡ E∗0{E∗0(Y | A = 1,W )− E∗0(Y | A = 0,W )}
= E∗0(Y1)− E∗0(Y0)

= P ∗0 (Y1 = 1)− P ∗0 (Y0 = 1), (1)

ψ∗0,RR =
E∗0E

∗
0(Y | A = 1,W )

E∗0E∗0(Y | A = 0,W )
=
E∗0(Y1)

E∗0(Y0)
=
P ∗0 (Y1 = 1)

P ∗0 (Y0 = 1)
, (2)

and,

ψ∗0,OR =
P ∗0 (Y1 = 1)P ∗0 (Y0 = 0)

P ∗0 (Y1 = 0)P ∗0 (Y0 = 1)
, (3)

respectively. The causal versions of these definitions require the specification
of the counterfactual outcomes Y0 and Y1 for binary A and (W,A, Y = YA) as
a time-ordered missing data structure on (W,Y0, Y1), the full data structure.
In addition, one must make the randomization assumption: {A ⊥ Y0, Y1 | W}.
On the other hand, these parameters are always well defined parameters of
the distribution of the data, and they can thereby be viewed as W -adjusted
variable importance parameters without the need to make these assumptions.
See van der Laan (2006) for this framework.

In van der Laan (2008), independent case-control sampling is described
as first sampling (W1, A1) from the conditional distribution of (W,A), given
Y = 1 for a case and then sampling J controls (W j

0 , A
j
0) from (W,A), given

Y = 0, j = 1, . . . , J . The observed data structure in independent case-control
sampling is then defined by:

O = ((W1, A1), (W
j
0 , A

j
0 : j = 1, . . . , J)) ∼ P0, with

(W1, A1) ∼ (W,A | Y = 1)

(W j
0 , A

j
0) ∼ (W,A | Y = 0)

where the cluster containing one case and J controls is considered the exper-
imental unit, and the marginal distribution of this cluster is specified by P ∗0 .
Therefore, a case-control data set consists of n independent and identically dis-
tributed observations O1, . . . , On with sampling distribution P0 as described
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above. The modelM∗, where q0 may or may not be known, implies models for
the marginal distribution of cases (W1, A1) and controls (W j

2 , A
j
2), j = 1, . . . , J .

This coupling formulation was useful when proving results for the case-
control weighting methodology, and the tools provided in van der Laan (2008)
show that the following is also true. If independent case-control sampling is
described as sampling nC cases from the conditional distribution of (W,A),
given Y = 1, and sampling nCo controls from (W,A), given Y = 0, the value of
J used to weight each control is then nCo/nC. This simple ratio J = nCo/nC
can be used effectively in practice.

2 Existing Methodology

As previously discussed, conditional estimation of the odds ratio of being dis-
eased given the exposure of interest and baseline covariates is the prevalent
method of analysis in case-control study designs. Key publications in the area
of logistic regression for independent case-control study designs are Ander-
son (1972), Prentice and Pyke (1979), Breslow and Day (1980), and Bres-
low (1996). Greenland (1981) and Holland and Rubin (1988) discuss another
model-based method: the use of log-linear models to estimate the marginal
odds ratio. There are also several references for standardization in case-control
studies, which estimates marginal effects with population or person-time aver-
aging, including Rothman and Greenland (1998) and Greenland (2004). Beni-
chou and Wacholder (1994) also present multivariate methods for population-
based case-control studies. In this section, we will discuss the use of an inter-
cept adjusted logistic regression as it can be incorporated into our case-control
weighting framework. We will also discuss an IPTW marginal structural model
for the estimation of causal effects as it is a related methodology, making use of
the exposure mechanism. While these methods are discussed in current litera-
ture, they are infrequently implemented in current public health and medical
research compared to the use of logistic regression for conditional effects.

2.1 Intercept Adjusted Logistic Regression

A thorough literature search yielded several publications suggesting the use
of log q0/(1 − q0) as an update to the intercept of a logistic regression. (See
Anderson (1972), Prentice and Breslow (1978), Greenland (1981), Morise et al.
(1996), Wacholder (1996), and Greenland (2004), among others.) However, its
use in practice remains limited. The adjustment is sometimes presented as a
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ratio of sampling fractions:

log
(
P (sampled | Y = 1)

P (sampled | Y = 0)

)
,

which reduces to log q0/(1− q0).
Adding the intercept log q0/(1 − q0), denoted as log c0, yields the true lo-

gistic regression function P ∗0 (Y = 1 | A,W ) (Anderson, 1972; Prentice and
Pyke, 1979). An intercept adjusted logistic regression can be used within the
case-control weighting framework as an initial estimate of P ∗0 (Y | A,W ). This
will be discussed further in Section 3.2.1 and Section 4. The true logistic re-
gression function can also be mapped to causal effect parameters by averaging
over the case-control weighted distribution of W , which will also be discussed
in Section 3.2.1.

2.2 IPTW

Robins (1999) and Mansson et al. (2007) discuss, under a rare disease as-
sumption, the use of an approximately correct IPTW method in a marginal
structural logistic regression model for case-control study designs. This proce-
dure uses the estimated propensity score (exposure mechanism) among control
subjects to update a logistic regression of Y on A. However, this IPTW esti-
mator targets a nonparametrically non-identifiable parameter, which indicates
strong sensitivity towards model misspecification for the exposure mechanism.
See van der Laan (2008) for formal discussion of this result. Additionally,
the causal effect estimates of the risk difference and relative risk cannot be
obtained using this method. We also refer to Newman (2006) for a related
IPTW-type approach for fitting marginal structural models based on case-
control data. This method builds on the standardization approach in order to
weight exposed and unexposed controls using a regression of A on W . We will
include the IPTW method of Robins (1999) and Mansson et al. (2007) in our
simulations.

3 Case-Control Weighted Targeted Maximum

Likelihood Estimation

In this section, we provide the end user with a practical overview of the case-
control weighting scheme for targeted maximum likelihood estimation in case-
control study designs. For the formal statistical theory behind this technique,
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see van der Laan (2008). We discuss the implementation of case-control weight-
ing for targeted maximum likelihood estimation both broadly and step-wise
so that this article may be used as a guide to researchers wishing to employ
these methods in their work.

3.1 Summary

Case-control weighted targeted maximum likelihood estimation for case-control
study designs differs from other approaches to causal parameter estimation
in case-control study design as it incorporates estimates of P ∗0 (Y | A,W ),
P ∗0 (A | W ), and knowledge of q0. Intercept adjusted logistic regression mapped
to causal parameters discussed in the previous section relies on knowledge of
only P ∗0 (Y | A,W ) and q0; the IPTW procedure of Robins (1999) and Mans-
son et al. (2007) relies on P ∗0 (A | W ). The case-control weighted targeted
maximum likelihood estimation procedure provides a nonparametric double
robust locally efficient estimator: it performs well as long as P ∗0 (Y | A,W )
or P ∗0 (A | W ) is correctly specified, is consistent if either of these models are
correctly specified, and efficient if both are correctly specified. It uses ex-
tra information, the estimate of the conditional distribution of the exposure
given covariates among cases and controls, to update an initial estimate of
P ∗0 (Y | A,W ). One can use data-adaptive model-selection for estimation of
P ∗0 (Y | A,W ) and P ∗0 (A | W ) within our procedure. (This will be discussed
further in Section 5.) The procedure follows the basic steps enumerated below,
which we then illustrate in more detail.

1. Assign weights q0 to the cases and (1 − q0)
1
J

to the corresponding J
controls.

2. Estimate the conditional probability of Y given A and W using assigned
weights. The estimate of P ∗0 (Y | A,W ) ≡ Q∗0(A,W ) is Q̂∗(A,W ).

3. Estimate the conditional distribution of the exposure given covariates
using assigned weights. The estimate of P ∗0 (A | W ) ≡ g∗0(A | W ) is
ĝ∗(A | W ).

4. Calculate the “clever covariate” for each subject based on g∗0(A | W ).
The covariate is estimated by h(A,W ).

5. Update the initial fit Q̂∗(A,W ) from step 2 using the covariate h(A,W ).
This is achieved by holding the coefficients of Q̂∗(A,W ) fixed while es-
timating a new coefficient ε for h(A,W ) using weighted maximum like-
lihood estimation. The updated regression is given by Q̂∗1(A,W )
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6. Use the assigned weights and Q̂∗1(A,W ) to estimate causal parameters
of interest seen in formulas (1), (2) and (3). This is done by averaging
over the case-control weighted distribution of W .

7. Calculate standard errors, and then, subsequently, p-values and confi-
dence intervals, using the influence curve.

3.2 Implementation

The implementation of case-control weighted targeted maximum likelihood
can be achieved using existing tools available in current software packages.
Here we illustrate the steps described in Section 3.1.

3.2.1 Estimating Q∗0(A,W )

After assigning weights q0 and (1−q0) 1
J

to cases and controls, respectively, the
first step in case-control weighted targeted maximum likelihood estimation for
case-control designs is obtaining an estimate for P ∗0 (Y | A,W ) ≡ Q∗0(A,W ).
We offer two approaches for fitting this initial regression, the previously dis-
cussed intercept adjusted logistic regression, and a case-control weighted lo-
gistic regression. A comparison of these two approaches will be discussed in
Section 4.

Intercept Adjusted Logistic Regression for Q∗0(A,W ). Updating a lo-
gistic regression with log c0 is discussed in Section 2.1.

Case-Control Weighted Logistic Regression for Q∗0(A,W ). Using the
assigned weights, one simply performs maximum likelihood estimation for
prospective sampling ignoring the case-control sampling design. If one consid-
ers a nonparametric model for the marginal distribution of the covariates and
a model {Q∗θ : θ} for Q∗0(A,W ), the case-control weighted maximum likelihood
estimator for Q∗0(A,W ) is then given by:

θ̂ = arg max
θ

n∑
i=1

q0 log Q̂∗θ(A1i,W1i) + (1− q0) 1

J

J∑
j=1

log(1− Q̂∗θ(Aj2i,W j
2i)).

Implementing case-control weighted maximum likelihood estimation, which is
simply a weighted logistic regression, is quite straightforward, and can be done
in many existing statistical software programs, including SAS, STATA, and R.

Outside of the case-control weighted targeted maximum likelihood esti-
mation framework, case-control weighted logistic regression mapped to causal
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inference parameters produce efficient estimators. This mapping is accom-
plished by evaluating Q̂∗(A,W ) at A = 1 and A = 0, applying the appropriate
weights to estimate P ∗0 (Y1 = 1) and P ∗0 (Y0 = 1), and then computing the
desired causal parameters of interest defined in formulas (1), (2), and (3). Es-
timating causal parameters will be discussed in more detail in Section 3.2.5.
Case-control weighted logistic regression therefore provides researchers an im-
mediate one-step intuitive procedure to estimate causal inference parameters
in case-control study designs.

3.2.2 Estimating g∗0(A | W )

The case-control targeted maximum likelihood estimation procedure uses the
estimate of Q∗0(A,W ) obtained above in conjunction with an estimate of g∗0(A |
W ). If one further considers a model {g∗η : η} for g∗0(A | W ), the case-control
weighted maximum likelihood estimator for g∗0(A | W ) is given by:

η̂ = arg max
η

n∑
i=1

q0 log ĝ∗η(A1i | W1i) + (1− q0) 1

J

J∑
j=1

log ĝ∗η(A
j
2i | W j

2i),

For improved performance of the targeted maximum likelihood estimator in a
practical environment, estimated probabilites that are smaller than 0.01 can
be set to 0.01 (Bembom et al., 2007).

3.2.3 Calculating h(A,W )

After estimating Q∗0(A,W ) and g∗0(A | W ), the next step requires calculation
of a “clever covariate” for each subject. This covariate, which is calculated as
if one has a prospective sample, takes the form:

h(A,W ) ≡
(

I(A = 1)

ĝ∗(A = 1 | W )
− I(A = 0)

ĝ∗(A = 0 | W )

)

for the risk difference. It is easy to see that for A = 1 the second term
disappears, and for for A = 0 the first term disappears. Two covariates:

h0(A,W ) ≡
(
− I(A = 0)

ĝ∗(A = 0 | W )

)
and h1(A,W ) ≡

(
I(A = 1)

ĝ∗(A = 1 | W )

)

are used for estimation of other parameters, such as the relative risk and odds
ratio. For a more detailed discussion of the “clever covariate,” see van der
Laan and Rubin (2006) and Moore and van der Laan (2007).
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3.2.4 Updating Q̂∗(A,W )

Updating Q̂∗(A,W ) involves performing an additional weighted regression
with h(A,W ) as a supplementary covariate. All other coefficients in the initial
regression Q̂∗(A,W ) are held fixed, and an intercept is suppressed in order
to estimate the coefficient in front of h(A,W ), denoted ε. The case-control
weighted targeted maximum likelihood estimation procedure is then able to
incorporate information from ĝ∗(A | W ), through h(A,W ), into an updated
regression. It does this by extracting ε̂1, the case-control weighted maximum
likelihood estimator of ε, from the fit defined above, and updating the regres-
sion estimate Q̂∗(A,W ). This updated regression is then given by Q̂∗1(A,W ):

Q̂∗1(A,W ) = Q̂∗(A,W ) + ε̂1h(A,W ).

The updating procedure is iterated until convergence, although in many ex-
amples convergence is achieved in one step.

3.2.5 Estimating Causal Parameters

The risk difference, relative risk, and odds ratio, were previously defined gen-
erally in formulas (1), (2), and (3). The estimate Q̂∗1(A,W ) obtained in the
previous step can be easily mapped into causal parameters of interest in the
case-control weighting scheme for targeted maximum likelihood estimation by
averaging over the case-control weighted distribution of W . This is accom-
plished by evaluating Q̂∗1(A,W ) at A = 1 and A = 0 and applying weights q0
for cases and (1 − q0) 1

J
to the corresponding J controls to form case-control

weighted estimates of E∗0(Y1) = P ∗0 (Y1 = 1) and E∗0(Y0) = P ∗0 (Y0 = 1). The
risk difference, relative risk, and odds ratio can then be simply calculated from
these estimates. For example, the relative risk E∗0(Y1)/E

∗
0(Y0) is estimated by:

ψ̂RR =
1
n

∑n
i=1 q0Q̂

∗
1,q0

(1,W1i) + (1− q0) 1
J

∑
j Q̂
∗
1,q0

(1,W j
2i)

1
n

∑n
i=1 q0Q̂

∗
1,q0(0,W1i) + (1− q0) 1

J

∑
j Q̂
∗
1,q0(0,W

j
2i)
.

3.2.6 Calculating Standard Errors

The calculation of standard errors for case-control weighted targeted maximum
likelihood involves the use of case-control weighted influence curves for the
risk difference, relative risk, and odds ratio. This methodology is discussed
in detail in van der Laan (2008), and a complete technical understanding
of infuence curve derivation is not necessary to implement the case-control
targeted maximum likelihood estimation procedure. We also refer to van der
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Laan and Robins (2002) for careful discussions of gradients and influence curve
theory.

For example, the unweighted influence curve for the risk difference of a
prospective study ψ∗0,RD = P ∗0 (Y1 = 1)− P ∗0 (Y0 = 1) is estimated by:

D̂RD(ψ∗, g∗, Q∗)(O) =
I(A = 1)

ĝ∗(1 | W )
(Y − Q̂∗(1,W ))− I(A = 0)

ĝ∗(0 | W )
(Y − Q̂∗(0,W ))

+Q̂∗(1,W )− Q̂∗(0,W )− ψ̂.

The case-control weighted influence curve for the risk difference ψ∗0,RD =
P ∗0 (Y1 = 1)− P ∗0 (Y0 = 1) is then estimated by:

D̂RD,q0(ψ
∗, g∗, Q∗)(O) = q0D̂

∗(g∗, Q∗)(A1,W1, 1)

+(1− q0) 1

J

J∑
j=1

D̂∗(g∗, Q∗)(Aj2,W
j
2 , 0)− ψ̂.

Note that the case-control weighted influence curve is merely the influence
curve for prospective targeted maximum likelihood with case-control weight-
ing. See van der Laan and Rubin (2006) and Moore and van der Laan (2007)
for prospective sampling targeted maximum likelihood methodology.

An estimate of the asymptotic variance of
√
n(ψ̂ − ψ∗0) using the estimate

of the efficient influence curve Dq0(ψ
∗, g∗, Q∗)(O) is given by:

σ̂2 =
1

n

n∑
i=1

D2
q0

(ψ∗, g∗, Q∗)(O).

Given the influence curve for the causal parameter estimate ψ̂, a 95% Wald-
type confidence interval can be constructed as: ψ̂ ± z0.975

σ̂√
n
. Likewise, the

p-value of ψ̂ can be calculated as 2[1− Φ(| ψ̂
σ̂/
√
n
|)].

4 Intercept Adjusted MLE and Case-Control

Weighted MLE

Intercept adjusted maximum likelihood estimation and case-control weighted
maximum likelihood estimation were previously discussed as options for the
initial fit Q̂∗(A,W ). Several issues became apparent when using intercept
adjusted maximum likelihood estimation for Q̂∗(A,W ) in our case-control
weighted targeted maximum likelihood framework. In multiple simulation
settings we found that when Q̂∗(A,W ) was misspecified using an intercept
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adjusted fit, the predicted probabilities were substantially biased compared to
the misspecified case-control weighted maximum likelihood probabilties. This
additional bias can be understood intuitively since the update to the logistic
regression log c0 is static regardless of the model used, and the parameters
of the model (excluding the intercept) are not adjusted by this update. For
correctly specified Q̂∗(A,W ) this is not an issue, but when Q̂∗(A,W ) is mis-
specified, it leads to substantial bias. Conversely, the case-control weighted
logistic regression estimate incorporates the case-control weights each time it
fits an estimate. Thus, for misspecified Q̂∗(A,W ), case-control weighted pre-
dicted probabilities will likely be closer to the truth than intercept adjusted
estimates. See Figure 1 for an illustration.
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Figure 1: Predicted Probabilities for Misspecified Q̂∗(A,W ).

The case-control targeted intercept adjusted maximum likelihood improved,
with regard to bias, on its non-targeted counterpart for misspecified Q̂∗(A,W ).
However, the additional bias for misspecified Q̂∗(A,W ) and intercept adjusted
logistic regression led to much slower convergence to the true values of the
risk difference, relative risk, and odds ratio within the case-control targeted
maximum likelihood framework. Case-control weighted targeted maximum
likelihood with misspecified Q̂∗(A,W ) fit with case-control weighted logistic
regression became consistent for reasonable sample sizes. Coverage probabili-
ties for case-control weighted targeted intercept adjusted maximum likelihood
estimation for misspecified Q̂∗(A,W ) also diverged substantially from 95% (as
low as 65%) for reasonable sample sizes due to the bias of the estimators. We
should note that when Q̂∗(A,W ) is correctly specified, the intercept adjusted
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methods performed as well as the case-control weighted methods. However,
the correct specification of Q̂∗(A,W ) is unlikely in practice. Given these find-
ings, we present in our simulations the use of case-control weighted targeted
maximum likelihood estimation using case-control weighted logistic regression
for the initial fit.

5 Simulation Studies

5.1 Simulation 1

Our first simulation study was designed to illustrate the advantages of the
case-control weighting scheme for targeted maximum likelihood estimation in
case-control designs. It was based on a population of N = 120, 000 individuals,
where we simulated a 1-dimensional covariate W , a binary exposure A, and
indicator Y , which was 1 for cases and 0 for controls. These variables were
generated according to the following rules:

W ∼ U(0, 1)

g∗0(A | W ) = 1
1+exp(−(W 2−4W+1))

Q∗0(A,W ) = 1
1+exp(−(1.2A−sin(W 2)+A sin(W 2)+5A log(W )+5 log(W )−1))

.

The resulting population had a prevalence probability q0 = 0.035, and exactly
4, 165 cases. We sampled the population using a varying number of cases and
controls, and for each sample size we ran 1000 simulations. The true values
of the risk difference, relative risk, and odds ratio were given by RD = 0.043,
RR = 2.483, and OR = 2.598, with P (Y1 = 1) = 0.072 and P (Y0 = 1) = 0.029.
These causal effect parameters were estimated using methods discussed in this
paper:

1. IPTW: IPTW method for marginal structural models (Robins, 1999;
Mansson et al., 2007) that uses the estimated exposure mechanism among
the controls to update a logistic regression of Y on A discussed in Section
2.2.

2. Case-Control Weighted MLE (CCW-MLE): Case-control weighted
logistic regression, discussed in Section 3.2.1, mapped to causal effect
estimators by averaging over the case-control weighted distribution of
W .
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3. Case-Control Weighted Targeted MLE (CCW-TMLE): Case-
control weighted targeted maximum likelihood procedure for case-control
designs with case-control weighted Q̂∗(A,W ) discussed in Section 3.

The initial fit for each method requiring an estimate of Q∗0(A,W ) was de-
fined by:

Q̂∗(A,W ) = 1
1+exp(−(α̂0+α̂1A+α̂2 log(W )+α̂3 sin(W 2)+α̂4A log(W )+α̂5A sin(W 2)))

,

which was the correctly specified fit. Q∗0(A,W ) was also estimated in a second
simulation with:

Q̂∗(A,W ) = 1
1+exp(−(α̂0+α̂1A+α̂2W ))

,

a misspecified fit. For methods requiring a fit for exposure mechanism, the
correct fit was defined by:

ĝ∗(A | W ) = 1
1+exp(η̂0+η̂1W 2+η̂2W )

.

The misspecified version of the exposure mechanism was given by:

ĝ∗(A | W ) = 1
1+exp(η̂0+η̂1W )

.

In our simulation study, we realistically generated A dependent on W . This
led to some substantial increases in efficiency in the targeted estimator when
Q̂∗(A,W ) was misspecified and sample size was larger, as they also adjust for
ĝ∗(A | W ). This emphasizes the double robustness of the targeted estimators,
and suggests that one should always adjust for ĝ∗(A | W ) in practice. When
Q̂∗(A,W ) was correctly specified, the relative efficiency of the targeted estima-
tor (CCW-TMLE) was similar to its non-targeted counterpart (CCW-MLE),
demonstrating that the use of q0 and Q̂∗(A,W ) alone can produce efficient
estimators. This was further highlighted in the results for the odds ratio and
the IPTW estimators, which do not utilize q0, as they had the poorest overall
efficiency. Mean squared errors and relative efficiencies for the causal odds ra-
tio are provided in Table 1. The results for the relative risk and risk difference
are combined in Table 2. The least efficient estimator as sample size increased
for these parameters was the case-control weighted logistic regression when
Q∗0(A,W ) was realistically misspecified.

When examining the bias of the estimators for the odds ratio, it is clear
that the IPTW estimators had the highest level of bias across all sample sizes,
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Table 1: Simulation 1 – Odds Ratio – MSE is Mean Squared Error for
IPTW Misspecified Estimate, RE is Relative Efficiency of Other Estimators
Compared to IPTW Misspecified Estimate MSE, nC is Number of Cases, nCo
is Number of Controls, n is Number of Total Observations, M is for Misspecified
Q̂∗(A,W ) or ĝ∗(A | W ) Fit, C is for Correctly Specified Q̂∗(A,W ) or ĝ∗(A |
W ). (When two letters are noted in the “Fit” column, the first letter refers to
Q̂∗(A,W ) and the second to ĝ∗(A | W ).)

n=500 n=1000 n=1500 n=2000 n=3000

nC=250 nC=500 nC=500 nC=1000 nC=1000
Odds Ratio Fit nCo=250 nCo=500 nCo=1000 nCo=1000 nCo=2000

IPTW MSE M 1.76 1.75 3.39 1.80 3.40
IPTW RE C 0.91 0.89 1.69 0.89 1.69

C/C 1.27 3.62 14.58 8.40 32.03
CCW-TMLE RE C/M 1.26 3.62 14.57 8.40 31.97

M/C 1.96 4.63 16.68 9.52 31.91
C 1.27 3.65 14.64 8.44 32.12

CCW-MLE RE M 3.07 5.72 14.54 7.83 18.93

Table 2: Simulation 1 – Relative Risk and Risk Difference – MSE
is Mean Squared Error for CCW-MLE Misspecified Estimate, RE is Relative
Efficiency of Other Estimators Compared to CCW-MLE Misspecified Estimate
MSE, nC is Number of Cases, nCo is Number of Controls, n is Number of
Total Observations, M is for Misspecified Q̂∗(A,W ) or ĝ∗(A | W ) Fit, C is
for Correctly Specified Q̂∗(A,W ) or ĝ∗(A | W ). (When two letters are noted
in the “Fit” column, the first letter refers to Q̂∗(A,W ) and the second to
ĝ∗(A | W ).)

n=500 n=1000 n=1500 n=2000 n=3000

nC=250 nC=500 nC=500 nC=1000 nC=1000
Relative Risk Fit nCo=250 nCo=500 nCo=1000 nCo=1000 nCo=2000

CCW-MLE MSE M 0.46 0.25 0.19 0.19 0.15
CCW-MLE RE C 0.48 0.69 1.06 1.12 1.73

C/C 0.47 0.68 1.05 1.12 1.73
CCW-TMLE RE C/M 0.47 0.68 1.05 1.12 1.73

M/C 0.65 0.82 1.15 1.22 1.69

Risk Difference

CCW-MLE MSE M 3.2E-04 1.8E-04 1.4E-04 1.4E-04 1.1E-04
CCW-MLE RE C 0.45 0.67 1.10 1.15 1.89

C/C 0.45 0.67 1.10 1.15 1.89
CCW-TMLE RE C/M 0.45 0.67 1.10 1.15 1.89

M/C 0.98 1.12 1.34 1.36 1.63
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Figure 2: Simulation 1 – Bias Results. (Bias results for the case-control
weighted targeted maximum likelihood with misspecified ĝ∗(A | W ) and the
correctly specified case-control weighted targeted maximum likelihood were
excluded since those values were the same as those for the targeted maximum
likelihood with correctly specified Q̂∗(A,W ) and ĝ∗(A | W ).)
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as observed in the bias plot displayed in Figure 2(a). The case-control weighted
logistic regression and case-control weighted targeted maximum likelihood with
misspecified Q̂∗(A,W ) had more bias than their correctly specified counter-
parts. It may be possible to avoid some of the additional bias caused by
the misspecification of Q̂∗(A,W ) in practice by fitting Q̂∗(A,W ) with data-
adaptive model-selection, such as the Deletion/Substitution/Addition (DSA)
algorithm or other readily available machine learning algorithms. For more
details about this procedure we refer to Sinisi and van der Laan (2004). The
bias results for the relative risk and risk difference followed similar trends, as
can be seen in Figure 2(b) and 2(c). While the case-control weighted logistic
regression has low variance when misspecified, it may be more biased than
its targeted counterpart. These results bolster our theoretical arguments that
gains in efficiency and reduction in bias can be obtained by having a known
prevalence probability and using a targeted estimator. Additionally, under
typical circumstances experienced in an experimental setting, the case-control
weighted targeted maximum likelihood may perform the best with regard to
bias and variability.

5.2 Simulation 2

Our second set of simulations was based on a population of N = 80, 000 indi-
viduals, and was designed to illustrate, in another setting, the advantages of
incorporating known prevalence probability into case-control design methodol-
ogy. The population was generated with binary exposure A and disease status
Y and a 1-dimensional covariate W . These variables were generated according
to the following rules:

W ∼ U(0, 1)

g∗0(A | W ) = P ∗0 (A = 1|W ) = 1
1+exp(−5 sin(W )))

Q∗0(A,W ) = P ∗0 (Y = 1|A,W ) = 1
1+exp(−(2A−25W+AW ))

.

The resulting population had a prevalence probability q0 = 0.053, exactly
4, 206 cases, and also followed an independent case-control sampling design.
The true values of the risk difference, relative risk, and odds ratio were given
by RD = 0.061, RR = 3.21, and OR = 3.42, with P (Y1 = 1) = 0.089 and
P (Y0 = 1) = 0.028. These parameters were estimated using the same general
methods as in the previous section, albeit with different fits for Q̂∗(A,W ) and
ĝ∗(A | W ). The initial fit for each method requiring a fit for Q̂∗(A,W ) was
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Table 3: Simulation 2 – Odds Ratio – MSE is Mean Squared Error for
IPTW misspecified Estimate, RE is Relative Efficiency of Other Estimators
Compared to IPTW misspecified Estimate MSE, nC is Number of Cases, nCo
is Number of Controls, n is Number of Total Observations, M is for Misspecified
Q̂∗(A,W ) or ĝ∗(A | W ) Fit, C is for Correctly Specified Q̂∗(A,W ) or ĝ∗(A |
W ). (When two letters are noted in the “Fit” column, the first letter refers to
Q̂∗(A,W ) and the second to ĝ∗(A | W ).)

n=350 n=500 n=750 n=1000

nC=100 nC=250 nC=250 nC=500
Odds Ratio Fit nCo=250 nCo=250 nCo=500 nCo=500

IPTW MSE M 404.40 3667.56 306.42 2433.62
IPTW RE C 1.0E+00 1.2E+00 1.0E+00 1.2E+00

C/C 2.8E+02 4.1E+03 5.7E+02 5.7E+03
CCW-TMLE RE C/M 2.9E+02 4.1E+03 5.7E+02 5.7E+03
CCW-MLE RE C 2.9E+02 4.2E+03 5.7E+02 5.8E+03
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Figure 3: Simulation 2 – Bias Results for the Odds Ratio. (Bias results
for the case-control weighted targeted maximum likelihood with misspecified
ĝ∗(A | W ) were excluded since those values were the same as those for the
targeted maximum likelihood with correctly specified Q̂∗(A,W ) and ĝ∗(A |
W ).)
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defined by:

Q̂∗(A,W ) = 1
1+exp(−(α̂0+α̂1A+α̂2W+α̂3AW ))

,

which was the correctly specified fit. For methods requiring a fit for expo-
sure mechanism, the correct fit was defined by:

ĝ∗(A | W ) = 1
1+exp(−(η̂0+η̂1 sin(W )))

.

The misspecified version of the exposure mechanism was given by:

ĝ∗(A | W ) = 1
1+exp(−(η̂0+η̂1W ))

.

Results across the two case-control weighted methods for the risk difference,
relative risk, and odds ratio were nearly identical, indicating in this example
that when Q̂∗(A,W ) is correct and q0 is known, one may be well served by
either of these methods. However, the IPTW method for odds ratio estimation
was quite inefficient in comparison. We theorized in van der Laan (2008), and
Mansson et al. (2007) demonstrated, that the IPTW procedure has a strong
sensitivity towards model misspecification. This result was seen in Simulation
1, although the results in Simulation 2 are more extreme. Results for the odds
ratio estimation can be seen in Table 3 and Figure 3. Again we see that gains
in efficiency and reduction in bias can be obtained by simply having known
q0.

5.3 Standard Errors, Confidence Intervals, and P-Values

Continuing with the simulated population from Simulation 2, we provide an
example of the use of influence curves in the estimation of standard errors
for case-control weighted targeted maximum likelihood estimation. We sam-
pled one data set of n = 1000 from the population, with equal numbers of
cases and controls, and estimated the odds ratio. Recall that the true value
for the odds ratio was given by OR = 3.42. The case-control weighted tar-
geted maximum likelihood estimator uses the influence curve to estimate stan-
dard errors, as discussed in Section 3.2.6, with estimated variance given by
σ̂2 = 1

n

∑n
i=1D

2
q0

(ψ∗, g∗, Q∗)(O). Standard error estimates for the IPTW es-
timator were calculated by bootstrapping the case and control samples 1000
times. The results for this single sampling of the simulated population can
be seen in Table 4, including odds ratio estimates, standard errors, confidence
intervals, and p-values. It compares only the case-control weighted targeted
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Table 4: Standard Error Illustration – OR is Odds Ratio Estimate, SE
is Standard Error, CI is Confidence Interval, P is P-value, C is for Correctly
Specified Q̂∗(A,W ) or ĝ∗(A | W ), M is for Misspecified ĝ∗(A | W ). (When two
letters are noted in the “Fit” column, the first letter refers to Q̂∗(A,W ) and
the second to ĝ∗(A | W ).) The results are for one data set of 1000 individuals
with 500 cases and 500 controls randomly sampled from the population in
Simulation 2. True OR = 3.42.

Odds Ratio Fit OR SE CI P

C 64.98 22.44 [21.00, 108.96] 0.004
IPTW M 64.64 4.66 [55.50, 73.77] < 0.001

C/C 3.39 0.24 [2.93, 3.85] < 0.001
CCW-TMLE RE C/M 3.39 0.24 [2.92, 3.86] < 0.001

maximum likelihood estimator and the IPTW estimator. (The non-targeted
maximum likelihood method was excluded as we wish to draw attention to
the use of the influence curve for standard error estimation. Standard errors
for the non-targeted maximum likelihood method can also be calculated using
bootstrapping.)

5.4 Simulation 3

Our third simulation study was designed to illustrate the performance of the
case-control weighting scheme for targeted maximum likelihood estimation in
case-control designs when q0 is estimated. We also examine coverage prob-
abilities and percentage of rejected tests for case-control weighted targeted
maximum likelihood estimation. The simulation was based on a population
of N = 120, 000 individuals, and we simulated a 1-dimensional covariate W ,
binary exposure A, and indicator Y . The variables were generated according
to the following rules:

W ∼ U(0, 1)

g∗0(A | W ) = P ∗0 (A = 1|W ) = 1
1+exp(−(W 2−4W+1))

Q∗0(A,W ) = P ∗0 (Y = 1|A,W ) = 1
1+exp(−(A−sin(W 2)+A sin(W 2)+7A log(W )+5 log(W )−1))

.

The resulting population had a prevalence probability q0 = 0.032, and exactly
3, 834 cases. We ran 1000 simulations and sampled 500 cases and 500 controls
for varying levels of the prevalence probability q0 = (0.02, 0.03, 0.04). The true

Chapter 8. Case-Control Studies

446
Hosted by The Berkeley Electronic Press



value for the odds ratio was given by OR = 1.851, with P (Y1 = 1) = 0.052 and
P (Y0 = 1) = 0.029. The causal odds ratio was estimated using case-control
weighted targeted maximum likelihood estimation. The correctly specified ini-
tial fit for Q∗0(A,W ) was estimated by:

Q̂∗(A,W ) = 1
1+exp(−(α̂0+α̂1A+α̂2 log(W )+α̂3 sin(W 2)+α̂4A log(W )+α̂5A sin(W 2)))

.

The misspecified initial fit was estimated with:

Q̂∗(A,W ) = 1
1+exp(−(α̂0+α̂1A+α̂2W ))

.

For exposure mechanism, the correct fit was defined by:

ĝ∗(A | W ) = 1
1+exp(η̂0+η̂1W 2+η̂2W )

.

The misspecified version of the exposure mechanism was given by:

ĝ∗(A | W ) = 1
1+exp(η̂0+η̂1W )

.

When examining the mean squared error results of the odds ratio across
the range of values for q0, one can see deviations away from the values obtained
for the true q0. However, it is important to note that the coverage probabil-
ities (the percentage of simulations where the estimated confidence interval
contained the true odds ratio) were not highly variant and remain near 95%.
This provides evidence that the case-control weighted targeted maximum like-
lihood procedure performs well with estimated values of q0. The percentage
of rejected tests (α = 0.05) across the range of q0 was also relatively stable.
The results for the mean squared errors, coverage probabilities, and percent
rejected tests for the odds ratio can be seen in Table 5. Simulations that re-
sample q0 from its sampling distribution could also be used to get an estimate
of the total uncertainty surrounding the parameter of interest, but they are
not explored here. An analytic equivalent to this resampling can be found in
the appendix to van der Laan (2008). This theorem demonstrates that one can
incorporate the standard error of the estimate q̂0 into the confidence interval
for the parameter of interest.
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Table 5: Simulation 3 – Odds Ratio – MSE is Mean Squared Error, CP is
Coverage Probability (percentage of simulations where estimated confidence
interval contained the true odds ratio), Rej is for Percent Rejected Tests (α =
0.05), C is for Correctly Specified Q̂∗(A,W ) or ĝ∗(A | W ), M is for Misspecified
Q̂∗(A,W ) or ĝ∗(A | W ). (When two letters are noted in the “Fit” column,
the first letter refers to Q̂∗(A,W ) and the second to ĝ∗(A | W ).) The results
are for 1000 simulations of 1000 individuals with 500 cases and 500 controls
randomly sampled from the population in Simulation 3. True OR = 1.851.
True q0 = 0.032.

True q0 q0
Fit 0.032 0.020 0.030 0.040

C/C 0.35 0.74 0.39 0.24
CCW-TMLE MSE C/M 0.35 0.74 0.39 0.24

M/C 0.19 0.28 0.20 0.16
C/C 0.94 0.95 0.94 0.92

CCW-TMLE CP C/M 0.97 0.97 0.97 0.95
M/C 0.92 0.94 0.93 0.91
C/C 0.33 0.32 0.33 0.34

CCW-TMLE Rej C/M 0.21 0.23 0.22 0.20
M/C 0.02 0.01 0.02 0.03

6 Discussion

Case-control weighted targeted maximum likelihood estimation provides a
framework for the analysis of case-control study designs. We observed that the
IPTW method for causal parameter estimation was outperformed in conditions
similar to a practical setting by the new case-control weighted targeted max-
imum likelihood estimation methodology. The case-control weigted targeted
maximum likelihood estimation procedure yields a fully robust and locally
efficient estimator of several marginal causal parameters of interest. Model
misspecification within this framework, with known exposure mechanism, still
results in efficient estimatiors. Additionally, the case-control weighted logistic
regression mapped to causal parameters had high efficiency and reduced bias in
comparison to the IPTW estimator. This is an important result for those ap-
plied researchers who may not feel comfortable implementing the case-control
weighted targeted maximum likelihood procedure. Thus, we showed striking
improvements in efficiency and bias in all methods incorporating knowledge
of the prevalence probability over the IPTW estimator which does not use
this information. Knowledge of the prevalence probability may be realistic in
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many settings. Where possible, researchers might consider prioritizing accu-
rately defining their population of interest, which will streamline obtaining or
estimating the prevalence probability. We also demonstrated that a range of
values for q0 can be used with case-control weighted targeted maximum likeli-
hood estimation to obtain efficient causal parameters of interest. As addressed
earlier, we discussed case-control weighted targeted maximum likelihood esti-
mation for cumulative study designs with the prevalence probability. Future
areas of work include adapting our methods for density sampling, where con-
trols are drawn from the population at risk at the time a case develops disease.
For example, using case-control weights that depend on the time points the
cases and controls were sampled, as discussed in an appendix in van der Laan
(2008). Here, the use of incidence probabilities would be more appropriate.
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Abstract

Matched case-control study designs are commonly implemented in
the field of public health. While matching is intended to eliminate con-
founding, the main potential benefit of matching in case-control studies
is a gain in efficiency. Methods for analyzing matched case-control stud-
ies have focused on utilizing conditional logistic regression models that
provide conditional and not causal estimates of the odds ratio. This
article investigates the use of case-control weighted targeted maximum
likelihood estimation to obtain marginal causal effects in matched case-
control study designs. We compare the use of case-control weighted
targeted maximum likelihood estimation in matched and unmatched
designs in an effort to explore which design yields the most information
about the marginal causal effect. The procedures require knowledge of
certain prevalence probabilities and were previously described by van
der Laan (2008). In many practical situations where a causal effect is
the parameter of interest, researchers may be better served using an
unmatched design.
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1 Introduction

Individually matched case-control study designs are frequently found in pub-
lic health and medical literature, and conditional logistic regression is the
tool most commonly used to analyze these studies. Matching is intended to
eliminate confounding, however, the main potential benefit of matching in
case-control studies is a gain in efficiency. Therefore, when are these study
designs truly beneficial? Given all the potential drawbacks, including extra
cost, added time for enrollment, and increased bias, the use of matching in
case-control study designs warrants careful evaluation. Discussion of the ad-
vantages and disadvantages of matching in the literature goes back more than
40 years.

In this paper, we focus on individual matching in case-control studies where
the researcher is interested in estimating the marginal causal effect, and cer-
tain prevalence probabilities are known. Our procedure, first presented in
van der Laan (2008), “targets” the parameter of interest rather than the dis-
tribution of interest, and is thus aptly named case-control weighted targeted
maximum likelihood estimation. In order to eliminate the bias caused by the
matched case-control sampling design, this technique relies on knowledge of
the true prevalence probability q0 ≡ P ∗0 (Y = 1), and an additional value

q̄0(M) ≡ q0
P ∗

0 (Y=0|M)

P ∗
0 (Y=1|M)

, where M is the matching variable. For unmatched

designs, knowledge of only q0 is required.
The case-control weighting scheme maps estimation methods developed for

prospective sampling into methods for case-control sampling, and it produces
efficient estimators when its prospective sample counterpart is efficient. Thus,
both the matched and unmatched procedures are double robust and locally
efficient: they perform well as long as P ∗0 (Y | A,W ) or P ∗0 (A | W ) is correctly
specified, are consistent if either of these models are correctly specified, and
efficient if both are correctly specified. (Here A is the exposure of interest
and W is a vector of covariates.) We will compare the use of case-control
weighted targeted maximum likelihood estimation in matched and unmatched
case-control study designs as we explore which design yields the most informa-
tion about the marginal causal effect. This paper will not address matching in
cohort studies, and will concentrate solely on case-control studies. However,
matching in cohort studies was briefly addressed in van der Laan (2008), and
applying our methods to cohort studies is an area of future research.
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2 Why Match? A Literature Review

There is a large collection of literature devoted to the topic of individual match-
ing in case-control study designs. This overview attempts to capture the most
important consideratons, and it is by no means exhaustive.

2.1 Individual Matching in Case-Control Studies

In an individually matched case-control study, the population of interest is
identified, and cases are randomly sampled or selected based on particular
inclusion criteria. Although, as Rothman and Greenland (1998) note, the def-
inition of a case may implicitly define the population of interest for cases and
controls. Each of these cases is then matched to one or more controls based
on a variable (or variables) believed to be a confounder. Much of the literature
on individual matching in case-control studies, particularly earlier texts, de-
scribes these designs as a way to reduce confounding in the sampling design.
Reference to this is made in: Miettinen (1970), Breslow et al. (1978), Breslow
and Day (1980), Kupper et al. (1981), Schlesselman (1982), Collett (1991), and
Costanza (1995), among others. However, several authors (Breslow and Day,
1980; Kupper et al., 1981; Schlesselman, 1982; Rothman and Greenland, 1998;
Vandenbroucke et al., 2007) point out that the goal of matching is to increase
the study’s efficiency by forcing the case and control samples to have similar
distributions across confounding variables. Rothman and Greenland (1998) go
on to say that while matching is intended to control confounding, it cannot do
this in case-control study designs, and can, in fact, introduce bias. Costanza
(1995) agreed, stating that matching on confounders in case-control studies
does nothing to remove the confounding, but frequently introduces negative
confounding.

So, while some literature cites the purpose of matching as improving va-
lidity, later publications (Kupper et al., 1981; Rothman and Greenland, 1998)
demonstrated that matching has a greater impact on efficiency over validity.
Matched sampling leads to a balanced number of cases and controls across the
levels of the selected matching variables. This balance can reduce the variance
in the parameters of interest, which improves statistical efficiency. A study
with a randomly selected control group may yield some strata with an imbal-
ance of cases and controls. It is important to add, however, that matching
in case-control studies can lead to gains or losses in efficiency (Kupper et al.,
1981; Rothman and Greenland, 1998). This will be discussed further in later
sections.
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Breslow and Day (1980) note that matched case-control studies attempt to
increase the informativeness of each of the subjects in the study. However, one
should also note that matched studies discard not only a pool of unmatched
controls, but the information in each exposure-concordant case-control pair.
Additionally, matching has a substantial impact on the study sample, most
notably, it creates a sample of controls that is not representative of exposure
in the population or the population as a whole. The effect of the matching
variable can no longer be studied directly, and the exposure frequency in the
control sample will be shifted towards that of the cases (Rothman and Green-
land, 1998). Matching in case-control studies also does not completely control
for the variable or variables used for matching, in general. This means that
researchers who implement matched designs must perform matched or strati-
fied analyses (Seigel and Greenhouse, 1973; Schlesselman, 1982; Holland and
Rubin, 1988; Rothman and Greenland, 1998; Rubin, 2006). If an unmatched
analysis is performed on matched data, the validity of the case-control com-
parison may be decreased (Schlesselman, 1982).

2.2 Variable Selection

We revisit an earlier point made in this overview of individually matched
case-control studies: matching variables are chosen a priori on the belief that
they confound the relationship between exposure and disease. If controls are
matched to cases based on a variable that is not a true confounder, this can
impact efficiency. For example, if the matching variable is not associated with
disease but is associated with the exposure, this will increase the variance of
the estimator compared to an unmatched design. Here, the matching leads
to larger numbers of exposure-concordant case-control pairs, which are not in-
formative in the analysis, leading to the increase in variance. If the matching
variable is only associated with disease, there is often a loss of efficiency as
well (Schlesselman, 1982). If the matching variable is along the causal pathway
between disease and exposure then matching will contribute bias that cannot
be removed in the analysis (Vandenbroucke et al., 2007). Matching on a vari-
able associated with exposure and not disease or a variable along the causal
pathway are considered types of overmatching. Variables for matching should
therefore be selected very carefully, and only those that are known to be as-
sociated with both exposure and disease should be considered. The number
of matching variables should also be reduced to as few as possible. As the
number of matching variables grows, the cases and controls will become in-
creasingly similar with respect to the exposure of interest, and the study may
produce a spurious result or provide no information (Breslow and Day, 1980).
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Additionally, when matching on more than one variable, matching variables
should not be strongly correlated with each other (Schlesselman, 1982).

2.3 More on Efficiency

Kupper et al. (1981) performed a variety of simulations to demonstrate the
impact of matching on efficiency. They found that in situations where con-
founding was present, the confidence intervals for matched studies were smaller
than unmatched studies unless the odds ratio and the exposure of interest were
large. However, the confidence intervals for the samples with randomly selected
controls were always shorter when the number of controls was at least twice
that of the cases. This is an important result, as efficiency is often touted as
the benefit of an individually matched case-control study design. Simulations
aside, Cochran (1953) is often cited as the theoretical paper that demonstrates
the efficiency of matched designs. However, as noted by McKinlay (1977),
Cochran’s result can be misleading. Comparisons between matched and un-
matched study designs are often made with equal sample sizes and no other
method of covariate adjustment (e.g. regression). In a matched design, con-
trols may be discarded if they do not match a particular case on the variable or
variables of interest. Multiple controls may be discarded per case, depending
on the variables of interest (Freedman, 1950; Cochran and Chambers, 1965;
McKinlay, 1977). In a typical randomly selected case-control study, these con-
trols would be included. In many cases, if the discarded controls were available
to be rejected in the matched study, they would be available for an unmatched
design in the same investigation (Billewicz, 1965; McKinlay, 1977). Therefore,
it may be more appropriate to compare the efficiencies of matched case-control
studies of size n to randomly selected case-control studies of size n+number of
discarded controls. Additionally, these randomly selected case-control studies
should employ a method of analysis to reduce bias and variance. Therefore,
the result from Kupper et al. (1981) is especially poignant, as all randomly se-
lected case-control studies that had a size of at least 2n had shorter confidence
intervals than their matched counterparts of size n.

2.4 Trends

Gefeller et al. (1998) performed a literature review of case-control studies pub-
lished between 1955 and 1994 in three main epidemiology journals: Ameri-
can Journal of Epidemiology, International Journal of Epidemiology, and the
Journal of Epidemiology and Community Health. They found that, among
these journals, there was a decreasing trend in the percentage of individually
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matched case-control studies published (71.7% in the years preceding 1981,
65.5% in 1985, 46.9% in 1989, and 46.4% in 1994), and an increasing percent-
age of frequency matched studies (5.0% in the years preceding 1981, 9.1% in
1985, 16.3% in 1989, and 26.2% in 1994). Interestingly, the percentage of case-
control studies using no matching stayed relatively constant with no obvious
trend (averaging 29.3%, and ranging from 23.2% to 36.7%). Unfortunately,
they found substantial evidence that individually matched studies were being
performed without the appropriate matched analysis: only 74% of studies from
1994 used conditional logistic regression if logistic regression was the chosen
method of analysis. A later analysis of medical literature in Medline, Rah-
man (2003), indicated that 5.3% of individually matched case-control studies
used an unconditional logistic regression for those selecting logistic regression
models. The review in Gefeller et al. (1998) indicates that unmatched case-
control studies, at least in epidemiology, are in the minority. This should be
questioned given the overwhelming agreement in the literature that matching
is not frequently justified for case-control study designs.

2.5 Literature Review Discussion

The consensus in the literature indicates that there are very few circumstances
where individual matching is indeed warranted. Case-control studies with a
very small number of cases may benefit from individual matching, as a ran-
domly selected control group from even a well-defined population of inter-
est may be uninformative on many variables of interest (Schlesselman, 1982;
Costanza, 1995). Individual matching moves from beneficial to required when
variables such as sibship are included in the study (Rothman and Greenland,
1998; Costanza, 1995). Matching is also cited as necessary by many authors
when the investigators expect the distribution of the matching variable to dif-
fer drastically between the cases and the controls. It may be this reason that
draws many investigators towards a matched design, perhaps without appro-
priate consideration of the disadvantages or definition of the population of
interest.

Methodologists in the literature stress that it is often possible for con-
founders to be adjusted for in the analysis instead of matched on in case-control
designs (Schlesselman, 1982; Vandenbroucke et al., 2007). The development of
effective methods to control confounding in analyses may have contributed to
the drop in individually matched designs, but they are still quite common. It is
therefore important to continue to disseminate the implications of individually
matched case-control study designs to researchers, as Rothman and Greenland
(1998) note that “people match on a variable (e.g. sex) simply because it is
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the ‘expected thing to do’ and they might lose credibility for not matching.”
When researchers make design and analysis decisions based on these types of
considerations, their research may suffer.

Our contributions to the vast literature on individual matching for case-
control studies will be unique. We focus on scenarios where the researcher is
interested in estimating a marginal causal effect, a parameter that cannot be
estimated with conditional logistic regression, and certain prevalence proba-
bilities are known. Thus, we will compare the use of case-control weighted
targeted maximum likelihood estimation in matched and unmatched designs
in an effort to explore which design yields the most information about the
marginal causal effect.

3 Existing Methods

Model-based methods for the analysis of matched case-control studies are plen-
tiful in recent literature (Breslow et al., 1978; Holford et al., 1978; Breslow and
Day, 1980; Greenland, 1981; Schlesselman, 1982; Holland and Rubin, 1988;
Benichou and Wacholder, 1994; Rothman and Greenland, 1998; Greenland,
2004). And, while it is not the only method of analysis for individually
matched case-control studies, the predominant method of analysis is condi-
tional logistic regression. This method provides a conditional estimate of the
odds ratio of being diseased given the exposure of interest and baseline co-
variates. Conditional logistic regression will be discussed in more detail in
the subsection below. Greenland (1981) and Holland and Rubin (1988) dis-
cuss another model-based method: the use of log-linear models to estimate
the marginal odds ratio. Additionally, Rothman and Greenland (1998) and
Greenland (2004) demonstrate the use of standardization in case-control stud-
ies, which estimate marginal effects with population or person-time averaging.
Holland and Rubin (1988) note that the traditional two-way table and its
extensions generally provide no causal insight for matched case-control stud-
ies. However, these methods are all distinctly different from the method we
illustrate in this paper, discussed by van der Laan (2008), as our method is
a nonparametric double robust locally efficient procedure that provides an
estimate of the marginal causal odds ratio.

3.1 Conditional Logistic Regression

The logistic regression model for matched case-control studies differs from un-
matched studies in that it allows the intercept to vary among the matched
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units of cases and controls. The matching variable is not included in the
model (Breslow et al., 1978; Holford et al., 1978; Breslow and Day, 1980; Sch-
lesselman, 1982). If the parameter of interest is the coefficient in front of the
exposure A, the use of a matched study design and a conditional logistic re-
gression analysis can yield increases in efficiency, compared to an unmatched
design with a logistic regression analysis. It is important to note that in order
to estimate an effect of exposure A with conditional logistic regression, the
case and control must be discordant on A. Additionally, if information for a
variable is missing for a case (or control), the corresponding control (or case)
information is discarded (Breslow and Day, 1980; Schlesselman, 1982). These
two limitations do not occur in the new case-control weighted targeted max-
imum likelihood estimation methodology for causal effect parameters. More
importantly, if a marginal causal effect is the parameter of interest, conditional
logistic regression cannot be used as it can only estimate the conditional odds
ratio.

4 Case-Control Weighted Targeted Maximum

Likelihood Estimation

4.1 Background

We define O∗ = (W,A, Y ) ∼ P ∗0 as the experimental unit and corresponding
distribution P ∗0 of interest. P ∗0 represents the population from which all cases
and controls will be sampled. Here O∗ consists of baseline covariates W , an
exposure variable A (referred to as the “treatment” variable in prospective
studies), and a binary outcome Y , which defines case or control status. If
we are interested in marginal causal effect parameters, we can define ψ∗0 =
Ψ∗(P ∗0 ) ∈ IRd of P ∗0 ∈ M∗ as the causal effect parameter and define the risk
difference, relative risk, odds ratio as follows for binary exposure A ∈ {0, 1}:

ψ∗0,RD ≡ E∗0{E∗0(Y | A = 1,W )− E∗0(Y | A = 0,W )}
= E∗0(Y1)− E∗0(Y0)

= P ∗0 (Y1 = 1)− P ∗0 (Y0 = 1), (1)

ψ∗0,RR =
E∗0E

∗
0(Y | A = 1,W )

E∗0E∗0(Y | A = 0,W )
=
E∗0(Y1)

E∗0(Y0)
=
P ∗0 (Y1 = 1)

P ∗0 (Y0 = 1)
, (2)

and,

ψ∗0,OR =
P ∗0 (Y1 = 1)P ∗0 (Y0 = 0)

P ∗0 (Y1 = 0)P ∗0 (Y0 = 1)
. (3)
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These causal versions of the effect parameters require the specification of the
counterfactual outcomes Y0 and Y1 for binary A and (W,A, Y = YA) as a
time-ordered missing data structure on the full data structure (W,Y0, Y1). One
must also make the randomization assumption: {A ⊥ Y0, Y1 | W}. Since these
parameters are always well defined parameters of the distribution of the data,
they can thereby be viewed as W -adjusted variable importance parameters.
Then there is no need to make these assumptions. We refer to van der Laan
(2006) for the details of this framework.

However, the observed data structure in matched case-control sampling is
defined by:

O = ((M1,W1, A1), (M
j
0 = M1,W

j
0 , A

j
0 : j = 1, . . . , J)) ∼ P0, with

(M1,W1, A1) ∼ (M,W,A | Y = 1) for cases, and

(M j
0 ,W

j
0 , A

j
0) ∼ (M,W,A | Y = 0,M = M1) for controls.

Here M ⊂ W , and M is a categorical matching variable. The sampling dis-
tribution of the data structure O is described as above with P0. Thus, the
matched case-control data set contains n independent and identically dis-
tributed observations O1, . . . , On with sampling distribution P0. The clus-
ter containing one case and the J controls is the experimental unit, and the
marginal distribution of the cluster is specified by the population distribution
P ∗0 . The model M∗, which possibly includes knowledge of q0 or q̄0(M), then
implies models for the marginal distribution of cases (M1,W1, A1) and controls
(M1,W

j
2 , A

j
2), j = 1, . . . , J .

Independent case-control sampling is described as sampling nC cases from
the conditional distribution of (W,A), given Y = 1, and sampling nCo controls
from (W,A), given Y = 0. The value of J used to weight each control is
then nCo/nC. We refer to independent case-control sampling as Case-Control
Design I, and matched case-control sampling as Case-Control Design II.

4.2 Methodology Summary

If one wishes to estimate marginal causal effects for Case-Control Design II,
which correspond with the traditional parameters of interest in randomized
trials, there is now a nonparametric double robust locally efficient procedure
available. It performs well as long as P ∗0 (Y | A,W ) or P ∗0 (A | W ) is correctly
specified, is consistent if either of these models are correctly specified, and
efficient if both are correctly specified. The theoretical framework for case-
control weighted targeted maximum likelihood estimation has been discussed
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in detail in van der Laan (2008), and step-by-step implementation for Case-
Control Design I appears in Rose and van der Laan (2008). For the targeted
maximum likelihood framework designed for prospective sampling, see van der
Laan (2006), and for its implementation, see Bembom et al. (2007).

Case-control weighted targeted maximum likelihood estimation for Case-
Control Design II incorporates estimates of P ∗0 (Y | A,W ), P ∗0 (A | W ), and
knowledge of q0 and q̄0(M), where q̄0(M) is defined as:

q̄0(M) ≡ q0
P ∗0 (Y = 0 |M)

P ∗0 (Y = 1 |M)
= q0

q0(0 |M)

q0(1 |M)
.

The case-control weighted targeted maximum likelihood estimation procedure
for Case-Control Design II uses P ∗0 (A | W ) to update an initial estimate of
P ∗0 (Y | A,W ).

4.3 Implementation

Case-control weighted targeted maximum likelihood estimation for Case-Control
Designs I and II can be implemented using existing software (including SAS,
STATA, and R). The implementation of case-control weighted targeted maxi-
mum likelihood for Case-Control Design II is also very similar to the imple-
mentation for Case-Control Design I. Key differences will be stressed here, but
for more detail, we refer to Rose and van der Laan (2008).

Weighting. Weights q0 and q̄0(M) 1
J

are assigned to the cases and corre-
sponding J controls, respectively. This differs from Case-Control Design I in
that (1 − q0) 1

J
is used to weight controls in Case Control Design I instead of

q̄0(M) 1
J

. In van der Laan (2008) it is suggested that in cases where q̄0(M) is
not known, 1− q0 can be used to approximate q̄0(M).

Estimating Q∗0(A,W ). Estimate P ∗0 (Y | A,W ) ≡ Q∗0(A,W ) using the ap-
propriate weights. This estimate is denoted Q̂∗(A,W ). Two methods for
estimating Q̂∗(A,W ) include intercept adjusted logistic regression and case-
control weighted logistic regression. Intercept adjusted logistic regression adds
the intercept log q0/(1− q0) to a logistic regression model. This yields the true
logistic regression function P ∗0 (Y = 1 | A,W ). If intercept adjusted logis-
tic regression is used to obtain Q̂∗(A,W ), cases are weighted 1 and controls
are weighted with q̄0(M) 1

J
. This is the only step and method where assigned

weights are not q0 and q̄0(M) 1
J

. In Rose and van der Laan (2008), we discussed
disadvantages associated with using intercept adjusted logistic regression, and
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thus our simulations will focus on the use of case-control weighted logistic
regression for estimating Q∗0(A,W ).

Case-control weighted logistic regression uses the assigned weights and
performs maximum likelihood estimation for prospective sampling (ignoring
the case-control sampling design). Consider a nonparametric model for the
marginal distribution of the covariates, and a model {Q∗θ : θ} for Q∗0(A,W ).
Then the case-control weighted maximum likelihood estimator for Q∗0(A,W )
in Case-Control Design II is given by:

θ̂ = arg max
θ

n∑
i=1

q0 log Q̂∗θ(M1i,W1i, A1i)+q̄0(M1)
1

J

J∑
j=1

log(1−Q̂∗θ(M1i,W
j
2i, A

j
2i)).

If Q̂∗(A,W ) is obtained using case-control weighted logistic regression, it is
weighted with q0 and q̄0(M) 1

J
. For further discussion see van der Laan (2008)

and Rose and van der Laan (2008).

Estimating g∗0(A | W ). Estimate P ∗0 (A | W ) ≡ g∗0(A | W ) using assigned
weights. This estimate is denoted ĝ∗(A | W ), and may be obtained using
case-control weighted logisitic regression, for example.

Calculating h(A,W ). Calculate the “clever covariate” for each subject based
on g∗0(A | W ). The covariate takes the form:

h(A,W ) ≡
(

I(A = 1)

ĝ∗(A = 1 | W )
− I(A = 0)

ĝ∗(A = 0 | W )

)

for the risk difference. Two covariates are used for estimation of other param-
eters, such as the odds ratio:

h0(A,W ) ≡
(
− I(A = 0)

ĝ∗(A = 0 | W )

)
and h1(A,W ) ≡

(
I(A = 1)

ĝ∗(A = 1 | W )

)

For further discussion see van der Laan and Rubin (2006) and Moore and
van der Laan (2007).

Updating Q̂∗(A,W ). Update Q̂∗(A,W ) by performing an additional weighted
regression with h(A,W ) as a supplementary covariate. The other coefficients
in the initial fit Q̂∗(A,W ) are held fixed, and the intercept is suppressed in
order to estimate the case-control weighted estimator of ε, the coefficient in
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front of h(A,W ), which we denote as ε̂1. The regression estimate Q̂∗(A,W ) is
then updated and given by Q̂∗1(A,W ):

Q̂∗1(A,W ) = Q̂∗(A,W ) + ε̂1h(A,W ).

This step is iterated until convergence, although convergence is often achieved
in one step.

Estimating Causal Parameters. Using q0, q̄0(M1), and Q̂∗1(A,W ), esti-
mate causal parameters of interest (risk difference, relative risk, and odds
ratio, defined in formulas (1), (2), and (3)) by averaging over the case-control
weighted distribution ofW . This mapping is performed by evaluating Q̂∗1(A,W )
at A = 1 and A = 0 and applying weights q0 to cases and q̄0(M1)

1
J

to the con-
trols. This forms case-control weighted estimates of E∗0(Y1) = P ∗0 (Y1 = 1) and
E∗0(Y0) = P ∗0 (Y0 = 1). The causal parameters of interest can then be calcu-
lated from these estimates. For example, the relative risk E∗0(Y1)/E

∗
0(Y0) is

estimated by:

ψ̂RR =
1
n

∑n
i=1 q0Q̂

∗
1,q0

(M1,W1i, 1) + q̄0(M1)
1
J

∑
j Q̂
∗
1,q0

(M1,W
j
2i, 1)

1
n

∑n
i=1 q0Q̂

∗
1,q0(M1,W1i, 0) + q̄0(M1)

1
J

∑
j Q̂
∗
1,q0(M1,W

j
2i, 0)

.

Calculating Standard Errors. Calculating standard errors, p-values, and
confidence intervals for case-control weighted targeted maximum likelihood
estimates requires the use of the case-control weighted influence curve. This
methodology is discussed in detail in van der Laan (2008). We also refer to
van der Laan and Robins (2002) for careful discussions of gradients and in-
fluence curve theory. The case-control weighted influence curve for matched
case-control study designs is the influence curve for prospective targeted max-
imum likelihood with case-control weighting. We refer to van der Laan and
Rubin (2006) and Moore and van der Laan (2007) for this methodology. A
complete understanding of the derivation of infuence curves is not required to
implement the case-control targeted maximum likelihood estimation procedure
for Case-Control Design II.

For illustration, we present the unweighted influence curve for the risk
difference of a prospective study ψ∗0,RD = P ∗0 (Y1 = 1) − P ∗0 (Y0 = 1), which is
estimated by:

D̂RD(ψ∗, g∗, Q∗)(O) =
I(A = 1)
ĝ∗(1 |W )

(Y − Q̂∗(1,W ))− I(A = 0)
ĝ∗(0 |W )

(Y − Q̂∗(0,W ))

+Q̂∗(1,W )− Q̂∗(0,W )− ψ̂.
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The case-control weighted double robust efficient influence curve for the risk
difference ψ∗0,RD = P ∗0 (Y1 = 1) − P ∗0 (Y0 = 1) in a matched case-control study
design is then:

D̂RD,q0(ψ
∗, g∗, Q∗)(O) = q0D̂

∗(g∗, Q∗)(M1,W1, A1, 1)

+q̄0(M1)
1

J

J∑
j=1

D̂∗(g∗, Q∗)(M1,W
j
2 , A

j
2, 0)− ψ∗,

The asymptotic variance of
√
n(ψ̂ − ψ∗0) using the estimate of the efficient

influence curve Dq0(ψ
∗, g∗, Q∗)(O) can be estimated by:

σ̂2 =
1

n

n∑
i=1

D2
q0

(ψ∗, g∗, Q∗)(O).

A 95% Wald-type confidence interval can then be constructed using the causal

parameter estimate ψ̂: ψ̂±z0.975
σ̂√
n
, as well as a p-value for ψ̂: 2[1−Φ(| ψ̂

σ̂/
√
n
|)].

5 Simulation Studies

5.1 Simulation 1

Our first simulation study was designed to illustrate the differences between
independent case-control sampling (Case-Control Design I) and matched case-
control sampling (Case-Control Design II) using the case-control weighting
scheme for targeted maximum likelihood estimation proposed by van der Laan
(2008). It was also designed to represent “ideal” situations where control
information is not discarded (e.g. data collection is expensive, and covari-
ate information is only collected when a control is a match). This simula-
tion also demonstrates the use of weights q0 and (1 − q0)

1
J

with matched
data, to represent situations where q̄0(M) is not known. The population con-
tained N = 35, 000 individuals, where we simulated a 9-dimensional covariate
W = (Wi : i = 1, . . . , 9), a binary exposure (or “treatment”) A, and an indica-
tor Y , which was 1 for cases and 0 for controls. These variables were generated
according to the following rules:

P ∗0 (Wi = 1) = 0.5

g∗0(A | W ) = 1
1+exp(−(W1+W2+W3−2W4−2W5+2W6−4W7−4W8+4W9))
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Q∗0(A,W ) = 1
1+exp(−(1.5A+W1−2W2−4W3−W4−2W5−4W6+W7−2W8−4W9))

.

It can be seen in both g∗0(A | W ) and Q∗0(A,W ) that the covariates were
generated with varied levels of association with A and Y . This was done to
investigate the role of weak, medium, and strong association between a match-
ing variable Wi and A and Y . The corresponding associations can be seen in
Figure 1. For example, W1 was weakly associated with both A and Y . One
might recall that matching is potentially beneficial only when the matching
variable is a true confounder; associated with both A and Y .

Figure 1: Simulated Covariates
Y

Association Weak Medium Strong
Weak W1 W2 W3

A Medium W4 W5 W6

Strong W7 W8 W9

Another illustration of the varied association levels can be seen in Figure 2.
Here, we display the probability an individual in the population was a case
given Wi = 1, all the non-matching covariates (Z), and A. Likewise, proba-
bilities for Wi = 0 are also shown. For example, let’s say matching variable
W2 is age with 1 representing ‘young’ (< 50 years) and 0 representing ‘old’
(≥ 50 years). In this population, it was not very likely (0.013) that someone
who is young will become a case, while someone who is old has a much higher
chance of becoming a case (0.047), given Z and A. Therefore, W2, W5, and
W8 represent situations where the distribution of Wi among cases and controls
is very different. The covariates W3, W6, and W9 represent situations where
this difference is even more extreme.

The simulated population had a prevalence probability q0 = 0.030, and
exactly 1045 cases. The true value of the odds ratio was given by OR = 2.302,
with P ∗0 (Y1 = 1) = 0.055 and P ∗0 (Y0 = 1) = 0.025. We sampled the population
using a varying number of cases nC = (200, 500, 1000) for both Case-Control
Designs I and II, and for each sample size we ran 1000 simulations. For each
simulation, the same sampled cases were used for Case Control Designs I and
II. Controls were matched to cases on one variable (Wi) in Case-Control De-
sign II for both 1:1 and 1:2 designs. The same number of controls were used in
both Case-Control Designs I and II. Causal effect parameters were estimated
using case-control weighted targeted maximum likelihood estimation (CCW
T-MLE) for Case-Control Designs I and II with case-control weighted logistic
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Figure 2: Simulated Covariates: Probabilities. Z represents the remain-
ing eight non-matching covariates.

Wi P ∗0 (Y = 1|Wi = 1, Z, A) P ∗0 (Y = 1|Wi = 0, Z, A)
W1 0.039 0.021
W2 0.013 0.049

W3 0.003 0.060
W4 0.021 0.040
W5 0.013 0.047

W6 0.003 0.061
W7 0.040 0.023
W8 0.013 0.046

W9 0.004 0.066

regression for Q̂∗(A,W ) discussed in Section 4.3. The initial fit for the esti-
mate of Q∗0(A,W ) was correctly specified as:

Q̂∗(A,W ) = 1
1+exp(−(α̂0+α̂1A+α̂2W1+α̂3W2+...+α̂9W8+α̂10W9))

.

The initial fit for the exposure mechanism, which was the correct fit, was
defined by:

ĝ∗(A | W ) = 1
1+exp(η̂0+η̂1W1+η̂2W2+η̂3W3+η̂4W4+η̂5W5+η̂6W6+η̂7W7+η̂8W8+η̂9W9)

.

Case-Control Designs I and II performed similarly with respect to bias
for the nine covariates. When examining efficiency, there were consistent in-
creases in efficiency when the association between Wi and Y was high (W3,
W6, and W9), when comparing Case-Control Design II to Case-Control De-
sign I. Results when association with Wi and Y was medium (W2, W5, and
W8) were not entirely consistent, although covariates W5 and W8 did show
increases in efficiency for Case-Control Design II for all or nearly all sample
sizes. These results were in line with the consensus found in our literature
search: that matching may produce gains in efficiency when the distribution
of the matching variable differs drastically between the cases and the controls.

Simulation 1 also demonstrates the use of weights q0 and (1 − q0) 1
J

with
matched data, for situations where q̄0(M) is unknown for Case-Control Design
II. This weighting scheme provided a reasonable approximation, yielding larger
standard errors, but similar levels of bias for covariates with a weak association
with Y . As association with Y increased, the estimate of the odds ratio became
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Table 1: Simulation 1 – Efficiency. II MSE is Mean Squared Error for Case-
Control Design II with weights (1 − q0) 1

J
for CCW T-MLE, II RE is relative

efficiency of Case-Control Design II CCW T-MLE with q̄0(M) weights, I RE
is relative efficiency of Case-Control Design I CCW T-MLE, all REs are in
comparison to II MSE, and nC is Number of Cases.

1:1 Matching 1:2 Matching
nC 200 500 1000 200 500 1000

II MSE 2.83 0.83 0.33 1.05 0.35 0.16
W1 II RE 1.06 1.08 1.10 1.07 1.10 1.13

I RE 1.15 1.14 1.13 1.04 1.06 1.12
II MSE 3.02 0.77 0.38 1.22 0.45 0.18

W2 II RE 1.15 1.10 1.15 1.14 1.13 1.21
I RE 1.16 1.03 1.34 1.14 1.38 1.33

II MSE 4.67 1.40 0.60 2.07 0.71 0.41
W3 II RE 2.40 2.38 2.56 2.22 2.48 3.09

I RE 1.91 1.85 2.07 2.01 2.17 3.21
II MSE 2.27 0.65 0.31 1.06 0.33 0.14

W4 II RE 1.03 1.02 1.02 1.01 1.02 1.01
I RE 0.80 1.08 1.13 1.01 0.97 0.94

II MSE 2.60 0.75 0.33 1.20 0.37 0.18
W5 II RE 1.24 1.23 1.18 1.23 1.23 1.26

I RE 1.01 0.99 1.11 1.11 1.04 1.31
II MSE 5.25 1.44 0.64 2.17 0.70 0.38

W6 II RE 2.30 2.37 2.68 2.37 2.56 3.23
I RE 1.71 2.27 2.10 2.23 2.22 2.74

II MSE 2.63 0.70 0.31 1.10 0.33 0.16
W7 II RE 1.03 1.01 1.02 1.02 1.02 1.02

I RE 1.15 0.97 1.05 1.00 1.03 1.27
II MSE 2.40 0.79 0.31 1.07 0.35 0.17

W8 II RE 1.20 1.30 1.43 1.25 1.41 1.54
I RE 0.93 1.14 1.08 1.11 1.11 1.30

II MSE 4.35 1.37 0.58 1.63 0.58 0.33
W9 II RE 2.46 2.35 2.39 2.30 2.39 2.70

I RE 1.76 2.13 1.90 1.45 1.83 2.49
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Figure 3: Simulation 1 – Bias for 1:1 Matching. CCD I is CCW T-MLE
for Case-Control Design I, CCD II is CCW T-MLE for Case-Control Design
II with q̄0(M) weighting, and CCD II (w) is CCW T-MLE for Case-Control
Design II with (1− q0) weighting.
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Figure 4: Simulation 1 – Bias for 1:2 Matching. CCD I is CCW T-MLE
for Case-Control Design I, CCD II is CCW T-MLE for Case-Control Design
II with q̄0(M) weighting, and CCD II (w) is CCW T-MLE for Case-Control
Design II with (1− q0) weighting.
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more biased. Mean squared errors and relative efficiencies for the odds ratio
can be seen in Table 1. Bias results can be seen in Figures 3 and 4.

5.2 Simulation 2

Our second simulation study was designed to address less ideal, and perhaps
more common, situations where control information is discarded. Controls
were sampled from the population of controls in Simulation 1 until a match
on covariate Wi was found for each case. Non-matches were returned to the
population of controls. The number of total controls sampled to find sufficient
matches was recorded for each simulation. This was the number of randomly
sampled controls that was used for the corresponding Case-Control Design
I simulation. The mean number of controls sampled to achieve 1:1 and 1:2
matching at each sample size is noted in Table 2 as nCo. For example, in
order to obtain 200 controls matched on covariate W1 in a 1:1 design, an
average of 404 controls had to be sampled from the population. Thus, an
average of 404 controls were used in the corresponding Case-Control Design I.

Case-control weighted targeted maximum likelihood estimation was per-
formed for Case-Control Designs I and II. Case-Control Design I outperformed
Case-Control Design II with respect to efficiency and bias for all sample sizes
and both 1:1 and 1:2 matching. This was not surprising given the mean num-
ber of controls in each of the control samples for Case-Control Design I (on
average, about two times the number of controls in each control sample for
Case-Control Design II). Additionally, as association between Wi and Y in-
creased, there was a trend that the number of controls necessary for complete
matching also increased. A similar trend between A and Wi was not apparent.
When returning to the bias results, one can see that they do not vary greatly
with association between Wi and A or Y . Mean squared errors and relative
efficiencies for the odds ratio can be seen in Table 2. Bias results are displayed
in Figure 5.

6 Discussion

The main benefit of a matched case-control study design is a potential in-
crease in efficiency. However, an increase in efficiency is not automatic. If one
decides to implement a matched case-control study design, matching variable
selection is crucial. Numerous publications in our literature review indicated
that matching on non-confounding variables is not beneficial, including Kup-
per et al. (1981): “The futility of matching in [non-confounding situations]
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Table 2: Simulation 2 – Efficiency. II MSE is Mean Squared Error for
Case-Control Design II CCW T-MLE, I RE is Relative Efficiency of Case
Control Design I CCW T-MLE Compared to Case-Control Design II MSE,
nC is Number of Cases, nCo is Mean Number of Controls for Case-Control
Design I.

1:1 Matching 1:2 Matching
nC 200 500 1000 200 500 1000
nCo 404 1006 2010 804 2011 4026

W1 II MSE 2.90 0.76 0.28 1.00 0.27 0.14
I RE 2.89 2.24 2.14 2.12 1.70 2.16
nCo 404 1009 2016 808 2016 4031

W2 II MSE 2.91 0.77 0.30 1.15 0.36 0.16
I RE 2.91 2.72 2.13 2.32 2.21 2.49
nCo 406 1016 2033 812 2034 4065

W3 II MSE 1.99 0.48 0.22 0.84 0.28 0.11
I RE 1.82 1.43 1.65 1.81 1.78 1.85
nCo 403 1006 2010 806 2012 4023

W4 II MSE 2.47 0.67 0.29 1.09 0.28 0.13
I RE 2.38 2.09 2.20 2.29 1.91 2.03
nCo 406 1010 2019 810 2019 4040

W5 II MSE 2.41 0.63 0.25 0.92 0.29 0.12
I RE 2.24 2.00 1.92 1.95 1.89 2.10
nCo 411 1025 2046 819 2045 4094

W6 II MSE 2.08 0.64 0.23 0.88 0.27 0.13
I RE 2.13 1.99 1.69 1.92 1.70 2.23
nCo 402 1001 2000 801 1999 4000

W7 II MSE 2.71 0.72 0.30 1.09 0.34 0.15
I RE 2.54 2.42 2.18 2.19 2.25 2.18
nCo 407 1014 2028 811 2027 4055

W8 II MSE 2.28 0.56 0.23 0.97 0.25 0.11
I RE 2.35 1.76 1.71 1.99 1.59 1.68
nCo 413 1030 2059 824 2061 4121

W9 II MSE 1.97 0.54 0.22 0.80 0.26 0.12
I RE 1.91 1.77 1.69 1.62 1.69 1.84
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Figure 5: Simulation 2 – Bias. CCD I is CCW T-MLE for Case-Control
Design I and CCD II is CCW T-MLE for Case-Control Design II.
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is clear...matching on [the variable] will have absolutely no effect on the dis-
tribution of the exposure variable in the diseased and nondiseased groups.”
Therefore, increases in efficiency with a matched design depend heavily on the
selection of a confounding variable as a matching variable. In practice, it may
be difficult to ascertain the strength of the association between the matching
variable, the exposure of interest, and the outcome. Our simulations for causal
effect estimation confirmed the consensus in the existing literature: that in sit-
uations where the distribution of the matching covariate is drastically different
between the case and control populations, matching may provide an increase
in efficiency. Our simulations indicated that P ∗0 (Y = 1 | Wi = 1, Z, A), for
matching variable Wi and covariate vector Z, may need to be very small for
an increase in efficiency using a matched design. These results were true, how-
ever, only for our simulations where no control subjects were discarded ; it is
very common for matched study designs to discard controls (Freedman, 1950;
Cochran and Chambers, 1965; Billewicz, 1965; McKinlay, 1977).

This paper focused on the issue of individual matching in case-control stud-
ies where the researcher is interested in estimating the marginal causal effect
and certain prevalence probabilities are known. Thus, we compared the use
of case-control weighted targeted maximum likelihood estimation in matched
and unmatched designs. We showed that in practical situations (e.g. when
controls are discarded), an unmatched design is likely to be a more efficient,
less biased study design choice. Since we also have a nonparametric double
robust locally efficient procedure for the estimation of causal parameters in
unmatched case-control study designs using q0, it may be preferred to causal
parameter estimation in matched designs. Furthermore, when q0 is estimated,
van der Laan (2008) demonstrated that one can incorporate the uncertainty
surrounding the estimate of q0 into the standard error of the parameter of
interest. However, if controls will not be discarded, there is a priori infor-
mation about the matching variable(s), or the circumstances only allow for
a matched design, our double robust locally efficient procedure for the esti-
mation of causal parameters in matched case-control study designs can then
be used, as demonstrated in this paper. This design relies on the additional
knowledge of q̄0(M). Our simulations also indicated that when q̄0(M) is un-
known, 1− q0 may provide a reasonable approximation, although this should
be examined further.
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Causal Inference for Nested Case-Control
Studies using Targeted Maximum Likelihood

Estimation

Sherri Rose and Mark J. van der Laan

Abstract

A nested case-control study is conducted within a well-defined cohort
arising out of a population of interest. This design is often used in epi-
demiology to reduce the costs associated with collecting data on the full
cohort; however, the case control sample within the cohort is a biased
sample. Methods for analyzing case-control studies have largely focused
on logistic regression models that provide conditional and not marginal
causal estimates of the odds ratio. We previously developed a Case-
Control Weighted Targeted Maximum Likelihood Estimation (TMLE)
procedure for case-control study designs, which relies on the prevalence
probability q0. We propose the use of Case-Control Weighted TMLE in
nested case-control samples, with either known q0 or q0 estimated from
the full cohort. We show that this procedure is efficient for a reduced
data structure, the data structure where covariate information is not
collected or available on non-case-control subjects, and recognize that
it is not fully efficient for the full data. However, in many common sce-
narios, the full data is not available, thus our procedure is maximally
efficient for the data given. For statistical inference, we view the nested
case-control sample as a missing data problem (Robins et al., 1994).
Case-Control Weighted TMLE on the reduced data structure is illus-
trated in simulations for cohorts with and without right censoring and
also effect modification in randomized controlled trials.

Keywords: nested case control sampling, causal effect, counterfactual, dou-
ble robust estimation, estimating function, inverse probability of treatment
weighting, locally efficient estimation, marginal structural models, targeted
maximum likelihood estimation, treatment effect, variable importance mea-
sures
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1 Introduction

Nested case-control studies are conducted within a well-defined cohort arising
out of a population of interest. Typically, all of the subjects that develop
disease in the cohort (i.e., the cases) are selected along with a random sampling
of non-diseased subjects. Controls may be selected at the time each case
becomes a case from the population without an event at that time but at risk
for the event or at the end of the study. These two groups of subjects then
comprise the nested case-control sample, where it is common for additional
information to be collected, such as the exposure of interest (Mantel, 1973;
Kupper et al., 1975; Liddell et al., 1977; Breslow et al., 1983; Rothman and
Greenland, 1998). This design is increasingly used in public health, medicine,
and genomics to study relationships between exposures and disease in large
observational cohorts and effect modification in randomized controlled trials
(Rothman and Greenland, 1998; Essebag et al., 2003, 2005). Nested designs
may reduce the costs associated with collecting data on the full cohort with
only a nominal loss in efficiency (Ernster, 1994; Rothman and Greenland, 1998;
Hak et al., 2004; Vittinghoff and Bauer, 2006).

However, whether nested within a large observational cohort or a random-
ized controlled trial, the case-control study nested within the full cohort is
biased since the proportion of cases in the sample is not the same as the pop-
ulation of interest. Methods for analyzing case-control studies have largely
focused on logistic regression models (Breslow and Cain, 1988). These mod-
els provide conditional and not marginal (causal) estimates of the odds ratio.
We have developed a Case-Control Weighted Targeted Maximum Likelihood
Estimation (TMLE) procedure for case-control samples, which relies on the
prevalence probability q0 ≡ P ∗0 (Y = 1). TMLE is a general procedure for esti-
mation, and can be used for any full data model and parameter of interest. It
is a two-step method where one first obtains an estimate of the data-generating
distribution and then in second stage updates the initial fit in a bias-reduction
step targeted towards the parameter of interest, instead of the overall den-
sity. For case-control data, we simply employ the use of case-control weights
in Case-Control Weighted TMLE. We propose the extension of Case-Control
Weighted TMLE in nested case-control samples, with either known q0 or q0

estimated from the full cohort. We show that this procedure is efficient for a
reduced data structure, the data structure where covariate information is not
collected or available on non-case-control subjects, and recognize that it is not
fully efficient for the full data. However, in many common scenarios, the full
data is not available, thus our procedure is maximally efficient for the data
given. For statistical inference, we view the nested case-control sample as a
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missing data problem Robins et al. (1994). We are able to estimate a variety
of parameters with Case-Control Weighted TMLE, including the marginal ex-
posure effect adjusted for confounders. These parameters can be viewed as the
analogues of causal inference parameters, but for observational data. We refer
to these parameters as variable importance parameters if we are not willing
to make causal assumptions. We illustrate Case-Control Weighted TMLE on
the reduced data structure in simulations for cohorts with and without right
censoring and also effect modification in randomized controlled trials.

2 Background

2.1 Literature and Existing Methodology

Nested case-control studies were introduced in Mantel (1973) and further dis-
cussed and developed in Kupper et al. (1975), Liddell et al. (1977), Thomas
(1977), and Breslow et al. (1983). Advantages include reduction in costs as-
sociated with collecting data on the entire cohort, minimal losses in efficiency,
and having the cases and controls come from the same population (Ernster,
1994; Rothman and Greenland, 1998; Essebag et al., 2003; Hak et al., 2004;
Vittinghoff and Bauer, 2006). The latter is frequently not the case in indepen-
dent case-control study designs. Nested case-control designs have also been
shown to have similar estimates for parameters such as the standardized mor-
bidity ratio when compared to an analysis of the full cohort (Liddell et al.,
1977; Breslow et al., 1983; Lubin, 1986).

Much of the literature for analysis of nested case-control studies focuses on
logistic regression models. The use of conditional logistic regression, treating
the nested case-control study as a sample matched on time, is frequently dis-
cussed (Breslow and Cain, 1988; Flanders and Greenland, 1991; Ernster, 1994;
Barlow et al., 1999; Szklo and Nieto, 1999). Samuelsen (1997) constructs pseu-
dolikelihoods for nested case-control study designs using the conditional prob-
ability that a subject will be selected as a control to build a general paramet-
ric regression estimator and a semiparametric proportional-hazards estimator.
Proportional hazards models have also been discussed elsewhere (e.g., Lubin,
1986). An important reference for our methodology is Robins et al. (1994).
Their paper includes a discussion of a missingness framework for the esti-
mation of inverse probability of treatment weighted (IPTW) marginal causal
parameters for nested case-control study designs. We also refer to van der
Laan and Robins (2003) which handles double robust estimation for missing
data structures.
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Beyond the types of parameters being estimated, the literature on the
analysis of nested case-control study designs could further be divided loosely
into three groups. One group analyzes the nested case-control sample as a
case-control sample, ignoring the first stage of sampling the cohort, for example
Barlow et al. (1999). The second group analyzes the nested case-control sample
as a missing data structure, such as Robins et al. (1994). The third group
straddles both of these groups, for example Breslow and Cain (1988). Our
methodology falls within this third group. We estimate our parameter with
information from only the case-control sample, but our inference respects the
missing data structure. Our variance estimates incorporate both the variability
due to sampling the cohort from the population of interest and the variability
arising from drawing the case-control sample from the cohort.

An additional division in the literature could be drawn based on methods
that rely on knowledge of the prevalence probability q0 ≡ P ∗0 (Y = 1). For
example, the methodology of Robins et al. (1994) requires only that q0 be small.
Our proposed methodology uses knowledge of q0, or a reasonable estimate of q0

approximated within the full cohort. The use of q0 to eliminate the bias of case-
control sampling designs has previously been discussed as update to a logistic
regression model with the intercept log q0/(1 − q0) (Anderson, 1972; Prentice
and Breslow, 1978; Greenland, 1981; Morise et al., 1996; Wacholder, 1996).
Adding the intercept log q0/(1− q0) yields the true logistic regression function
P ∗0 (Y = 1 | A,W ) (Anderson, 1972; Prentice and Pyke, 1979). A discussion
of this updated logistic regression and its sensitivity to model misspecification
can be found in Rose and van der Laan (2008). Similarly, there is a wealth of
literature which discusses estimation in nested case-control studies with known
sampling probabilities from the cohort, such as Borgan and Langholz (1993).

2.2 Case-Control Weighted TMLE

TMLE is a general methodology introduced in van der Laan and Rubin (2006).
It is an efficient and double robust procedure that can estimate a variety of
parameters of interest. We propose the use of Case-Control Weighted TMLE,
which is simply a TMLE procedure that relies on the prevalence probability for
case-control weights, in the case-control observations nested within a cohort.
We will view the nested case-control sample within the cohort as a biased
case-control sample in order to estimate our parameter of interest. Thus, here
we discuss the general methodology for Case-Control Weighted TMLE before
describing its application for use in nested case-control studies.

Case-Control Weighted TMLE, discussed in van der Laan (2008), maintains
the locally efficient double robustness properties of estimating function based
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methodology, and unifies maximum likelihood estimation (MLE) with estimat-
ing function methodology into a method improving on both. The case-control
weighting framework maps estimation methods designed for non-case-control
sampling into methods for case-control sampling. Case-control weighting al-
lows us to provide TMLE methodology, which targets the parameter of in-
terest, for biased case-control sampling in the form of Case-Control Weighted
TMLE. Our procedure is a general methodology for the estimation of a param-
eter of a probability distribution, such as marginal causal effects and variable
importance measures. The methodology relies on knowledge of the true preva-
lence probability P ∗0 (Y = 1) ≡ q0, or a reasonable approximation, to eliminate
the bias of the case-control sampling design.

Let us define O∗ ∼ P ∗0 as the experimental unit and corresponding distribu-
tion P ∗0 of interest. To generalize, our case-control weighting maps a function
of O∗ into a function of the case-control data structure O, while preserving
the expectation of the function. For example, the experimental unit of interest
may be defined as O∗ = (W,A, Y ) ∼ P ∗0 , which consists of baseline covariates
W , an exposure variable A, and a binary outcome Y . Then, in an independent
case-control study design sampling can be described as first sampling (W1, A1)
from the conditional distribution of (W,A), given Y = 1 for a case and then
sampling J controls (W j

0 , A
j
0) from (W,A), given Y = 0, j = 1, . . . , J . The

observed data structure O is then defined by:

O = ((W1, A1), (W j
0 , A

j
0 : j = 1, . . . , J)) ∼ P0, with

(W1, A1) ∼ (W,A | Y = 1)

(W j
0 , A

j
0) ∼ (W,A | Y = 0),

where the cluster containing one case and J controls is considered the ex-
perimental unit, and the marginal distribution of this cluster is specified by
P ∗0 . A case-control dataset of this design then consists of n i.i.d. observations
O1, . . . , On with sampling distribution P0 as described above. The modelM∗,
where q0 may or may not be known, implies models for the marginal distri-
bution of cases (W1, A1) and controls (W j

2 , A
j
2), j = 1, . . . , J . Of note, if the

independent case-control sampling design is conducted simply as sampling nC
cases from the conditional distribution of (W,A), given Y = 1, and sampling
nCo controls from (W,A), given Y = 0, the value of J used to weight each
control is then nCo/nC.

Let O∗ → D∗(O∗) represent an estimating function or loss function for O∗

that can be used to estimate the parameter of interest of P ∗0 based on an i.i.d.
sample of O∗. We are concerned with mapping this function D∗ into a function
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for this same parameter of interest, but now based on sampling O (a biased
sample for O∗). We define the case-control weighted version:

Dq0(O) ≡ q0D
∗(W1, A1, 1) +

1

J

J∑
j=1

(1− q0)D∗(W j
2 , A

j
2, 0),

which is now a function of the observed experimental unit O. Additionally, we
define the expectation operator P0,q0D

∗ = P0Dq0 , which takes the expectation
of the case-control weighted function Dq0(O) with respect to P0. Similarly, we
define the empirical expectation Pn,q0D

∗ = PnDq0 as the empirical mean of the
case-control weighted Dq0 , where Pn is the empirical distribution of O1, . . . , On.
Now, we can let D∗(O∗) be a function so that P ∗0D

∗ ≡ EP ∗
0
D∗(O∗) = 0. Then

P0Dq0 = 0, and

Dq0(O) ≡ q0D
∗(W1, A1, 1) + (1− q0)

1

J

J∑
j=1

D∗(W j
2 , A

j
2, 0).

In more generality, for any functionD∗ and corresponding case-control weighted
function Dq0 , we have

P0Dq0 = P ∗0D
∗.

Given a modelM∗ for p∗0, we can estimate P ∗0 with a case-control weighted
maximum likelihood estimator:

p∗n = arg max
p∗∈M∗

n∑
i=1

L(Oi, p
∗),

where L(Oi, p
∗) is the case-control weighted log likelihood loss function for the

density p∗0 of O∗ under sampling of O ∼ P0:

L(Oi, p
∗) = q0 log p∗(W1, A1, 1) + (1− q0)

1

J

J∑
j=1

log p∗(W j
2 , A

j
2, 0).

Now, let D∗(P ∗0 ) be the efficient influence curve of the parameter Ψ∗ :
M∗ → IRd. We consider an initial estimator P ∗0n of P ∗0 based on O1, . . . , On

such as a case-control weighted maximum likelihood estimator according to
a working model within M∗. Let {P ∗n(ε) : ε} be a submodel of M∗ with
parameter ε satisfying that the linear span of its score at ε = 0 includes
D∗(P ∗0n ). Then we let ε1n be the case-control weighted maximum likelihood
estimator of ε:

ε1n = arg maxPn,q0 log p∗0n (ε).
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From this we obtain an update P ∗1n = P ∗0n (ε1n) of the initial estimator P ∗0n . This
updating process is iterated until step k at which εkn ≈ 0. The final update is
denoted P ∗n . By the score condition, this final estimator solves the case-control
weighted efficient influence curve:

0 = Pn,q0D
∗(P ∗n) = PnDq0(P

∗
n)

up to numerical precision (van der Laan and Rubin, 2006). We refer to ψn =
Ψ∗(P ∗n) as the case-control weighted targeted maximum likelihood estimator
of ψ0.

The theoretical development of Case-Control Weighted TMLE can be found
in van der Laan (2008). In Rose and van der Laan (2008), we implemented
Case-Control Weighted TMLE and presented a comparison of the procedure
to an existing method for estimation of the causal parameters in case-control
studies, the approximately correct IPTW of Robins (1999). We demonstrated
that Case-Control Weighted TMLE outperforms the IPTW method for esti-
mation of the marginal causal odds ratio in many practical situations.

3 Methodology for Nested Designs

Our goal is to apply Case-Control Weighted TMLE methodology to nested
case-control designs. First, it is important to understand the statistical frame-
work for the design. Nested case-control study designs have a missing data
structure, as presented by Robins et al. (1994), and which we will discuss
here. We will use a reduced data structure to estimate the parameter of in-
terest with our proposed case-control weighted targeted maximum likelihood
estimator. This estimator solves the efficient influence curve equation for the
reduced data structure.

3.1 The Data Structure

Let O∗ be a full data structure of the experimental unit O∗ represents the
data that ideally would be observed in order to answer the research question
of interest. In most studies, however, one or more components of the full
data are subject to one or more types of missingness, and only O = Φ(O∗, δ)
can be observed, where Φ is a known many-to-one mapping and δ denotes
a missingness variable. Here, O∗ represents data from the full cohort data
and the missingness variable indicates membership in the nested case-control
sample.
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Suppose the full data structure is O∗ = (W,A, Y ) with Y being a binary
outcome of interest, A a binary exposure, and W a vector of covariates. Let
us also suppose that the observed data structure for the nested case-control
study is O = (δ, δO∗1, O

∗
2), where O∗ = (O∗1, O

∗
2). Particular examples are that

O∗1 = A and O∗2 = (W,Y ), or O∗1 = (A,W ), and O∗2 = Y . It is assumed that
O∗2 always includes Y . The observations with δ = 1 are the observations in the
nested case-control sample within the cohort and have additional variables O∗1
measured. If O∗2 = Y , the missing data structure essentially ignores the non-
case-control observations, except for the purpose of estimating q0 ≡ P ∗0 (Y =
1). Covariate and exposure information is not available or is not measured.
This case is particularly interesting since we can show that the case-control
weighted targeted maximum likelihood estimator using only the case-control
observations and the empirical estimate of q0 obtained from the full cohort
is a targeted maximum likelihood estimator for this particular missing data
structure (δ, δ(W,A), Y ). If covariate information is measured and available for
non-case-control subjects, this missing data structure ignores the information
and therefore our estimator is not fully efficient.

We assume the coarsening at random (CAR) assumption: Π(O∗) ≡ P ∗0 (δ =
1 | O∗) = P ∗0 (δ = 1 | O∗2), and a special case is that P ∗0 (δ = 1 | O∗2) = P ∗0 (δ =
1 | Y ) with P ∗0 (δ = 1 | Y = 1) = 1 and P ∗0 (δ = 1 | Y = 0) = p, where p is
estimated empirically from the data. In this case the selection for the case-
control sample is based upon the outcome Y . One might wish to choose p so
that a single case (Y = 1, δ = 1) corresponds with J-controls (Y = 0, δ = 1),
on average. If q0 = P ∗0 (Y = 1), then Jq0P

∗
0 (δ = 1 | Y = 1) = (1 − q0)P ∗0 (δ =

1 | Y = 0), which results in p = Jq0
1−q0 .

3.2 Parameter of Interest

The statistical problem is then to estimate the parameter ψ0 = Ψ∗(P ∗0 ) of the
population distribution P ∗0 ∈M∗ of (W,A, Y ), known to be an element of some
specified modelM∗, based on the nested case-control data setO1, . . . , On ∼ P0.
O∗ ∼ P ∗0 , the experimental unit of interest, is not the observed experimental
unit, due to the missing data structure. P ∗0 now represents the full data distri-
bution and P0 is the distribution of the missing data structure with observed
experimental unit O = (δ, δO∗1, O

∗
2) ∼ P0. We focus on the case O∗2 = Y , where

covariate information on non-case-control subjects is unavailable or ignored,
and view this missing data structure as a biased case-control sampling design
in order to estimate our parameter of interest. An example of a parameter of
interest is the marginal exposure effect on the additive scale, which can also
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be viewed as the causal risk difference:

ψ0,RD ≡ E∗0{E∗0(Y | A = 1,W )− E∗0(Y | A = 0,W )}
= E∗0(Y1)− E∗0(Y0) = P ∗0 (Y1 = 1)− P ∗0 (Y0 = 1).

This definition requires the specification of the counterfactual outcomes Y0 and
Y1 for binary A and (W,A, Y = YA) as a time-ordered missing data structure
on (W,Y0, Y1). For a causal interpretation, one must also make the random-
ization assumption: {A ⊥ Y0, Y1 | W}, meaning there are no unmeasured
confounders. This parameter can also be viewed as a W -adjusted variable
importance parameter, as previously mentioned, without the need to make
causal assumptions. See van der Laan (2006) for this framework. We make
use of the shorthand Q∗0 = P ∗0 (Y | A,W ) and g∗0 = P ∗0 (A | W ), the latter often
referred to as the “treatment mechanism” but as the “exposure mechanism”
in case-control studies.

3.3 The Estimator

TMLE is a general procedure for estimation, and can be used for any full data
model and parameter of interest. It is a two-step method where one first ob-
tains an estimate of the data-generating distribution and then in second stage
updates the initial fit in a bias-reduction step targeted towards the parameter
of interest, instead of the overall density. For case-control data we then simply
add case-control weighting, using the prevalence probability. Here we will use
Case-Control Weighted TMLE applied to nested case-control data using an
estimate of q0 from the full cohort. Again we focus on the case where O∗2 in
the experimental unit O = (δ, δO∗1, O

∗
2) ∼ P0 is equal to Y . We can show that

the case-control weighted targeted maximum likelihood estimator using only
the case-control observations and the empirical estimate of q0 obtained from
the full cohort is a targeted maximum likelihood estimator for this particular
missing data structure (δ, δ(W,A), Y ). In this special case, the D∗(Q, g,Π) we
solve is the efficient influence curve (see Section 3.4). In other cases, for ex-
ample when O∗2 = (W,Y ), we follow the same template for targeted maximum
likelihood, where the case-control weighted log-likelihood is the criterion for
fit.

Let us say we are still interested in the risk difference. We also let Q0
n

be an initial estimator of Q∗0 = P ∗0 (Y | A,W ), say the case-control weighted
maximum likelihood estimator, or equivalently, the inverse probability of cen-
soring weighted (IPCW) logistic regression estimator. In the IPCW esti-
mator, the weights are δ

Π
. Now, we construct the ε-extension logitQ0

n(ε) =
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logitQ0
n + εh(g)(A,W ), where h(g)(A,W ) ≡ A

g∗0(1|W )
− 1−A

g∗0(0|W )
, and we estimate

ε with IPCW MLE. Alternatively, one puts the inverse probability of censoring
weights in the ε-covariate: εh(g)(A,W ) δ

Π
. Let Qn = Q0

n(εn). We now solve
ψn,RD = Pn

δ
Π

(Q1n −Q0n), where Q1n = Qn(1,W ) and Q0n = Qn(0,W ). Note
that this corresponds with the case-control weighted empirical mean over W .
So this estimator ψn,RD corresponds exactly with the case-control weighted tar-
geted maximum likelihood estimator proposed in van der Laan (2008), Rose
and van der Laan (2008), and Rose and van der Laan (2009).

3.4 The Efficient Influence Curve

In order to estimate our parameter of interest, we view the missing data struc-
ture (δ, δ(W,A), Y ), where covariate information on subjects outside the nested
case-control sample is unavailable or discarded, as a case-control sample. How-
ever, inference for this parameter must respect the missing data structure in
order to account for the two sources of variability in the estimator. The first
source of variance arises due to drawing the cohort from the target population,
and the second source of variance arises from drawing the case-control sample
from the cohort. If our inference treated the sample simply as a case-control
sample, we would not be incorporating the additional variance arising from
sampling the cohort from the population. Thus, for inference, we use an ef-
ficient influence curve that respects the missing data structure to obtain an
estimate of the variance of our estimator. However, the efficient influence curve
can also be used to construct closed form locally efficient double robust estima-
tors by using it as an estimating function. The case-control weighted targeted
maximum likelihood estimator discussed in the previous section solves the ef-
ficient influence curve equation for the missing data structure (δ, δ(W,A), Y ).

Our methodology for independent case-control study designs relies on knowl-
edge of q0, or a reasonable approximation of q0, for appropriate statistical in-
ference. In nested case-control samples we can easily estimate q0 from the full
cohort data. Inference for nested case-control study designs also requires the
CAR assumption: Π(O∗) ≡ P ∗0 (δ = 1 | O∗) = P ∗0 (δ = 1 | O∗2). Let us say that
we are still interested in the risk difference, but note that the derivation of the
efficient influence curve and corresponding estimators generalizes to all other
parameters of the full data distribution.

The efficient influence curve in the nonparametric full data model for O∗ =
(W,A, Y ) is given by:

D(O∗) = h(g)(A,W )(Y −Q(A,W )) +Q(1,W )−Q(0,W )−Ψ(Q),

where h(g)(A,W ) ≡ A
g(1|W )

− (1−A)
g(0|W )

. We will represent D = D1 + D2, where
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D1 = h(g)(Y −Q). The efficient influence curve for the missing data model is
obtained through the following doubly robust IPCW mapping applied to the
full data efficient influence curve D (see van der Laan and Robins (2003)):

D∗ =
δ

Π
{D − E(D | δ = 1, O∗2)}+ E(D | δ = 1, O∗2).

This efficient influence curve can now be used to construct closed form lo-
cally efficient double robust estimators by using it as an estimating function.
One will also be able to construct corresponding targeted maximum likelihood
estimators. Here, we will focus on the O∗2 = Y -case. We have

D∗(Q, g,Π) =
δ

Π
{h(Y −Q) + (Q1 −Q0)}

− δ
Π
E(h(Y −Q) +Q1 −Q0 | δ = 1, Y )

+E(h(Y −Q) +Q1 −Q0 | δ = 1, Y )−Ψ(Q),

where we use the notation Q1(W ) = Q∗0(1,W ), Q0(W ) = Q∗0(0,W ), and
Q = Q∗0(A,W ). This efficient influence curve can be decomposed as the sum
of the following two components:

D∗1 =
δ

Π
(h(Y −Q)− E(h(Y −Q) | δ = 1, Y )) + E(h(Y −Q) | δ = 1, Y )

D∗2 =
δ

Π
(Q1 −Q0 − E(Q1 −Q0 | δ = 1, Y )) + E(Q1 −Q0 | δ = 1, Y )−Ψ(Q).

We claim that D∗1 is a score of dP (Y | A,W ) and D∗2 is a score of dP (W ) in
the observed likelihood factorization of (δ, δ(W,A), Y ), where the conditional
expectation contributions, given (δ = 1, Y ), are coming from the dP (Y )-factor.

Viewing D∗ = D∗(Q∗, g∗,Π, ψ) as an estimating function in ψ, setting
PnD

∗(Qn, gn,Π, ψn) = 0 for given estimators Qn, gn of Q0, g0, yields the solu-
tion for the risk difference:

ψn = Pn
δ

Π
{h(gn)(Y −Qn) + (Q1n −Q0n)}

−
(
δ

Π
− 1

)
{En(h(gn)(Y −Qn) +Q1n −Q0n | δ = 1, Y )} .

It is necessary for us to estimate the nuisance parameters:

En(h(Y −Qn) | δ = 1, Y = y) =

∑n
i=1 I(δi = 1, Yi = y)h(Ai,Wi)(y −Qn(Wi, Ai))∑n

i=1 I(δi = 1, Yi = y)

En(Q1n −Q0n | δ = 1, Y = y) =

∑n
i=1 I(δi = 1, Yi = y)(Q1n −Q0n)(Wi)∑n

i=1 I(δi = 1, Yi = y)
.
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Our case-control weighted targeted maximum likelihood estimator solves
the IPCW weighted efficient influence curve equation:

0 = Pn
δ

Π
{h(gn)(Y −Qn) + (Q1n −Q0n)−Ψ(Qn)} .

In our case-control study nested within the cohort sample, we estimate q0 with
q0n = 1

n

∑
i I(Yi = 1) and use the corresponding Πn. Suppose we estimate Π =

P (δ = 1 | Y = y) with the empirical proportion of δ among the observations
with Yi = y. Then:

0 = Pn

(
δ

Πn

− 1

)
{En(h(gn)(Y −Qn) +Q1n −Q0n − ψn | δ = 1, Y )} .

This follows by first conditioning on Y = y, and then noting that Pn(δ/Πn(y)−
1 | Y = y) = 0 for each y ∈ {0, 1}. By estimating Π with the empirical
distribution of δ, it follows that this targeted maximum likelihood estimator
ψn solves the efficient influence curve equation:

0 = PnD
∗(Qn, gn,Πn, ψn).

Thus, our case-control weighted targeted maximum likelihood estimator, us-
ing the empirical proportions from the total cohort sample for q0 and 1 − q0,
actually solves this efficient influence curve equation for the missing data struc-
ture (δ, δ(W,A), Y ). In particular, we can use D∗(Q∗, g∗,Π, ψ) as the influence
curve under the assumption that g∗0 is correctly estimated. This influence
curve can then be used calculate standard errors of the case-control weighted
targeted maximum likelihood estimator. An estimate of the asymptotic vari-
ance of

√
n(ψn,RD − ψ0) using the efficient influence curve D∗(Q∗, g∗,Π, ψ) is

given by σ̂2 = 1
n

∑n
i=1 D̂

∗2 . A 95% Wald-type confidence interval for a param-

eter estimate ψ̂ can be constructed as: ψ̂ ± z0.975
σ̂√
n

with a p-value calculated

as 2[1 − Φ(| ψ̂
σ̂/
√
n
|)]. Resampling based methods can also be implemented to

estimate the standard error of the estimated parameter of interest.
We conclude that our proposed case-control weighted targeted maximum

likelihood estimator with the empirical q0n is a targeted maximum likelihood
estimator for the missing data structure (δ, δ(W,A), Y ), and is thus a locally
efficient procedure for that data. If in truth, as may often be the case, the
non-case-control observations have covariate data, then one can use a more
efficient double robust estimator using the above efficient influence curve and
estimating the nuisance parameters.

Chapter 8. Case-Control Studies

490
Hosted by The Berkeley Electronic Press



4 Right Censoring

Let us say that our full data structure (the cohort) is a censored data structure.
For example, O∗ might be defined as O∗ = (W,A, T̃ ,∆, Y ∗), where:

W are covariates,
A is an exposure of interest,

T̃ = min(T,C),
T is the time to the event Y ,
C denotes a censoring variable,

∆ = I(T̃ = T ), and
Y ∗ = (T̃ ≤ t,∆ = 1).

We can apply our case-control weights to any data structure, and there-
fore O∗ can be a censored data structure and we are still able to use our
methods. Thus, suppose our observed data for this full data O∗ is then
O = (δ, δ(W,A), T̃ ,∆, Y ∗). Again, δ = 1 denotes membership in the nested
case-control sample. A special feature of this right censored data structure is
that the true Y is not observed or a part of the full data. Instead, as noted, we
have Y ∗ = (T̃ ≤ t,∆ = 1). For example, this could represent observed death
by year 5, which would be denoted Y ∗ = (T̃ ≤ 5 years,∆ = 1). The observed
data structure for cases is then conditional on (Y ∗ = 1). It is important to
stress that the definition of a case (Y ∗ = 1) in a nested case-control study
within a right censored data structure is therefore very different than without
right censoring, and accounting for this difference is not trivial. This distinc-
tion, and right censoring in general, is often overlooked in nested case-control
study designs. The definition of q0 is now q0 = P ∗0 (T̃ ≤ t,∆ = 1). Thus, by
design we let P ∗0 (δ = 1 | Y ∗ = 1) = 1 and P ∗0 (δ = 1 | Y ∗ = 0) = p and assume
the CAR assumption Π(O∗) ≡ P ∗0 (δ = 1 | O∗) = P ∗0 (δ = 1 | O∗2).

Suppose we wish to compute a targeted maximum likelihood estimator for
O∗ of a parameter ψ0, for example ψ0 = P ∗0 (T1 ≤ 5 years)−P ∗0 (T0 ≤ 5 years),
where T1 = (T | A = 1,W ) and T0 = (T | A = 0,W ). Thus we note that
occurrence of disease conditioned upon in the case-control sampling does not
need to be an outcome of interest. Targeted maximum likelihood estimators
can handle both confounding as well as right censoring. To handle the right
censoring, one might make use of censoring weights ∆/Ḡ(·), where Ḡ(·) is
the censoring mechanism, which can be estimated efficiently with a Kaplan-
Meier curve (van der Laan and Rubin, 2007). Now suppose A is expensive
to measure and can only be collected in a subsample of O∗. A nested case-
control study might be performed. We can then implement a case-control
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weighted targeted maximum likelihood estimator, as discussed in Section 3.3,
with weights implied by q0 = P ∗0 (T̃ ≤ 5 years,∆ = 1) in addition to the
censoring weights. While simple to implement, this estimator is not a full
TMLE due to the ad hoc IPCW weighting. Thus the case-control weighted
IPCW TMLE is defined as the TMLE estimator for the full data structure
weighting each observation (Wi, Ai, T̃i,∆i, Y

∗
i ) with ∆iq0

Ḡ(T̃i|Ai,Wi)
if (Y ∗i = 1) and

each of J corresponding control observations receive weight
∆i(1−q0) 1

J

Ḡ(T̃i|Ai,Wi)
if(Y ∗i =

0).
An additional approach includes the use of the targeted maximum likeli-

hood estimator presented in Moore and van der Laan (2009). This estimator
involves first estimating a hazard of T given (A,W ), expressing this hazard
fit as a logistic regression or multiplicative intensity, and subsequently adding
a time dependent covariate h(t, A,W ) as an epsilon extension. The epsilon
coefficient in front of the clever covariate is fitted with standard logistic re-
gression or Cox proportional hazards software, treating the initial hazard as
an offset. This updating process of the conditional hazard is iterated until
convergence. Once this updated hazard fit is determined with this iterative
targeted maximum likelihood algorithm, one evaluates the conditional survival
functions ST |A=1,W (5 years) and ST |A=0,W (5 years) and averages over W with
respect to the empirical distribuiton of W . This is now the targeted maximum
likelihood estimator of ψ0, which needs to be case-control weighted by giving
each observation with (Y ∗ = 1) a weight q0 and each control observation with
(Y ∗ = 0) a weight (1 − q0) 1

J
. Note that this means each step in the above

described TMLE algorithm, including the initial hazard estimation, needs to
be case-control weighted.

5 Effect Modification

Nested case-control studies within clinical trials are becoming increasingly
popular when researchers are interested in effect modification (Rothman and
Greenland, 1998; Essebag et al., 2003, 2005; Polley and van der Laan, 2009).
This is of particular importance when the patient characteristic that may mod-
ify the treatment effect is difficult or expensive to measure (Vittinghoff and
Bauer, 2006). The Women’s Health Initiative is an example of a well known
study where the investigators’ effect modification research question led to a
nested case-control study design within a randomized controlled trial (Prentice
and Qi, 2006). Researchers were interested in studying SNPs associated with
coronary heart disease, stroke and breast cancer and hormone treatments in

Chapter 8. Case-Control Studies

492
Hosted by The Berkeley Electronic Press



their placebo controlled combined hormone trial cohort of over 16,000 women.
Suppose that within a randomized controlled trial we are interested in

studying the effect modification of a particular patient characteristic, denoted
Wi. The randomized controlled trial was designed with two treatment arms,
A ∈ {0, 1}, where probability of assignment was π = 0.5. The disease outcome
was binary Y ∈ {0, 1} and the parameter:

ψ0 ≡ E∗0{E∗0(Y | A = 1,W )− E∗0(Y | A = 0,W )}
can be used to determine the average treatment effect. W indicates a multi-
dimensional covariate W = (Wi : i = 1, . . . ,m). However, our parameter of
interest was an effect modification parameter. It represents the effect modi-
fication between Wi ∼ Bernoulli(γ = 0.5) and the treatment on the disease,
while adjusting for the variables W(−i). This parameter of interest can be
expressed:

ψ̃0 ≡ E∗0{[E∗0(Y | A = 1, A∗ = 1,W(−i))− E∗0(Y | A = 0, A∗ = 1,W(−i))]

− [E∗0(Y | A = 1, A∗ = 0,W(−i))− E∗0(Y | A = 0, A∗ = 0,W(−i))]},
which can be written as:

ψ̃0 ≡ E∗0{E∗0(Z | A∗ = 1,W(−i))− E∗0(Z | A∗ = 0,W(−i))}
since π = 0.5, where Z = Y (A−(1−A)), A∗ = Wi, and W(−i) are the covariates
that do not include Wi (van der Laan, 2006; Polley and van der Laan, 2009).
The value of Z takes on three values, which follow a multinomial distribution:

Z =


+1 if Y = 1 and A = 1
0 if Y = 0
−1 if Y = 1 and A = 0.

The effect of A∗ on Z, adjusted for all other covariates W(−i), the parameter ψ̃0,
can be estimated with targeted maximum likelihood estimation. This effect
estimate can be considered a causal effect modifier, if one is willing to make the
assumptions discussed in Section 3.2. Now suppose A∗ can only be measured in
stored blood products that were collected at the beginning of the trial, and the
analysis of the stored blood products in the entire trial would be prohibitively
expensive. A nested case-control design would then be a natural design to
study the effect modification of A∗ on Z. Suppose the full data structure
was defined as O∗ = (W(−i), A∗, A, Y ). Our observed missing data structure
of the nested case-control sample would then be O = (W(−i), δ, δA∗, A, Y ).
An estimate of q0 would come from the full data, the complete randomized
controlled trial.
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6 Safety Analysis

Maintainers of large comprehensive databases that include adverse events, such
as the General Practice Research Database (GRPD) and The Health Improve-
ment Network (THIN), often require researchers to pay for access to the data.
Cost is based on a number of factors, but almost always increases as the num-
ber of subjects requested increases. Analysis of the entire cohort of data would
be cost prohibitive. Thus, nested case-control studies are also a natural design
for studies of safety with pharmaceutical drugs, and our case-control method-
ology has the potential to provide novel insight. Recent drug safety failures
(e.g., Baycol, Vioxx, Ortho Evra, and Rezulin) have led to serious side effects
and deaths in users. Additional post-market evaluation tools are necessary
for detecting true adverse effects among the large number of reports of side
effects and adverse outcomes stored in reporting databases, which are most
commonly analyzed with logistic regression, producing only conditional esti-
mates of the odds ratio (e.g., Yang et al. (2006)). In combination with the
appropriate handling of multiple testing issues, Case-Control Weighted TMLE
in nested case-control studies can play an important role in the detection of
true adverse events. We highlight that these are scenarios where we only have
data on the case-control observations. For example, if O∗ = (W,A, Y ), then
O = (δ, δ(W,A), Y ). Thus, our estimator is maximally efficient and very ap-
propriate for these types of study designs since no covariate information (e.g.
W ) on the non-case-control observations is discarded.

7 SPPARCS Data Analysis & Simulations

The National Institute of Aging funded Study of Physical Performance and
Age-Related Changes in Sonomans (SPPARCS) is a population-based, census-
sampled, study of the epidemiology of aging and health. Participants of this
longitudinal cohort were recruited if they were aged 54 years and over and were
residents of Sonoma, CA or surrounding areas. Study recruitment of 2092 per-
sons occurred between May 1993 and December 1994 and follow-up continued
for approximately 10 years. One area of particular research interest for this
data has been the effect of vigorous leisure-time physical activity (LTPA) on
mortality in the elderly, which has been studied in a previous collaboration
(Bembom and van der Laan, 2008) using marginal structural models. The
data structure O∗ = (W,A, Y ), where Y = I(T ≤ 5 years), T is time to
the event death, A is a binary categorization of LTPA, and W are potential
confounders. These variables are further defined in Table 1. Of note is the
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Table 1: SPPARCS Variables.
Variable Description
Y Death occurring within 5 years of baseline.
A LTPA score ≥ 22.5 METs at baseline.‡

HEALTH.EX Health self-rated as “excellent.”
HEALTH.FAIR Health self-rated as “fair.”
HEALTH.POOR Health self-rated as “poor.”
SMOKE.CURR Current smoker.
SMOKE.EX Former smoker.

W CARDIAC Cardiac event prior to baseline.
CHRONIC Chronic health condition at baseline.
AGE.1 x ≤ 60 years old.
AGE.2 60 < x ≤ 70 years old.
AGE.4 80 < x ≤ 90 years old.
AGE.5 x > 90 years old.
FEMALE Female.

‡
LTPA is calculated from answers to a detailed questionnaire where performed vigorous physical

activities are assigned standardized intensity values in metabolic equivalents (METs). The recommended

level of energy expenditure for the elderly is 22.5 METs.

lack of any right censoring in this longitudinal cohort. The outcome (death
within or at five years after baseline interview) and date of death was recorded
for each subject. This information was available from a variety of sources,
including death certificates. Our parameter of interest is the risk difference
ψ0 = E∗0(Y1)−E∗0(Y0), the average treatment effect of LTPA on mortality five
years after baseline interview.

The cohort was reduced to a size of n = 2066, as 26 subjects were missing
LTPA values and/or self-rated health score (1.2% missing data). The esti-
mated value for q0 from the cohort was q0n = 0.130, and the number of cases
in the cohort sample was nC = 269. The variables used in our analysis are
defined in Table 1. TMLE was performed on the full cohort sample, and the
results are displayed in Table 2. Within TMLE, the machine learning Dele-
tion/Substitution/Addition (DSA) algorithm was used to obtain estimates of
Q∗0(A,W ) and g∗0(A | W ) since the functional form of the data was unknown.
Our estimated parameter of interest is highly significant, and indicates that
physical activity at or above recommended levels decreases five-year mortality
risk in this population by 5.4%. See Table 2.
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7.1 SPPARCS Simulations

We used this longitudinal cohort study to simulate nested case-control study
designs where an estimate of the prevalence probability for the weights is
obtained from the full cohort. For example, let us say that our full data
structure O∗ = (W,A, Y ) and observed data O = (δ, δO∗1, O

∗
2), where O∗ =

(O∗1, O
∗
2), are defined by the variables in Table 1. Since this nested case-control

study is simulated inside a cohort with exposure and covariate information on
all controls, let us also say we set O∗1 = (A,W ), and O∗2 = Y . The SPPARCS
variables W , A, and Y continue to be defined by those described in Table 1.
Members of the case-control sample are denoted with δ = 1. The likelihood of
a single observation is then written as:

dP ∗0 (O) = {dP ∗0 (W )dP ∗0 (A | W )dP ∗0 (Y | A,W )}δdP ∗0 (Y )1−δ.

Since O∗2 = Y , the missing data structure ignores those individuals with δ = 0,
except for the purpose of estimating P ∗0 (Y = 1).

7.1.1 Nested Case-Control Simulations

In order to form a control sample from the SPPARCS cohort for the nested
case-control design, individuals were randomly sampled from among those still
alive five years from baseline interview, and assigned the value δ = 1. This
was a simplified approach compared to an incidence-density design where in-
dividuals are sampled from those still at risk of death at the time a case
becomes a case. Sampling was performed at various sample sizes relative
to the number of cases (2nC, 3nC, and 4nC). The empirical values for p
in Π(O∗) ≡ P ∗0 (δ = 1 | O∗) = P ∗0 (δ = 1 | O∗2) = P ∗0 (δ = 1 | Y ), with
P ∗0 (δ = 1 | Y = 1) = 1 and P ∗0 (δ = 1 | Y = 0) = p, were 0.299, 0.446,
and 0.608 for the three sample sizes. Non-cases that were not sampled were
assigned the value δ = 0. All cases were assigned δ = 1.

The cohort was then resampled 1000 times. In each of the 1000 cohort
resamples, one nested case-control study was extracted; those individuals with
(δ = 1), allowing for ties. A simulation design such as this was also used in
Bureau et al. (2008). The estimated values of q0 for use in the case-control
weights for the nested case-control samples were taken from their respective
cohort resample. Case-Control Weighted TMLE was performed on each of
the 1000 nested case-control samples and TMLE was performed on the cohort
samples. The DSA algorithm was used to obtain estimates of Q∗0(A,W ) and
g∗0(A | W ) since the functional form of the data was unknown. The relative
efficiency of the nested case-control parameters are compared to the cohort
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parameter in Table 3, as well as average values for the parameter of interest.
Relative efficiency of the nested case-control design improves as the number of
controls increases. With an average of 4 controls per case (approximately 1076
of the 1797 available non-case subjects), the relative efficiency of the nested
case-control design reached 78.9%.

7.1.2 Nested Case-Control Simulations with Right Censoring

For our simulations with right censored data, we generated an uninformative
uniform censoring variable C, which led to 30.8% censored data in the full
cohort data O∗ = (W,A, T̃ ,∆, Y ∗). The definitions for T̃ ,∆, and Y ∗ are as
described in Section 4, with W , A, and Y described in Table 1. The estimated
value for q0 from the cohort was q0n = 0.110, and the number of cases in the
cohort sample, defined by Y ∗ = (T̃ ≤ 5 years,∆ = 1) = 1, was nC = 229.
Controls were sampled from the cohort from among those subjects who had
Y ∗ = 0. The observed data for the nested case-control sample was defined
as: O = (δ, δ(W,A), T̃ ,∆, Y ∗). Sampling was performed at various sample
sizes relative to the number of cases as in the previous simulation, and the
cohort was then resampled 1000 times. In each of the 1000 cohort resamples,
one nested case-control study was extracted; those individuals with (δ = 1),
allowing for ties. Values for p were 0.249, 0.371, and 0.494 for the three sample
sizes. The cohort was analyzed with TMLE using IPCW weights defined as:
wIPCW = I(C>min(T,5))

Ḡ(min(T,5))
, where Ḡ(·) is the censoring mechanism. The censoring

mechanism can be estimated efficiently with a Kaplan-Meier curve (van der
Laan and Rubin, 2007). The nested case-control samples were analyzed in
a similar fashion, although we now also use IPCW weights and case-control
weights in Case-Control Weighted TMLE. The relative efficiency of the nested
case-control parameters are compared to the cohort in Table 4, as well as
average values for the parameter of interest. Relative efficiency of the nested
case-control design improves as the number of controls increases, although the
nested case-control design does not reach the same high level of efficiency with
4 controls per case as our previous simulation without right censoring.
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Table 2: SPPARCS Cohort Results. TMLE was performed on the SP-
PARCS cohort. Sample size was 2066, with 269 deaths five years from baseline
interview and 1797 non-deaths. RD is Risk Difference, SE is Standard Error,
and P is P-value.

Estimate SE P
RD -0.054 0.012 < 0.001

Table 3: SPPARCS Simulated Nested Case-Control Results. Case-
Control Weighted TMLE was performed on the nested case-control samples,
and TMLE was performed on the cohort samples. RD is Risk Difference, SE is
Standard Error, RE is Relative Efficiency Compared to Cohort RD, nC = 269
is number of cases, and nCo is number of controls.

Sample Size Estimate RE
Cohort RD 2,066 -0.055 1.000

nCo = 2nC -0.101 0.319
Case-Control RD nCo = 3nC -0.056 0.567

nCo = 4nC -0.051 0.789

Table 4: SPPARCS Simulated Nested Case-Control Results with
Right Censoring. Case-Control Weighted IPCW TMLE was performed on
the nested case-control samples, and IPCW TMLE was performed on the co-
hort samples. RD is Risk Difference, SE is Standard Error, RE is Relative
Efficiency Compared to Cohort RD, nC = 229 is number of cases, and nCo is
number of controls.

Sample Size Estimate RE
Cohort RD 2,066 -0.064 1.000

nCo = 2nC -0.040 0.270
Case-Control RD nCo = 3nC -0.040 0.310

nCo = 4nC -0.057 0.440
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8 Additional Simulation Studies

8.1 Simulated Cohort

In the SPPARCS data simulations, we did not know the true value of the
parameter of interest. It is therefore important to have a completely objective
way of defining the truth, and to then assess the performance of our estimator
with respect to the truth. Therefore, we repeat the exact same simulation
study, but now from a population we fully understand, as we know the value
of the true ψ. The cohort was sampled from the target population of 1,000,000
individuals. We simulated a 5-dimensional covariate W = (Wi : i = 1, . . . , 5),
a binary exposure A, and indicator Y , where 1 indicated disease (or in the
case of the SPPARCS data, death by 5 years from baseline interview). These
variables were generated according to the following rules:

Wi ∼ U(0, 1)

g∗0(A | W ) = 1
1+exp(−(W1+W2+W3+W4))

Q∗0(A,W ) = 1
1+exp(−(−A−4W1+AW1−1.5W2+sin(W5)))

.

The true value for the risk difference was RD = −0.061, and the true value
for q0 was q0 = 0.133. One cohort sample was taken with 2,066 individuals,
and the estimated value of q0 taken from the cohort was q0n = 0.143. The
number of cases in the cohort sample was nC = 296. Controls were randomly
sampled from among the non-cases in the original cohort at various sample
sizes relative to the number of cases (2nC, 3nC, and 4nC), and assigned the
value δ = 1. Non-cases that were not sampled were assigned the value δ = 0.
The values for p were 0.330, 0.506, and 0.674 for the three sample sizes. All
cases were assigned δ = 1.

The cohort was resampled 1000 times. In each of the 1000 cohort resamples,
one nested case-control study was extracted; those individuals with (δ = 1),
allowing for ties. Weights for the case-control samples were taken from their
respective cohort resample. Case-Control Weighted TMLE was performed on
each of the 1000 nested case-control samples and TMLE was performed on
the cohort samples. Logistic regression was used to estimate Q∗0(A,W ) and
g∗0(A | W ) since the functional form was known. The relative efficiency of the
nested case-control parameters are compared to the cohort in Table 5, as well
as average values for the parameter of interest. As before, relative efficiency
of the nested case-control design improves as the number of controls increases.
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With an average of 4 controls per case, the nested design reaches a relative
efficiency of 78.4%. Bias results can be seen in Figure 1.

8.2 Simulated Clinical Trial

As previously discussed, nested case-control studies within clinical trials are
becoming increasingly common when researchers are interested in effect mod-
ification. Thus, we provide an additional illustrative example of our meth-
ods for this research question. The simulated target population contained
1,000,000 individuals with covariates W . For the clinical trial, 10,000 were
sampled and assigned a treatment A. The outcome of disease was assigned
with Y = 1/(1 + exp(−(3A−4W1 +W3−12W4−2W5 + 2A sin(W3)))). Of the
10,000 subjects, 647 individuals developed disease (6.47%). The value of the
effect modification parameter of interest in the full trial was ψ̃0 = E∗0{E∗0(Z |
A∗ = 1,W(−i)) − E∗0(Z | A∗ = 0,W(−i))} = 0.016. The full data in the ran-
domized controlled trial cohort was analyzed with TMLE.

However, suppose that the effect modifier of interest, W3 ≡ A∗, could
only be measured in stored blood products, which is a very expensive process.
Therefore, we could not measure ψ̃0, as discussed in Section 5, in the entire
trial and chose a nested case-control design. In order to simulate a nested case-
control study within our simulated clinical trial data, controls were randomly
sampled from among the non-cases in the original cohort at various sample
sizes relative to the number of cases (2nC, 3nC, 4nC, and 5nC), and assigned
δ = 1. Non-cases that were not sampled were assigned δ = 0. The values for
p were 0.141, 0.210, 0.280, and 0.350 for the four sample sizes. All subjects
with Y = 1 were assigned δ = 1. The resampling procedure was the same
as our previous simulated designs. Case-Control Weighted TMLE was used
to analyze the nested case-control samples. Multinomial regression was used
with main terms to estimate Q∗0(A∗,W ), and this represents a misspecified
model. Due to the double robustness of the TMLE and Case-Control Weighted
TMLE procedures, the estimates of the parameter of interest are consistent
even when Q∗0(A∗,W ) or g∗0(A∗ | W ) is misspecified. The values for g∗0(A∗ | W )
were known since it was a randomized controlled trial. Results are displayed in
Table 6. The relative efficiency of the nested case-control design improves as
the number of controls increases, and with 38.8% of the total trial participants
we reach an efficiency of 86.4%.
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Figure 1: Simulation Data Nested Case-Control – Bias Results for
the Risk Difference.

Table 5: Simulation Data Nested Case-Control Results. Case-Control
Weighted TMLE was performed on the nested case-control samples and TMLE
was performed on the cohort samples. RD is Risk Difference, SE is Standard
Error, RE is Relative Efficiency Compared to Cohort RD, nC = 296 is number
of cases, and nCo is number of controls.

Sample Size Estimate RE
Cohort RD 2,066 -0.063 1.000

nCo = 2nC -0.045 0.411
Case-Control RD nCo = 3nC -0.068 0.725

nCo = 4nC -0.069 0.788
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Table 6: Randomized Controlled Trial Simulation Data Nested Case-
Control Results. Case-Control Weighted TMLE was performed on the
nested case-control samples and TMLE was performed on the full trial sam-
ples. SE is Standard Error, RE is Relative Efficiency Compared to Cohort
RD, nC = 647 is number of cases, and nCo is number of controls.

Sample Size Estimate RE

Full Trial ψ̃ 10,000 0.016 1.000

nCo = 2nC 0.024 0.142

Case-Control ψ̃ nCo = 3nC 0.022 0.253
nCo = 4nC 0.019 0.517
nCo = 5nC 0.016 0.864

9 Discussion

Nested designs have the potential to significantly reduce the costs associated
with collecting data on the full cohort with only minimal losses in efficiency
(Ernster, 1994; Rothman and Greenland, 1998; Hak et al., 2004; Vittinghoff
and Bauer, 2006). Our simulated nested case-control studies within the SP-
PARCS data demonstrated 78.9% efficiency with an average of 4 controls per
case. We had 78.4% efficiency in our simulated nested case-control studies
within a simulated cohort, again with an average of 4 controls per case. These
results coincided with the conclusions of Ury (1975), which noted that as
a general rule, 4 controls per case yields a relative efficiency of 80.0%. Our
nested case-control simulations with right censoring within the SPPARCS data
also demonstrated that methods for right censoring can be incorporated into
the Case-Control Weighted TMLE procedure. In general, our case-control
methodology can be used in conjunction with procedures that handle cen-
soring, missingness, measurement error, and other persistent issues found in
public health and medicine. We also demonstrated the use of Case-Control
Weighted TMLE for nested case-control study designs within randomized con-
trolled trials when interested in an effect modification research question. With
less than 40% of the trial subjects, we reached an efficiency of 86.4% compared
to the full trial.

The extension of our Case-Control Weighted TMLE methodology to nested
case-control study designs provides a double robust locally efficient estimation
procedure for marginal causal effects and variable importance measures in
nested designs. We showed that both the case-control weighted targeted max-
imum likelihood estimator and the IPCW estimator are targeted maximum
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likelihood estimators for the missing data structure (δ, δ(W,A), Y ), and are
thus locally efficient procedures for that data. For appropriate inference (e.g.
construction of standard errors), however, the IPCW efficient influence curve
must be implemented, or an appropriate resampling procedure such as boot-
strapping. With the increase in popularity of nested case-control study designs
in longitudinal cohorts and randomized controlled trials, the extension of our
Case-Control Weighted TMLE procedure provides an additional tool to yield
unique biological and public health discovery.
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Chapter 9. Time-to-Event Outcomes and Censored Data

9.1 A Note on Targeted Maximum Likelihood and Right

Censored Data
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A Note on Targeted Maximum Likelihood and
Right Censored Data

Mark J. van der Laan and Daniel B. Rubin

A popular way to estimate an unknown parameter is with substitution,
or evaluating the parameter at a likelihood-based fit of the data generating
density. In many cases, such estimators have substantial bias and can fail to
converge at the parametric rate. van der Laan and Rubin (2006) introduced
targeted maximum likelihood learning, removing these shackles from substi-
tution estimators, which were made in full agreement with the locally efficient
estimating equation procedures as presented in Robins and Rotnitzky (1992)
and van der Laan and Robins (2003). This note illustrates how targeted maxi-
mum likelihood can be applied in right censored data structures. In particular,
we show that when an initial substitution estimator is based on a Cox propor-
tional hazards model, the targeted likelihood algorithm can be implemented
by iteratively adding an appropriate time-dependent covariate.

Chapter 9. Time-to-Event Outcomes and Censored Data

509
http://biostats.bepress.com/ucbbiostat/paper254



1 Introduction

Suppose we observe a sample {Oi}ni=1 of independent and identically dis-
tributed observations, for

O = (W,∆ = I(T ≤ C), T̃ = min(T,C)) ∼ P ∈M. (1)

Here W is a vector of baseline covariates, T is a survival time, C is a censoring
time, ∆ is an indicator of censoring, P is the data generating distribution, and
the statistical model M is a family of data generating distributions containing
P . We will make the usual assumption that

{T ⊥ C|W}, (2)

meaning survival and censoring times are conditionally independent given the
baseline covariates. The log likelihood for a single observation can be written
as

dP (w, δ, t̃) = dP (W = w)

× [dP (T = t̃|W = w)P (C ≥ t̃|W = w)]δ

× [P (T > t̃|W = w)dP (C = t̃|W = w)]1−δ. (3)

The full data, which would have liked to observe, but could not be com-
pletely measured because of censoring, consists of the baseline covariates and
survival times {Xi}ni=1 = {Wi, Ti} ∼ F . We can write P = PF,G, for G(·|W )
denoting the conditional cumulative distribution function of the censoring
time. This note applies to general scenarios where the goal is to estimate
a smooth (pathwise differentiable) Euclidean parameter µ(F ) ∈ IRk, repre-
senting some feature of the full data distribution.

An example of such a parameter is simply the marginal survival probability
at a fixed time t,

µ(PF,G) = µ(F ) = F̄ (t) = P (T > t). (4)

Note that if the stronger unconditional independence assumption {T ⊥ C}
doesn’t hold, the (1958) Kaplan-Meier estimator might not necessarily be
consistent. Even if Kaplan-Meier assumptions aren’t violated, the presence
of informative baseline covariates make efficiency gains possible. When a ran-
domized treatment A ∈ {0, 1} is assigned at baseline, another important pa-
rameter could be the risk difference

µ(F ) = F̄ (t|A = 1)− F̄ (t|A = 0) = P (T > t|A = 1)− P (T > t|A = 0). (5)
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Additionally, interest might lie in regression parameters such as

µ(F ) = (β0(F ), β(F )) = argminβ0,βEF |log(T )− β0 − βTW |2. (6)

Note that µ(F ) can here be defined without assuming an accelerated failure
time model actually holds. It is simply a coefficient vector giving the best
linear predictor of log survival from baseline covariates.

For many parameters of interest, the prevailing estimation technique is to
first fit the data generating distribution P ∈M with some P̂ ∈M according
to maximizing likelihood over a submodel M0 ⊂ M, and then forming the
substitution estimator µ̂ = µ(P̂ ). This note will focus on how to proceed when
initially considering a substitution estimator based on the ubiquitous propor-
tional hazards model introduced in Cox (1973). Unfortunately, substitution
estimators often have poor performance. As discussed in Robins and Ritov
(1997), they can be heavily biased because the choice of P̂ ∈ M was made
without regard to the parameter of interest. Such estimators can be incon-
sistent, or lead to arbitrarily bad rates of convergence, while simpler schemes
can sometimes guarantee the parametric n−1/2 rate.

For example, Robins and Rotnitzky (2005) review inverse probability of
censoring weighted (IPCW) estimators in survival analysis, which can lead
to
√
n-consistent, asymptotically linear estimators if the censoring mechanism

Ḡ(·|W ) can be well approximated. Frequently censoring is caused by study
termination, and the censoring time is independent of the survival time and
baseline covariates, in which case Ḡ(·|W ) = Ḡ(·) can be efficiently estimated
with the Kaplan-Meier curve.

Suppose DFull(W,T |F ) = DFull(W,T |µ(F ), η(F )) : (W,T ) → IRk is an
estimating function for µ we could use with access to the full data {Xi =
(Wi, Ti)}ni=1. That is, suppose EF [DFull(W,T |µ, η(F ))] = 0 at µ = µ(F ), and
that with no censoring we could reliably estimate µ(F ) with the solution to

0 =
1

n

n∑
i=1

DFull(Wi, Ti|µ, ηn). (7)

Here the left side is the zero vector in IRk, and ηn is an estimator of the
nuisance parameter η(F ). For the three parameters given by (4), (5), and (6),
respective full data estimating equations could be

DFull(W,T |F ) = I(T > t)− µ(F ) (8)

DFull(W,T |F ) = I(T > t)

(
A

P (A = 1)
− 1− A

P (A = 0)

)
− µ(F ) (9)

DFull(W,T |F ) = W (log(T )− β0 − βTW ) recalling µ(F ) = [β0, β]T .(10)
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Inverse probability of censoring weighted estimation maps the full data
estimating function into

DIPCW(O|P ) = DIPCW(O|µ, η(F ), G) =
DFull(O|µ, η(F ))∆

Ḡ(T̃−|W )
, (11)

which is a function of the observed data O = (W,∆, T̃ ). It is easy to verify
EP [DIPCW(O|P )] = EF [DFull(W,T |F )] = 0. Hence, we can use it as an esti-
mating equation for µ(F ), after fitting nuisance parameters η(F ) and G(·|W ).
While simple, IPCW estimating equations are suboptimal in terms of both
efficiency and robustness. We refer to van der Laan and Robins (2003) for a
survey of estimating function methodology in survival analysis.

Despite advantages of the estimating function methodology outlined in
this survey, likelihood based substitution estimators remain more prevalent
in many applications. This could be for a variety of reasons, among them
outlier concerns due to inverse weighting, computational considerations, un-
familiarity, and inertia. To remedy the situation, van der Laan and Rubin
(2006) introduced targeted maximum likelihood. Given an initial fit P̂ of
the data generating distribution, the procedure iteratively updates the fit by
maximizing likelihood along submodels chosen to best target the parameter of
interest µ(F ). The algorithm maps an initial P̂ into a P̂ ? ∈ M, at which the
substitution estimator µ(P̂ ?) is also the solution to a well-chosen estimating
equation. Hence, the resulting estimator is a familiar type of likelihood based
substitution estimator, inheriting the benefits of

√
n-convergence, asymptotic

linearity, and local efficiency implied by estimating function theory. Targeted
maximum likelihood works as follows:

1. Form an initial fit P̂ ∈M of the data generating distribution.

2. Create a smooth (regular) parametric submodel of M, parametrized by
an ε, passing through P̂ at ε = 0. Ensure the linear span of the score
vector at P̂ includes the efficient influence curve for parameter µ(P ) at
P̂ . The efficient influence curve will be discussed in the sequel, and is
formally discussed in Bickel et al. (1998) and Chapter 1.4 of van der
Laan and Robins (2003).

3. Estimate ε with maximum likelihood.

4. Define a new density estimator as the corresponding update to the orig-
inal estimator P̂ .
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5. Iterate steps 2-4 until convergence. Of course, the procedure can be
applied without iteration, and van der Laan and Rubin (2006) argued
that most bias reduction should occur in the first step.

The efficient influence curve D(O|P ) = D(O|µ, η,G, F ), or a scaled version
thereof, is in a strong sense the optimal estimating equation for the parameter
of interest. If the nuisance parameters on which it depends are estimated
accurately, and regularity conditions are met, the estimating equation gives
rise to the regular asymptotically linear estimator with the smallest possible
asymptotic variance. Further, as discussed in van der Laan and Robins (2003),
it has desirable robustness properties. If either the initial full data fit F̂ is a
good approximation to F , or the censoring mechanism estimate Ĝ is a good
approximation to G, using the estimating function D(O|µ, η, Ĝ, F̂ ) can ensure
asymptotic linearity.

Suppose no special parametric or semiparametric assumptions are made
on the full data model, and the DFull(W,T |F ) given earlier would be a valid
estimating equation with uncensored data. Robins and Rotnitzsky (1992)
show the efficient influence curve at PF,G is given by a scaled version of,

D(O|P ) = D(O|µ(P ), η(P ), F (P ), G(P )) (12)

= DIPCW(O|µ, η,G) +

∫
t

EF [DFull(W,T |µ, η)|W,T > t]

Ḡ(T̃ |W )
dMG(t).

Here the last term is an integral with respect to the martingale,

MG(t) = I(T̃ ≤ t,∆ = 0)−
∫ t

−∞
I(T̃ ≥ s)

dG(s|W )

Ḡ(s−|W )
. (13)

Examine the targeted likelihood algorithm. Upon convergence to P̂ ?, the
relevant submodel’s likelihood is maximized at ε = 0. Hence, the score at ε = 0
will have empirical mean zero. But from the choice of submodel, this means
the efficient influence curve D(O|P̂ ?) = D(O|µ(P̂ ?), η(P̂ ?), F (P̂ ?), G(P̂ ?)) will
have empirical mean zero. In other words, the substitution estimator µ(P̂ ?)
will solve the efficient influence curve estimating equation, based on plug-in
estimators for the curve’s nuisance parameters.

This note is devoted to showing how targeted likelihood can be imple-
mented when the initial fit is based on Cox’s proportional hazards model. The
initial fit to the data generating distribution can be decomposed into fits of
the baseline covariate distribution PW , the censoring mechanism G(|̇W ) rep-
resenting the conditional distribution L(C|W ), and the conditional survival
distribution L(T |W ). As we’ll mention in Section 3, it will be convenient to
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use the empirical distribution placing mass 1
n

on W1, ...,Wn to fit the base-
line covariate distribution. As previously observed, the censoring mechanism
can be fit with the Kaplan-Meier product-limit estimator if we believe censor-
ing is independent of survival, but arbitrary initial fits can be used. Neither
the baseline covariate distribution fit not the censoring mechanism fit will be
updated at any step of the targeted likelihood algorithm. The Cox model
is meant for estimating the conditional survival distribution. Note that the
methodology can applied without necessarily believing the model holds, and
targeted likelihood can allow us to consistently estimate parameters such as
(4), (5), and (6) using a misspecified model. We’ll consider a variant of the
model assuming,

Λ(t|W ) =

∫ t

−∞

dF (s|W )

F̄ (s−|W )
= Λ0(t)exp(βTL(W, t)). (14)

Here L(·,W ) is a specified function allowing multiplicative effect on condi-
tional hazard to change with time. Coefficient vector β can be estimated
by β̂ through maximizing Cox’s (1973) partial likelihood, while the Breslow
(1974) estimator Λ̂0(·) is commonly used to fit the baseline cumulative hazard
function Λ0(·). Together, these fits determine a fit Λ̂(·|W ) of the conditional
cumulative hazard Λ(·|W ), and consequently the conditional survival distribu-
tion L(T |W ). Taken together, P̂W , Ĝ(·|W ) and Λ̂(·|W ) determine the initial
fit P̂ of the data generating distribution. This is step 1 of the targeted likeli-
hood algorithm, and it remains to be seen how P̂ can be mapped into the P̂ ?

providing an accurate substitution estimator for the parameter of interest.

2 Statement of Main Result

The targeted likelihood algorithm can be implemented by iteratively adding an
appropriate time-dependent covariate to the Cox proportional hazards model.
Letting P̂ denote the initial data generating fit just mentioned, and Ḡn(·|W ) =
1− Ĝ(·|W ) the corresponding censoring mechanism fit, define the function

h(w, t|P̂ ) =
DFull(w, t|P̂ )− EP̂ [DFull(w, T |P̂ )|W = w, T > t]

Ḡn(t−|w)
. (15)

For fixed baseline cumulative hazard fit Λ̂(·) and coefficient vector fit β̂, con-
sider the submodel

Λε(t|W ) = Λ̂0(t)exp(β̂TL(W, t) + εTh(W, t|P̂ )), (16)
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parametrized by ε ∈ IRk. Here ε has the same dimension as the parameter
µ(F ) and efficient influence curve D(O|P ).

Choosing ε̂ to maximize the likelihood of observed data {Oi}ni=1 corresponds
to carrying out an iteration of the targeted maximum likelihood algorithm.
The remainder of this note sketches the argument, without attempting to be
overly formal.

When the data generating distribution fit P̂ is updated based on the fit
to this model, the procedure can be iterated. Hence, iteration corresponds
to repeatedly adding a time-dependent covariate vector to an existing pro-
portional hazards model, and using maximum likelihood to fit the associated
coefficient vector while keeping everything else in the model fixed. Standard
software can be used to fit ε via maximum likelihood, but this will require
being able to evaluate covariate h(W, t|P̂ ), which could be cumbersome due to
the conditional expectation in its second term.

3 Sketch of Argument that Adding Covariate

Implements Targeted Likelihood Algorithm

Following Bickel et. al. (1998), we can define the tangent space T (P ) as the
closure in L2

0(P ) of the linear span of all scores of regular parametric submod-
els of M through P . It is well known that if the model is nonparametric, the
tangent space is saturated, meaning that T (P ) = L2

0(P ). It is also easy to
see the tangent space can be decomposed into the three tangent spaces cor-
responding to scores through P fluctuating the baseline covariate distribution
L(W ), conditional survival distribution L(T |W ), and censoring mechanism
L(C|W ). These three tangent spaces

TW(P ) = {r(W ) ∈ L2
0(P ) : E[r(W )] = 0} (17)

TF(P ) = {v(O) ∈ L2
0(P ) : E[v(O)|C,W ] = 0} (18)

TCAR(P ) = {v(O) ∈ L2
0(P ) : E[v(O)|T,W ] = 0} (19)

are orthogonal, giving us the direct sum

T (P ) = L2
0(P ) = TW(P )⊕ TF(P )⊕ TCAR(P ) (20)

and the decomposition of any v(O) ∈ L2
0(P ) into

v(O) = Π(v(·)|T (P ))(O) (21)

= Π(v(·)|TW(P ))(O) + Π(v(·)|TF(P ))(O) + Π(v(·)|TCAR(P ))(O).
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This decomposition can be applied to the efficient influence curve D(O|P ).
To find a submodel through P with score equal to this influence curve, it is
thus only necessary to find submodels varying L(W ), L(T |W ), L(C|W ) that
give Π(D(·|P )|TW(P ))(O), Π(D(·|P )|TF(P ))(O), and Π(D(·|P )|TCAR(P ))(O)
as their respective scores.

3.1 Baseline Covariate Distribution

Letting P̂W denote the empirical distribution on the baseline covariates {Wi}ni=1

given as the initial fit in the previous section, and P̂ the initial fit for the entire
data generating distribution P , we can trivially define the submodel

dP
(δ)
W =

exp(δΠ(D(O|P̂ )|TW (P̂ )))∫
exp(δΠ(D(O|P̂ )|TW (P̂ )))dP̂

(δ)
W

dP̂W . (22)

The projection operator is given by Π(v(O)|TW (P̂ )) = EP̂ [v(O)|W ], but this
will not be relevant for our purposes. It can be verified that this submodel
gives the desired score of Π(D(O|P̂ )|TW(P̂ )).

In fact, the exponential family technique can always be used to define a
submodel of a nonparametric model having a desired score. We could have
simply used the exponential family dP (δ)(O) ∝ exp(δD(O|P̂ )dP̂ (O) for the
entire data generating distribution, but targeted likelihood becomes more dif-
ficult to implement than in our Cox model formulation.

The specific choice of submodel through PW is not at all important for
the targeted likelihood procedure, so long as it gives rise to the correct score.
This is because P̂W is never updated from its initial empirical distribution
fit, as this is the nonparametric maximum likelihood estimate (NPMLE) for
PW . Consequently, in each iteration of the targeted likelihood algorithm, the
P̂k to be used as a substitution estimator corresponds to using the empirical
distribution baseline covariate fit.

We mean to focus attention on when the survival distribution, meaning the
marginal L(T ) or conditional L(T |W ) law, is of primary interest, rather than
the baseline covariate distribution L(W ). If there is concern substitution esti-
mation of µ(F ) based on the empirical P̂W might lead us astray, the problem
would have to be reconsidered.

3.2 Censoring Mechanism

As discussed in Chapter 1.4.4 of van der Laan and Robins (2003), the efficient
influence curve D(O|P ) is orthogonal to the tangent space TCAR generated

Chapter 9. Time-to-Event Outcomes and Censored Data

516
Hosted by The Berkeley Electronic Press



from scores of submodels varying the censoring mechanism L(C|W ). Hence,
Π(D(·|P )|TCAR(P )) = 0, and we do not need to perturb the censoring mech-
anism from its initial fit in the targeted maximum likelihood algorithm.

3.3 Conditional Survival Time Distribution

Note from Chapter 1.4 of van der Laan and Robins (2003) that the efficient
influence curve at P can be written as

D(O|P ) = DIPCW(O|P )− Π(D(·|P )|TCAR(P ))(O), (23)

and that TF(P ) is orthogonal to TCAR(P ). Together these facts clearly imply

Π(D(·|P )|TF(P )) = Π(DIPCW(·|P )|TF(P )). (24)

Thus, we only need to show the submodel through the L(T |W ) fit in the
previous section gives rise to a score equal to the IPCW estimating function’s
projection on tangent space TF(P ).

Define the counting process N(t) = I(T̃ ≤ t,∆ = 1) jumping at an ob-
served failure time. Recalling Λ(·|W ) represents the conditional cumulative
hazard function for L(T |W ), the associated Doob-Meyer martingale is

M(t) = N(t)−
∫ t

−∞
I(T̃ ≥ s)dΛ(s|W ). (25)

From Theorem 1.1 of van der Laan and Robins (2003), interchanging the
completely symmetric TCAR(P ) and TF(P ), the projection operator is given by

Π(v|TF(P )) =

∫
(EP [v(O)|W,T = t, C ≥ t]−EP [v(O)|W,T > t, C ≥ t])dM(t).

(26)

We can apply this result with v(O) = DIPCW(O) = DFull(W,T |P )∆

Ḡ(T̃−|W )
. Given that

{T = t, C ≥ t} implies ∆ = 1, it is clear EP [v(O)|W,T = t, C ≥ t] =
DFull(W,t|P )

Ḡ(t−|W )
. Further, it is an elementary calculation to show EP [v(O)|W,T >

t, C ≥ t] is equal to EP [DFull(W,T |P )|W,T > t]/Ḡ(t−|W ). Hence, the efficient
influence curve D(O|P ) has projection on tangent space TF(P ) of

Π(D(·|P )|TF(P )) =

∫
h(W, t|P )dM(t), (27)

for the h(W, t|P ) defined in (15). However, as reviewed in Lemma 3.2 of van
der Laan and Robins (2003),

∫
g(W, t)dM(t) is simply the score at ε = 0
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of a submodel through P varying conditional cumulative hazard of L(T |W )
through

Λε(t|W ) = Λ(t|W )exp(εTg(W, t|P )). (28)

Thus, the projection Π(D(·|P̂ )|TF(P̂ )) in L2
0(P̂ ) is exactly the score at ε =

0 of the submodel (16). Recall that this was the desired result, from our
decomposition of D(O|P ) into projections on TW(P ), TCAR(P ) and TF(P ).
By adding h(W, t|P̂ ) as a time-dependent covariate to a Cox model, fixing
the censoring mechanism fit, and placing a submodel through the baseline
covariate empirical distribution fit, we can obtain the efficient influence curve
as a score. Because the baseline covariate fit will never be perturbed, targeted
likelihood proceeds by iteratively updating the initial Cox model fit.

4 Discussion

In this note, we’ve shown how a Cox-based substitution estimator can be
made to solve a locally efficient estimating equation, if appropriate covariates
are added to an initial fit. Estimating equation approaches are often avoided in
favor of more familiar substitution estimators, despite their theoretical advan-
tages outlined in van der Laan and Robins (2003). By representing estimating
function procedures as fits to commonplace Cox models, we hope to make
the methodology more amenable. This parallels results given in van der Laan
and Rubin (2006) and Moore and van der Laan (2007) demonstrating the tar-
geted likelihood algorithm can be implemented in causal inference problems
by adding covariates to linear and logistic regression models, although in those
cases the algorithm was shown to converge in a single iteration.

Several serious caveats are in order. Primarily, while we’ve suggested how
to perform targeted maximum likelihood, our exposition was hardly a formal
proof. Further, van der Laan and Rubin (2006) listed several criteria to ensure
convergence of the iterative algorithm, which have not been checked in this
work, although we expect them to hold. Finally, while it sounds straightfor-
ward to iteratively add a time-dependent covariate to a Cox model, we have
glossed over the specific details of how to implement our procedure.

Bembom et al. (2007) showed targeted likelihood estimates of variable
importance measures could enhance biomarker discovery procedures. We have
here introduced similar locally efficient doubly robust estimators suitable for
right censored data structures, and also expect benefits to become apparent
in real world applications.
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Application of Time-to-Event Methods in the
Assessment of Safety in Clinical Trials

Kelly L. Moore and Mark van der Laan

Abstract

Since randomized controlled trials (RCT) are typically designed and powered for
efficacy rather than safety, power is an important concern in the analysis of the ef-
fect of treatment on the occurrence of adverse events (AE). These outcomes are often
time-to-event outcomes which will naturally be subject to right-censoring due to early
patient withdrawals. In the analysis of the treatment effect on such an outcome, gains
in efficiency, and thus power, can be achieved by exploiting covariate information. We
apply the targeted maximum likelihood methodology to the estimation of treatment
specific survival at a fixed end point for right-censored survival outcomes. This ap-
proach provides a method for covariate adjustment, that under no or uninformative
censoring, does not require any additional parametric modeling assumptions, and,
under informative censoring, is consistent under consistent estimation of the censor-
ing mechanism or the conditional hazard for survival. Thus, the targeted maximum
likelihood estimator has two important advantages over the Kaplan-Meier estimator:
1) It exploits covariates to improve efficiency, and 2) It is consistent in the presence of
informative censoring. These properties are demonstrated through simulation stud-
ies. Extensions to the methodology are provided for non randomized post-market
safety studies and also for the inclusion of time-dependent covariates.
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1 Introduction

Safety analysis in randomized controlled trials (RCT) involves estimation of the treatment
effect on the numerous adverse events (AE) that are collected in the study. RCT are
typically designed and powered for efficacy rather than safety. Even when assessment
of AE is a major objective of study, the trial size is generally not increased to improve
likelihood of detecting AE (Friedman et al. (1998)). As a result, power is an important
concern in the analysis of the effect of treatment on AE in RCT (Peace (1987)).

Typically in an RCT, crude incidences of each AE are reported at some fixed end point
such as the end of study (Gait et al. (2000); Güttner et al. (2007); Liu et al. (2006)).
These crude estimates often ignore missing observations that frequently occur in RCT
due to early patient withdrawals (Menjoge (2003)). A review of published RCT in major
medical journals found that that censored data are often inadequately accounted for in
their statistical analyses (Wood et al. (2004)). A crude estimator that ignores censoring
can be highly biased when the proportion of dropouts differs between treatment groups
(see Gait et al. (2000) for examples).

The crude incidence is an important consideration in the evaluation of safety for very
rare, severe or unexpected AE. Such AE require clinical evaluation for each case and are
not the focus of this paper. Instead, we focus on those AE that are routinely collected
in RCT and most often are not associated with a pre-specified hypothesis. These AE are
typically reported as an observed rate with a confidence interval or p-value.

Patient reporting of AE occurrence usually occurs at many intervals throughout the
study often collected at follow-up interviews rather than only at a single fixed end-point.
As such, time-to-event methods that exploit these data structures may provide further
insight into the safety profile of the drug. The importance of considering estimators of AE
rates that account for time due to differential lengths of exposure and follow-up is discussed
in (O’Neill (1988)). Furthermore, in most RCT in oncology, most if not all patients suffer
from some AE (Nishikawa et al. (2006)) and thus investigators may be interested in the
probability of the occurrence of a given AE by a certain time rather than simply the
incidence. Time-to-event analysis techniques may be more sensitive than crude estimates
in that they readily handle missing observations that frequently occur in RCT due to early
patient withdrawals. For example, in Davis et al. (1987), AE from the Beta-Blocker Heart
Attack Trial were analyzed by comparing distributions of the time to the first AE in the
two treatment arms. The results of this analysis were contrasted to the cross-sectional
crude percentage analysis and were found to be more sensitive in detecting a difference by
taking into account the withdrawals. A vast amount of literature exists for time-to-event
analysis but these methods are often not applied to the analysis of AE in RCT. A general
review of survival analysis methods in RCT (without a particular focus on AE) is provided
in Fleming and Lin (2000).

In this paper we focus on estimation of treatment specific survival at a fixed end point for
right-censored survival outcomes using targeted maximum likelihood estimation (van der
Laan and Rubin (2006)). Survival is estimated based on a hazard fit and thus the time-
dependent nature of the data is exploited. There are two main goals of the methodology
presented in this paper over unadjusted crude proportions and Kaplan-Meier estimators.
The first is to provide an estimator that exploits covariates to improve efficiency in the
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estimation of treatment-specific survival at fixed end points. The second is to provide a
consistent estimator in the presence of informative censoring.

2 Motivation and Outline

Consider the estimation of the effect of treatment on a particular AE at some fixed end
point in the study. From estimation theory, it is known that the nonparametric maximum
likelihood estimator (MLE) is the efficient estimator of the effect of interest (van der Laan
and Robins (2003)). In most RCT, data are collected on baseline (pre-treatment) covariates
in addition to the treatment and the AE of interest. The unadjusted or crude estimator is
defined as the difference in proportions of the AE between treatment groups. This estimator
ignores the covariates and is thus not equivalent to the full MLE. It follows that application
of the unadjusted estimator can lead to a loss in estimation efficiency (precision) in practice.

Conflicting results in initial applications of covariate adjustment in RCT for estimating
the treatment effect for fixed end-point efficacy studies were found. For continuous out-
comes using linear models for adjustment demonstrated gains in precision over the unad-
justed estimate (Pocock et al. (2002)). However adjustment using logistic models for binary
outcomes was shown to actually reduce precision and inflate point estimates (Hernández
et al. (2004); Robinson and Jewell (1991)).

This apparent contradiction was resolved through the application of estimating function
methodology (Tsiatis et al. (2008); Zhang et al. (2008)) and targeted maximum likelihood
estimation (Moore and van der Laan (2009)). In these references, consistent estimators
that do not require parametric modeling assumptions were provided and shown to be more
efficient than the unadjusted estimator, even with binary outcomes. It just so happens that
the coefficient for the treatment variable in a linear regression that contains no interactions
with treatment coincides with the efficient estimating function estimator and thus the
targeted maximum likelihood estimator. This fortunate property does not hold for the
logistic regression setting, i.e., the exponentiated coefficient for treatment from the logistic
regression model does not equal the unadjusted odds ratio. This conditional estimator does
not correspond to the marginal estimator in general and in particular not in the binary
case. The efficient estimate of the marginal (i.e., unconditional) effect obtained from the
conditional regression is the weighted average of the conditional effect of treatment on the
outcome given covariates according to the distribution of the covariates.

With this principle of developing covariate adjusted estimators that do not require para-
metric modeling assumptions for consistency in mind, in this paper we provide a method
for covariate adjustment in RCT for the estimation of treatment specific survival at a fixed
end point for right-censored survival outcomes. Thereby, we can estimate a comparison
of survival between treatment groups at a fixed end point that is some function of the
two treatment specific survival estimates. Examples of such parameters are provided in
section 4 such as the marginal additive difference in survival at a fixed end point. Under
no or uninformative censoring, the estimator provided in this paper does not require any
additional parametric modeling assumptions. Under informative censoring, the estimator
is consistent under consistent estimation of the censoring mechanism or the conditional
hazard for survival.
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It is important to note that the conditional hazard on which the estimate is based
is not meant to infer information about subgroup (conditional) effects of treatment. By
averaging over the covariates that have terms in the hazard model, we obtain a marginal or
unconditional estimate. The methodology presented in this paper can be extended to the
estimation of subgroup specific effects however we focus only on marginal (unconditional)
treatment effects on survival at fixed end point(s).

We also note that the methodology can be extended to provide a competitor test to the
ubiquitous log-rank test. Methods have been proposed for covariate adjustment to improve
power over the logrank test (Hernández et al. (2006); Li (2001); Lu and Tsiatis (2008)).
These are tests for an average effect of treatment over time. Our efficiency results are not
in comparison to these methods but rather to the treatment-specific Kaplan-Meier estimate
at that fixed end point.

In itself treatment specific survival at a fixed end point, and thereby the effect of
treatment on survival at that end point can provide useful information about the given
AE of interest. This is a very common measure to report (see Gait et al. (2000); Güttner
et al. (2007); Liu et al. (2006); Menjoge (2003)), however most of the currently applied
estimation approaches ignore covariates and censoring and do not usually exploit the time-
dependent nature of the data.

We present our method of covariate adjustment under the framework of targeted maxi-
mum likelihood estimation originally introduced in van der Laan and Rubin (2006). Specif-
ically, the paper is outlined as follows. We first begin with a brief introduction to targeted
maximum likelihood estimation in section 3. We then outline the data, model and param-
eter(s) of interest in section 4. The application of targeted maximum likelihood estimation
to our parameter of interest with its statistical properties and inference are presented in
section 5. In section 6 we present a simulation study to demonstrate the efficiency gains
of the proposed method over the current methods in an RCT under no censoring and
uninformative censoring. Furthermore, under informative censoring we demonstrate the
bias that arises with the standard estimator in contrast to the consistency of our proposed
estimator. The targeted maximum likelihood estimator requires estimation of an initial
conditional hazard. Methods for fitting this initial hazard as well as the censoring mech-
anism are provided in section 7. In section 8 we outline the inverse weighting assumption
for the censoring mechanism. Alternative estimators and their properties are briefly out-
lined in section 9. AE data are multivariate in nature in that many AE are collected an
analyzed in any given RCT. In section 10 we outline the multiple testing issues involved
in the analysis of such data. Section 11 provides extensions to the methodology including
time-dependent covariates, and post-market safety analysis. Finally, we conclude with a
discussion in section 12.

3 Introduction to targeted maximum likelihood esti-

mation

Traditional maximum likelihood estimation aims for a trade-off between bias and variance
for the whole density of the observed data O, whereas investigators are typically interested
in a specific parameter of the density of O rather than the whole density itself. In this sec-
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tion we discuss the algorithm generally, for technical details about this estimation approach
we refer the reader to its seminal article (van der Laan and Rubin (2006)).

Define a model M which is a collection of probability distributions of O ∼ p0 and let
p̂ be an initial estimator of p0. We are interested in a particular parameter of the data,
ψ0 = ψ(p0). To estimate this parameter, the targeted maximum likelihood algorithm’s goal
is to find a density p̂∗ ∈M that solves the efficient influence curve estimating equation for
the parameter of interest that results in a bias reduction in comparison to the maximum
likelihood estimate ψ(p̂) but also to find p̂∗ that increases the log-likelihood relative to p̂.

To estimate this p̂∗, the algorithm finds a fluctuation of the initial p̂ that results in a
maximum change in ψ by constructing a path denoted by p̂(ε) through p̂ where ε is a free
parameter. The score of this path at ε = 0 equals the efficient influence curve. The optimal
fluctuation is obtained by maximizing the likelihood of the data over ε and applying this
fluctuation to p̂ to obtain p̂1. This is the first step of the targeted maximum likelihood
algorithm and the process is iterated until the fluctuation is essentially zero. The final step
of the algorithm gives the targeted maximum likelihood estimate p̂∗ which solves the efficient
influence curve estimating equation and thus the resulting substitution estimator ψ(p̂∗)
inherits the desirable properties of the estimating function based methodology, namely local
efficiency and double robustness (van der Laan and Robins (2003)). It is also completely
based on the maximum likelihood principle, resulting in robust finite sample behavior.

Targeted MLEs not only share the optimal properties with estimating equation estima-
tors, but they also overcome some of their drawbacks. Estimating equation methodology
requires that the efficient influence curve can be represented as an estimating function in
terms of a parameter of interest and nuisance parameters which is not required by the
targeted maximum likelihood algorithm since it simply solves the efficient influence curve
estimating equation in p itself. Estimating equation estimators require external estimation
of the nuisance parameters, while in the targeted maximum likelihood estimation proce-
dure the estimator of the parameter of interest and the nuisance parameters are compatible
with a single density estimator. Finally, estimating equation methodology lacks a criterion
for selecting among candidate solutions in situations where multiple solutions in the pa-
rameter of interest exist, where the targeted maximum likelihood estimation approach can
use the likelihood criterion to select among the targeted MLEs indexed by initial density
estimators.

4 Data, Model and Parameter of Interest

We assume that in the study protocol, each patient is monitored at K equally spaced
clinical visits. At each visit, M AE are evaluated as having occurred or not occurred. We
focus on the first occurrence of the AE and thus let T represent the first visit when the
AE reported as occurring and thus can take values {1, ..., K}. The censoring time C is the
first visit when the subject is no longer enrolled in the study. Let A ∈ {0, 1} represent the
treatment assignment at baseline and W represents a vector of baseline covariates. The
observed data are given by O = (T̃ ,∆, A,W ) ∼ p0 where T̃ = min(T,C), ∆ = I(T ≤ C)
is the indicator that that subject was not censored and p0 denotes the density of O. The
conditional hazard is given by λ0(· | A,W ) and the corresponding conditional survival is
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given by S0(· | A,W ). We present the methodology for estimation of the treatment effect
for a single AE out of the M total AE collected. This procedure would be repeated for
each of the M AE. For multiplicity considerations see section 10.

Let T1 represent a patient’s time to the occurrence of an AE had she possibly contrary
to fact been assigned to the treatment group and let T0 likewise represent the time to the
occurrence of the AE had the patient been assigned to the control group.

Let M be the class of all densities of O with respect to an appropriate dominating mea-
sure where M is nonparametric up to possible smoothness conditions. Let our parameter
of interest be represented by Ψ(p0). Specifically, we aim to estimate the following treatment
specific parameters,

P0 → Ψ1(p0)(tk) = Pr(T1 > tk) = E0(S0(tk|A = 1,W )), (1)

and

P0 → Ψ0(p0)(tk) = Pr(T0 > tk) = E0(S0(tk|A = 0,W )), (2)

where the subscript for Ψ denotes the treatment group, either 0 or 1. In order to estimate
the effect of treatment A on survival T we can thereby estimate a parameter that is some
combination of Pr(T1 > tk) and Pr(T0 > tk). Examples include the marginal log hazard of
survival, the marginal additive difference in the probability of survival, and the marginal
log relative risk of survival at a fixed time tk given respectively by,

P0 → ΨHZ(p0)(tk) = log

(
log(Pr(T1 > tk))

log(Pr(T0 > tk))

)
, (3)

P0 → ΨAD(p0)(tk) = Pr(T1 > tk)− Pr(T0 > tk), (4)

and

P0 → ΨRR(p0)(tk) = log

(
Pr(T1 > tk)

Pr(T0 > tk)

)
. (5)

We note that if one averaged ΨHZ(p0)(tk) over t, this would correspond with the Cox pro-
portional hazards parameter and thus the parameter tested by the log rank test. However,
we focus only on the tk-specific parameter in this paper.

5 Targeted maximum likelihood estimation of marginal

treatment specific survival at a fixed end point

Consider an initial fit p̂0 of the density of the observed data O identified by a hazard fit
λ̂0(t | A,W ), the distribution of A identified by ĝ0(1 | W ) and ĝ0(0 | W ) = 1− ĝ0(1 | W ),
the censoring mechanism Ĝ0(t | A,W ) and the marginal distribution of W being the
empirical probability distribution of W1, ...,Wn. In an RCT, treatment is randomized and
ĝ0(1|W ) = 1

n

∑n
i=1Ai.
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Let the survival time be discrete and let the initial hazard fit λ̂(t | A,W ) be given by a
logistic regression model,

logit(λ̂(t | A,W )) = α̂(t) +m(A,W | β̂),

where m is some function of A and W . The targeted maximum likelihood estimation
algorithm updates this initial fit by adding to it the term εh(t, A,W ), i.e.,

logit(λ̂(ε)(t | A,W )) = α̂(t) +m(A,W |β̂) + εh(t, A,W ). (6)

The algorithm selects h(t, A,W ) such the score for this hazard model at ε = 0 is equal
to the projection of the efficient influence curve on scores generated by the parameter
λ(t | A,W )) in the nonparametric model for the observed data assuming only coarsening
at random (CAR).

The general formula for this covariate h(t, A,W ) for updating an initial hazard fit was
provided in van der Laan and Rubin (2007) and is given by,

h(t, A,W ) =
DFULL(A,W, t | p̂)− Ep̂[D

FULL(A,W, T | p̂) | A,W, T > t)]

Ḡ(t− | A,W )
, (7)

where DFULL is the efficient influence curve of the parameter of interest in the model in
which there is no right censoring. This is also the optimal estimating function in this model.
This full data estimating function for Ψ1(p0)(tk) provided in equation 1 is given by,

DFULL
1 (T,A,W | p)(tk) = [I(T > tk)− S(tk | A,W )]

I(A = 1)

g(1|W )
+ S(tk | 1,W )− ψ1(p), (8)

and for Ψ0(p0)(tk) provided in equation 2 it is given by,

DFULL
0 (T,A,W | p)(tk) = [I(T > tk)− S(tk | A,W )]

I(A = 0)

g(0|W )
+ S(tk | 0,W )− ψ0(p), (9)

To obtain the specific covariates for targeting the parameters Ψ1(p0)(tk) and Ψ0(p0)(tk),
the full data estimating functions provided in equations 8 and 9 at t = tk are substituted
into equation 7. Evaluating these substitutions gives the covariates,

h1(t, A,W ) = − I(A = 1)

g(1)Ḡ(t− | A,W )

S(tk | A,W )

S(t | A,W )
I(t ≤ tk), (10)

and

h0(t, A,W ) = − I(A = 0)

g(0)Ḡ(t− | A,W )

S(tk | A,W )

S(t | A,W )
I(t ≤ tk), (11)

for the treatment specific parameters Ψ1(p0)(tk) and Ψ0(p0)(tk) respectively.
Finding ε̂ in the updated hazard provided in equation 6 to maximize the likelihood of

the observed data can be done in practice by fitting a logistic regression in the covariates
m(A,W | β̂) and h(t, A,W ). The coefficient for m(A,W | β̂) is fixed at one and the
intercept is set to zero and thus the whole regression is not refit, rather only ε is estimated.
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These steps for evaluating ε̂ correspond with a single iteration of the targeted maximum
likelihood algorithm. In the second iteration, the updated λ̂1(t | A,W ) now plays the
role of the initial fit and the covariate h(t, A,W ) is then re-evaluated with the updated
Ŝ1(t | A,W ) based on λ̂1(t | A,W ). In the third iteration λ̂2(t|A,W ) is fit and the
procedure is iterated until ε̂ is essentially zero. The final hazard fit at the last iteration
of the algorithm is denoted by λ̂∗(t | A,W ) with the corresponding survival fit given by
Ŝ∗(t | A,W ).

As we are estimating two treatment specific parameters, we could either carry out
the iterative updating procedure for each parameter separately or update the hazard fit
simultaneously. To update the fit simultaneously, both covariates are added to the initial
fit, i.e.,

logit(λ̂(ε)(t | A,W )) = α̂(t) +m(A,W |β̂) + ε1h1(t, A,W ) + ε2h0(t, A,W ).

The iterative procedure is applied by now estimating two coefficients in each iteration as
described above until both ε1 and ε2 are essentially zero.

Finally, the targeted maximum likelihood estimates of the probability of surviving past
time tk for subjects in treatment arms 1 and 0 given by Ψ1(p0)(tk) and Ψ0(p0)(tk) are
computed by,

ψ̂∗1(tk) =
1

n

n∑
i=1

Ŝ∗(tk | 1,Wi).

and

ψ̂∗0(tk) =
1

n

n∑
i=1

Ŝ∗(tk | 0,Wi).

5.1 Rationale for updating only initial hazard

The initial fit p̂0 of p0 is identified by λ̂0(t | A,W ), ĝ0(A | W ), Ĝ0(t | A,W ) and the
marginal distribution of W . However the algorithm only updates λ̂0(t | A,W ). Assuming
CAR the density of the observed data p factorizes in to the marginal distribution of W
given by pW , the treatment mechanism g(A | W ), the conditional probability of censoring
up to time t given by Ḡ(t | A,W ) and the product over time of the conditional hazard at
T = t given by λ(t | A,W ). This factorization implies the orthogonal decomposition of
functions of O in the Hilbert space L2(p). We can thus apply this decomposition to the
efficient influence curve D(O | p). As shown in van der Laan and Robins (2003), D(O | p)
is orthogonal to the tangent space TCAR(p) of the censoring and treatment mechanisms.
Thus the components corresponding with g(A | W ) and Ḡ(t | A,W ) are zero. This leaves
the non zero components pW and λ(t | A,W ). We choose the initial empirical distribution
for W to estimate pW which is the nonparametric maximum likelihood estimate for pW and
is therefore not updated. Thus the only element that does require updating is λ̂0(t | A,W ).

The efficient influence curve for Ψ1(p0)(tk) can be represented as,

D1(p0) =
∑
t<=tk

h1(g0, G0, S0)(t, A,W )[I(T̃ = t,∆ = 1)− I(T̃ >= t)λ0(t | A = 1,W )]

+S0(tk | A = 1,W )−Ψ1(p0)(tk), (12)
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where S0(tk | A = 1,W ) is a transformation of λ0(t | A = 1,W ). This representation
demonstrates the orthogonal decomposition described above. The empirical mean of the
second component of D1(p0) given by S0(tk | A = 1,W ) − E0S0(tk | A = 1,W ) is always
solved by using empirical distribution to estimate the marginal distribution of W . Thus the
targeted maximum likelihood estimator solves this second component. The first component,
the covariate times the residuals, is solved by performing the iterative targeted maximum
likelihood algorithm with logistic regression fit of the discrete hazard λ0(t | A,W ). We
note that similarly, the efficient influence curve for Ψ0(p0)(tk) can be represented as,

D0(p0) =
∑
t<=tk

h0(g0, G0, S0)(t | A,W )[I(T̃ = t,∆ = 1)− I(T̃ >= t)λ0(t | A = 0,W )]

+S0(tk | A = 0,W )−Ψ0(p0)(tk). (13)

5.2 Statistical Properties

The targeted maximum likelihood estimate p̂∗ ∈M of p0 solves the efficient influence curve
which is the optimal estimating equation for the parameter of interest. It can be shown
that E0D1(p0) = E0D1(S, g,G) = 0 if either S = S(· | A,W ) (and thus λ(· | A,W )) is
consistently estimated or g0(A | W ) and Ḡ0(· | A,W ) are consistently estimated. When
the treatment is assigned completely at random as in an RCT, the treatment mechanism
is known and g(A | W ) = g(A). Thus consistency of ψ̂∗1(tk) in an RCT relies on only
consistent estimation of Ḡ0(· | A,W ) or S(· | A,W ). When there is no censoring or
censoring is missing completely at random (MCAR), ψ̂∗1(tk) is consistent even when the
estimator Ŝ(· | A,W ) of S(· | A,W ) is inconsistent (e.g., if it relies on a misspecified
model). One is hence not concerned with estimation bias with this method in an RCT.
Under informative or missing at random (MAR) censoring, if Ḡ0(· | A,W ) is consistently
estimated then ψ̂∗1(tk) is consistent even if Ŝ(· | A,W ) is mis-specified. If both are correctly
specified then ψ̂∗1(tk) is efficient. These same statistical properties also hold for ψ̂∗0(tk) .

5.3 Inference

Let p̂∗ represent the targeted maximum likelihood estimate of p0. One can construct a Wald-
type 0.95-confidence interval for ψ̂∗1(tk) based on the estimate of the efficient influence curve
D1(p̂

∗)(O) where D1(p) is given by equation 12. The asymptotic variance of
√
n(ψ̂∗1(tk)−

Ψ1(p0)(tk)) can be estimated with

σ̂2 =
1

n

n∑
i=1

D2
1(p̂

∗)(Oi).

The corresponding asymptotically conservative Wald-type 0.95-confidence interval is de-
fined as ψ̂∗1(tk) ± 1.96 σ̂√

n
. The null hypothesis H0 : Ψ1(p0)(tk) = 0 can be tested with the

test statistic

Tn =
ψ̂∗1(tk)

σ̂√
n

,
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whose asymptotic distribution is N(0, 1) under the null hypothesis. Similarly, confidence
intervals and test statistics for Ψ0(p0)(tk) can be computed based on the estimate of the
efficient influence curve D0(p̂

∗)(O) where D0(p) is given by equation 13.
If our parameter of interest is some function of the treatment specific survival estimates

we can apply the δ-method to obtain the estimate of its influence curve. Specifically the
estimated influence curve for the log hazard of survival, additive difference in survival, and
relative risk of survival at tk provided in equations 3, 4, and 5 are respectively given by,

1. ΨHZ(p0)(tk) : 1

ψ̂∗1(tk) log(ψ̂∗1(tk))
D1(p̂

∗)(O)− 1

ψ̂∗0(tk) log(ψ̂∗0(tk))
D0(p̂

∗)(O)

2. ΨAD(p0)(tk) : D1(p̂
∗)(O)−D0(p̂

∗)(O)

3. ΨRR(p0)(tk) : − 1

1−ψ̂∗1(tk)
D1(p̂

∗)(O) + 1

1−ψ̂∗0(tk)
D0(p̂

∗)(O)

We can again compute confidence intervals and test statistics for these parameters using
the estimated influence curve to estimate the asymptotic variance.

As an alternative to the influence curve based estimates of the asymptotic variance, one
can obtain valid inference using the bootstrap procedure.

The inference provided in this section is for the estimates of the treatment effect for a
single AE. For multiplicity adjustments for the analysis of a set of AE see section 10.

6 Simulation Study

The targeted maximum likelihood estimation procedure was applied to simulated data to
illustrate the estimator’s potential gains in efficiency. The conditions under which the
greatest gains can be achieved over the standard unadjusted estimator were explored in
addition to the estimators’ performance in the presence of informative censoring.

6.1 Simulation Protocol

We simulated 1000 replicates of sample size 300 from the following data generating distri-
bution where time is discrete and takes values tk ∈ {1, ..., 10}:

• Pr(A = 1) = Pr(A = 0) = 0.5

• W ∼ U(0.2, 1.2)

• λ(t|A,W ) = I(tk<10)I(Y (tk−1)=0)
1+exp(−(−3−A+βWW 2))

+ I(tk = 10)

• λC(t|A,W ) = I(∆(tk−1)=0)
1+exp(−(−γ0−γ1A−γ2W ))

,

where λ(t|A,W ) is the hazard for survival and λC(t|A,W ) is the hazard for censoring. Two
different data generating hazards for survival were applied corresponding with two values
for βW . These two values were set to βW ∈ {1, 3} corresponding with correlations between
W and failure time of -0.22 and -0.63 respectively. We refer to the simulated data with
βW = 1 as the weak covariate setting and βW = 3 as the strong covariate setting.
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Three different types of censoring were simulated, no censoring, MCAR and MAR.
Each type of censoring was applied to the weak and strong covariate settings for a total
of six simulation scenarios. For both the weak and strong covariate settings, the MCAR
an MAR censoring mechanisms were set such that approximately 33% of the observations
were censored. The censoring was generated to ensure that Ḡ(t|A,W ) > 0 (see section
8 for details of this assumption). If censoring and failure time were tied, the subject was
considered uncensored. For a summary of the simulation settings and the specific parameter
values, see Table 1.

Table 1: Summary of simulation settings. ”Corr” is correlation, γ = (γ0, γ1, γ2) are the
coefficients for the hazard for censoring, and βW is the coefficient for W in the hazard for
survival.

Scenario Censoring γ Corr W and T βW
1 No censoring NA -0.22 (Weak) 1
2 MCAR (-2.7,0,0) -0.22 (Weak) 1
3 MAR (-1.65,0.5,-2) -0.22 (Weak) 1
4 No censoring NA -0.65 (Strong) 3
5 MCAR (-2,0,0) -0.65 (Strong) 3
6 MAR (-1.15,0.5,-2) -0.65 (Strong) 3

The difference in treatment-specific survival probabilities given by ψ(tk) = E0(S0(tk|A =
1,W ) − S0(tk|A = 0,W )) was estimated at each time point tk = 1 through tk = 9. The
unadjusted estimator is defined as the difference in the treatment specific Kaplan-Meier
estimators at tk. The targeted maximum likelihood estimator was applied using two dif-
ferent initial hazard fits. The first initial hazard was correctly specified. The second initial
hazard was mis-specified by including A and W as main terms and an interaction term
between A and W . For both initial hazard fits, only time points 1 through 9 were included
in the fit as the AE had occurred for all subjects by time point 10 and thus the hazard was
one at tk = 10. In the MCAR censoring setting, the censoring mechanism was estimated
using Kaplan-Meier. In the MAR censoring setting, the censoring mechanism was correctly
specified. The update of the initial hazard was performed by adding to it the two covariates
h1 and h0 provided in equations 10 and 11 respectively. The corresponding coefficients ε1
and ε2 were simultaneously estimated by fixing the offset from the initial fit and setting the
intercept to 0. The procedure was iterated until ε1 and ε2 were sufficiently close to zero.

The estimators were compared using a relative efficiency measure based on the mean
squared error (MSE) computed as the MSE of the unadjusted estimates divided by the MSE
of the targeted maximum likelihood estimates. Thus a value greater than one indicates a
gain in efficiency of the covariate adjusted targeted maximum likelihood estimator over the
unadjusted estimator.

In addition to these six simulation scenarios, to explore the relationship between rel-
ative efficiency and the correlation between the covariate and failure time, we gener-
ated data by varying βW in the data generating distribution above for six values, βW ∈
{0.5, 1, 1.5, 2, 2.5, 3} corresponding with correlations between W and failure time of {-0.10,-
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0.22,-0.36,-0.46,-0.56,-0.63} under no censoring. The parameter ψ(5) was estimated based
on 1000 sampled datasets with sample size n = 300.

6.2 Simulation Results and Discussion

6.2.1 Strong covariate setting

In the no censoring and MCAR censoring scenarios, the bias should be approximately
zero. Thus, the relative MSE is essentially comparing the variance of the unadjusted and
targeted maximum likelihood estimates. Any gain in the MSE can therefore be attributed
to a reduction in variance due to the covariate adjustment. In this strong covariate setting,
exploiting this covariate by applying the targeted maximum likelihood estimator should
provide a gain precision due to a reduction in the residuals. In the informative censoring
setting (MAR), in addition to the expected gain in efficiency we expect a reduction in
bias of the targeted maximum likelihood estimator with the correctly specified treatment
mechanism over the unadjusted estimator. The informative censoring is accounted for
through the covariates h1 and h0 that are inverse weighted by the subjects’ conditional
probability of being observed at time t given their observed history.

Figure 1 provides the relative MSE results for ψ̂(tk) for tk ∈ {1, ...9} for the strong
covariate setting with βW = 3. Based on these results, we observe that indeed the expected
gain in efficiency is achieved. The minimum observed relative MSE was 1.25 for tk = 1
in the MAR censoring setting with a mis-specified initial hazard fit. A maximum relative
MSE of 1.9 is observed under the no censoring setting with the correctly specified initial
hazard at tk = 3. The approximate overall average relative MSE was 1.6. Consistently
across all time points and censoring scenarios, the targeted maximum likelihood estimator
is outperforming the unadjusted estimator.

Figure 2 provides the bias as a percent of the truth for the two estimators under the
MAR censoring setting with the correctly specified initial hazard. Clearly as tk increases,
the bias of the unadjusted estimates increases whereas the targeted maximum likelihood
estimates is relatively close to zero in comparison. Thus the targeted maximum likelihood
approach can not only provide gains in efficiency through covariate adjustment, but can
also account for informative censoring as well.

6.2.2 Weak covariate setting

In this weak covariate setting, again in the no censoring and MCAR censoring scenarios,
the bias should essentially be zero. However, we expect a lesser gain in efficiency if any as
compared to the strong covariate setting since the covariate in this setting is not as useful
for hazard prediction. We do again expect a bias reduction in the MAR censoring setting
for the targeted maximum likelihood estimator over the unadjusted estimator.

Figure 3 provides the relative MSE results for the weak correlation simulation with βW =
1. As expected, the relative MSE are all close to one indicating that only small efficiency
gains are achieved when only weak covariates are present in the data. However, as small
the gains are they are also achieved across all time points as in the strong covariate setting.
Regardless of the correlation between the covariate and failure time, in the informative
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Figure 1: Relative MSE: Strong covariate setting (βW = 3)
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Figure 2: Bias: Strong covariate setting (βW = 3) with informative censoring
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Figure 3: Relative MSE: Weak covariate setting (βW = 1)

censoring scenario the targeted maximum likelihood estimate is consistent under consistent
estimation of the censoring mechanism as evidenced in the plot of the % bias in Figure 4.

6.2.3 Relationship between correlation of covariate(s) and failure time with
efficiency gain

As the correlation between W and failure time increases we expect to observe increasing
gains in efficiency. Selecting an arbitrarily selected time point tk = 5 for ease of presen-
tation, Figure 5 clearly demonstrates that as the correlation between W and failure time
increases so does the relative MSE. In fact in for this particular data generating distribu-
tion, at time tk = 5 the relationship is nearly linear. These results reflect similar findings in
RCT with fixed-end point studies where relations between R2 and efficiency gain have been
demonstrated (Moore and van der Laan (2009); Pocock et al. (2002)). This relationship
indicates that if indeed the particular dataset contains covariates that are predictive of the
failure time of the AE of interest, one can achieve gains in precision and thus power by
using the targeted maximum likelihood estimator.

7 Fitting initial hazard and censoring mechanism

Despite these potential gains in efficiency as demonstrated by theory and simulation results,
there has been concern with covariate adjustment in RCT with respect to investigators se-
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Figure 4: Bias: Weak covariate setting (βW = 1) with informative censoring
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lecting covariates to obtain favorable inference. We conjecture that such cheating can be
avoided if one uses an a priori specified algorithm for model selection. When the model
selection procedure is specified in an analysis protocol, the analysis is protected from in-
vestigators guiding causal inferences based on selection of favorable covariates and their
functional forms in a parametric model. In safety analysis, if investigator (sponsor) bias
does indeed exist, it would be reasonable to assume that it would lean towards the treatment
having no effect on the AE and thus the concerns are the reverse from efficacy analysis. The
investigator bias would tend towards the less efficient unadjusted estimator. The analysis
of AEs is often exploratory in nature and the results are meant to flag potential AE of con-
cern which may reduce the motivation for dishonest inference using covariate adjustment.
Regardless of the covariate selection strategy, it should be explicitly outlined to avoid any
such concerns.

There are a number of model selection algorithms that can be applied to data-adaptively
select the initial hazard fit. One such approach is the D/S/A algorithm that searches
through a large space of functional forms using deletion, substitution and addition moves.
One can apply this algorithm to the pooled data (over time) to fit the initial hazard
(Sinisi and van der Laan (2004)). One can also fit hazards using the hazard regression
(HARE) algorithm developed by Kooperberg et al. (1995), which uses piecewise linear
regression splines and adaptively selects the covariates an knots. As another alternative,
one could also include all covariates that have a strong univariate association with failure
time in a hazard fit as main terms in addition to the treatment variable. Since one is
often investigating many AE, a fast algorithm such as the latter may be an appropriate
alternative for computational efficiency.

We also note that if weights are required as they are for the inverse probability of cen-
soring weighted (IPCW) reduced data targeted maximum likelihood estimators as outlined
in section 11.1, the D/S/A algorithm can be run with the corresponding weights.

In addition to the hazard for survival, the hazard for censoring must also be estimated.
One of the algorithms discussed above can also be applied to estimate the censoring mech-
anism. We note that the application of the targeted maximum likelihood estimator to a
set of M AE requires M hazard fits whereas only one fit for censoring is required. Thus,
the censoring mechanism is estimated once and for all and is used in the analysis of each
of the M AE.

8 Inverse weighting assumption

The targeted maximum likelihood estimator, as well as other inverse weighted estimators
(see section 9) for the parameters presented in this paper rely on the assumption that each
subject has a positive probability of being observed (i.e., not censored) at time t, which
can be expressed by,

Ḡ(t− | A,W ) > 0, t = tk.

This identifiability assumption has been addressed as an important assumption for right-
censored data (Robins and Rotnitzky (1992)). In Neugebauer and van der Laan (2005) it
was demonstrated that practical violations of this assumption can result in severely variable
and biased estimates.
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One is alerted of such violations by observing very small probabilities of remaining
uncensored based on the estimated censoring mechanism, i.e., there are patients with a
probability of censoring of almost one given their observed past.

9 Alternative Estimators

Prior to the introduction of targeted maximum likelihood estimation, there were two main
approaches to estimating the treatment specific survival at a fixed end point tk: maximum
likelihood estimation and estimating function estimation. In the maximum likelihood ap-
proach, one obtains an estimate p̂ for p identified by perhaps a Cox proportional hazards
model for continuous survival or logistic regression for discrete survival. The parameter
of interest is then evaluated via substitution, i.e., ψ̂ = ψ(p̂). These maximum likelihood
substitution estimators involve estimating some hazard fit using an a priori specified model
or a model selection algorithm that is concerned with performing well with respect to the
whole density rather than the actual parameter of interest, e.g., the difference in treatment
specific survival at a specific time tk. These type of estimators often have poor performance
and can be heavily biased whenever the estimated hazard is inconsistent (Robins and Ri-
tov (1997)). Furthermore, inference for such maximum likelihood estimators that rely on
parametric models are overly optimistic and thus their corresponding p-values are partic-
ularly unreliable. This is in contrast to the inference for the targeted maximum likelihood
estimators which respects that no a priori models are required.

An alternative to the likelihood based approach is the extensively studied estimating
function based approach. Recall that the full data estimating functions provided in equa-
tions 8 and 9 are estimating functions that could be applied to estimate the treatment
specific survival at time tk if we had access to the full data, i.e., the uncensored survival
time. The full data estimating function can be mapped into a an estimating function based
on the observed data using the IPCW method. The IPCW estimators based on the IPCW
estimating function denoted by DIPCW (T,A,W | ψ1, g, G) have been shown to be consis-
tent and asymptotically linear if the censoring mechanism G can be well approximated
(Robins and Rotnitzky (2005); van der Laan and Robins (2003)). While the IPCW esti-
mators have advantages such as simple implementation, they are not optimal in terms of
robustness and efficiency. Their consistency relies on correct estimation of the censoring
mechanism whereas maximum likelihood estimators rely on correct estimation of the full
likelihood of the data.

The efficient influence curve can be obtained by subtracting from the IPCW estimation
function the IPCW projection onto the tangent space TCAR of scores of the nuisance pa-
rameter G (van der Laan and Robins (2003)). The efficient influence curve is the optimal
estimating function in terms of efficiency and robustness and the corresponding solution to
this equation is the so-called double robust IPCW (DR-IPCW) estimator. The “double”
robust properties of this estimator are equivalent to those of the targeted maximum likeli-
hood estimator as the targeted maximum likelihood estimator solves the efficient influence
curve estimating equation, see section 5.2. Despite the advantageous properties of such
efficient estimating function based estimators, maximum likelihood based estimators are
much more common in practice.
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The more recently introduced targeted maximum likelihood estimation methodology
that was applied in this paper can be viewed as a fusion between the likelihood and esti-
mating function based methods. A notable advantage of the targeted maximum likelihood
estimators is their relative ease of implementation in comparison to estimating equations
which are often difficult to solve.

10 Multiple Testing considerations

An important consideration in safety analysis is multiple testing in that often as many
as hundreds of AE are collected. The ICH guidelines indicate that it is recommended
to adjust for multiplicity when hypothesis tests are applied (ICH (1996)). However, the
ICH guidelines do not provide any specific methods for adjustment. The need for adjust-
ment is demonstrated by the following example outlined in Kaplan et al. (2002). In this
study, out of 92 safety comparisons the investigators found a single significant result ac-
cording to unadjusted p-values. A larger hypothesis driven study for this AE that had no
known clinical explanation was carried out and did not result in any significant findings.
Such false positive results for testing the effect of treatment on a series of AE based on
unadjusted p-values can cause undue concern for approval/labeling and can affect post-
marketing commitments. On the other hand, over adjusting could also result in missing
potentially relevant AE. Thus appropriate adjustment requires some balance between no
adjustment and a highly stringent procedure such as Bonferroni.

Many advances have been made in the area of multiple testing over the Bonferroni-type
methods including resampling based methods to control the familywise error rate (FWER),
for example see van der Laan et al. (2004) and the Benjamini-Hochberg method for con-
trolling the false discovery rate (FDR) (Benjamini and Hochberg (1995)). With FWER
approaches, one is concerned with controlling the probability of erroneously rejecting one
or more of the true null hypotheses, whereas the FDR approach controls the expected pro-
portion of erroneous rejections among all rejections. The resampling based FWER method
makes use of the correlation of test statistics which can provide a gain in power over assum-
ing independence. However, the Benjamini-Hochberg FDR approach has been shown to be
perform well with correlated test statistics as well (Benjamini et al. (1997)). The selection
of the appropriate adjustment depends on whether or not a more conservative approach is
reasonable. In safety analysis, one certainly does not want to miss flagging an important
AE and thus might lean towards an FDR approach.

FDR methods have been proposed specifically in the analysis of AE in Mehrotra and
Heyse (2004). Their method involves a two-step procedure that groups AE by body system
and performs an FDR adjustment both within and across the body system. Presumably
this method attempts to account for the dependency of the AE by grouping in this manner.
Thus the multiple testing considerations and the dependency of the test statistics in safety
analysis has indeed received some attention in literature.

The multiple testing adjustment procedure to be applied in the safety analysis should
be provided in the study protocol to avoid potential for dishonest inference. In addition,
the unadjusted p-values should continue to be reported with the adjusted p-values so all
AE can be evaluated to assess their potential clinical relevance.
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11 Extensions

11.1 Time-dependent covariates

It is not unlikely that many time-dependent measurements are collected at each follow-up
visit in addition to the many AE and efficacy outcome measurements. Such time-dependent
covariates are often predictive of censoring. The efficiency and robustness results presented
in this paper have been based on data structures with baseline covariates only. The tar-
geted maximum likelihood estimation procedure for data structures with time-dependent
covariates is more complex as demonstrated in van der Laan (2008). To overcome this issue
and avoid modeling the full likelihood, van der Laan (2008) introduced IPCW reduced data
targeted maximum likelihood estimators. We provide only an informal description of this
procedure here, for details we refer readers to the formal presentation provided in van der
Laan (2008).

In this framework, the targeted maximum likelihood estimation procedure is carried out
for a reduced data structure Xr, which in this case is the data structure that only includes
baseline covariates. The IPCW reduced data procedure differs from the procedure where
Xr is the full data in that the log-likelihoods are weighted by a time-dependent stabilizing
weight given by,

sw(t) =
I(C > t)Ḡr(t | Xr)

Ḡ(t | X)
.

This stabilizing weight is based on Ḡr(t | Xr) which is the censoring mechanism based on
the reduced data structure that includes baseline covariates only and Ḡ(t | X) which is the
censoring mechanism based on the complete data structure that includes time-dependent
covariates.

In practice in estimation of the parameter ψ(tk) = E0(S0(tk|A = 1,W ) − S0(tk|A =
0,W )), one must apply these weights anytime maximum likelihood estimation is performed.
Thus, the IPCW reduced data targeted maximum likelihood estimation procedure differs
from the standard targeted maximum likelihood procedure provided in section 5 in that
each time the conditional hazard is fit it is weighted by sw(t). These weights are time-
specific and thus each subject receives a different weight at each point in time. The initial
hazard estimate λ̂0(t | A,W ) is weighted by sw(t). The algorithm then updates λ̂0(t |
A,W ) by adding the time-dependent covariates h1(t, A,W and h0(t, A,W ) and estimating
their corresponding coefficients ε1 and ε2. In the IPCW reduced data targeted maximum
likelihood estimation procedure one includes the weights sw(t) in estimation of ε1 and
ε2. These weights are applied in each iteration of the algorithm to obtain the final fit
λ̂∗(t | A,W ) that is achieved when ε̂1 and ε̂2 are sufficiently close to zero. Thus estimation
can again be achieved using standard software with the only additional requirement of
weighting each of the regressions by these time-dependent weights.

Estimation of these time-dependent weights requires estimation of Ḡr(t | X) and Ḡ(t |
X). Model selection algorithms that can be applied to estimate Ḡr(t | X) were described
in section 7. Similarly the censoring mechanism Ḡ(t | X) can be estimated using a Cox
proportional hazards model with time-dependent covariates for continuous censoring times
or logistic regression model with time dependent covariates for discrete censoring times.
Model selection algorithms such as those described in section 7 can also be applied by
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including these time-dependent covariates as candidates.
Let ψ̂r(tk) represent the IPCW reduced data targeted maximum likelihood estimator of

ψ(tk). By applying this IPCW weighting in the reduced data targeted maximum likelihood
estimation procedure a particular type of double robustness is obtained. If there are no
time-dependent covariates that are predictive of censoring time, then the ratio of estimated
survival probabilities of censoring in the above weight sw(t) is one. In this case, if Ḡ(t | X)
is consistently estimated or λ(· | A,W ) is consistently estimated then ψ̂r(tk) is consistent;
if both are consistent then it is even more efficient than the estimator that was based on the
reduced data structure. If there are indeed time-dependent covariates that are predictive
of censoring time, and Ḡ(t | A,W ) is well approximated then ψ̂r(tk) is consistent and the
desired bias reduction is achieved.

11.2 Post market data

As RCT are powered for efficacy, it is often the case that many AE are either not observed
at all during the pre-market phase or so few are observed that statistically conclusive
results are often exceptions (Peace (1987)). In an RCT of a rotavirus vaccine in which
the AE of intussusception among vaccine recipients compared to controls was not found to
be statistically significant. After the vaccine was approved and had been widely used, an
association between this AE and the vaccine was found and it was pulled off the market.
A subsequent analysis demonstrated that to obtain power of 50% to detect a difference as
small as the actual observed Phase III incidence of the AE, a sample size of approximately
90,000 would be required (6 times the actual sample size) (Jacobson et al. (2001)). Due to
the high cost and complications involved in running an RCT, such large sample sizes are
not feasible.

It is not only the rarity of many AE that causes issues in detection during RCT, but
also the fact that RCT may have restrictive inclusion criteria whereas the drug is likely
applied to a less restrictive population in post-market. Furthermore, the follow-up time
in the pre-market phase may not be long enough to detect delayed AE. For a discussion
regarding the difficulties in “proving” safety of a compound in general see Bross (1985).
Post-market monitoring is therefore an important aspect of safety analysis.

There are a number of types of post-market data (for a thorough description of the
various types of post-market data see Glasser et al. (2007)) including spontaneous adverse
event reporting systems (e.g., “MedWatch”). These data can be useful for detecting po-
tentially new or unexpected adverse drug reactions that require further analysis however
they often suffer from under-reporting by as much as a factor of 20 (Edlavitch (1988)).

In this section, we focus on observational post-market studies or pharmacoepidemiolog-
ical studies. Since patients in these type of studies are not randomized to a drug versus
placebo (or competitor), confounding is typically present. Of particular concern is the
fact that sicker patients are often selected to receive one particular drug versus another.
There exists a vast amount of literature for controlling for confounding in epidemiological
studies. Popular methods in pharmacoepidemiology include propensity score (PS) methods
and regression based approaches. However, consistency with these methods rely on correct
specification of the PS or the regression model used. Furthermore, it is not clear how infor-
mative censoring is accounted for with these methods. The targeted maximum likelihood
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estimators are double robust and are thus more advantageous than these commonly applied
alternative approaches.

Before we proceed with discussion of estimation of causal effects with observational
data, we first outline the data and assumptions. Suppose we observe n independent and
identically distributed copies of O = (T̃ ,∆, A,W ) ∼ p0 as defined in section 4. Causal
effects are based on a hypothetical full data structure X = (T1,1, T1,0, T0,1, T0,0,W ) which is
a collection of action specific survival times where this action is comprised of treatment and
censoring. Note that we are only interested in the counterfactuals under this joint action-
mechanism that consists of both censoring and treatment mechanisms where censoring
equals zero, i.e., T1,0 and T0,0. In other words, we aim to investigate what would have
happened under each treatment had censoring not occurred.

The consistency assumption states that the observed data consist of the counterfactual
outcome corresponding with the joint action actually observed. The coarsening at random
(CAR) assumption implies that the joint action is conditionally independent of the full
data X given the observed data. We denote the conditional probability distribution of
treatment A by g0(a | X) ≡ P (A = a | X). In observational studies, CAR implies
g0(A | X) = g0(A | W ), in contrast to RCT in which treatment is assigned completely at
random and g0(A | X) = g0(A).

We aim to estimate ψ(tk) = E0(S0(tk|A = 1,W ) − S0(tk|A = 0,W )) = Pr(T1,0 >
tk)− Pr(T0,0 > tk). Even under no censoring or MCAR, we are can no longer rely on the
unadjusted treatment specific Kaplan-Meier estimates being unbiased due to confounding
of treatment.

Under the assumptions above, the targeted maximum likelihood estimator for ψ(tk) is
double robust and locally efficient. Thus the targeted maximum likelihood estimation pro-
cedure described in this paper is theoretically optimal in terms of robustness and efficiency.
In our presentation, we assumed that treatment was assigned at random. In observational
studies, in addition to estimating λ(· | A,W ) and possibly Ḡ(· | A,W ) (when censoring is
present), observational studies require estimation of the treatment mechanism g(A | W )
as well. It has been demonstrated that when censoring is MCAR in an RCT, the targeted
maximum likelihood estimate ψ̂∗(tk) is consistent under mis-specification of λ(· | A,W )
since g(A | W ) is always correctly specified. However, even under MCAR, in observational
studies, consistency of ψ̂∗(tk) relies on consistent estimation of λ(· | A,W ) or g(A | W )
and is efficient if both are consistently estimated (van der Laan and Rubin (2006)). When
censoring is MAR, then consistency of ψ̂∗(tk) also relies on consistent estimation of the
joint missingness g(A | W ) and Ḡ(· | A,W ) or λ(· | A,W ).

We also note that the targeted maximum likelihood estimators as well as the commonly
applied PS methods rely on the experimental treatment assignment (ETA) assumption.
Under this assumption, each patient must have a positive probability of receiving each
treatment. The inverse weighted PS estimator is known to suffer severely from violations of
this assumption in practice (Neugebauer and van der Laan (2005); Robins and Rotnitzky
(1992); Wang et al. (2006)). This poor performance is evident with inverse weighting,
however we note that all other PS methods rely on this assumption as well, but are not
as sensitive to practical violations. This assumption is essentially about information in the
data and violations of it indicate that for certain strata of the data, a given treatment
level is never or rarely experienced. When the ETA is violated estimation methods rely on
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extrapolation.
If it is the case that a given treatment level is very rare or non-existent for given strata

of the population, an investigator may want to re-consider the original research question
of interest. To this end, van der Laan and Petersen (2007) developed causal effect models
for realistic intervention rules. These models allow estimation of the effect of realistic
interventions, that is only intervening on patients for whom the intervention is reasonably
“possible” where “possible” is defined by g(A | W ) greater than some value, e.g., 0.05. We
note that targeted maximum likelihood estimation can be applied to estimate parameters
from such models. For applications of such models see Bembom and van der Laan (2007).

The ETA assumption and development of realistic causal models are simply examples
of some of the many considerations that arise with observational data as compared to RCT
data. However despite the many issues the rich field of causal inference provides promising
methods for safety analysis in post-market data. As it is not possible to observe all AE
in the pre-market phase, post-market safety analysis is an important and emerging area of
research.

12 Discussion

Safety analysis is an important aspect in new drug approvals and has become increasingly
evident with the recent cases of drugs withdrawn from the market (e.g., Vioxx). Increasing
estimation efficiency is one area that can help overcome the issue that RCT are not powered
for safety. Using covariate information is a promising approach to help detect AE that may
have remained undetected with the standard crude analysis. Furthermore, time-to-event
methods for AE analysis may be more appropriate particularly in studies where the AE
often occur for all patients, such as oncology studies. Exploiting the time-dependent nature
can further provide more efficient estimates for the effect of treatment on AE occurrence.

In this paper we provided a method for covariate adjustment in RCT for estimating the
effect of treatment on the AE failing to occur by a fixed end point. The method does not
require any parametric modeling assumptions under MCAR censoring and thus is robust
to mis-specification of the hazard fit. The methods advantages were twofold. The first
is the potential efficiency gains over the unadjusted estimator. The second is that the
targeted maximum likelihood estimator accounts for informative censoring through inverse
weighting of the covariate(s) that is added to an initial hazard fit. The standard unadjusted
estimator is biased in the informative censoring setting.

The estimator has a relatively straightforward implementation. Given an initial hazard
fit either logistic for discrete failure times or Cox proportional hazards for continuous
survival times, one updates this fit by iteratively adding a time dependent covariate(s).

The simulation study demonstrated the potential gains in efficiency that can be achieved
in addition to the relation of the correlation between the covariate(s) and failure time and
efficiency gains. When no predictive covariates were present the relative efficiency was
approximately one indicating that one is protected from actually losing precision from
applying this method even when the covariates provide little information about failure
time. The simulations also demonstrated the reduction in bias in the informative censoring
setting.
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Considerations for balancing the potential for false positives and the danger of missing
possibly significant AE are an important aspect of safety analysis. The strategies from the
rich field of multiple testing briefly discussed in this paper can exploit the correlation of
the AE outcomes and thus provide the most powerful tests.

While this paper focused on estimation of treatment specific survival at a specific end
point an overall average effect of treatment over time may be of interest. The targeted
maximum likelihood estimation procedure described in this paper can be extended to es-
timate this effect to provide a competitor to the ubiquitous log-rank test. Future work
includes providing a method for exploiting covariate information using the targeted maxi-
mum likelihood estimation procedure to improve power over the log-rank test.
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Targeted Maximum Likelihood Estimation:
A Gentle Introduction

Susan Gruber and Mark J. van der Laan
Division of Biostatistics, University of California, Berkeley

sgruber@berkeley.edu, laan@berkeley.edu

Abstract

This paper provides a concise introduction to targeted maximum likeli-
hood estimation (TMLE) of causal effect parameters. The interested analyst
should gain sufficient understanding of TMLE from this introductory tutorial
to be able to apply the method in practice. A program written in R is pro-
vided. This program implements a basic version of TMLE that can be used
to estimate the effect of a binary point treatment on a continuous or binary
outcome.
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1 Causal Inference
The counterfactual framework described in Rubin (1974), provides a basis for defin-
ing causal effects, such as the difference in mean outcomes between treatment and
control groups, relative risk, etc. These causal parameter definitions refer to a full,
unobserved, counterfactual dataset containing outcomes for each subject for all pos-
sible treatment assignments. In practice the data we measure only contains an out-
come value corresponding to the treatment actually assigned. However, the remain-
ing, unobserved outcome(s), can be estimated from observed data to ”fill in” the
missing, unobserved values, providing that two assumptions, described next, hold.
When they do, subsequent parameter estimation from the estimated full dataset is
straightforward.

The first assumption, coarsening at random (CAR) , implies that conditional
on measured covariates, treatment assignment is independent of the outcome. The
second assumption, the experimental treatment assignment (ETA) assumption, re-
quires that the conditional probability of receiving treatment is bounded away from
0 and 1. In other words, observations within strata defined by W have a probability
greater than 0 of receiving treatment at all possible levels of the treatment assign-
ment, ∀a ∈ A, P (A = a|W ) > 0. We use the term ”theoretical ETA violation” to
describe the situation when this assumption does not hold. A ”practical ETA viola-
tion” occurs when ,∃a ∈ A, P (A = a|W ) < ε, for some small ε, typically ranging
between (0.1 and 0.01), depending on the number of observations.

In the case of a theoretical ETA violation the causal parameter of interest is not
identifiable without additional model assumptions due to a lack of support in the
data. When there is a practical ETA violation the parameter of interest is borderline
identifiable. Traditional regression techniques are said to “borrow information” to
estimate the parameter of interest, but again, this relies on the untestable assumption
that the specified model is correct. On the occasions when this modeling assump-
tion is violated, the estimate is biased and the corresponding variance estimates are
overly optimistic. It is well-accepted by statisticians that the model is rarely, if
ever, correct. Freedman (2005) provides an interesting overview of this topic. A
more realistic, non-model-based, causal effect estimate of a borderline-identifiable
parameter is likely to have a much larger variance, reflecting the true level of un-
certainty in the data.

2 Causal Effect Estimation
We restrict the discussion to estimating the marginal additive effect of a binary
point treatment, A, on outcome Y . Given a full (counterfactual) dataset consisting
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of n i.i.d. copies of Ofull = (W,Y (1), Y (0)), where Yi(1) corresponds to the
outcome observed when subject i is assigned to the treatment group (Ai = 1) and
Yi(0) corresponds to the outcome observed when subject i is assigned to the control
group (Ai = 0), we can define our parameter of interest as ψ0 = E(Y (1)− Y (0)),
the marginal additive treatment effect.

Given observed data, Oobs = (W,A, Y ), we estimate ψ0 as:

ψ̂ = ψn = ÊW (Ê(Y |A = 1,W )− Ê(Y |A = 0,W )).

If the outcome or treatment assignment is missing for some observations, the
data structure can be expanded to Oobs = (W,A,∆,∆Y ), where ∆ = 1 when Y is
observed, 0 otherwise. In this setting the definition of ψ0 remains unchanged, but
the parameter is estimated as:

ÊW (Ê(Y |A = 1,W,∆ = 1)− Ê(Y |A = 0,W,∆ = 1)),

where the outer expectation is over all observations.
Common non-parametric or semi-parametric estimators for this problem in-

clude the G-computation estimator (Robins, 1986), the inverse-probability-of-treat-
ment (IPTW) estimator (Hernan et al., 2000; Robins, 2000b), the double robust
IPTW estimator (Robins and Rotnitzky, 2001; Robins et al., 2000; Robins, 2000a),
and targeted maximum likelihood estimation (TMLE) (van der Laan and Rubin,
2006; van der Laan and Gruber, 2009), also doubly-robust. The next section pro-
vides an overview of targeted maximum likelihood estimation. The final section
describes companion TMLE software for estimating this parameter, written for the
R statistical programming environment (R Development Core Team, 2009). Source
code is provided in the appendix, along with data analysis examples.

3 Targeted Maximum Likelihood Estimation
Maximum likelihood estimation fits a model to data, minimizing a global measure,
such as mean squared error (MSE). When we are interested in one particular param-
eter of the data distribution and consider the remaining parameters to be nuisance
parameters, we would prefer an estimate that has smaller bias and variance for the
targeted parameter, at the expense of increased bias and/or variance in the estima-
tion of nuisance parameters. Targeted maximum likelihood estimation targets the
MLE estimate of the parameter of interest in a way that reduces bias. This bias
reduction is sometimes accompanied by an increase in the variance of the estimate,
but the procedure often reduces variance as well in finite samples. Asymptotically,
TMLE is maximally efficient when the model and nuisance parameters are correctly
specified.
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An orthogonal factorization of the likelihood of the data provides the basis for
TMLE estimation.

L(O) = P (Y | A,W )P (A | W )P (W ).

We define:

Q(Y,A,W ) ≡ E(Y | A,W ),

g(A,W ) ≡ P (A | W ),

whereQ(Y,A,W ) is estimable from the data, g(A,W ) is a nuisance parameter that
may further factorize into treatment, missingness, and censoring mechanisms, and
the empirical distribution ofW is the MLE of P (W ). For some applications certain
factors of g may be known, (e.g., treatment assignment in RCT data), but estimation
from the data is common, and can lead to increased efficiency in some cases even
when g is known (Moore and van der Laan, 2007). The TMLE estimator is given
by:

ψTMLE
n =

1

n

n∑
i=1

Q∗
n(1,Wi)−Q∗

n(0,Wi).

Though this parameter is estimated from the Q portion of the likelihood alone,
obtaining Q∗

n(A,W ), a targeted estimate of the density, involves estimation of nui-
sance parameter g(A,W ) as well.

Super Learner (van der Laan et al., 2007) provides a machine learning ap-
proach to data-adaptive estimation of Q0

n, an initial estimate of Q. The Dele-
tion/Substitution/Addition (DSA) algorithm described in (Sinisi and van der Laan,
2004; Molinaro and van der Laan, 2004) is a less aggressive data-adaptive approach
that searches over a large space of polynomial generalized linear models. Alter-
natively, given a specified parametric model, Q0

n can be estimated using standard
regression software.This initial estimate is fluctuated in a manner designed to create
the largest change in the targeted parameter of the distribution,

Q1
n = Q0

n + εh(A,W ),

where h(A,W ), a function of the nuisance parameter, depends on the influence
curve of the parameter of interest.

The MLE for ε is obtained by regressing Y on h(A,W ), with offset Q0
n(A,W ).

Note that the magnitude of ε determines the degree of perturbation of the initial es-
timate, and is a direct function of the degree of residual confounding. This targeting
step maximizes the change in the parameter of interest, but only to the extent that
the estimate is confounded along this dimension. It is important to avoid overfitting
Q0
n, as this minimizes the signal in the residuals needed for bias reduction.
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3.1 Inference
TMLE estimators are asymptotically normally distributed with mean µ = ψ0 and
variance σ2/n, where σ2 is the variance of the influence curve for Ψ(Q). For the
parameter of interest specified above, σ2 is estimated from the data as:

σ̂2 =
1

n

n∑
i=1

ÎC
2
(Oi),

ÎC(Q∗
n, g,Ψ(Q∗

n)) = h(A,W )(Y −Q∗
n(A,W ))

+Q∗
n(1,W )−Q∗

n(0,W )− ψn(Q∗
n),

h =
∆

P (∆ = 1 | A,W )

(
I(A = 1)

g(1,W )
− I(A = 0)

g(0,W )

)
Ninety-five percent confidence intervals, calculated as ψn(Q∗

n) ± 1.96σ̂/
√
n,

are theoretically well-grounded, and have been shown to provide good coverage in
practice across a wide variety of simulated datasets.

A test statistic can be used to test a null hypothesis of the form H0 : ψ0 = 0:

T =
ψn√
σ̂2/n

3.2 Collaborative targeted maximum likelihood estimation
Theoretical findings outlined in van der Laan and Gruber (2009) indicate that it is
not always necessary to adjust for the full g0 in order to obtain unbiased, efficient
results. The double robustness property of TMLE estimators guarantees consistent
estimation if at least one of Q0 or g0 is estimated consistently. Therefore, when
Q0
n = Q0, adjusting for g0 is unnecessary. Similarly, when the initial fit for Q

contains no information, (Q0−Q0
n = Q0), consistent estimation of g0 is necessary.

When Q0
n falls somewhere in the middle of these two extremes, adjusting for an

essential subset of g0 allows maximal bias reduction, since the only remaining bias
is the residual confounding inQ0−Q0

n. CTMLE builds candidate TMLE estimators
indexed by (Q0

n, gn,k(Q
0
n)), and selects among using the penalized cross-validated

likelihood.
For each stage one estimator, stage two constructs increasingly non-parametric

nuisance parameter estimators, gn,1, . . . , gn,k, leading to construction of k updated
estimates, Q1

n,1, . . . , Q
1
n,k, and a corresponding series of candidate TMLE estimates

(ψn,1(Q
1
n,1), . . . , ψn,k(Q

1
n,k)).
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3.2.1 Construction of estimators {gn,1, ...gn,k}
The nature of the candidate estimators for g varies depending on the goodness of
fit of the stage one estimate of Q0

n. When Q0
n poorly estimates Q0, initial estimates

of g closely approximate g0. When Q0
n is a good fit for Q0, the series of candidate

estimators of g grows slowly towards estimation of the full g0. The collaborative
nature of the estimation of g is the key difference between standard TMLE and
CTMLE.

Though it is a more complex and time-consuming analysis, CTMLE provides
two practical advantages over TMLE. First, collaborative, data-adaptive estimation
of g leads to reduced variance in the estimate whenever the machine learning pro-
cedure determines that adjustment for the full g0 is unnecessary.

The second advantage occurs in datasets for which the ETA assumption is vi-
olated. When there are ETA violations the standard TMLE estimator described
above, and the estimated variance, blow up, signaling the lack of identifiability.
The CTMLE procedure attempts to remedy the situation by choosing not to adjust
for covariates leading to ETA violations. Whether these covariates confound the
relationship between treatment and outcome is not knowable from the data. In any
case, the CTMLE algorithm will not select a model for g that contains unnecessary
covariates, nor will it select a covariate that causes the variance to blow up. This
behavior suggests that it is important to understand the reason behind a covariate’s
exclusion from the model for g. Interpretability plots show the effect on the esti-
mate and the variance of including these covariates in the model. When there is
little change in the estimate, we can conclude that the excluded covariate does not
bias the estimate. When there is a large change in the estimate and or the variance,
we can conclude that there is an ETA violation, but cannot determine from the data
the extent of the bias, or even whether the omitted covariate is a true confounder.
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4 Discussion
TMLE is a general methodology that can be applied to estimation of many types
of causal effect parameters, including but not limited to those involving point treat-
ment effects, survival analysis, longitudinal data analysis, and genomics data. This
very generality, and the flexibility allowed for obtaining estimates of the Q and g
portions of the likelihood, can perhaps make it difficult for a researcher to under-
stand exactly how to begin analyzing data using TMLE. We endeavor to include
just enough information in this paper to allow an interested analyst to begin. To fa-
cilitate the process, a set of functions written in R is provided in the appendix. This
code defines an implementation of TMLE that can be used to estimate the marginal
effect of a binary point treatment on a continuous or binary outcome, even in the
presence of missing data. We hope it, too, provides a gentle introduction to the
application of targeted maximum likelihood estimation to the estimation of causal
efffects.
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Appendices
The program provided in Appendix A, written for the R statistical environment,

can be used to estimate point treatment effects by calling the function tmle with the
correct arguments. Examples illustrating several options for calling the function are
provided in Appendix B.

The simplest approach is demonstrated in Appendix B, example 1. The tmle
function is called with arguments, Y, A, W, where Y and A are vectors containing
the outcome and treatment assignment, respectively. W is a matrix or dataframe
where each column corresponds to a potential confounder. The tmle function will
use the Deletion-Substitution-Addition (DSA) algorithm to estimate Q, gA, the
treatment mechanism, and gM , the missingness mechanism. This option requires
installation of the DSA package, available from:

http://www.stat.berkeley.edu/ laan/Software/

If the DSA package is not installed, Q is estimated with a main terms regression,
using glm.

Alternatively, the user can provide working models or numerical values for esti-
mation of any subset of (Q, gA, gM), and the program will estimate any that are not
user-supplied, see examples 3 and 4.

A complete list of arguments is shown in table 1, below. Return values are
described in the description in the last row of the table.
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Table 1: Arguments to function tmle. Defaults for optional arguments are listed in
parentheses. (*) indicates required argument.

Argument Description

Y* Outcome variable, continuous or binary. Missing values allowed.

A* Binary treatment indicator, 1 - treatment, 0 - control. Missing values allowed.

W* Baseline covariate,. numerical vector, matrix, or dataframe.

Delta
(1 for all obs)

Indicator of missingness for (Y,A), 1 - observed, 0 - missing

id
(1 to n)

identify repeated measures

Q
(DSA estimation)

E(Y |A,W ), specified in one of three ways:
1. NULL - defaults to DSA estimation of E(Y |A = a,W,∆)
2. matrix of values containing three columns:
(E(Y |A = a,W,∆), E(Y |A = 1,W,∆), E(Y |A = 0,W,∆)
3. formula for estimation of E(Y |A,W,∆), to use with glm

g A
(DSA estimation)

P (A = 1|W ), treatment mechanism specified in one of three ways:
1. NULL - defaults to DSA estimation of P (A = 1|W )
2. vector of values P (A = 1|W )
3. formula for estimation of P (A = 1,W ), to use with glm

g M
(DSA estimation)

P (∆ = 1|W ), missingness mechanism for (A, Y ) specified in one of three ways:
1. NULL - defaults to DSA estimation of P (∆ = 1|W )
2. vector of values P (∆ = 1|W )
3. formula for estimation of P (∆ = 1,W ), to use with glm

wts
(1 for all obs)

weights for observations

DSAargs a list containing settings for DSA estimation. Defaults:
DSAargs$formula = Y ∼ A, DSAargs$maxsumofpow = 2,
DSAargs$maxorderint = 2, DSAargs$vfold = 5, DSAargs$family = gaussian
DSAargs$maxsize=min(2*ncol(W),15) (model size capped at 15),
DSAargs$nsplits=1, DSAargs$Dmove=TRUE, DSAargs$Smove=TRUE

DETAILED
(FALSE)

flag specifying basic or detailed return value.
TRUE: psi - treatment effect estimate,
var - estimated variance of parameter estimate,
epsilon - coefficient used in targeting step,
coefficients and predicted values for Q0

n(A,W.∆), gA(1,W,∆), gM (1,W,∆)
FALSE: psi- treatment effect estimate,
var - estimated variance of parameter estimate
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Appendix A: R implementation of TMLE
#------------------------------------------------------------------------------------
# Targeted Maximum Likelihood Estimation
# for binary point treatment, non-parametric estimation
# paramter of interest = E_W[E(Y|A=1,W) - E(Y|A=0,W)]
# taking into account treatment (g_A) and missingness (g_M) mechanisms
# models or estimates for Q, g_A, g_M can be user-supplied or estimated internally using DSA
# as implemented, arguments to DSA are the same for all estimation procedures
# these can be user-supplied or set to default values
# maxorderint = 2, maxsumofpow=2, maxsize = 15
# Dmove=TRUE, Smove=TRUE, formula = Y˜A, A forced into model.
#
# August 16, 2009
# Susan Gruber, sgruber@berkeley.edu
#
# for information see
# M.J. van der Laan and D. Rubin. Targeted maximum likelihood learning.
# The International Journal of Biostatistics, 2(1), 2006.
# http://www.bepress.com/ijb/vol2/iss1/11/

#-------------verify_args------------------
verify_args <- function(Y,A,W,Delta){
ok1 <- length(Y) == length(A) & length(A) == nrow(W)
ok2 <- all(A[!is.na(A)] %in% 0:1)
if (!ok1) {warning("Y, A, W must contain the same number of observations")}
if (!ok2) {warning("A must be binary (0,1)")}
return(ok1&ok2)
}

#-----------set_DSAargs----------------
set_DSAargs <- function(DSAargs, wts){

if(is.null(DSAargs$maxsumofpow)){DSAargs$maxsumofpow <- 2}
if(is.null(DSAargs$maxorderint)){DSAargs$maxorderint <- 2}
if(is.null(DSAargs$maxsize)) {DSAargs$maxsize <- 15}
if(is.null(DSAargs$Dmove)) {DSAargs$Dmove <- TRUE}
if(is.null(DSAargs$Smove)) {DSAargs$Smove <- TRUE}
if(is.null(DSAargs$vfold)) {DSAargs$vfold <- 5}
if(is.null(DSAargs$formula)){DSAargs$formula <- Y˜A}
if(is.null(DSAargs$family)){DSAargs$family <- "gaussian"}
if(is.null(DSAargs$silent)) {DSAargs$silent <- TRUE}
if(is.null(DSAargs$wts)) {DSAargs$wts <- matrix(data=rep(wts, DSAargs$vfold+1),

byrow=TRUE, nrow=DSAargs$vfold+1)}
if(is.null(DSAargs$nsplits)) {DSAargs$nsplits <- 1}
if(is.null(DSAargs$silent)) {DSAargs$silent <- -1}
return(DSAargs)

}

#-----------function logit---------
# convert probability to logit
# truncate probability passed in
#-------------------------------
logit <- function(x){

x[x>1] <-1
x[x<0] <-0
return(-log(1/x - 1))

}
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#-----------estimate_Q----------------
# figure out if Q is one of three things:
# 1. a matrix of values, QAW, Q1W, Q0W
# 2. a model to use glm on
# 3. null - estimate with DSA if available, otherwise main terms with glm
# returns matrix of linear predictors for Q(A,W), Q(1,W), Q(0,W)
#----------------------------------------
estimate_Q <- function (Q, DSAargs, Y,A,W, Delta, family, wts, id) {

if(is.matrix(Q)){
if (family == "binomial") {Q <- logit(Q)}
coef <- NA

} else {
if (is.null(Q)){

if(require(DSA)){
DSAargs <- set_DSAargs(DSAargs, wts)
m <- DSA(formula=DSAargs$formula, data=data.frame(Y,A,W)[Delta==1,],

weights=DSAargs$wts[,Delta==1], id=id[Delta==1],
maxsumofpow=DSAargs$maxsumofpow, maxorderint=DSAargs$maxorderint,
maxsize=DSAargs$maxsize, Dmoves=DSAargs$Dmove, Smove=DSAargs$Smove,
family=family, candidate.rank=DSAargs$candidate.rank,
rank.cutoffs = DSAargs$rank.cutoffs, usersplits=DSAargs$usersplits,
userseed=DSAargs$userseed, vfold=DSAargs$vfold, nsplits=DSAargs$nsplits,
silent=DSAargs$silent )
} else {
warning("DSA not found, running main terms regression for Q using glm")
form <- paste("Y˜A", paste(colnames(W), collapse = "+"), sep="+")
m <- glm(form, family=family, data=data.frame(Y,A,W, wts, Delta), weights=wts,

na.action=na.exclude, subset=Delta==1)
}

} else {
form <- try(as.formula(Q))
if(class(form)== "formula") {
m <- glm(form, family=family, data=data.frame(Y,A,W, wts, Delta), weights=wts,

na.action=na.exclude, subset=Delta==1)
} else {
warning("Invalid formula supplied, running main terms regression for Q using glm")
form <- paste("Y˜A", paste(colnames(W), collapse = "+"), sep="+")

m <- glm(form, family=family, data=data.frame(Y,A,W, wts, Delta), weights=wts,
na.action=na.exclude, subset=Delta==1)

}
}
QAW <- predict(m, newdata=data.frame(Y,A,W))
Q1W <- predict(m, newdata=data.frame(Y,A=1,W))
Q0W <- predict(m, newdata=data.frame(Y,A=0,W))
Q <- cbind(QAW, Q1W, Q0W)
coef <- coef(m)
}
return(list(Q=Q, coef=coef))

}

#-----------estimate_g----------------
# Estimate any factor of g
#----------------------------------------
estimate_g <- function (g, DSAargs,A,W, Delta, wts, id) {

if (!is.numeric(g)){
if (all(A==A[1])) {
g1W <- 1
coef<- NA
} else {
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if (is.null(g)){
if(require(DSA)){
DSAargs <- set_DSAargs(DSAargs, wts)
m <- DSA(formula=DSAargs$formula, data=data.frame(A,W)[Delta==1,],

weights=DSAargs$wts[,Delta==1], id=id[Delta==1],
maxsumofpow=DSAargs$maxsumofpow, maxorderint=DSAargs$maxorderint,
maxsize=DSAargs$maxsize, Dmoves=DSAargs$Dmove, Smove=DSAargs$Smove,
family="binomial", candidate.rank=DSAargs$candidate.rank,
rank.cutoffs = DSAargs$rank.cutoffs, usersplits=DSAargs$usersplits,
userseed=DSAargs$userseed, vfold=DSAargs$vfold, nsplits=DSAargs$nsplits,
silent=DSAargs$silent )
} else {
warning("DSA not found, running main terms regression for g using glm")

form <- paste("A˜1", paste(colnames(W), collapse = "+"), sep="+")
m <- glm(form, family="binomial", data=data.frame(A,W, wts, Delta), weights=wts,
na.action=na.exclude, subset=Delta==1)

}
} else {
form <- try(as.formula(g))
if(class(form)== "formula") {
m <- try(glm(form, family="binomial", data=data.frame(A,W, wts, Delta), weights=wts,

na.action=na.exclude, subset=Delta==1))
if (class(m)[1]=="try-error"){
warning("Invalid formula supplied, running main terms regression for g using glm")
form <- paste("A˜1", paste(colnames(W), collapse = "+"), sep="+")
m <- glm(form, family="binomial", data=data.frame(A,W, wts, Delta),

weights=wts,na.action=na.exclude, subset=Delta==1)
}
} else {
form <- paste("A˜1", paste(colnames(W), collapse = "+"), sep="+")
m <- glm(form, family="binomial", data=data.frame(A,W, wts, Delta), weights=wts,

na.action=na.exclude, subset=Delta==1)
}

}
g1W <- predict(m, newdata=data.frame(A,W,wts), type="response")
coef <- m$coef

}
} else {
g1W <- g
coef <- NA

}
return(list(g1W=g1W, coef=coef))
}

#-------------------------------tmle----------------------------------------
# estimate marginal treatment effect for binary point treatment
# accounting for missing outcomes.
# arguments:
# Y - outcome
# A - binary treatment indicator, 1-treatment, 0 - control
# W - vector, matrix or dataframe containing baseline covariates
# Delta - indicator of missing outcome or treatment assignment. 1 - observed, 0 - missing
# id - id identifying repeated measures
# Q - E(Y|A,W), specified in one of three ways:
# 1. NULL - defaults to DSA estimation of E(Y|A=a, W), with A forced into the model
# 2. matrix of values containing three columns. 1: E(Y|A=a,W), 2: E(Y|A=1,W), 3: E(Y|A=0,W)
# 3. formula for estimation of E(Y|A, W), suitable for call to glm
# g_A - binary treatment mechanism, specified in one of three ways:
# 1. NULL - defaults to DSA estimation of P(A=1|W)
# 2. vector of values P(A=1|W)
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# 3. formula for estimation of P(A=1,W), suitable for call to glm
# g_M - missingness mechanism, specified in one of three ways:
# 1. NULL - defaults to DSA estimation of P(Delta=1|W)
# 2. vector of values P(Delta=1|W)
# 3. formula for estimation of P(Delta=1,W), suitable for call to glm
# wts - optional weights on observations
# DSAargs - optional settings for DSA estimation
# defaults: maxsumofpow = 2, maxorderint = 2, maxsize=min(2*ncol(W),15) (model size capped at 15),
# vfold = 5, nsplits=1, Dmove=TRUE, Smove=TRUE
# family - family specification for regression models, defaults to gaussian
# DETAILED - flag indicating basic or detailed return value.
# TRUE - psi, treatment effect estimate,
# var - estimated variance of parameter estimate,
# epsilon - coefficient used in targeting step
# coefficients and predicted values for Q_nˆ0(A,W), g_A(1,W), g_M(1,A,W)
# FALSE - psi, treatment effect estimate,
# var - estimated variance of parameter estimate
#-------------------------------------------------------------------------------

tmle <- function(Y,A,W,Delta=rep(1,length(Y)), id=1:length(Y), Q=NULL, g_A=NULL, g_M=NULL,
wts=rep(1, length(Y)), DSAargs=NULL, family="gaussian", DETAILED=FALSE) {
psi.tmle <- varIC <- NA
W <- as.matrix(W)
if(verify_args(Y,A,W,Delta)){
Q <- estimate_Q(Q, DSAargs, Y,A,W, Delta, family, wts, id)
DSAargs$formula <- A˜1

g_A <- estimate_g(g_A, DSAargs, A, W, Delta, wts, id)
g_M <- estimate_g(g_M, DSAargs, A=Delta, W, Delta=rep(1,nrow(W)), wts, id)
g1W <- g_A$g1W
h <- h1W <- 1/g1W * Delta/g_M$g1W
h0W <- -1/(1-g1W) * Delta/g_M$g1W
h[A==0] <- h0W[A==0]
epsilon <- coef(glm(Y˜-1 + offset(Q$Q[,1]) + h, family=family, weights=wts, subset=Delta==1))

QAW <- Q$Q[,1] + epsilon*h
Q1W <- Q$Q[,2] + epsilon*h1W
Q0W <- Q$Q[,3] + epsilon*h0W

if (identical(family, binomial) | identical(family,"binomial")) {
QAW <- 1/(1+exp(-QAW))
Q1W <- 1/(1+exp(-Q1W))
Q0W <- 1/(1+exp(-Q0W))
}
psi.tmle <- mean(Q1W) - mean(Q0W)
Y[is.na(Y)] <- QAW[is.na(Y)] # keeps arithmetic from failing
IC <- (Y-QAW)*h*Delta + Q1W - Q0W - psi.tmle

IC <- as.vector(by(IC, id, sum))
IC[is.nan(IC)|is.infinite(IC)] <- Inf
varIC <- var(IC)

}
if (DETAILED) {

Qcounter <- cbind(Q1W, Q0W)
colnames(Qcounter) <- c("Q1W", "Q0W")

returnVal <- list(psi=psi.tmle, var = varIC/length(unique(id)),epsilon=epsilon, Q=Q,
g_A=g_A, g_M=g_M, Qcounter=Qcounter)

} else {
returnVal <- list(psi=psi.tmle, var = varIC/length(unique(id)))
}
return(returnVal)

}
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Appendix B: Sample calls to tmle function
#------------------------------------------------------------------------------------
# tmle examples
# use with function tmle in file tmle.R
# Susan Gruber
# sgruber@berkeley.edu
# August 16, 2009

# Important: Generate data before running the examples!
# psi_0 = 1

#------------generate data --------------

set.seed(10)
n <- 500
W <- matrix(rnorm(n*3), ncol=3)
A <- rbinom(n,1, 1/(1+exp(-(.1*W[,1] - .1*W[,2] + .5*W[,3]))))
Y <- A + 2*W[,1] + W[,3] + W[,2]ˆ2 + rnorm(n)

colnames(W) <- paste("W",1:3, sep="")

#--------------------------------------------------------
# Example 1, default function invocation
# invokes DSA to estimate Q, g_A, g_M,
# because Delta argument is not supplied, assumes (Y,A) observed for all obs

result1 <- tmle(Y,A,W)

#--------------------------------------------------------
# Example 2: Binary outcome, DSA estimates Q
# known g_A = 0.5 is user-supplied,
#

A.ex2 <- rbinom(n,1,.5)
Y.ex2 <- A.ex2 + 2*W[,1] + W[,3] + W[,2]ˆ2 + rnorm(n)
result2 <- tmle(Y=Y.ex2,A=A.ex2,W, g_A =rep(.5, length(Y)))

#--------------------------------------------------------
# Example 3: Supplying an indicator for observations missing the outcome
# set Delta to 1 for obs where Y is observed, 0 when Y is missing
# In this example, Delta is set to indicate 20% missing values, MCAR
# DSA to estimate Q, g_A, g_M,
# set DETAILED=TRUE to see model selected by DSA and predicted values
# for Q_nˆ0, g_A, g_M for each observation, and epsilon.

Delta <- rbinom(n,1,.8)
result3 <- tmle(Y,A,W, Delta=Delta, DETAILED=TRUE)

#--------------------------------------------------------
# Example 4: User-supplied (misspecified) model for Q, DSA estimates for g_A, g_M
# approx. 20% missing, MAR

Delta <- rbinom(n, 1, 1/(1+exp(-(1.7-1*W[,1]))))
result4 <- tmle(Y,A,W, Delta=Delta, Q=Y˜A+W1+W2+W3, DETAILED=TRUE)

#--------------------------------------------------------
# Example 5: User-supplied models for g_A and missingness mechanism g_M,
# DSA estimates Q.
# 100 unique IDs supplied
# Usage note: use "A" for dependent variable name in the formula for g_M

Appendix A. Targeted Maximum Likelihood Estimation: A Gentle Introduction
S. Gruber, M.J. van der Laan (2009)

565
http://biostats.bepress.com/ucbbiostat/paper254



Delta <- rbinom(n, 1, 1/(1+exp(-(1.6-1*W[,1]))))
result5 <- tmle(Y,A,W, Delta=Delta, g_A=A˜W1+W2+W3, g_M=A˜W1, id=rep(1:100, length=n), DETAILED=TRUE)

#--------------------------------------------------------
results_summary <- cbind(c(result1$psi, result2$psi, result3$psi, result4$psi, result5$psi),

c(result1$var, result2$var, result3$var, result4$var, result5$var))

colnames(results_summary) <- c("estimate", "variance")
print(results_summary,digits=3)
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Targeted Maximum Likelihood Learning:
Examples and Generalizations

Mark J. van der Laan
Division of Biostatistics, University of California, Berkeley

laan@stat.berkeley.edu

Abstract

This paper should be read as a follow up on our general targeted
maximum likelihood learning article (van der Laan, Rubin, 2006). In
the current paper I present some additional applications and thereby
illustrations of the general targeted maximum likelihood methodology
(van der Laan, Rubin, 2006). These examples illustrate how targeted
maximum likelihood learning can be used effectively to efficiently esti-
mate causal effects of a treatment on an outcome of interest based on
observational as well as clinical trial data, and to efficiently estimate
variable importance parameters measuring the importance of a variable
(e.g., biomarker) in predicting an outcome, while adjusting for a set
of other variables, based on censored and uncensored data. Targeted
maximum likelihood estimation of variable importance parameters has
important applications in genomics and biomarker discovery, among
many others.

In addition, we present the analogue of the iterative targeted maxi-
mum likelihood estimator presented in (van der Laan, Rubin, 2006) to
a Baysian setting resulting in a targeted posterior distribution on the
parameter of interest, given a prior distribution on this parameter of
interest. We also present some obvious generalizations of the targeted
maximum likelihood learning methodology by (e.g.,) replacing the log
likelihood loss function by any other loss function.

Key words: Causal effect, efficient influence curve, estimating function, lo-
cally efficient estimation, loss function, maximum likelihood estimation, pos-
terior distribution, targeted maximum likelihood estimation, variable impor-
tance.
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1 Targeted MLE for realistic Marginal struc-

tural models.

The observed data structure on each experimental unit is O = (W,A, Y ),
where W is a collection of baseline covariates, A is a treatment variable, and
Y is an outcome of interest. We observe n i.i.d. copies O1, . . . , On, and the
goal is to estimate the causal effect of treatment on the outcome within sub-
groups defined by the strata of a baseline covariate V included in W . This
has important applications in causal effect estimation of a drug (e.g. dose) in
clinical trials as well for observational (e.g post market) studies.
The full data structure and parameter of interest: Let Y (a) represent
a treatment specific outcome one would observe if the randomly sampled sub-
ject would be assigned a treatment coded as a ∈ A, and let X = (W, (Y (a) :
a ∈ A)) ∼ PX0 represent the full data structure of interest on the randomly
sampled subject consisting of the treatment specific outcomes, and baseline
covariates W . Let A1 denote an index set of a set of dynamic point treatment
rules

D = {W → d(a)(W ) ∈ A : a ∈ A1},
where each rule in this set D of rules, represents a rule for assigning treatment
in response to the subject’s/experimental unit’s baseline covariates W . A
special case is that A1 = A and d(a) denotes a rule which aims to assign
a but if a is such that the conditional probability g0(a | W ) of treatment
being equal to a, given the baseline covariates W , is too close to zero, then
it assigns a treatment in the set A of possibly treatment options closest to a,
where the latter ”closest” needs to be defined appropriately. We refer to such
rules avoiding treatment assignment which are not supported by the treatment
mechanism g0 as realistic treatment rules.

We consider a model in which the full data distribution PX0 is unspecified.
Let X1, . . . , Xn be n i.i.d. draws of X. A scientific parameter of interest is a
realistic causal treatment curve defined as the mean ψ0(a) = E0Y (d(a)) of the
treatment specific outcome Y (d(a)), where d(a) is a dynamic point treatment
rule W → d(a)(W ), and Y (d(a)) represents the outcome one would observe
if the subject follows this rule. In addition, we are also concerned with the
V -adjusted causal response curve for a V ⊂ W defined as

ψ0(a, v) = E0(Y (d(a)) | V = v),

where V represents a baseline characteristic which might potentially strongly
affect the causal response curve.
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Here d(a) is a dynamic point treatment rule W → d(a)(W ) mapping the
baseline covariates in the set A of treatment options satisfying for some user
supplied δ > 0 the following condition:

P (A = d(a)(W ) | W ) > δ almost everywhere, for all a ∈ A1. (1)

A counterfactual Y (d(a)) indexed by a dynamic treatment rule d(a) is a well
defined function of the complete set of counterfactuals (Y (a) : a ∈ A) and
baseline covariates W , and the rule d(a): Y (d(a)) = Y (d(a)(W )).

Missing data structure representation of observed data on exper-
imental unit: It is assumed that O = (W,A, Y = Y (A)) with probability 1.
Randomization assumption: We also assume that A is randomized condi-
tional on W :

g0(a | X) = P (A = a | X) = P (A = a | W ).

The assumption (1) guarantees that the distribution of the counterfactual
Y (d(a)) is identifiable from the observed data structure O = (W,A, Y =
Y (A)).

Working model: We consider a working model m(a, v | β) for the treat-
ment specific mean ψ0(a, v), and define the target parameter as

β0 = arg min
β
E0V

∑
a∈A1

(m(a, V | β)− ψ0(a, V ))2h(a, V ),

where h is a user supplied weight function. For simplicity, we assume here
that A1 is discrete, but if A1 is a continuous set, then one can replace it by a
discrete approximation in the above definition.

The summary measure ψ̃0(a, v) = m(a, v | β0) of ψ0 implied by the work-
ing model {m(· | β) : β} provides now a model based approximation of the
true causal response curve ψ0. Note that β0 is a parameter of ψ0 and the
marginal distribution P0V of V . Although, we will consider the model for the
full data distribution PX0 to be nonparametric and the working model as an
approximation of the true causal response curve, our proposed estimators are
valid if one actually assumes the working model m(a, V | β0) to be correctly
specified.Thus our goal is to construct a targeted MLE of β0.

Important identity: Under a mild regularity condition, it follows that
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β0 = β(Q01, Q02) solves

0 = E0V

∑
a∈A1

h(a, V )
d

dβ0

m(a, V | β0)(E(Y (d(a)) | V )−m(a, V | β0))

= EQ01

∑
a∈A1

h(a, V )
d

dβ0

m(a, V | β0)(E(Y (d(a)) | W )−m(a, V | β0))

= EQ01

∑
a∈A1

h(a, V )
d

dβ0

m(a, V | β0)(Q02(d(a),W )−m(a, V | β0)),

where we defined Q02(d(a),W ) = E(Y | A = d(a)(W ),W ). This identity will
be assumed to hold.

Optimal treatment: We are also concerned with statistical inference for
the optimal treatment for subgroup v

a∗(β0)(v) = arg max
a∈A1

m(a, v | β0),

and, in case V is chosen to be the empty set, then this reduces to the marginal
optimal treatment

a∗(β0) = arg max
a∈A1

m(a | β0).

A particular working model of interest for determining an optimal treatment
among a continuous set A1 is given by a quadratic model

m(a, v | β0) = β0(0)(v) + β0(1)(v)a+ β0(2)(v)a2,

where, for example, β0(j)(v) = β0(j)(0) + β0(j)(1)v, j = 0, 1, 2. Such a
quadratic model allows for applications in which the optimal dose is neither
the maximum value nor the minimum, but something in between. For this
choice of working model we have that the optimal dose for subgroup V = v is
given by:

a∗(β0)(v) =
−β0(1)(v)

2β0(2)(v)
.

In particular, the optimal marginal dose is given by

a∗(β0) =
−β0(1)

2β0(2)
.

Likelihood and Identifiability: Firstly, we note that the likelihood of
the observed data set (O1, . . . , On) factorizes as:

PQ0,g(O1, . . . , On) =
n∏
i=1

Q10(Wi)Q20(Yi | Ai,Wi)
n∏
i=1

g(Ai | Wi),
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where the conditional density of Yi, given Ai = a, Wi, Q20(· | a,Wi), equals the
conditional density of Yi(a), given Wi, and Q10 denotes the marginal density
of W . In particular, it follows that the marginal causal dose response curve
ψ0(a) is identified by the Q0-factor of the likelihood by the following relation:

ψ0(a) = E0E0(Y | A = d(a)(W ),W ).

In general, under this same condition,

ψ0(a, v) = E0{E0(Y | A = d(a)(W ),W ) | V = v}.
Maximum Likelihood Estimation: Consider a model {Q2θ : θ} for the

distribution of Y (a), given W , or equivalently, the distribution Q02 of Y , given
A,W , and the corresponding maximum likelihood estimator θn:

θn = arg max
θ

n∑
i=1

logQ2θ(Yi | Ai,Wi).

We will leave the marginal distribution of W unspecified, so that this is es-
timated with the empirical probability distribution Q1n of W1, . . . ,Wn. The
model {Q2θ : θ} defines a working model Qw for the unknown components
Q0 = (Q10, Q20) of the likelihood of the observed data. Given an estimator θn,
we will use the short-hand notation Qθn = (Q1n, Q2θn) for the estimate of both
the marginal distribution of W as well as the conditional distribution of Y ,
given A,W . We also assume that we are given an estimate gn of the treatment
mechanism g0(A | W ) in the case that the latter is not known by design.

We wish to compute the targeted MLE for the nonparametric model tar-
geting β0, based on an initial maximum likelihood estimator Qθn based on
this working model Qw. For this purpose, we first need to know the efficient
influence curve of β0 in our nonparametric model for the observed data O.

Efficient influence curve: The efficient influence curve for β0 at PQ0,g0

is, up till a normalizing matrix, given by

D∗(Q0, g0) =
∑
a∈A1

I(A = d(a)(W ))
h(a, V ) d

dβ0
m(a, V | β0)

g0(A | X)
(Y −Q02(A,W ))

+
∑
a∈A1

h(a, V )
d

dβ0

m(a, V | β0)(Q02(d(a),W )−m(a, V | β0))

≡ D∗1(Q0, g0)(W,A, Y ) +D∗2(Q0)(W ),

where we defined Q02(d(a),W ) = EQ0(Y | A = d(a)(W ),W ) and Q02(a,W ) =
E(Y | A = a,W ), and we note that β0 = β(Q0) is a parameter of Q0 =
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(Q01, Q02). The IPTW component ofD∗(Q0, g0) isDIPTW (g0, β0) =
∑

a∈A1
I(A =

d(a)(W ))
h(a,V ) d

dβ0
m(a,V |β0)

g0(A|X)
(Y −m(a, V | β0)) and we have the usual DR-IPTW

representation D∗ = DIPTW − E(DIPTW | A,W ) + E(DIPTW | W ) of D∗.
Let

c(PQ0,g0 , g0, β0) = PQ0,g0

∑
a∈A1

I(A = d(a)(W ))
h(a, V )

g0(A | X)

d

dβ0

m(a, V | β0)
d

dβ0

m(a, V | β0)>

= EQ0

∑
a∈A1

h(a, V )
d

dβ0

m(a, V | β0)
d

dβ0

m(a, V | β0)>.

The efficient influence curve for β0 is given by c(PQ0,g0 , g0, β0)−1D∗(Q0, g0). The
efficient influence curve for a (e.g. lower dimensional) function of β0 can be
derived (as a linear mapping applied to the vector efficient influence curve D∗)
based on the δ-method. The targeted MLE could be equally well developed for
this function by the efficient influence curve of the lower dimensional function
instead, possibly up till a normalizing matrix. Below, we present the targeted
MLE for the whole β0.

Epsilon-fluctuation for Targeted MLE: Let {Q2θ(ε) : ε} be a path
through Q2θ at ε = 0 and satisfy the score condition d

dε
logQ2θ(ε)

∣∣
ε=0

=
D∗1(Q2θ, g0). (For the targeted MLE for functions of β0 we would also decom-
pose its efficient influence curve in a D∗1 component representing its projection
on functions of O with conditional mean zero, given A,W , and D∗2 compo-
nent representing its projections on the functions of W with mean zero). For
example, if Q2θ is a regression model of Y on A,W with normal errors with
constant variance, then we can simply add the extension εC∗(A,W ), where

C∗(A,W ) ≡
∑
a∈A1

I(A = d(a)(W ))
h(a, V ) d

dβ0
m(a, V | β0)

g0(A | X)
.

In other words, EQ2θ(ε)(Y | A,W ) = EQ2θ
(Y | A,W ) + εC∗(A,W ).

Similarly, if Q2θ is a logistic regression of a binary Y on A,W , then we

simply add ε
∑

a∈A1

h(a,V ) d
dβ0

m(a,V |β0)

g0(A|X)
to the logit of Q2θ(1 | A,W ). In other

words,

logitEQ2θ(ε)(Y | A,W ) = logitEQ2θ
(Y | A,W ) + εC(A,W ).

In both cases, these ε extensions have a score at ε = 0 equal to D∗1(Q2θ, g0).
Making the epsilon-covariate extension independent of β0: The

targeted MLE can be obtained in one maximum likelihood step determining
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the maximum likelihood estimator of ε in the case that the epsilon-covariate
C(A,W ) does not depend on β0. In the case that m(a, V | β) is a linear
regression model, say m(a, V | β) = β(a, V ), then h(a, V ) d

dβ0
m(a, V | β0) =

h(a, V )(a, V )> so that indeed the ε-covariate is independent of β0 for each
choice of h.

In the case that m(a, V | β) is a logistic linear regression model, say,
m(a, V | β0) = 1/(1 + exp(−β0(a, V )), then we recommend to select h(a, V ) =
h1(a, V )/(m(a, V | β0)(1−m(a, V | β0)) for some h1 so that h(a, V ) d

dβ0
m(a, V |

β0) reduces to h1(a, V )(a, V )> and is thus independent of β0. Similarly, if
m(a, V | β) is a log linear regression model (modelling a causal relative risk),
saym(a, V | β) = exp(β(a, V )), then we could select h(a, V ) = h1(a, V )/m(a, V |
β0) for some h1 so that h(a, V ) d

dβ0
m(a, V | β0) reduces to h1(a, V )(a, V )> so

that the ε-covariate is thus independent of β0 again.
The one-step targeted MLE: Given an estimate gn of the treatment

mechanism g0, let εn be the solution of

0 =
∑
i

D∗1(Q2θn(εn), gn)(Oi).

In the above two linear and logistic regression ε-extensions, and under the

assumption that the ε-extension covariate C(A,W ) =
∑

a∈A1

h(a,V ) d
dβ0

m(a,V |β0)

gn(A|X)

does not depend on β0, it follows that

εn = arg max
ε

n∑
i=1

logQ2θn(ε)(Oi)

is the maximum likelihood estimator over ε.
We call βn = β(Q1n, Q2θn(εn)) corresponding with the updated Qθn(εn) the

targeted MLE of β0. Recall the above mentioned identity

0 = EQ01

∑
a∈A1

h(a, V )
d

dβ0

m(a, V | β0)(Q02(d(a),W )−m(a, V | β0)),

which defines β0 = β(Q01, Q02) as a function of the marginal distribution Q01

of W and the conditional distribution (i.e., mean) Q02, of Y , given A,W .
Let βn = β(Q1n, Q2θn(εn)) be the targeted MLE, where Q1n is the empirical
probability distribution for the marginal distribution of W . It follows that,
given Q1n and Q2θn(εn), βn can be defined as the solution of

0 =
1

n

n∑
i=1

∑
a∈A1

h(a, Vi)
d

dβn
m(a, Vi | βn)(m(a, V | βn)−Q2θn(εn)(d(a),Wi))).
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Equivalently, one can view βn as a weighted least squares solution of the re-
gression of Q2θn(εn)(d(a),Wi) on the realistic MSM m(a, Vi | β):

βn = arg min
β

∑
a∈A1

h(a, Vi)(Q2θn(εn)(d(a),Wi)−m(a, Vi | β))2.

The targeted MLE as double robust estimating function based
estimator: It is also important to note that

0 =
n∑
i=1

D∗2(Qθn(εn)) = 0,

so that
0 =

∑
i

D∗(Qθn(εn), gn)(Oi).

Let’s now use the estimating function representation of the efficient influence
curve,

D∗(β,Q, g) =
∑
a∈A1

I(A = d(a)(W ))
h(a, V ) d

dβ
m(a, V | β)

g(A | X)
(Y −Q2(A,W ))

+
∑
a∈A1

h(a, V )
d

dβ
m(a, V | β)(Q2(d(a),W )−m(a, V | β)),

where Q2(a,W ) = EQ(Y | A = a,W ) and Q2(d(a),W ) = EQ(Y | A =
d(a)(W ),W ). We haveD∗(Q, g) = D∗(β(Q), Q, g) so that the fact that the tar-
geted MLEQθn(εn) solves the efficient influence curve equation, PnD

∗(Qθn(εn), gn) =
0, implies that the targeted MLE βn = β(Qθn(εn)) solves PnD

∗(βn, Qθn(εn), gn) =
0. Thus the targeted MLE βn is a solution of the double robust IPTW esti-
mating function:

0 =
∑
i

D∗(βn, Qθn(εn), gn).

As a consequence, we can analyze βn in the same manner as we analyze the
double robust IPTW estimator βnDR solving 0 =

∑
iD
∗(β,Qn, gn) for a given

estimator Qn, but where Qn is now simply playing the role of the updated
Qθn(εn) (van der Laan, Robins, 2003).

Statistical Inference: Thus (van der Laan, Robins, 2003), if gn = g0, un-
der regularity conditions, we have that the targeted MLE βn = β(Q1n, Q2θn(εn))
is consistent and asymptotically linear with influence curve c−1

0 D∗(β0, Q
∗, g0),
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where c0 = c(PQ0,g0 , g0, β0) is the derivative matrix defined above and Q∗ de-
notes the limit of Qθn(εn) (which is allowed to be misspecified):

βn − β0 =
1

n

n∑
i=1

c−1
0 D∗(Q0, g0)(Oi) + oP (1/

√
n).

If the estimator gn of g0 is a maximum likelihood estimator for a correctly
specified model for g0, then this influence curve is known to be conservative
and can thus still be used for conservative first order statistical inference. If
one wants statistical inference in the double robust model only assuming that
either gn or Qθn(εn) is consistent, then we recommend to use the bootstrap.

2 Targeted MLE of causal effect of point treat-

ment on survival.

Let O = (W,A, T = T (A)) be the observed data structure on an experimental
unit, and let X = (W, (T (a) : a)) denote the full data on the unit consisting of
the counterfactual survival times, and baseline covariates. Let Sa(·) = P (Ta >
·) be the treatment specific survival function. For a particular time point t we
define an effect of treatment A on survival at time t as

θ0(t) ≡ f(S1(t), S0(t))

for some function (x, y) → f(x, y). Let f1(x, y) = d
dx
f(x, y) and f0(x, y) =

d
dy
f(x, y) denote the two first order derivatives of f . The efficient influence

curve for θ0(t) at PQ,g in a nonparametric model, is thus given by

ICt = f1(S1(t), S0(t))IC1t + f2(S1(t), S0(t))IC0t,

where

IC1t = (Y (t)−Q(t)(A,W ))
I(A = 1)

g(1 | W )
+Q(t)(1,W )− S1(t)

IC0t = (Y (t)−Q(t)(A,W ))
I(A = 0)

g(0 | W )
+Q(t)(0,W )− S0(t).

Here g(a | W ) = P (A = a | W ) denotes the treatment mechanism, Y (t) =
I(T > t), and Q(t)(A,W ) = P (T > t | A,W ).

For example, if fCOXPH(S1(t), S0(t)) = log S1(t)/ logS0(t), then we have

ICt,COX =
1

S1(t) logS0(t)
IC1t − 1

S0(t) log2 S0(t)
IC0t.
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If fAR(S1(t), S0(t)) = S1(t) − S0(t) (AR stands for additive risk), we have
ICt,AR = IC1t − IC0t. If fRR(S1(t), S0(t)) = log S1(t)/S0(t), then

ICt,RR =
1

S1(t)
IC1t − 1

S0(t)
IC0t.

Finally, if fOR(S1(t), S0(t)) = log S1/(1− S1)/S0/(1− S0)(t), then

ICt,OR =
1

S1(t)
IC1t +

1

1− S1(t)
IC1t − 1

S0(t)
IC0t − 1

1− S0(t)
IC0t.

Let τ be a set of time-points or indices indexing such time points, such
as a finite set of points within an interval [a, b]. Let IC = (ICt : t ∈ τ) and
Σ = EIC(O)IC>(O) be the corresponding covariance matrix of this vector
influence curve.

For simplicity, we focus here on a simple working model θ0(t) = γ0 =
exp(β0), but our proposed class of tests of the null hypothesis H0 : S1 = S0

generalize to general working models θ0(t) = m(t | β0) for some parametric
model m(t | β0) indexed by possibly multivariate parameter β0. In the latter
case, our test statistic would be based on a test of H0 : β0 = 0, where the null
value 0 is so that m(t | 0) corresponds with the null hypothesis being true.

Let θn(t) be a targeted MLE of θ0(t) in the nonparametric model (so not
assuming the working model) based on data reduction (W,A, Y (t) = I(T >
t)). Let Σn be an estimate of the covariance matrix Σ. Let

γn = arg min
γ

(θn − γ)>t∈τΣ
−1
n (θn − γ)t∈τ .

Let
γ0 = arg min

γ
(θ0 − γ)>t∈τΣ

−1(θ0 − γ)t∈τ .

Under the assumption that the working model m(t | β0) (in this case exp(β0))
is correct, the first order asymptotics of the estimator γn is not affected by
the estimating Σ so that we can just study the estimator γn with Σn = Σ, i.e.
treating Σ as known. We wish to find the influence curve of γn as an estimator
of γ0.

For this purpose we note that

γn = g(θn) ≡ arg min
γ

∑
k,l∈τ

Σ−1(k, l)(θn(k)− γ)(θn(l)− γ).

Setting the derivative w.r.t γ equal to zero gives us the following equation for
γn:

0 =
∑
k,l∈τ

Σ−1(k, l)(θn(k) + θn(l)− 2γ).
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This shows that

γn = g(θn) ≡
∑

k,l∈τ Σ−1(k, l) θn(k)+θn(l)
2∑

k,l∈τ Σ−1(k, l)
.

This teaches us that (treating Σ as given)

γn − γ0 = g(θn)− g(θ0)

=

∑
k,l∈τ Σ−1(k, l) θn(k)−θ0(k)+θn(l)−θ0(l)

2∑
k,l∈τ Σ−1(k, l)

≈ 1

n

n∑
i=1

∑
k,l∈τ Σ−1(k, l) ICk(Oi)+ICl(Oi)

2∑
k,l∈τ Σ−1(k, l)

≡ 1

n

n∑
i=1

ICγ(Oi),

where ICγ denotes the influence curve of γn as an estimator of γ0.

Right censoring. If T is subject to right censoring, then we replace the
TMLE θn(t) by the targeted MLE of θ0(t), or of the bivariate parameter
(S0(t), S1(t)) in the nonparametric model based on the data structure (W,A, I(T ≤
C),min(T,C)). This targeted MLE is presented elsewhere. An ad hoc ineffi-
cient solution would be to use the targeted MLE for the reduced data struc-
ture (W,A,∆(t) = I(Y (t) observed),∆(t)Y (t)), treating Y (t) as missing, or,
equivalently, apply IPCW weights I(∆(t) = 1)/Πn(t, A,W ) when estimating
the regressions Q(t)(A,W ) = E(Y (t) | A,W ), where Π(t, A,W ) = P (∆(t) =
1 | A,W ) and Πn is an estimator thereof. The influence curve is now the
same as above but IC0t and IC1t are now modified by weighing the relevant
components of IC0t and IC1t with I(∆(t) = 1)/Π(t, A,W ).

3 Targeted MLE of causal effect on mean count

in nonparametric model based on Poisson

regression.

Let O = (W,A, Y = Y (A)), and let the model for its distribution P0 be
nonparametric. Our goal is to estimate a real valued function of EY1 and
EY0. We will compute the targeted MLE of the joint parameter (EY1, EY0)
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and map it into a locally efficient targeted maximum likelihood estimator of
any function g(EY1, EY0) by simple substitution.

Recall that the efficient influence curve of EY1 is I(A = 1)/g(1 | W )(Y −
Q(A,W )) + Q(1,W ) − EY1. The component of this efficient influence curve
correspnding with the tangent space of the conditional distribution of Y given
A,W is thus I(A = 1)/g(1)(Y − Q(A,W )). Similarly, the component of
the efficient influence curve of EY0 corresponding with this tangent space of
Y , given A,W , is I(A = 0)/g(0)(Y − Q(A,W )). To compute the targeted
maximum likelihood estimator we need an initial estimator P 0(Y |A,W ) and
then extend it with a parameter ε that has score equal to these two scores
(I(A = 1)/g(1 | W )(Y −Q(A,W )), I(A = 0)/g(0 | W )(Y −Q(A,W ))). Given
such an ε-fluctuation at the initial fit, we will compute the MLE of ε, and
iterate the corresponding updating process for estimation of Y , given A,W ,
if needed. The resulting iterative targeted maximum likelihood estimator will
be double robust locally efficient.

As a special case, we can choose as initial model a Poisson regression:

dP0(Y |A,W ) = Q0(A,W )Y exp(−Q0(A,W ))/Y !,

where Q0(A,W ) = E0(Y |A,W ) = exp(h0(A,W )) for some function h0. A
particular model for h0 is a linear model h0(A,W ) = beta0 + beta1A+ beta2W ,
but for now consider an arbitrary model. Let Q0(A,W ) = exp(h0(A,W ))
be an initial estimator of Q0(A,W ) such as the MLE according to a Poisson
regression model.

We now define an extension P (Q0(ε))(Y |A,W ) by substituting for Q0 =
E(Y |A,W ) Q0(ε) = exp(h0 + εC(A,W )) with C(A,W ) a clever covariate
specified below. The score of ε at ε = 0 equals C(A,W )(Y − Q0(A,W )).
Thus, if we choose C(A,W ) = (I(A = 1)/g(1 | W ), I(A = 0)/g(0 | W )),
then the score of ε at ε = 0 equals the wished two efficient influence curve
components.

Note that in a randomized trial adding the covariate C(A,W ) is equivalent
to adding A. Let’s consider this randomized trial application. The TMLE is
obtained by adding to the initial h0 these two covariates and computing the
MLE of its coefficient ε, and iterate this process. However, if the initial h0 is
already a MLE and h0(A,W ) contains a main term A, then in a randomized
trial C(A,W ) is equivalent with the already present A. So if A is in model h0

then the MLE of ε equals 0.
So if we do not estimate g(A|W ) in C(A,W ), but set it at its true value

(say) 0.5, then the TMLE is just the original ML estimator. As a conse-
quence, any function g(EY1, EY0) can be locally efficiently estimated with
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g(EnY1, EnY0), where (EnY1, EnY0) is the MLE obtained by substituting Q0.
Thus, EnY1 = 1/n

∑
i exp(h

0(1,Wi)) and EnY0 = 1/n
∑

i exp(h
0(0,Wi)).

In particular, for the simple maximum likelihood model fit h0(A,W ) =
β0 + β1A+ β2W , it follows that the TMLE of g(EY1, EY0) = EY1/EY0 equals
exp(beta1).

To conclude, in a randomized trial, the Poisson regression estimator of any
g(EY1, EY0) is locally efficient, since it equals the TMLE with initial density
estimator the MLE according to Poisson regression in nonparametric model.

4 Obtaining special Robustness of Targeted

MLE for parametric MSM in randomized

trial.

Let O = (W,A, Y = YA) and assume that A is independent of X = (W, (Ya :
a)), given V ⊂ W . Consider a marginal structural model E(Ya | V ) =
r(aβ1(1, V ) + β2(1, V )) for some link function r. In general, we will consider
models of the form

E(Ya | V ) = mβ(a, V ) = r

(
J∑
j=0

β1ja
jhj(V ) +

J∑
j=0

β2jgj(V )

)
,

where gj(V ) = E(Aj | V )hj(V )). If A is completely randomized then E(Aj |
V ) is just a constant so that these models reduce to E(Ya | V ) = r(

∑
j β1ja

jhj(V )+∑
j β2jhj(V )).
In the previous section we defined a class of targeted MLE’s for this para-

metric MSM, where we treated the parametric MSM as a working model so
that it is used to define a causal parameter in a nonparametric model for
the observed data distribution. Each choice of double robust estimating func-
tion indexed by a function h(A, V ) (equal to h1(A, V ) d

dβ
mβ(A, V ) for some

h1) corresponded with different nonparametric extensions (i.e., weighted least
squares projections) of the causal parameter and thereby implied different
targeted MLE’s. That is, if h = h1

d
dβ
mβ, then

β(Q) = arg min
β
EQ
∑
a

h1(a, V )(mβ(a, V )− EQ(Ya | V ))2,

which solves

0 = EQ
∑
a

h1(a, V )
d

dβ
mβ(a, V )(Q(a,W )−mβ(a, V )),
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where Q(a,W ) = EQ(Y | A = a,W ). We showed that these h-specific targeted
MLE could be implemented by adding to a linear or logistic regression fit Q0

of Y , given A,W , an ε-extension εh(A, V )g0(A | V )/g0(A | W ), which in a
randomized trial corresponds with εh(A, V ). If h does not depend on β itself,
then the targeted MLE will converge in one step and, if the covariate h(A, V )
was already included in the initial logistic or linear regression fit, then the
targeted MLE simply reduces to this initial fit.

We will consider two link functions of particular interest providing a sur-
prising (i.e., more than asked for) robustness of a particular targeted MLE for
this parametric MSM, corresponding with a particular choice of h(A, V ): the
additive link function r(x) = x and the multiplicative link function r(x) =
exp(x). In addition, we will also study a marginal structural exponential
regression model for a survival outcome which features the same special ro-
bustness of the targeted MLE.

The purpose of this section is to show that if r(x) = x or r(x) = exp(x),
then a particular choice of h results in a corresponding targeted MLE which
is robust against misspecification of E(Y0 | V ) in the sense that it yields a
consistent and asymptotically linear estimator of β10 even if the V -component
in the MSM is mis-specified. That is, if r(x) = x, then this targeted MLE
(in the nonparametric model for this particular h-extension of the parametric
MSM) yields a consistent and asymptotically linear estimator in the semi-
parametric MSM E(Ya | V )−E(Y0 | V ) =

∑
j βja

jhj(V ), and if r(x) = exp(x),
then the targeted MLE yields a consistent and asymptotically linear estimator
in the semi-parametric MSM E(Ya | V ) = r0(V ) exp(

∑
j βja

jhj(V )), where r0

is unspecified.
In order to establish these results we just need to show that the targeted

MLE β1n solves an unbiased estimating equation for the true β10, even if
the model components modelled by β2-terms are misspecified. Given the effi-
cient influence curve Dh(Q, g0) for the particular h-extension of the parametric
MSM, we need to study the equation E0D(Q, g0) = 0 and show that such a so-
lution Q implies that β1(Q) = β1(Q0). We remind the reader that the targeted
MLE Qn of Q0 solves PnD(Qn, g) = 0. For the sake of presentation we some-
times consider the simple linear parametric MSM and that A is completely
randomized so that E(A | V ) = E(A), and in our theorems we present the
general results. The efficient influence curve of the h-specific MSM parameter
β can be represented as:

Dh(Q, g0) = hβ(A, V )(Y −Q(A,W ))

+
∑
a

g0(a | V )hβ(a, V )(Q(a,W )− r(aβ1(1, V ) + β2(1, V ))),
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where β = β(Q), hβ is a user supplied choice defining the non-parametric ex-
tension of β beyond the working model. That is, hβ(A, V ) = h1(A, V ) d

dβ
m(A, V |

β), where h1 can be viewed as a weight function, possibly also depending
on β (e.g. involving inverse weighting by variance). Let E0(Ya | V ) =
r(aβ10(1, V ) + r0(V )). We have

E0Dh(Q, g0) = E0hβ(A, V )(Y − r(aβ1(1, V ) + β2(1, V ))

= E0

∑
a

g0(a | V )hβ(a, V )(Ya − r(aβ1(1, V ) + β2(1, V )))

= E0

∑
a

g0(a | V )hβ(a, V ){r(aβ10(1, V ) + r0(V ))− r(aβ1V + β2V )}.

Thus, if Q solves E0Dh(Q, g0) = 0, then this implies an equation for β(Q),
and we wish to establish that β1(Q) = β10 = β1(Q0). We will assume that the
solution for β is unique.

4.1 Robustness of the targeted MLE for additive para-
metric MSM.

In this subsection we consider the case that r(x) = x, h(a, V ) = d
dβ
rβ(a, V )/σ2(V ) =

(1, a, aV, V )/σ2(V ) for arbitrary given function σ2(V ). A natural choice is
σ2(V ) = 1. We note that this choice of h does not depend on β so that the
targeted MLE will converge in a single step, and if the initial logistic or lin-
ear regression fit Q0 already includes (1, A,AV, V ), then the targeted MLE
reduces to the initial regression Q0 of E0(Y | A,W ).

Let’s now consider a solution with β1 = β10, which gives the following
equation for β2:

0 = E0

∑
a

g0(a, | V )
1

σ2(V )
(1, a, aV, V )>{r0(V )− β2V }

= E0
1

σ2(V )
(1, E(A | V ), E(A | V )V, V )>{r0(V )− β2V }.

Since E(A | V ) and E(A | V )V are in the linear span of (1, V ), we have that
the latter equation is solved by β20 = arg minβ2 E0

1
σ2(V )

(r0(V )− β2V )2. Thus

this shows that the unique solution β(Q) satisfies β1(Q) = β10.

Theorem 1 Let O = (W,A, Y = YA) and assume that A is independent of
X = (W, (Ya : a)), given V ⊂ W . Let g0(A | X) = g0(A | V ) be the conditional
probability distribution function of A, given X. Consider parametric marginal
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structural models of the form E(Ya | V ) = mβ(a, V ) = r(
∑

j β1ja
jhj(V ) +∑

j β2jE(Aj | V )hj(V )) for r(x) = x. If A is completely randomized then

E(Aj | V ) is just a constant so that these models reduce to E(Ya | V ) =∑
j β1ja

jhj(V ) +
∑

j β2jhj(V )). The efficient influence curve of the h-specific
nonparametrically defined MSM parameter β can be represented as:

Dh(Q, g0) = h(A, V )(Y −Q(A,W ))

+
∑
a

g0(a | V )h(a, V )(Q(a,W )−
∑
j

β1ja
jhj(V )−

∑
j

β2jE(Aj | V )hj(V )),

where β = β(Q), and

h(a, V ) =
d

dβ
mβ(a, V )/σ2(V )

for arbitrary given function σ2(V ).
Let EQ0(Ya | V ) =

∑
j β10ja

jhj(V ) + r0(V )) for some β10 = β1(Q0) and r0.
We have that

E0D(Q, g0) = 0

is equivalent with

0 = E0

∑
a

g0(a | V )h(a, V ) {

∑
j

β10ja
jhj(V ) + r0(V )−

∑
j

β1ja
jhj(V )−

∑
j

β2jE(Aj | V )hj(V ))

}
.

Assume that the solution of this equation for β is unique. Then any Q solving
E0D(Q, g0) = 0 satisfies β1(Q) = β10 = β1(Q0).

4.2 Robustness of targeted MLE for multiplicative para-
metric MSM.

Now, we consider the case r(x) = exp(x). Recall that E0Dh(Q, g0) = 0 is
equivalent with

0 = E0

∑
a

g0(a | V )hβ(a, V ) {exp(aβ10V ) exp(r0(V ))−− exp(aβ1V ) exp(β2V )} .

We will now have to make the choice hβ = d
dβ
mβ/m

2
β in order to achieve the

wished robustness of the corresponding targeted MLE. Consider a solution
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with β1 = β10, which gives the equation:

0 = E0

∑
a

g0(a | V )hβ10,β2(a, V ) exp(β10aV ){exp(r0(V ))− exp(β2V )}

= E0

∑
a

g0(a | V )
1

exp(β2V )
(1, V, a, aV )>{exp(r0(V )− exp(β2V )}

= E0
1

exp(β2V )
(1, V, E(A | V ), E(A | V )V ){exp(r0(V )− exp(β2V )}.

Consider now the solution β20 = arg minβ2 E0
1

exp2(β2V )
{exp r0(V )−exp(β2V )}2,

which solves the wished equation since E(A | V ) = E(A). Thus this shows
that the unique solution β(Q) satisfies β1(Q) = β10.

Theorem 2 Let O = (W,A, Y = YA) and assume that A is independent of
X = (W, (Ya : a)), given V ⊂ W . Let g0(A | X) = g0(A | V ) be the conditional
probability distribution function of A, given X. Consider parametric marginal
structural models of the form E(Ya | V ) = mβ(a, V ) = r(

∑
j β1ja

jhj(V ) +∑
j β2jE(Aj | V )hj(V )) for r(x) = exp(x). If A is completely randomized,

then E(Aj | V ) is just a constant so that these models reduce to log(E(Ya |
V )/E(Y0 | V )) =

∑
j β1ja

jhj(V ) +
∑

j β2jhj(V )).
The efficient influence curve of the h-specific nonparametric extended para-

metric MSM parameter β can be represented as:

Dh(Q, g0) = hβ(A, V )(Y −Q(A,W ))

+
∑
a

g0(a | V )hβ(a, V )

(
Q(a,W )− exp

(∑
j

β1ja
jhj(V )−

∑
j

β2jgj(V )

))
,

where gj(V ) = E(Aj | V )hj(V ), β = β(Q), and hβ is a user supplied choice
defining the non-parametric extension of β beyond the working model. That
is, if hβ = h1β

d
dβ
mβ, then

β(Q) = arg min
β
EQ
∑
a

h1β(Q)(a, V )(mβ(a, V )− EQ(Ya | V ))2.

which solves

0 = EQ
∑
a

h1β(Q)(a, V )
d

dβ
mβ(a, V )(Q(a,W )−mβ(a, V )),
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where Q(a,W ) = EQ(Y | A = a,W ). We set

hβ(a, V ) =

d
dβ
mβ(a, V )

m2
β(a, V )

= ((ajhj(V ) : j), (E(Aj | V )hj(V ) : j))>/mβ(a, V )

≡ h ∗ (a, V )/mβ(a, V ).

Let EQ0(Ya | V ) = exp
(∑

j β10ja
jhj(V ) + r0(V )

)
for some β10 = β1(Q0)

and r0. We have that
E0D(Q, g0) = 0

is equivalent with

0 = E0

∑
a

g0(a | V )hβ(a, V ) {

exp

{∑
j

β10ja
jhj(V ) + r0(V )

}
− exp

{∑
j

β1ja
jhj(V ) +

∑
j

β2jE(Aj | V )hj(V )

}}
.

Assume that the solution of this equation for β is unique. Then any Q satisfy-
ing E0D(Q, g0) = 0 satisfies β1(Q) = β10(= β1(Q0)) and β2(Q) is the solution
of

0 = E0
1

exp
(∑

j β2jgj(V )
)(gj(V ) : j)>{exp(r0(V )− exp(β2V )}.

Implementation of this h-specific targeted MLE for the parametric MSM
requires now adding a covariate hβ0

n
(A, V ) = d

dβ0
n
mβ0

n
/m2

β0
n

to (e.g. ) an initial
logistic regression fit, where this covariate depends on β. As a consequence,
the computation of this targeted MLE requires now iteration in order to solve
the efficient influence curve equation PnD(Qn, g0) = 0. Normally, one might
implement the targeted MLE by adding the covariate h = d

dβ
mβ/mβ to a

logistic regression fit, where this covariate h does not depend on β so that the
targeted MLE converges in a single update step (where the single update step
might not even be necessary since the current regression fit Q0

n might already
contain these covariates). Apparently, among the class of targeted MLE for
the parametric multiplicative MSM, indexed by different choices h, the choice
which happens to give the surprising robustness corresponds with adding a
special covariate hβ depending on β so that iteration of the targeted MLE
update step is now necessary.
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4.3 Robustness of targeted MLE for parametric marginal
structural exponential regression model.

The robustness of the targeted MLE for the parametric MSM P (Ya = 1 | V ) =
exp(a(β1V )) exp(β2V ) w.r.t. miss-specification of P (Y0 = 1 | V ), implying
the result that the targeted MLE provides a locally efficient estimator of the
relative risk exp(aβ10V ) in the semi-parametric MSM P (Ya = 1 | V )/P (Y0 =
1 | V ) = exp(aβ1V ), motivates us to see if we can extend this result to marginal
structural exponential hazard regression models.

Suppose we observe O = (W,A, (YA(t) : t)), where W are baseline co-
variates, A is treatment, and Ya(t) is a time-dependent counting process. We
assume that A is independent of X = (W, (Ya : a)), given V , and let g0(· |
X) = g0(· | V ) be the conditional probability distribution of A, given V .

Consider now the model

E(dYa(t) | Ȳa(t−), V ) = Y ∗a (t)λβ(a, V )

≡ Y ∗a (t) exp(
J∑
j=0

β1ja
jhj(V ) +

J∑
j=0

β2jgj(V )),

where gj(V ) ≡ E(Aj | V )hj(V ) and Y ∗a (t) is an indicator of Ya(t) being at
risk of jumping at time t, which is a function of Ȳa(t−), V . In other words,
if Ya(t) = I(Ta ≤ t), then this model assumes an exponential distribution for
Ta, given V , with mean given by λβ(a, V ). An example is the simple linear
parametric MSM

E(dYa(t) | Ȳa(t−), V ) = Y ∗a (t)λβ(a, V ) = Y ∗a (t) exp (aβ1(1, V ) + β2(1, V )) ,

with β1 and β2 two dimensional parameters,
The purpose of this section is to show that the targeted MLE is robust

against miss-specification of E(dY0(t) | Ȳ0(t−), V ) in the sense that it yields a
consistent and asymptotically linear estimator of β10 even if the V -component∑

j β2jgj(V ) in the MSM is miss-specified.
In order to establish this result we need to show that the targeted MLE

β1n solves an unbiased estimating equation for the true β10, even if the model
components modelled by β2-terms is misspecified. Given the efficient influence
curve D(Q, g0) for the parametric MSM the targeted MLE is based upon, we
need to study the equation E0D(Q, g0) = 0 and show that such a solution Q
implies that β1(Q) = β1(Q0): recall that the targeted MLE Qn of Q0 solves
PnD(Qn, g) = 0. We represent λβ(a, V ) = λ1β1(a, V )λ2β2(V ). The efficient
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influence curve of the MSM parameter β can be represented as:

D(Q, g0) =
∑
t

hβ(A, V ){dYA(t)− Y ∗A(t)λβ(A, V )}

−
∑
t

hβ(A, V ){q(t, A,W )− Q̄(t, A,W )λβ(A, V )}

+
∑
t

∑
a

g0(a | V )hβ(a, V ){q(t, a,W )− Q̄(t, a,W )λβ(a, V )},

where β = β(Q), q(t, A,W ) = E(dY (t) | A,W ) and Q̄(t, A,W ) = E(Y ∗(t) |
A,W ), and hβ is a user supplied choice defining the non-parametric extension
of β beyond the working model (defined as solution of expectation of last
term). We will choose hβ(A, V ) = d

dβ
λβ(A, V )/λβ(A, V ). Let the true causal

hazard be given λ0(a, V ) = exp(aβ10(1, V ) + r0(V )) = λ01(a, V )λ02(V ) for
some function r0(V ), and let Q̄∗0(a, t, V ) = E0(Y ∗a (t) | V ). We have

E0D(Q, g0) = E0

∑
t

hβ(A, V )(dYA(t)− Y ∗A(t)λβ(t, A, V ))

= E0

∑
t

∑
a

g0(a | V )hβ(a, V )(dYa(t)− Y ∗a (t)λβ(t, a, V ))

= E0

∑
t

∑
a

g0(a | V )h(a, V )Y ∗a (t)(λ0(a, V )− λβ(a, V ))

= E0

∑
t

∑
a

g0(a | V )h(a, V )Q̄∗0(a, t, V )(λ0(a, V )− λβ(a, V ))

= E0

∑
t

∑
a

g0(a | V )h(a, V )Q̄∗0(a, t, V ) {λ10(a, V )λ20(V )− λ1β1(a, V )λ2β2(V )}

= E0

∑
t

∑
a

g0(a | V )h(a, V )Q̄∗0(a, t, V )λ2β2(V ) {λ10(a, V )− λ1β1(a, V )}

+E0

∑
t

∑
a

g0(a | V )h(a, V )Q̄∗0(a, t, V )λ10(a, V ) {λ20(V )− λ2β2(V )} .

We assume that this equation in β has a unique solution. As a candidate
solution we consider a solution with β1 = β10. Note that this choice makes
the first term equal to zero. We now consider the second term. Firstly, we
assume that Q̄∗0(a, t, V )λ0(t, a, V ) (e.g., if Ya(t) = I(Ta ≤ t), then it equals
P (Ta = t | V )) is the conditional density in t so that

∑
t

Q̄∗0(a, t, V )λ10(a, V ) =

∑
t Q̄
∗
0(a, t, V )λ0(t, a, V )

λ20(V )
= 1/λ02(V ).
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Note that hβ(a, V ) = (h1(a, V ), h2(V )). So the second term corresponds with
the following two equations for β2:

E0E0(h1(A, V ) | V )
1

λ20(V )
{λ20(V )− λ2β2(V )}

E0h2(V )
1

λ20(V )
{λ20(V )− λ2β2(V )} .

Now, note that our choice satisfies:

hβ(A, V ) =

d
dβ
λβ(A, V )

λβ(A, V )
= ((Ajhj(V ) : j), (E(Aj | V )hj(V ) : j)),

where h1(A, V ) = (Ajhj(V ) : j) and h2(V ) = (E0(Aj | V )hj(V ) : j). So
for this choice we have E0(h1(A, V ) | V ) = h2(V ), which proves that β20 =
arg maxβ2 E0h2(V )/λ20(V ) {λ20 − λ2β2}2 (V ) solves both equations.

This proves the following theorem.

Theorem 3 Consider the model

E(dYa(t) | Ȳa(t−), V ) = Y ∗a (t)λβ(a, V )

≡ Y ∗a (t) exp(
J∑
j=0

β1ja
jhj(V ) +

J∑
j=0

β2jgj(V )),

where gj(V ) ≡ E(Aj | V )hj(V ) and Y ∗a (t) = I(Ta ≥ t) is an indicator of
Ya(t) = I(Ta ≤ t) being at risk of jumping at time t.

Consider the efficient influence curve of the MSM parameter β

D(Q, g0) =
∑
t

hβ(A, V ){dYA(t)− Y ∗A(t)λβ(A, V )}

−
∑
t

hβ(A, V ){q(t, A,W )− Q̄(t, A,W )λβ(A, V )}

+
∑
t

∑
a

g0(a | V )hβ(a, V ){q(t, a,W )− Q̄(t, a,W )λβ(a, V )},

where β = β(Q), q(t, A,W ) = E(dY (t) | A,W ) and Q̄(t, A,W ) = E(Y ∗(t) |
A,W ), and

hβ(A, V ) =
d

dβ
λβ(A, V )/λβ(A, V ) = ((Ajhj(V ) : j), (E(Aj | V )hj(V ) : j)).
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Let the true causal hazard be given by λ0(a, V ) = exp(aβ10(1, V ) + r0(V )) =
λ01(a, V )λ02(V ) for some function r0(V ), represent λβ = λ1β1λ2β2, and let
Q̄∗0(a, t, V ) = E0(Y ∗a (t) | V ). We have

E0D(Q, g0) = 0

implies

0 = E0

∑
a

g0(a | V )h(a, V )
1

λ0(a, V )
λ2β2(V ) {λ10(a, V )− λ1β1(a, V )}

+E0

∑
a

g0(a | V )h(a, V )
1

λ0(a, V )
λ10(a, V ) {λ20(V )− λ2β2(V )} .

We assume that this equation in β has not more than one solution. Then
any Q solving E0D(Q, g0) = 0 satisfies β1(Q) = β1(Q0) = β10, and β2(Q) =
arg maxβ2 E0h2(V )/λ20(V ) {λ20 − λ2β2}2 (V ).

5 Relation between efficiency of targeted MLE

of causal effect in randomized trial and the

prediction performance of initial regression

estimator.

The approach in this section can be applied in general. Let

D1Q(W,A, Y ) =
I(A = 1)

g0(1)
(Y −Q(1,W )) +Q(1,W )

be the influence curve of the targeted MLE of EY1 = E0E0(Y | A = 1,W )
based on i.i.d. sampling from p0 = Q0g0, using the true known treatment
mechanism g0, and an initial regression estimator Q0

n of E0(Y | A = 1,W )
converging to a Q as n → ∞. The variance of this influence curve DQ under
P0 = Q0g0 as a function of Q is minimized at the true Q = Q0(1,W ) = E0(Y |
A = 1,W ), which shows that the targeted MLE of the treatment specific
mean EY1 in a randomized trial is most efficient if one correctly estimates
the true Q0(A,W ). In this section, we investigate how the variance of D1Q

(and thus also D0Q) under P0 depends on Q so that we can determine in
what sense Q should approximate Q0. This will teach us that to obtain a
maximally efficient targeted ML estimator of the causal effect in randomized
trials one should use machine learning algorithms combined with an aggressive
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use of cross-validation as in super learning (?) to obtain the initial regression
estimator.

By Theorem 1 in Rubin and VanderLaan (2007), we have

VARP0D1Q(O) = C0 + E0
1− g0(1)

g0(1)
(Y1 −Q(1,W ))2 (2)

= C0 + E0I(A = 1)
1− g0(1)

g0(1)2
(Y −Q(A,W ))2, (3)

where C0 does not depend on Q. Equivalently,

VARP0D1Q(O) = C10 + E0
1− g0(1)

g0(1)
(Q0(1,W )−Q(1,W ))2,

where C10 does not depend on Q.
Thus, the asymptotic variance of the targeted MLE ψn(Qn) = 1

n

∑
iQn(1,Wi)

of EY1 equals a constant (only having to do with the data generating distri-
bution but not with the choice Qn) plus the asymptotic squared error loss risk

E0
I(A=1)(1−g0(1))

g0(1)2
(Y − Q(A,W ))2 of the asymptotic limit of Qn. This proves

that any improvement in the squared error risk of Qn on observations with
A = 1 immediately translates (in a linear manner) in a gain in variance for
the resulting estimator EY1. To be specific, let’s consider a randomized trial
with g0(1) = 0.5. In this case, we have that the asymptotic variance of the
targeted MLE of EY1 equals a constant plus 2 ∗ E0I(A = 1)(Y − Q(1,W ))2.
In particular, given limits Q1 and Q2 corresponding with two targeted MLE
Q1n and Q2n, and a limit Q∗ = E(Y | A) of the targeted MLE ignor-
ing any covariates (and thereby corresponds with the unadjusted estimator∑

i YiI(Ai = 1)/
∑

i I(Ai = 1)), we have the relation

V AR(DQ1)− V AR(DQ∗)

V AR(DQ2)− V AR(DQ∗)
=
E0I(A = 1)(Y −Q∗(1,W ))2 − E0I(A = 1)(Y −Q1(1,W ))2

E0I(A = 1)(Y −Q∗(1,W ))2 − E0I(A = 1)(Y −Q2(1,W ))2
.

We can also relate the relative efficiency of the targeted MLE indexed by
Q1 relative to the targeted MLE indexed by Q∗ in terms of the gain in risk
w.r.t to squared error loss function defined as

RD1 ≡ E0I(A = 1)(Y −Q∗(1,W ))2 − E0I(A = 1)(Y −Q1(1,W ))2

and the variance V AR(DQ∗). That is,

RE1 ≡ V ARD1Q1

V ARD1Q∗
= 1 +

RD1

V ARD1Q∗
.
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Thus, a gain in prediction performance as measured by cross-validated risk of
the squared error loss function on the sample with A = 1 (i.e., RD1), and an
estimate of the standardized variance of the naive targeted MLE indexed by
Q∗ (i.e., V ARD1Q∗) maps into an estimate of the relative efficiency.

6 General strategy for constructing hardest ε-

submodels to define targeted MLE update.

Here we present a useful strategy for constructing a ε-fluctuation through an
initial fit P 0 of the probability distribution P0 of O in modelM with score at
ε = 0 equal to the efficient influence curve. Consider a modelM and an initial
model based estimate P 0 ∈ M of the true distribution P0 of O. Consider
a class of ε-extensions {P 0

h (ε) : ε} ⊂ M indexed by directions h. In most
of the applications presented here this corresponds with adding a covariate h
to an initial regression fit. As a next step, one computes the corresponding
set of scores S(P 0) =

{
S(h) = d

dε
log dP 0

h (ε)/dP 0
∣∣
ε=0

: h
}

of each of these h-
specific ε-fluctuations of the initial fit P 0 of the true probability distribution
P0. Let T⊥nuis(P

0) be a subset of the, or the whole, orthogonal complement of
the nuisance tangent space at P 0, as defined in van der Laan, Robins (2003)
and presented for many models, parameters of interest, and observed data
structures. Now, find an h∗ so that S(h) ∈ T⊥nuis(P

0). Then S(h) is in the
linear span of the components of the efficient influence curve, so that this choice
h∗ identifies a wished hardest sub-model {P 0

h∗(ε) : ε} through P 0. We illustrate
this approach in the following two applications for additive and multiplicative
variable importance.

7 The targeted MLE for model based additive

variable importance.

Let O = (W,A, Y ), A is the variable whose variable importance we target,
and Y is an outcome of interest. Assume the model

E0(Y | A,W )− E0(Y | A = 0,W ) = m(A,W | β0).

We wish to estimate β0 with a targeted MLE. In many applications the data
on one subject is a list of variables such as biomarkers, single nucleotide poly-
morphisms (SNP), gene expressions and so on, and an outcome of interest.
This additive variable importance parameter m(A,W | β0) represents the ef-
fect of one of these variables A on outcome Y adjusting for a set W . Simple
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models one might choose are linear models such as m(A,W | β0) = β0A or
m(A,W | β0) = A(β0W ). By carrying out the targeted MLE estimate of
β0 for each definition of a variable A and corresponding set W , separately,
one obtains a list of targeted MLE estimates of each variable importance and
corresponding p-values and standard error estimates. This has important ap-
plications in biomarker discovery and effect modification analysis. One impor-
tant application is that A represents a randomized treatment in a clinical trial
and W is set equal to a particular small subset Wj of a large list of biomark-
ers/genomic/genetic markers, where one can carry out this analysis for a large
set of possibly subsets Wj, j = 1, . . . , J .

In (Tuglus, van der Laan, 2007) we compare the practical performance
(based on simulated data) of this targeted MLE method for estimating the
above measure of variable importance and for obtaining a corresponding rank-
ing of the variables by their importance with the current methods for ranking
variables based on univariate linear regression and random forest.

We now proceed with deriving the targeted MLE using the method outlined
in the previous section, as is also presented in van der Laan, Rubin (2006).
The orthogonal complement of nuisance tangent space at P0 contains the class
of functions {h0(A | W )(Y − m(A,W | β0) − E(Y | A = 0,W ) : E(h0(A |
W ) | W ) = 0}, and the optimal index h∗0 corresponding with efficient influence
curve is such that

h∗0(A | W ) =

{
d

dβ0
m(A,W | β0)− E( d

dβ0
m(A,W | β0)/σ2(A,W ) | W )

E(1/σ2(A,W ) | W )

}
1

σ2(A,W )
.

If the conditional variance of Y , givenA,W , only depends onW , i.e., σ2(A,W ) =
σ2(W ), then this optimal index simplifies to

h∗0(A | W ) = { d

dβ0

m(A,W | β0)− E(
d

dβ0

m(A,W | β0) | W )} 1

σ2(W )
.

Consider the following ε-extension of an initial model based fit Q0(A,W ) =
m(A,W | β0) + r0(W ) of E(Y | A,W ):

Q0(ε)(A,W ) = m(A,W | β0 + ε) + r0(W ) + εr(W ).

Let Q0(ε)(Y | A,W ) be a normal distribution with mean Q0(ε)(A,W ) and
variance σ2(A,W ). We have that

S(r) =
d

dε
logQ0(ε)(Y | A,W )

∣∣∣∣
ε=0

=

{
d

dβ0
m(A,W | β0) + r(W )

}
1

σ2(A,W )
(Y −Q0(A,W )).
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In order to make the right-hand side equal to a score in the orthogonal comple-
ment of the nuisance tangent space at Q0, and thereby equal to the efficient in-
fluence curve up till a normalizing matrix, where we remind the reader that the
latter orthogonal complement contains the functions {(h(A,W )−E(h(A,W ) |
W ))(Y −Q0(A,W )) : h}, we need that

r(Q0, g)(W ) = −Eg(
d
dβ0m(A,W | β0)/σ2(A,W ) | W )

Eg(1/σ2(A,W ) | W )
.

If σ2(A,W ) only depends on W , then this simplifies to

r(Q0, g)(W ) = −Eg( d

dβ0
m(A,W | β0) | W ).

This defines now our wished ε-fluctuation through an initial estimate Q0(Y |
A,W ) of the conditional distribution of Y , given A,W , so that we are ready
to define the targeted MLE update.

It follows that the first-step targeted MLE of β0 is given by βn = β0
n + εn,

where

εn = arg min
ε

∑
i

1

σ2(Ai,Wi)
(Yi −m(Ai,Wi | β0

n + ε) + εr(Q0, gn)(Wi))
2.

If m(· | β) is linear in β, say m(A,W | β) = AβW , then d
dβ
m(A,W | β) = AW

so that (e.g., if σ2(A,W ) = σ2(W )), r(Q0, g)(W ) = r(g)(W ) = WEg(A | W ),
so that r(gn) only involves estimating the regression of A on W . In this case,
εn exists in closed form as a linear regression least squares estimator.

If d
dβ
m(A,W | β) does not depend on β (i.e., m is linear in β) so that

r(Q0, g) = r(g) does not depend on β, then this first step targeted MLE is
the targeted MLE, since iteration of this update step will not result in further
changes (note that g does not get updated in this targeted MLE step).

Statistical Inference: We have that βn solves the double robust estimat-
ing equation:

0 =
∑
i

hn(Ai,Wi)(Yi −m(Ai,Wi | βn)− r(Q0, gn)(εn)(Wi)),

where

h(Q0, gn)(A,W ) =

{
d

dβ0
m(A,W | β0) + r(Q0, gn)(W )

}
1

σ2(A,W )
.

Statistical inference can now be based on the influence curve of this estimating
equation in β (i.e., the estimating function itself standardized by minus the
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inverse of the derivative matrix), where one relies on correct specification of
the regression of A on W . If one wished to rely on the double robustness, then
one could use the bootstrap.

8 Delta-additive variable importance.

For biomarker discovery it is important to detect the variables with a causal
effect on the outcome. This requires selecting the adjustment set W as large
as possible so that all measured confounders of the effect of A on outcome
Y are included. As the simulations in Tuglus, van der Laan (2007) show,
this is the reason that our measure of variable importance outperforms uni-
variate regression. On the other hand, if a variable in the adjustment set W
has a very high correlation (e.g., 0.9) with the current variable A of interest,
then aiming to adjust for such a variable can hurt the performance of the
variable importance estimate and thereby deteriorate the ranking by variable
importance for a list of biomarkers. One scenario which helps to explain this
phenomena is the following. Suppose that one variable in the adjustment set
W has an extreme correlation of say 0.999 with A. Without guidance, the
targeted MLE for the additive variable importance of A will now aim to ad-
just for this perfectly correlated confounder, and thereby will not allow any
adjustment by other confounders. Since it is impossible to disentangle the ef-
fect of this perfect confounder in W from the effect of A, the targeted MLE is
aiming to do an impossible job, and thereby fails to succeed in doing the pos-
sible jobs of adjusting for the other potential confounders. Therefore, we have
proposed to compute a δ-W -adjusted variable importance, which only adjusts
for all confounders in W which have a correlation smaller than δ with A, and
we compute this for each value of δ ranging from 0 to 1. In this manner, one
obtains a whole curve of variable importance measures ranging from the unad-
justed univariate regression (δ = 0) to the fully adjusted variable importance
adjusting for the complete set of confounders W . In combination of knowing
the adjustment set W (δ) for each value of δ, this sequence of variable impor-
tance measures and corresponding p-values and confidence intervals provides
important information and a complete picture. In particular, one can obtain
a data adaptive recommendation of the choice δ for the purpose of obtaining
an accurate estimate of the fully adjusted variable importance, by aiming to
minimize a mean squared error over δ.

Appendix B. Targeted Maximum Likelihood Learning: Examples and Generalizations
M.J. van der Laan (2009)

594
Hosted by The Berkeley Electronic Press



9 Targeted MLE for model based Multiplica-

tive variable importance.

In the previous section the effect of interest was measured on the additive
scale. In some applications people prefer to measure the effect of a variable
on a multiplicative scale. Let O = (W,A, Y ), where A is the variable whose
variable importance we target, and the outcome Y could be a count or have
only two outcomes {0, 1}. Assume

log
E(Y | A,W )

E0(Y | A = 0,W )
= m(A,W | β0).

Equivalently,

E0(Y | A = 0,W )

E0(Y | A,W )
= m∗(A,W | β0) ≡ exp(−m(A,W | β0)).

We wish to construct a targeted MLE of the unknown parameter β0 and
thereby of the importance exp(−m(A,W | β0))of variable A in predicting
the outcome Y .

The orthogonal complement of the nuisance tangent space contains

{h(A | W )(Y m∗(A,W )− E0(Y | A = 0,W )) : E0(h(A | W ) | W ) = 0},
and one choice h∗(A | W ) results in the efficient influence curve. This sub-
set of the orthogonal complement of the nuisance tangent space can also be
represented as:

{m∗(A,W | β0)h(A | W )(Y − E(Y | A,W )) : E(h(A | W ) | W ) = 0} . (4)

Deriving the wished ε-extension: Consider an initial model based fit
Q0(A,W ) of E(Y | A,W ): logQ0(A,W ) = m(A,W | β0) + r0(W ). Consider
the class of ε-extensions Q0(ε) logQ0(ε)(A,W ) = m(A,W | β0 + ε) + r0(W ) +
εr(W ) indexed by an arbitrary choice r. We follow the general strategy de-
scribed above to determine the hardest sub-model whose score at ε = 0 is
in the linear span of the efficient influence curve of β0. We will do this for
the case that Y is binary. The same strategy can be worked out for Y being
discrete where (e.g., ) we assume that Q0(Y | A,W ) and Q0(ε)(Y | A,W ) fol-
lows a Poisson distribution, and the ε-extension involves modifying the mean
of the Poisson distribution and it is selected so that the score of this Poisson
likelihood in ε at ε = 0 is an element of T⊥nuis(P

0). The latter we will do at the
end of this section.
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The ε-extension for Bernoulli outcomes: We first wish to calculate
the score of this extension at ε = 0. This score is given by

S(r) =
1

1−Q0(A,W )
{ d
dβ
m(A,W | β0) + r(W )}(Y −Q0(A,W )).

To show this we note that

logP 0(Y = 1 | A,W ) = m(A,W | β0 + ε) + r0(W ) + εr(W )

so that

d

dε
logP 0

r (ε)(Y = 1 | A,W )

∣∣∣∣
ε=0

=
d

dβ0
m(A,W | β0) + r(W ).

For Y = 0, we have

logP 0
r (ε)(Y = 0 | A,W ) = log(1− exp(m(A,W | β0 + ε) + r0(W ) + εr(W )))

so that its derivative w.r.t. ε at ε = 0 is given by

−1

1−Q0(A,W )
Q0(A,W )(

d

dβ0
m(A,W | β0) + r(W )).

Thus, the score S(r) is given by:

S(r) = Y
{

d
dβ0m(A,W | β0) + r(W )

}
− (1− Y ) Q0(A,W )

1−Q0(A,W )

{
d
dβ0m(A,W | β0) + r(W )

}
= Y

1−Q0(A,W )

{
d
dβ0m(A,W | β0) + r(W )

}
− Q0(A,W )

1−Q0(A,W )

{
d
dβ0m(A,W | β0) + r(W )

}
= 1

1−Q0(A,W )

{
d
dβ0m(A,W | β0) + r(W )

}
(Y −Q0(A,W )).

Following the strategy, we now have to select a r(W ) so that this score S(r) is
an element of (4 in which case it has to be equal (up till a normalizing constant
matrix) to the efficient influence curve.

Thus we need that m∗(A,W | β0)h(A | W ) = 1
1−Q0(A,W )

{ d
dβ0m(A,W |

β0) + r(W )} for some h(A | W ) with E(h | W ) = 0. Thus, we need that
1

m∗(1−Q0(A,W ))
( d
dβ0m(A,W | β0) + r) has conditional mean zero, given W . (We

remind the reader that m∗(A,W | β0) = Q0(0,W )/Q0(A,W ).) Thus, it fol-
lows that

r(Q0, g)(W ) = −
Eg

(
1

m∗(A,W |β0)(1−Q0(A,W ))
d
dβ0m(A,W | β0) | W

)
Eg

(
1

m∗(A,W |β0)(1−Q0(A,W ))
| W

)
= −

Eg

(
Q0(A,W )

1−Q0(A,W )
d
dβ0m(A,W | β0) | W

)
Eg

(
Q0(A,W )

(1−Q0)(A,W )
| W

)
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This function r corresponds with

hopt(Q
0, g) =

1

m∗(1−Q)

{
d

dβ
m+ r(Q0, g)

}
.

The efficient influence curve at PQ0,g can thus be represented as

D∗(Q0, g)(W,A, Y ) = m∗(W,A)hopt(Q
0, g)(W,A)(Y −Q0(W,A))

= hopt(Q
0, g)(W,A)(Y m∗(W,A)−Q(0,W ))

≡ Dhopt(Q0,g),qopt(Q0)(g, β)(W,A, Y ),

where qopt(Q) = Q(0,W ), Dh,q(g, β) = (h(A,W )−Eg(h(A,W ) | W ))(Y m∗(A,W |
β)− q(W )) is a class of unbiased estimating functions indexed by choices h, q
representing a subset of the orthogonal complement of the nuisance tangent
space in the model with g known. We have the double robustness

E0Dh,q(g, β0) = 0 if g = g0 or q = E(Y |A = 0,W ).

The iterative targeted-MLE: This defines the wished ε-extension Q0(ε)
of an initial fit Q0(Y | A,W ). For example, if m(W,A|β) = βA, then this ε-
fluctuation corresponds with adding εC(A,W ) to the initial fit logQ0(A,W ) =
β0A+ r0(W ), where the covariate

C(A,W ) = A−
Eg

(
Q0(A,W )

1−Q0(A,W )
A | W

)
Eg

(
Q0(A,W )

(1−Q0)(A,W )
| W

) .
Let ε0n be the MLE over ε for Q0(ε). Let Q1

n = Q0
n(ε0n) be the updated

estimate of E(Y | A,W ), which corresponds with an updated β1
n andQ1

n(0,W ).
We iterate this updating process till the corresponding sequence βkn is such that
βkn−βk−1

n does not significantly change anymore. We denote the selected final
update with Qn = Qk∗

n for some k∗, and βn = βk∗n , respectively, and we refer
to this estimate βn as the (iterative) targeted MLE of β0.

Statistical Inference: Let hn = hopt(Q
k∗
n , gn) and qn = qopt(Qn) be the

with Qn and gn corresponding indices. We have that up till a negligible term

0 =
∑
i

Dhn,qn(βn, gn)(Oi).

That is, βn can be viewed as a solution of the double robust estimating function
for an index hn, qn which correspond with the final MLE update. Therefore,
statistical inference for βn can be based on the influence curve for this estimat-
ing equation as in van der Laan, Robins (2003), under the assumption that gn
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is correctly specified. If one wishes to only rely on the double robustness of βn
w.r.t. to misspecification of gn and Qn, then we recommend the bootstrap for
statistical inference.

The ε-extension for discrete outcomes using Poisson fluctuations:
We now use a fluctuation of the Poisson regression model. So we have, using
short-hand notation

logQ = mβ + g

logQ(ε) = mβ+ε + g + εr

logP (ε)(Y | A,W ) =
Q(ε)Y

Y !
exp(−Q(ε))

We need that the score of this Poisson-distribution fluctuation at ε = 0 is an
element of the orthogonal complement of the nuisance tangent space, so that
it equals the efficient score. We have

d

dε
logP (ε)|ε=0 = { d

dβ
mβ + r}(Y −Q).

Since the orthogonal complement of the nuisance tangent space consists of
functions m∗h(Y − Q) indexed by functions h(A,W ) with conditional mean
zero, given W , we need m∗(A,W | β0)h(A | W ) = { d

dβ0m(A,W | β0) + r(W )}
for some h(A | W ) with E(h | W ) = 0. It follows that

r(Q0, g)(W ) = −
Eg

(
1

m∗(A,W |β0)
d
dβ0m(A,W | β0) | W

)
Eg

(
1

m∗(A,W |β0)
| W

)
This function r corresponds with

hopt(Q
0, g) =

1

m∗

{
d

dβ
m+ r(Q0, g)

}
.

The efficient influence curve at PQ0,g can thus be represented as

D∗(Q0, g)(W,A, Y ) = m∗(W,A)hopt(Q
0, g)(W,A)(Y −Q0(W,A))

= hopt(Q
0, g)(W,A)(Y m∗(W,A)−Q(0,W ))

≡ Dhopt(Q0,g),qopt(Q0)(g, β)(W,A, Y ),

where qopt(Q)(W ) = Q(0,W ), Dh,q(g, β) = (h(A,W )−Eg(h(A,W ) | W ))(Y m∗(A,W |
β)− q(W )) is a class of unbiased estimating functions indexed by choices h, q

Appendix B. Targeted Maximum Likelihood Learning: Examples and Generalizations
M.J. van der Laan (2009)

598
Hosted by The Berkeley Electronic Press



representing a subset of the orthogonal complement of the nuisance tangent
space in the model with g known. We have the double robustness

E0Dh,q(g, β0) = 0 if g = g0 or q = E(Y |A = 0,W ).

Thus, using this fluctuation function corresponds with adding a clever co-
variate (for model mβ = βA) given by

C(A,W ) = A− Eg(A/m ∗ |W )

Eg(1/m ∗ |W )
,

where m ∗ (A,W ) = E(Y |A = 0,W )/E(Y |A,W ) = exp(−mβ) is identified by
the model mβ for logE(Y |A,W )/E(Y |A = 0,W ).

10 The targeted MLE for variable importance

and causal effect, while allowing for miss-

ing outcome, missing treatment, or missing

effect mofifier.

Suppose that we observe on each experimental unit O = (W ∗,∆,∆(Y,A, V )),
where we assume the missing at random assumption Π(W ∗) ≡ P (∆ = 1 |
(W,A, Y )) = P (∆ = 1 | W ∗). The likelihood contains the following factors:P (Y |
A,W ), P (A | W ), P (∆ | W ), P (W ):

P (O) = {P (W )P (A | W )P (Y | A,W,∆ = 1)}∆ {P (W ∗)}1−∆ .

In each of the above applications we represented the efficient influence
curve of the parameter of interest based on (W,A, Y ) as D = D1 +D2, where
for a particular function h∗ D1(W,A, Y ) = h∗(A,W )(Y − Q0(A,W )) (with
Q0(A,W ) = E0(Y | A,W )) is the component of the efficient influence curve
which corresponds with a score for P (Y | A,W ). This fact implied an ε-
extension of the form εh∗(A,W ).

The efficient influence curve for this more general missing data structure
can be represented as

D∗ =
∆

P (∆ = 1 | W ∗)
(D1 +D2)− E(D1 +D2 | ∆ = 1,W )

∆

P (∆ = 1 | W ∗)
+E(D1 +D2 | ∆ = 1,W ).
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The component of D∗ corresponding with the likelihood factor P (Y | ∆ =
1, A,W ) is therefore given by:

D∗1 =
∆

Π(W ∗)
D1 =

∆

Π(W ∗)
h∗(A,W )(Y − E(Y | A,W,∆ = 1)).

Thus one needs to arrange an ε extension Q0(ε)(Y | A,W,∆ = 1) of an
initial fit Q0(Y | A,W,∆ = 1) which has a score at ε = 0 given by D∗1. As
a consequence, we can use the same epsilon-extensions as proposed above as
basis, BUT now restricted to the observations with ∆ = 1 and we should
multiply the ε-covariate with 1/Π(W ).

Regarding statistical inference, we should use that the targeted MLE is a
solution of 0 =

∑
iD
∗(βn, Qn, gn,Πn)(Oi) with D∗ defined above so that it

can be analyzed as the double robust estimator. Note also that for fitting
g(A | W ) one should note P (A = a | W ) = P (A = a | W,∆ = 1) so that also
the treatment mechanism (just like E(Y | A,W ) = E(Y | A,W,∆ = 1)) can
be fitted by just restricting to the observations with ∆ = 1.

This generalization of the targeted MLE to missing data also applies to the
examples below.

11 Targeted MLE for a marginal structural

logistic regression model for survival out-

come.

For each treatment choice a ∈ A, let T (a) be a treatment specific counterfac-
tual survival time, and let the full data on each experimental unit be given
by (W, (T (a) : a ∈ A)). Suppose we observe O = (W,A, T = T (A)). Suppose
that the survival times are discrete on time points indexed by j = 0, 1, . . ..
Consider the following class of causal working models for the treatment spe-
cific hazard:

P (T (a) = t | T (a) ≥ t, V ) = m(a, t, V | β0),

for a given working model m(a, t, V | β) indexed by parameter vector β. Let
dN(t) = I(T = t) and dNa(t) = I(T (a) = t). The typical working model will
be a logistic regression model:

m(a, t, V | β) =
1

1 + exp(−m0(a, t, V | β))
,

where m0 is a specified function linear in summary measures of (a, t, V ). We
also assume the randomization assumption: A is independent of X, given W .
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The class of so called IPTW-estimating functions for β0 are given by:

DIPTW,h =
1

g0(A | X)

∑
t

h(A, t, V )
d

dβ0

m(A, t, V | β0)(dN(t)−I(T ≥ t)m(A, t, V | β0)).

By projecting the DIPTW,h on the tangent space of the relevant (i.e., ignoring
the treatment mechanism) factor of the likelihood of O, given by

P (W )
∏
t

P (dN(t) | N̄(t− 1), A,W ),

we obtain the efficient influence curve of β0 = β0h defined non-parametrically
as the solution of P0DIPTW,h(β, g0) = 0.

Let q0(t | A,W ) = P0(T = t | A,W ), and Q̄0(t | A,W ) = P0(T ≥ t |
A,W ). We have the following representation of this efficient influence curve

D∗h(β0, Q
r
0, g

r) =

=
∑T

t=0 h
∗(Qr

0, g
r)(t, Ā1(t− 1),W )(dY (t)− E(dY (t) | Ȳ (t− 1), Ā1(t− 1),W ))

+E(DIPTW | W )
≡ D1(Qr

0, g
r
0)(W,A, Y ) +D2(Qr

0)(W ),

where

h∗ = EQr0,gr0(DIPTW | dY (t) = 1, Ȳ (t− 1), A1,W )−
EQr0,gr0(DIPTW | dY (t) = 0, Ȳ (t− 1), A1,W ),

where D2 represents a score of the marginal distribution of W and the first
term D1 represents a sum over t of scores of P (dY (t) | Ȳ (t − 1), A1,W ). In
the special case that W = V , we have that D∗h = DIPTW,h since DIPTW,h is
already an element of the tangent space.

The second term defines β(Q) as a function of Q through the following
least squares solution (check):

β(Q) = arg min
β
EQ
∑
a

∑
t

h(t, ā1(t−1), V )
{
q(t, a1, V )− Q̄(t, a1, V )λβ(t, a1, V )

}2
,

and for Q1n being the empirical distribution of W1, . . . ,Wn this gives us:

β(Q1n, Q2n) = arg min
β

∑
i

∑
a

∑
t

h(a1, t, Vi)
{
qn(t, a1, Vi)− Q̄n(t, a1, Vi)λβ(t, a1, Vi)

}2
.

In other words, the choice of h defines β0 as a weighted projection of the true
hazard q0/Q̄0 on the working model {λβ(a1, t, V ) : β}.
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Consider an initial fit of λ0(t | A,W ) of E(dN(t) | N̄(t − 1) = 0, A,W )
based on a logistic regression model, and represent it as follows:

λ0(t | A,W ) =
1

1 + exp(−m0(t, A,W ))
.

Consider the following ε-extension:

λ0(ε)(t | A,W ) =
1

1 + exp(−m0(t, A,W )− εh∗(t, A,W ))
.

The score of λ0(ε) at ε = 0 equals the wished component D2(β(Q0), Q0, g0)
of the efficient influence curve. Thus, assuming an initial fit Q0 for which
Q0

1 is the empirical distribution of W1, . . . ,Wn, it follows that the with λ0(ε)
corresponding Q0(ε) (and no update of the already nonparametric MLE Q0

1)
has score at ε = 0 equal to the efficient influence curve D∗(β0, Q0, g0).

The iterative targeted-MLE: This defines the wished ε-extension Q0(ε)
of an initial fit Q0. Let ε0n be the MLE over ε for Q0(ε). Let Q1

n = Q0
n(ε0n) be the

updated estimate which corresponds with an updated β1
n = βh(Q

1
n). We iterate

this updating process till the corresponding sequence βkn is such that βkn−βk−1
n

does not significantly change anymore. In the case that h = h1/(m(1 −m))
is chosen so that r∗ does not depend on β, then it follows that this iterative
targeted MLE converges in one step.

We denote the selected final update with Qn = Qk∗
n for some k∗, and

βn = βk∗n , respectively, and we refer to this estimate βn as the (iterative)
targeted MLE of β0.

Statistical Inference: We have that up till a negligible term

0 =
∑
i

D∗hn(βn, Qn, gn)(Oi).

That is, βn can be viewed as a solution of the double robust estimating function
for an index hn. Therefore, statistical inference for βn can be based on the
influence curve for this estimating equation as in van der Laan, Robins (2003),
under the assumption that gn is correctly specified. If one wishes to only rely
on the double robustness of βn w.r.t. to misspecification of gn and Qn, then
we recommend the bootstrap for statistical inference.

12 Template for proving Asymptotic Linear-

ity of Targeted MLE.

In this section we show how one can establish asymptotic linearity of targeted
MLE for the target parameter of interest without having to use that the gradi-
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ent or canonical gradient of the path-wise derivative can be represented as an
estimating function for the parameter of interest, as in van der Laan, Robins
(2002).

Let P ∗n be a targeted MLE so that PnD(P ∗n) = 0, where D(P ) is a gradient
of the path-wise derivative of the target parameter Ψ : M → IRd at P . We
have

Ψ(P ∗n) = Ψ(P ∗n) + PnD(P ∗n)

= Ψ(P ∗n) + (Pn − P0)D(P ∗n) + P0D(P ∗n).

In general, one will need to establish that

P0D(P ∗n) = ψ0 −Ψ(P ∗n) + (Pn − P0)D1(P0) + oP (1/
√
n) (5)

for some mean zero function D1(P0)(O). A special case is that D1 = 0 which,
by path-wise differentiability, one expects to hold if D(P ∗n) is a consistent
estimator of D(P0). For example, if the model M is convex, Ψ is linear, and
dP0/dP

∗
n exists, then P0D(P ∗n) = ψ0 − Ψ(P ∗n) exact (i.e., no remainder) (van

der Laan, 1996). Given this assumption (6, one obtains

Ψ(P ∗n)− ψ0 = (Pn − P0) {D(P ∗n) +D1(P0)}+ oP (1/
√
n).

Under empirical process conditions on D(P ∗n), and that D(P ∗n) converges to
some D(P ∗0 ) for a P ∗0 ∈M (not necessarily equal to P0), one now obtains the
wished asymptotic linearity

Ψ(P ∗n)− ψ0 = (Pn − P0){D(P ∗0 ) +D1(P0)}+ oP (1/
√
n).

Theorem 4 Consider a sample of n i.i.d. observations O1, . . . , On ∼ P0,
where P0 is known to be an element of model M. Let Ψ : M → IRd be a
Euclidean target parameter of interest. Let P ∗n be an estimator of P0 satisfying
PnD(P ∗n) = 1/n

∑
iD(P ∗n)(Oi) = 0, where D(P ) is a gradient of the path-wise

derivative at P of the target parameter Ψ :M→ IRd.

• Assume

P0D(P ∗n) = ψ0 −Ψ(P ∗n) + (Pn − P0)D1(P0) + oP (1/
√
n) (6)

for some mean zero function D1(P0) of O. Under this assumption one
obtains

Ψ(P ∗n)− ψ0 = (Pn − P0) {D(P ∗n) +D1(P0)}+ oP (1/
√
n).
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• In addition, assume D(P ∗n) falls in a P0-Donsker class with probability
tending to 1. Then, Ψ(P ∗n)− ψ0 = OP (1/

√
n).

• In addition, assume P0{D(P ∗n)−D(P ∗0 )}2 → 0 in probability as n→∞
for some D(P ∗0 ) in the P0-Donsker class.

Then,
Ψ(P ∗n)− ψ0 = (Pn − P0){D(P ∗0 ) +D1(P0)}+ oP (1/

√
n).

In particular, if D1(P0) = 0 and D(P ∗0 ) = D∗(P0) equals the canonical gradient
at P0, then Ψ(P ∗n) is asymptotically efficient.

Consider now CAR-censored data models so that D(P ) = D(Q(P ), g(P )),
Ψ(P ) depends on P through Q(P ) only, and the density factorizes as p =
Q(p)g(p). Let p∗n = Q∗ng

∗
n. We consider the case that g∗n is assumed to be

consistent for g0. Regarding verification of (6), we can exploit some structure.
That is, we proceed as follows:

P0D(Q∗n, g
∗
n) = P0D(Q∗n, g0)− {P0D(Q∗n, g

∗
n)−D(Q∗n, g0)}

= P0D(Q∗n, g0) + P0{D(Q∗0, g
∗
n)−D(Q∗0, g0)}

−R1n

where

R1n = P0{D(Q∗n, g
∗
n)−D(Q∗n, g0)} − P0{D(Q∗0, g0)−D(Q∗0, g0)}.

Here R1n is a second order term and therefore it is natural to make it an
assumption that R1n = oP (1/

√
n). Secondly, we define

Φ(g∗n) ≡ P0D(Q∗0, g
∗
n),

so that the term P0{D(Q∗0, g
∗
n) − D(Q∗0, g0)} equals Φ(g∗n) − Φ(g0). We now

assume that Φ(g∗n) is an efficient estimator of the parameter Φ(g0) in model
M(G) = {pQ,g = Qg : g ∈ G}, where we denote the tangent space generated by
model G for g0 at P0 = Q0g0 with Tg(P0). It remains to consider P0D(Q∗n, g0).
By the general representation Theorem 1.3 in van der Laan, Robins (2002), it
follows that

P0D(Q∗n, g0) = PQ0D
F (Q∗n),

where DF (Q) is a gradient in the full data model Q for the parameter Q →
Ψ(Q), and PQ0 denotes the full data distribution. Again, by path-wise dif-
ferentiability of Ψ in the full data model, if DF (Q∗n) consistently estimates
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DF (Q0), then one expects PQ0D
F (Q∗n) = ψ0 − Ψ(Q∗n) + oP (1/

√
n). In gen-

eral, we note that, if Q∗n converges to some possibly misspecified Q∗ for which
Ψ(Q∗) = Ψ(Q0) and P0D

F (Q∗) = 0, we have

PQ0D
F (Q∗n) = PQ∗DF (Q∗n) + PQ0−Q∗{DF (Q∗n)−DF (Q∗)}.

By pathwise differentiabiliy, and the convergence of Q∗n to Q∗ the first order
Tailor expansion suggests

PQ∗DF (Q∗n) = ψ0 −Ψ(Q∗n) + oP (1/
√
n).

A separate study of the other term (which can be represented as Φ(Q∗n)−Φ(Q∗)
for some Φ) will result in an asymptotic linearity result:

PQ0−Q∗{DF (Q∗n)−DF (Q∗)} = (Pn − P0)D1(P0) + oP (1/
√
n).

To stay general, we assume the expansion (6):

P0D(Q∗n, g0) = ψ0 −Ψ(Q∗n) +
1

n

n∑
i=1

D1(P0) + oP (1/
√
n),

for some D1(P0). By Theorem 2.3 in van der Laan, Robins (2002) the influ-
ence curve of Φ(g∗n) equals −Π(D(Q∗0, g0) + D1(P0) | Tg(P0)⊥). This proves
the following theorem which provides a template for establishing asymptotic
linearity of the targeted MLE in CAR censored data models.

Theorem 5 Let O1, . . . , On ∼ P0 be n i.i.d. copies of O = Φ(C,X) for some
many to one mapping Φ of censoring variable C and full data structure X.
Assume that the conditional distribution G0 of C, given X, satisfies CAR so
that p0 = Q0g0 w.r.t to appropriate dominating measure, g0 is a density of G0

and Q0 a function of distribution of full data X. Let M = {pQg = Qg : Q ∈
Q, g ∈ G}, where G is a subset of all CAR distributions. Let Ψ : Q → IRd be
the Euclidean target parameter of interest. Let D(P ) = D(Q(P ), g(P )) be a
gradient of Ψ at P ∈ M. Consider an estimator P ∗n with density p∗n = Q∗ng

∗
n

satisfying PnD(Q∗n, g
∗
n) = 0.

• Define

R1n ≡ P0{D(Q∗n, g
∗
n)−D(Q∗n, g0)} − P0{D(Q∗0, g0)−D(Q∗0, g0)}.

Assume R1n = oP (1/
√
n).
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• Define
Φ(g∗n) ≡ P0D(Q∗0, g

∗
n),

where P0 and Q∗0 are treated as given. Assume that Φ(g∗n) is an efficient
estimator of the parameter Φ(g0) in model M(G) = {pQ,g = Qg : Q ∈
Q, g ∈ G}, and let Tg(P0) denote the tangent space generated by model
G for g0 at P0 = Q0g0.

• Assume the expansion (6):

P0D(Q∗n, g0) = ψ0 −Ψ(Q∗n) +
1

n

n∑
i=1

D1(P0) + oP (1/
√
n),

for some D1(P0).

• Assume D(Q∗n, g
∗
n) falls in a P0-Donsker class. Then, Ψ(P ∗n) − ψ0 =

OP (1/
√
n).

• In addition, assume P0{D(Q∗n, g
∗
n) − D(Q∗0, g0)}2 → 0 in probability as

n→∞ for some Q∗0 and D(Q∗0, g0) in the P0-Donsker class.

Then,
Ψ(P ∗n)− ψ0 = (Pn − P0)IC(P0) + oP (1/

√
n),

where
IC(P0) ≡ Π

(
D(Q∗0, g0) +D1(P0) | Tg(P0)⊥

)
,

Π is the projection operator in L2
0(P0) endowed with inner product 〈f, g〉P0 =

EP0fg onto the orthogonal complement of Tg(P0). If D1(P0) = 0 and D(Q∗0, g0) =
D∗(Q0, g0) where D∗ is the canonical gradient, then Ψ(P ∗n) is asymptotically
efficient.

13 Targeted MLE for causal effect of treat-

ment on survival outcome allowing for right-

censoring.

In this section we illustrate how one can also apply the targeted MLE to deal
with complex longitudinal data structures: as pointed out in van der Laan,
Rubin (2006), the targeted MLE has an analogue of the double robust estima-
tors presented in van der Laan, Robins (2004) for each model, parameter and
censored data structure. This example is complex enough so that it becomes
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clear how one can immediately generalize the presented t-MLE to longitudinal
time dependent treatments and time-dependent covariate processes.

Suppose that the full data of interest consists of baseline covariates W , and
a set of treatment specific survival times Ta(0) with support {0, 1, . . . , τ + 1}
indexed by a set of possible single time point treatments a(0) assigned at
baseline. Let a = (a(0), a(1), . . . , a(τ)) with a(t) = I(c = t), t = 1, 2, . . . , τ for
some set censoring time c: thus, a(t) has only a single 1 at most, and after this 1
it stays zero. If a(1) = . . . = a(τ) = 0, then we will also refer to this as c =∞.
Let L(0) = W , La(t) = (I(Ta(0) ≤ min(t, c)), t = 1, . . ., where La(t) can also

be represented as I(T̃a ≡ min(Ta(0), c) ≤ t). The full data is X = (La : a ∈ A).
The observed data on each experimental unit is Oi = (Ai, LAi), where Ai
identifies the assigned treatment Ai(0) and the right-censoring time Ci, where
Ci ≡ ∞ if Ti ≤ Ci. Equivalently, Oi = (Wi, Ai, T̃i = T̃Ai). Let

ψ0(t) = P (Ta(0) > t)− P (T0 > t) = P (T̃a(0)0 > t)− P (T̃00 > t),

where T̃a(0)0 = Ta(0) is the follow up time if censoring is set at c = ∞, which
thus equals the treatment specific survival time Ta(0).

A CAR design is a conditional distribution of A, given X, satisfying

g(a | X) =
τ∏
t=0

g(a(t) | Ā(t− 1) = ā(t− 1), X)

CAR
=

min(c(a),Ta−1)∏
t=0

g(a(t) | Ā(t− 1) = ā(t− 1), L̄A(t))
τ∏

t=Ta

I(a(t) = 0),

where the first factor at t = 0 denotes a treatment mechanism, and the other
factors represent the censoring mechanism, where censoring is set at ∞ after
the failure time Ta.

The density of O1, . . . , On is given by:

pQ0,g(O1, . . . , On) =
n∏
i=1

Q0(Ai, Li)g(Ai | Xi)

=
n∏
i=1

τ+1∏
t=0

Q0t(Li(t) | L̄i(t− 1), Āi(t− 1))
n∏
i=1

g(Ai | Xi)

=
n∏
i=1

T̃i=min(TiAi ,Ci)∏
t=0

Q0t(Li(t) | L̄i(t− 1), Āi(t− 1))

n∏
i=1

T̃i∏
t=0

gt(Ai(t) | Āi(t− 1), L̄i(t)),
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where Q0t(l(t) | l̄(t− 1), ā(t− 1)) denotes the conditional probability distribu-
tion of La(t) at l(t) given L̄a(t − 1) = l̄(t − 1), so that Q0(a, l) = P (La = l).
Note that Q0t models the hazard of survival time Ti = TAi(0), given Ti has not
happened yet, baseline covariates Wi, and treatment Ai(0).

We could model Q0t with a logistic regression model:

Qtθ(dL(t) = 1 | L̄(t−1), L(0), Ā(t−1), A(0)) = I(T̃ ≥ t)
1

1 + exp(−θ(t)f(L(0), A(0)))
,

where f(L(0), A(0)) is a vector valued summary measure of (L(0), A(0)). Note
that this logistic function at Ā(t− 1) = ā(t− 1) is actually modelling

P (dL(t) = 1 | L̄(t−1), Ā(t−1) = ā(t−1), T̃ ≥ t) = P (Ta(0) = t | Ta(0) ≥ t, L(0)),

which is the hazard of the treatment specific survival time Ta(0) indexed by
baseline treatment a(0), conditional on L(0). Let Qw = {Qθ : θ} = {(Qtθ(t) :
t) : θ} be this model for Q0. The maximum likelihood estimator of θ = (θ(t) :
t) can be computed with standard logistic regression software. If the survival
time is continuous (e.g.,, the time scale is chosen fine enough so that no ties
occur at the same time), then one could also model Q0t with a multiplicative
intensity model:

P (dL(t) = 1 | L̄(t−), Ā(t−)) = I(T̃ ≥ t)λ0(t) exp(θft(L(0), A(0))),

where ft(L(0), A(0)) is a time dependent covariate defined as a function of
t, L(0), A(0). In particular, one could assume a Cox-proportional hazards
model for T conditional on L(0), A(0). Again, the maximum likelihood es-
timator for the multiplicative intensity model can be fitted with standard
software (e.g., Coxph() in R).

We now wish to consider the targeted maximum likelihood estimator of ψ0

based on this maximum likelihood estimator for this working model Qw.
An inverse probability of censoring weighted estimating function for ψ0(t0)

is given by:

DIPCW (Q0, g)(O) = I(T > t0)I(C ≥ t0)

{
I(A(0) = a(0))

g(a(0)0̄(t0) | X)
− I(A(0) = 0)

g(00̄(t0) | X)

}
−Ψ(Q0)(t0),

where

g(a(0)0̄(t0) | X) = g(a(0) | L(0))

t0∏
t=1

P (A(t) = 0 | A(0) = a(0), A(t−1) = 0, L(0))
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is the conditional probability of having a(0) assigned and being uncensored up
till and including time t0.

The efficient influence curve D∗(Q0, g) at a data generating distribution
PQ0,g can be represented as the projection of DIPCW onto the tangent space of
the Q0-factor of the likelihood/density of the experimental unit’s data struc-
ture O:

D∗(Q0, g) = Π(DIPCW (Q0, g) | T (Q0))

=
τ+1∑
t=0

EQ0,g(DIPCW (Q0, g) | L̄(t), Ā(t− 1))

−
τ+1∑
t=0

EQ0,g(DIPCW (Q0, g) | L̄(t− 1), Ā(t− 1))

=
T̃∑
t=0

EQ0,g(DIPCW (Q0, g) | L(0), A(0), dL(t), T̃ = min(T,C) ≥ t)

−
T̃∑
t=0

EQ0,g(DIPCW (Q0, g) | L(0), A(0), T̃ = min(T,C) ≥ t),

where we recall that dL(t) = I(T̃ = t, C ≥ t) equals 1 if a failure T = t occurs
at time t (but dL(t) = 0 if C = t but T 6= t). We define h∗(Q0, g)(t, L(0), A(0))
as

EQ0,g(DIPCW (Q0, g) | L(0), A(0), dL(t) = 1, T̃ = min(T,C) ≥ t)

−EQ0,g(DIPCW (Q0, g) | L(0), A(0), dL(t) = 0, T̃ = min(T,C) ≥ t),

and we note that

D∗(Q0, g) =
T̃∑
t=0

D∗t (Q0, g)

=
T̃∑
t=0

h∗(Q0, g)(t, L(0), A(0))(dL(t)−Q0t(1 | L̄(t− 1), Ā(t− 1))).

ε-fluctuation to define targeted MLE: Let Qtθn(ε) be a 1-dimensional
extension parameter ε so that Qtθn(0) = Qtθn and the score of ε at ε = 0 for
observation Oi equals D∗t (Qθn , g) = h∗(Qθn , g)(t, Li(0), Ai(0))(dLi(t)−Qtθn(1 |
L̄i(t − 1), Āi(t − 1))). This can be achieved by adding to the logistic regres-
sion model Qtθn(1 | L̄i(t − 1), Āi(t − 1)) a covariate h∗(Qθn , g)(t, Li(0), Ai(0))
with coefficient ε. Similarly, one can add this covariate to the multiplicative
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intensity model. Let εn be the maximum likelihood estimator of ε for this one
dimensional parametric model

εn = arg max
ε

n∏
i=1

∏
t

Qtθn(ε)(Li(t) | L̄i(t− 1), Āi(t− 1)).

Computing εn corresponds with fitting a logistic regression model based on a
pooled (across time) sample with a single regression coefficient ε and can thus
be done with standard software. Let Qθn(εn) = (Qtθn(εn) : t). The first step
targeted maximum likelihood estimator of ψ0 for the fixed design is now defined
as ψn = Ψ(Qθn(εn)). The k-th step targeted MLE is defined by iterating this
process. One can also compute a one-step targeted MLE by defining εn as the
solution of 0 =

∑
iD
∗(Qθn(ε), g) = 0.

Application of our results in van der Laan, Rubin (2006) for the k-th step
targeted MLE (k large enough) or this latter one step targeted MLE shows
that, in the case that g0 is known, ψn is consistent and asymptotically linear
at PQ0,g0 with influence curve D∗(Q∗, g0), where Q∗ is the limit of Qθn(εn). In
particular, if Q∗ = Q0, i.e., if Q is correctly specified, then ψn is asymptotically
efficient. In other words, the targeted MLE is locally efficient. If g0 (including
both treatment mechanism and censoring mechanism) is estimated with a
maximum likelihood estimator according to a correctly specified model, then
the above influence curve is generally conservative.

14 Targeted MLE for semi-parametric realis-

tic MSM/V-adjusted additive variable im-

portance

Consider the setting of our realistic marginal structural model for the causal
effect of rules for point treatment. Recall the observed data structure O =
(W,A, Y ) for the experimental unit. Consider parameter ψ0(a, V ) = E(Y (d(a)) |
V ) − E(Y (d(0)) | V ), and we refer to a model ψ0(a, V ) = m(a, V | β0) as a
semi-parametric MSM for realistic point treatment interventions. The estima-
tor of β0 can also be used as an estimator of V -adjusted variable importance:

E(E(Y | A = d(a)(W ),W )− E(Y | A = d(0)(W ),W ) | V ).

Working model: We consider a working model {m(a, v | β) : β} for
ψ0(a, v), and define the target parameter as

β0 = arg min
β
E0V

∑
a∈A1

(m(a, V | β)− ψ0(a, V ))2h(a, V ),

Appendix B. Targeted Maximum Likelihood Learning: Examples and Generalizations
M.J. van der Laan (2009)

610
Hosted by The Berkeley Electronic Press



where h is a user supplied weight function. For simplicity, we assume here
that A1 is discrete, but if A1 is a continuous set, then one can replace it by a
discrete approximation in the above definition.

The first challenge is to determine the orthogonal complement of the nui-
sance tangent space T⊥nuis(P ) at a P in this working model, or a rich subset
of this space. For this purpose we follow a strategy I proposed and used in
Hubbard, van der Laan (2007, Population Intervention models) to derive a
class of estimating functions for such semi-parametric causal models.

Firstly, we note that E(Y (d(a)) | V ) = m(a, V | β0) + θ0(V ), where
θ0(V ) = E(Y (d(0)) | V ) = E(E(Y | A = d(0)(W ),W ) | V ). Let ψ0(a, V ) =
E(Y (d(a)) | V )− E(Y (d(0) | V ).

We note that we also have

β0 = arg min
β
E0V

∑
a∈A1

(m(a, V | β) + θ0(V )− θ0(a, V ))2h(a, V ),

where θ0(a, V ) = E(Y (d(a)) | V ). In the MSM-model with θ0 known, the
efficient influence curve for β0 is given by

D∗(β0, Q0, g0, θ0) =
∑
a∈A1

I(A = d(a)(W ))
h(a, V ) d

dβ0
m(a, V | β0)

g0(A | X)
(Y −Q02(A,W ))

+
∑
a∈A1

h(a, V )
d

dβ0

m(a, V | β0)(Q02(d(a)(W ),W )−m(a, V | β0)− θ0(V ))

≡ D∗1(β0, Q0, g0)(W,A, Y ) +D∗2(β0, Q0, θ0)(W ),

where we definedQ02(d(a)(W ),W ) = EQ0(Y | A = d(a)(W ),W ) andQ02(a,W ) =
E(Y | A = a,W ), and we note that β0 = β(Q0) is a parameter of Q0 =
(Q01, Q02).

Let θn be an estimator of θ0. Let ICnu be the influence curve of−P0D
∗(Q0, g0, θn)−

D∗(Q0, g0, θ0). Then under regularity conditions −P0(D∗(βn) − D∗(β0)) ≈
(Pn − P0)(D∗ − ICnu). The estimating functions D∗ − ICnu are the corrected
estimating functions for the semiparametric model in which θ0(V ) is unspeci-
fied. Thus, we need to determine the influence curve ICnu for a nonparametric
estimator θn of θ0.

We note that

−P0(D(θn)−D(θ0)) = P0

∑
a∈A1

h(a, V )
d

dβ0

m(a, V | β0)(θn(V )− θ0(V )).
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We will now work out a linearization for θn − θ0. We have

En(Y | A = d(0)(w),W = w) =

∑n
i=1 YiI(Ai = d(0)(Wi),Wi = w)∑n
i=1 I(Ai = d(0)(Wi),Wi = w)

=
PnY Iw
PnIw

.

Let pn(w | v) be an estimate of the conditional probability of W , given V .
Then, θn(v) =

∑
w
PnY Iw
PnIw

pn(w | v). Thus,

θn(v)− θ0(v) =∑
w En(Y | A = d(0)(w),W = w)pn(w | v)− E(Y | A = d(0)(w),W = w)p(w | v)

=
∑

w∗(En − E)(Y | A = d(0)(w∗, v),W = (w∗, v))p(w∗ | v)
+
∑

w∗ E(Y | A = d(0)(w∗, v),W = (w∗, v))(pn − p)(w∗ | v)

We have that

(En − E)(Y | A = d(0)(w),W = w) ≈ PnY Iw
PIw

− θ0(w)

PIw
PnIw,

where we used the notation θ0(w) = E(Y | A = d(0)(w),W = w). So the first
term in the linearization of θn − θ0 is given by:

1
n

∑
i

∑
w∗

{
YiI(Wi=(w∗,v),Ai=d(0)(w∗,v))

PIw
− θ0(w∗,v)

PIw
I(Ai = d(0)(w∗, v),Wi = (w∗, v))

}
p(w∗ | v)

= 1
n

∑
i

{
YiI(Vi=v,Ai=d(0)(Wi))

PIWi
− θ0(Wi)

PIWi
I(Vi = v,Ai = d(0)(Wi))

}
p(W ∗

i | Vi),

where PIWi
= g(d(0)(Wi) | Wi)pW (Wi).

Let’s now study (pn − p)(w∗ | v). We have

pn(w∗ | v) =

∑
i I(W ∗

i = w∗, Vi = v)∑
i I(Vi = v)

≡ PnIw∗v

PnIv
.

Thus, as above,

(pn − p)(w∗ | v) ≈ PnIw∗v

PIv
− p(w∗ | v)

PIv
PnIv.

Thus, the second term in linearization of θn − θ0 is given by

1
n

∑
i

∑
w∗ θ0(w∗, v)

{
I(W ∗

i =w∗,Vi=v)

p(v)
− p(w∗|v)

p(v)
I(Vi = v)

}
= 1

n

∑
i θ0(Wi)

I(Vi=v)
p(Vi)

− 1
n

∑
i

∑
w∗ θ0(w∗, Vi)

p(w∗|Vi)
p(Vi)

I(Vi = v).

We have θn − θ0(v) involves
∑

i I(Vi = v)h. Thus,

P0

∑
a∈A1

h(a, V )
d

dβ0

m(a, V | β0)(θn(V )− θ0(V ))
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equals

1
n

∑
i

∑
a h(a, Vi)

d
dβ0
m(a, Vi | β0){

YiI(Ai=d(0)(Wi))
g(d(0)(Wi)|Wi)p(Wi)

− θ0(Wi)
g(d(0)(Wi)|Wi)p(Wi)

I(Ai = d(0)(Wi))
}
p(W ∗

i | Vi)p(Vi)
+ 1
n

∑
i

∑
a h(a, Vi)

d
dβ0
m(a, Vi | β0)

{
θ0(Wi)

1
p(Vi)
−∑w∗ θ0(w∗, Vi)

p(w∗|Vi)
p(Vi)

}
p(Vi).

Thus,

ICnu =
∑
a∈A1

h(a, Vi)
d

dβ0

m(a, Vi | β0)

{
I(Ai = d(0)(Wi)

g(d(0)(Wi) | Wi)
(Yi − θ0(Wi)) + θ0(Wi)− θ0(Vi)

}
.

We have established the following useful lemma:

Lemma 1 We have for the nonparametric estimator θn of θ0 the following
linear expansion∑

v h
∗(v)(θn − θ0)(v)p0(v) ≈

h∗(Vi)
{
I(Ai=d(0)(Wi))
g(d(0)(Wi)|Wi)

(Yi − θ0(Wi)) + θ0(Wi)− θ0(Vi)
}
.

Recall that ICnu is the correction factor which needs to be subtracted from
the original estimation function which was given by∑

a∈A1
I(A = d(a)(W ))

h(a,V ) d
dβ0

m(a,V |β0)

g0(A|X)
(Y −Q02(A,W ))

+
∑

a∈A1
h(a, V ) d

dβ0
m(a, V | β0)(Q02(d(a),W )−m(a, V | β0)− θ0(V ))

This yields the following corrected estimating function:

Dh(β,Q, g) =
∑

a∈A1
h(a, V ) d

dβ0
m(a, V | β0){

I(A=d(a)(W )
g(d(a)(W )|W )

− I(A=d(0)(W )
g(d(0)(W )|W )

}
(Y −Q02(A,W ))

+
∑

a∈A1
h(a, V ) d

dβ0
m(a, V | β0) {Q02(d(a)(W ),W )−Q02(d(0)(W ),W )−m(a, V | β0)}

≡ D1h(Q, g) +D2h(β(Q0), Q0),

where D1h is a score of P (Y | A,W ) and D2h is a score of the marginal
distribution of W .

Double robustness of estimating function: It follows that

E0Dh(β(Q), Q, g) = 0 if g = g0 or Q2 = Q02,

where the unbiasedness for g = g0 relies on g(d(a)(W ) | W )g(d(0)(W ) | W ) >
0: i.e. the rules d(a) have to be realistic for a ∈ A1.
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Identity: The fact that

EQ
∑
a∈A1

h(a, V )
d

dβ0

m(a, V | β(Q)){Q2(d(a)(W ),W )−Q2(d(0)(W ),W )

−m(a, V | β(Q))} = 0

is a direct consequence of the definition of β(Q). We observe that we can
also define β(Q) as a weighted least squares solution

β(Q) = arg min
β
EV
∑
a

h(a, V ) (Q2(d(a)(W ),W )−Q2(d(0)(W ),W )−m(a, V | β))2 .

Thus, given an estimatorQn withQ1n the empirical distribution ofW1, . . . ,Wn,
it follows that β(Qn) is given by the weighted least squares solution:

β(Qn) = arg min
β

n∑
i=1

∑
a

h(a, Vi) (Q2n(d(a)(Wi),Wi)−Q2n(d(0)(Wi),Wi)−m(a, Vi | β))2 .

Targeted MLE: Let {Q2(ε) : ε} be a path through Q2 at ε = 0 and
satisfy the score condition d

dε
logQ2(ε)

∣∣
ε=0

= D∗1(Q2, g0). For example, if Q2 is
a regression model of Y on A,W with normal errors with constant variance,
then we can simply add the extension εC∗(A,W ), where

C∗(A,W ) ≡
∑
a∈A1

h(a, V )
d

dβ0

m(a, V | β0)

{
I(A = d(a)(W )

g(d(a)(W ) | W )
− I(A = d(0)(W )

g(d(0)(W ) | W )

}
.

In other words, EQ2(ε)(Y | A,W ) = EQ2(Y | A,W ) + εC∗(A,W ).
Similarly, if Q2 is a logistic regression fit of a binary Y on A,W , then we

simply add εC∗(A,W ) to the logit of Q2(1 | A,W ). In other words,

logitEQ2(ε)(Y | A,W ) = logitEQ2(Y | A,W ) + εC(A,W ).

In both cases, these ε extensions have a score at ε = 0 equal to D∗1(Q2, g0).
Making the epsilon-covariate extension independent of β0: The

targeted MLE can be obtained in one ML step in the case that the epsilon-
covariate C(A,W ) does not depend on β0. In the case that m(a, V | β) is a
linear regression model, say m(a, V | β) = β(a, V ), then d

dβ0
m(a, V | β0) =

(a, V )> so that indeed the ε-covariate is independent of β0 for each choice of
h.

The one-step targeted MLE: Given an estimate gn of the treatment
mechanism g0, an estimate Q2θn , let εn be the solution of

0 =
∑
i

D∗1(Q2θn(εn), gn)(Oi).
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In the above two linear and logistic regression ε-extensions, and under the
assumption that the ε-extension covariate C(A,W ) does not depend on β0, it
follows that

εn = arg max
ε

n∑
i=1

logQ2θn(ε)(Oi)

is the maximum likelihood estimator over ε.
We call βn = β(Q1n, Q2θn(εn)) the targeted MLE of β0. As mentioned

above, one can view βn as a weighted least squares solution of the regression
of Q2θn(εn)(d(a),Wi)−Q2θn(d(0),Wi) on the realistic MSM m(a, Vi | β):

βn = arg min
β

∑
a∈A1

h(a, Vi)(Q2θn(εn)(d(a),Wi)−Q2θn(d(0),Wi)−m(a, Vi | β))2.

15 Targeted MLE for semi-parametric rela-

tive risk MSM for realistic interventions.

Consider the model E(Y (d(a)) | V )/E(Y (d(0)) | V ) = m(a, V | β0) for the
causal relative risk. The resulting estimator can also be used as V -adjusted
multiplicative variable importance. Let O = (W,A, Y ).

The first challenge is to determine the orthogonal complement of the nui-
sance tangent space T⊥nuis(P ) at a P in this model, or a rich subset of this
space. For this purpose we follow the strategy from the previous section again
(Hubbard, van der Laan (2007, Population Intervention models)) to derive the
class of estimating functions for such semi-parametric causal models.

Firstly, we note that E(Y (d(a)) | V ) = θ0(V )m(a, V | β0), where θ0(V ) =
E(Y (d(0)) | V ) = E(E(Y | A = d(0)(W ),W ) | V ). In the MSM-model with
θ0 known, the orthogonal complement of the nuisance tangent space at P0 is
given by

D∗h(β0, Q0, g0, θ0) =
∑
a∈A1

I(A = d(a)(W ))
h(a, V ) d

dβ0
m(a, V | β0)

g0(A | X)
(Y −Q02(A,W ))

+
∑
a∈A1

h(a, V )
d

dβ0

m(a, V | β0)(Q02(d(a)(W ),W )−m(a, V | β0)θ0(V ))

≡ D∗1h(β0, Q0, g0, θ0)(W,A, Y ) +D∗2h(β0, Q0, θ0)(W ),

where we defined Q02(d(a),W ) = EQ0(Y | A = d(a)(W ),W ) and Q02(a,W ) =
E(Y | A = a,W ), and we note that β0 = β(Q0) is a parameter of Q0 =
(Q01, Q02).

Appendix B. Targeted Maximum Likelihood Learning: Examples and Generalizations
M.J. van der Laan (2009)

615
http://biostats.bepress.com/ucbbiostat/paper254



Let θn be an estimator of θ0. Let ICnu be the influence curve of−P0D
∗
h(Q0, g0, θn)−

D∗h(Q0, g0, θ0). Then −P0(D∗h(βn) −D∗h(β0)) ≈ (Pn − P0)(D∗h − ICnu). Thus,
we need to determine the influence curve ICnu for a nonparametric estimator
θn of θ0.

We note that

−P0(D∗h(θn)−D∗h(θ0)) ≈ P0

∑
a

h(a, V )
d

dβ0

m(a, V | β0)m(a, V | β0)(θn − θ0)(V )

≡
∑
v

h∗(v)(θn − θ0)(v)p(v).

where

h∗(v) ≡
∑
a∈A1

h(a, v)
d

dβ0

m(a, v | β)m(a, v | β0).

Recall from previous section that∑
v h
∗(v)(θn − θ0)(v)p(v)

= 1
n

∑
i h
∗(Vi)

I(Ai=d(0)(Wi))
g(d(0)(Wi)|Wi)

{Yi − θ0(Wi)}
+ 1
n

∑
i h
∗(Vi) {θ0(Wi)− θ0(Vi)} .

Thus,

ICnu = h∗(Vi)
{
I(Ai = d(0)(Wi)

g(d(0)(Wi) | Wi)
(Yi − θ0(Wi)) + θ0(Wi)− θ0(Vi)

}
,

where θ0(w) = E(Y | A = d(0)(w),W = w).
Note ICnu is the correction factor which needs to be subtracted from orig-

inal estimation function D∗h. Recall h∗(V ) =
∑

a h(a, V ) d
dβ
m(a, V | β)m(a, V |

β0). This gives the following class of estimating functions indexed by an arbi-
trary function h for our semi-parametric model:

Dh(β,Q, g) ≡∑a∈A1

I(A=d(a)(W ))
g(A|X)

h(a, V ) d
dβ
m(a, V | β)(Y −Q2(A,W ))

+
∑

a∈A1
h(a, V ) d

dβ
m(a, V | β0)(Q2(d(a)(W ),W )−m(a, V | β)θ(V ))

−∑a∈A1
h(a, V ) d

dβ
m(a, V | β)m(a, V | β) {

I(A=d(0)(W ))
g(A|X)

(Y −Q2(d(0)(W ),W )) +Q2(d(0)(W ),W )− θ(V )
}

∑
a∈A1

h(a, V ) d
dβ
m(a, V | β)

{
I(A=d(a)(W ))

g(A|X)
−m(a, V | β) I(A=d(0)(W ))

g(A|X)

}
(Y −Q2(A,W ))

+
∑

a∈A1
h(a, V ) d

dβ
m(a, V | β0)(Q2(d(a)(W ),W )−m(a, V | β)θ(V ))

−∑a∈A1
h(a, V ) d

dβ
m(a, V | β)m(a, V | β) {Q2(d(0)(W ),W )− θ(V )}

≡ Dh1(β,Q, g) +Dh2(β,Q),
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where θ = θ(Q) = EQ(Q2(d(0)(W ),W ) | V ) and D2h = D2ha + D2hb is a sum
of two terms itself.

Double robustness: We have the following double robustness result

P0Dh(β0, Q, g) = 0 if either Q = Q0 or g = g0.

The robustness at Q = Q0 is trivially shown. For the robustness at g = g0, one
needs to use that m(a, V | β0) = θ0(a, V )/θ0(v), where θ0(a, V ) = E0(Y (d(a)) |
V ) = E0(Q02(d(0)(W ),W ) | V ).

The targeted MLE: The ε-extension of Q0(ε)(Y | A,W ) needs to have
score at ε = 0 equal to D∗1h(Q

0, g). This can be achieved by adding the
following covariate C(A,W ) to a logistic regression fit:∑
a∈A1

h(a, V )
d

dβ0
m(a, V | β0)

{
I(A = d(a)(W ))

g(A | X)
−m(a, V | β0)

I(A = d(0)(W ))

g(A | X)

}
.

Since this covariate will depend on β itself, one will need to iterate the t-
mle step till εkn ≈ 0. At that step we will have an updated Qk

n so that
PnDh1(Qk

n, gn0 = oP (1/
√
n). We now compute a corresponding θn(V ) =

E(Qk
n2(d(a)(W ),W ) | V ) w.r.t. to a nonparametrically fit conditional dis-

tribution p(W | V ) of W , given V , so that PnDh2b(β,Q
k) = 0 for all β:

0 =
∑
i

∑
a∈A1

h(a, Vi)
d

dβ
m(a, Vi | β)m(a, Vi | β)

{
Qk

2(d(0)(Wi),Wi)− θk(Vi)
}
.

This can always be arranged by estimating p(W | V ) nonparametrically enough,
at most using some smoothing if needed. Given Qk

2(d(a)(W ),W ) and θk, one
now solves for βk so that

0 =
∑
i

∑
a∈A1

h(a, Vi)
d

dβ
m(a, Vi | β)(Qk

2(d(a)(Wi),Wi)−m(a, Vi | βk)θk(Vi)).

The latter corresponds with regressingQk
2(d(a)(Wi),Wi) onm(a, Vi | βk)θk(Vi).

In this way, we guarantee that

0 =
∑
i

Dh(β(Qk), Qk, gn)(Oi)

so that the targeted MLE β(Qk) can be analyzed as the double robust estima-
tor based on the double robust estimating function Dh(β,Q, g).
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16 Targeted MLE for V-adjusted additive vari-

able importance for continuous A.

Assume E(E(Y | A = a,W ) − E(Y | A = 0,W ) | V ) = m(a, V | β0). The
above derived t-mle for the semiparametric additive msm for realistic rules
based on a working model m(· | β) (so β0 is defined nonparametrically in terms
of least squares projection) needs to assume that A is discrete since it relies
on an estimate of the probability that A = 0, given covariates. The approach
followed there estimated θn(V ) without using the working model (i.e., one
cannot get E(Y (0) | V ) by extrapolating from E(Y (a) | V )), which explains
why our resulting class of estimating functions relies on a positive probability
on A = 0. The resulting estimator had a well understood projection extension
if the working model is misspecified.

Here we derive a class of double robust estimating functions which apply to
general A and we restrict to the effect of static interventions. If the model m(· |
β) is wrong, these estimating functions correspond with particular projections
of the true V -adjusted var imp on the (working) model.

The idea is too inverse weight the estimating functions for E(Y | A, V )−
E(Y | A = 0, V ) = m(a, V | β0) under g∗(A | X) = g∗(A | V ) with g∗/g, and
subsequently orthogonalize them w.r.t. TCAR. This results in the following
class of estimating functions indexed by h and g∗:

D∗h(β0, θ0, Q, g) =
g∗(A | V )

g(A | W )
{h(A, V )− Eg∗(h(A, V ) | V )} (Y −m(A, V | β0)− θ0(V ))

−g
∗(A | V )

g(A | W )
{h(A, V )− Eg∗(h(A, V ) | V )} (Q02(A,W )−m(A, V | β0)− θ0(V ))

+
∑
a

g∗(a | V ) {h(a, V )− Eg∗(h | V )} (Q02(a,W )−m(a, V | β0)− θ0(V ))

=
g∗(A | V )

g(A | W )
{h(A, V )− Eg∗(h(A, V ) | V )} (Y −Q02(A,W ))

+
∑
a

g∗(a | V ) {h(a, V )− Eg∗(h | V )} (Q02(a,W )−m(a, V | β0)− θ0(V ))

≡ D∗1h(Q0, g) +D∗2h(β0, θ0, Q)

This class of estimating functions indexed by h are double robust in the sense
that they are solved at the true β0 if either g = g0 or Q = Q0, (and θ0 can
always be misspecified) and the model is correctly specified.

As h we recommend the choice which yields the efficient influence curve
in the case that the data is (V,A, Y ) and one assumes the model E(Y | A =
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a, V ) − E(Y | A = 0, V ) = m(a, V | β0), as presented above: e.g. in the
constant variance case, h∗(β0)(A, V ) = d

dβ0
m(A, V | β0). For this choice, let

D1(β,Q, g) = D1h(β)(Q, g) and D2(β, θ,Q) = D2h(β)(β, θ,Q).
If one works in the nonparametric model, one can view this choice of double

robust estimating function as an efficient influence curve in a nonparametric
model for a parameter Q → β(Q) defined nonparametrically as a solution of
the second component equation: β(Q) is the β solving P0D2h∗(β(Q))(β(Q), θ(Q), Q) =
0.

Solving the second component of efficient influence curve equa-
tion, given Q0: We note that, given a Q0, we can define (β(Q0), θ(Q0)) as
the following iterative targeted MLE type solution. This is important since
it provides us with a powerful way to deal with multiple solutions and a fast
way to compute the estimator β(Q0). Consider the case that the marginal
distribution of W under Q0 is the empirical probability distribution of W .

Consider an initial estimator β0, θ0 (say implied by Q0) of β0, θ0. Now,
compute the following weighted linear regression estimator:

ε0n ≡ arg max
ε

∑
i

∑
a

g∗n(a | Vi)
{
Q0(a,Wi)−mβ0+ε(a, Vi)− θ0(Vi)− εh∗(β0, g∗n)(Vi)

}2
,

where we define h∗(β, g∗) = −Eg∗(h∗(β)(A, V ) | V ) = −Eg∗( d
dβ
mβ(A, V ) | V ).

In the case that mβ(a, V ) = βaV , ten h∗(β, g∗) = h∗(g∗) does not depend on
β. Thus, ε0n is obtained as a repeated measures weighted linear least squares
regression fit with off-set β0aV + θ0(V ), adding covariate extension ε{aV +
h∗(β0, g∗n)(V )}, where the weights are g∗n(a | Vi). Now, let β1 = β0 + ε0n
and θ1 = θ0 + εh∗(β0, g∗n). We now iterate this process till convergence (i.e.,
εkn ≈ 0) and let β(Q0) = βk and θ(Q0) = θk for this large enough choice k. If
mβ is linear, then the convergence occurs in a single step so that βkn = β1 and
θkn = θ1. Because the score of the used ε-extension for the final k is solved at
ε = 0 it follows that β(Q0), θ(Q0) solve the estimating equation:

0 =
∑
i

∑
a

g∗n(a | Vi)
{

d

dβ(Q0)
mβ(Q0)(a, Vi) + h∗1(β(Q0), g∗n)(Vi)

}
×

(Q0(a,Wi)−mβ(Q0)(a, Vi)− θ(Q0)(Vi)),

or equivalently
∑

iD2(β(Q0), θ(Q0), Q0)(Oi) = 0.
Solving first component of efficient influence curve equation, given

β0, θ0: Let Q0 be an initial estimator estimating Q02(A,W ) = EQ0(Y | A,W )
according to a regression model, and estimating the marginal distribution of
W with the empirical distribution of W . Let Q0(ε) be obtained by adding
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εC(β0)(A,W ) to the regression fit Q0
2(A,W ), where

C(β0) =
g∗n(A | V )

gn(A | W )

{
d

dβ0
mβ0(A, V ) + h∗1(β0, g∗n)(V )

}
.

Let ε0n be the MLE and let Q1
n be the corresponding update. In principle, we

iterate this till εkn ≈ 0 and thereby Qk
n solves

0 =
∑
i

D1(β0, Qk
n, gn)(Oi).

However, since the covariate C(·) does not depend on Qk
n it follows that con-

vergence occurs at the first step so that we already have

0 =
∑
i

D1(β0, Q1
n, gn)(Oi).

Solving the efficient influence curve equation: Given Q0 and (in non
linear case) β0, we find the one step update Q1 solving

0 =
∑
i

D1(β1, Q1, gn)(Oi) = 0.

If the model mβ is linear, then D1 does not depend on β so that we have

0 =
∑
i

D1(Q1, gn)(Oi) = 0.

Given Q1 (and say corresponding β0, θ0), we solve for the iteratively obtained
(but in the linear case, single step) update β1 = β(Q0), θ1 = θ(Q0) solving

0 =
∑
i

D2(β1, θ1, Q1)(Oi) = 0.

In the linear model case, we are now done since we have

0 =
∑
i

D2(β1, θ1, Q1)(Oi) =
∑
i

D1(Q1, gn)(Oi)

so that the double robust estimating equation is already solved. In general, at
each step the log likelihood of Qk increases in k and we stop till convergence
is established (i.e., εkn ≈ 0 in the update step for Qk) at which point both
estimating equations are solved so that

0 =
∑
i

DDR(βk = β(Qk), θk = θ(Qk), Qk, gn)(Oi) = 0.
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That is, we solved the double robust estimating equation.
For statistical inference we can use that the t-mle βn = β(Qk) solves the

double robust estimating equation

0 =
∑
i

D∗h∗(βn),g∗n(βn, Q
k, gn)(Oi).

17 Semi-parametric logistic regression and cor-

responding odds-ratio variable importance.

Let O = (W,A, Y ) ∼ P0. Assume

Q0(A,W ) ≡ P0(Y = 1 | A,W ) =
1

1 + exp(−{Aβ0W + r0(W )})
for some β0 and function r0. We wish to construct the iterative targeted MLE
of β0 based on an i.i.d. sample O1, . . . , On from P0.

Firstly, we are concerned with construction of the nuisance tangent space
of the unspecified g0 so that we can find the efficient influence curve and
corresponding hardest sub-model through a current fit, as needed to define
the targeted MLE. For that purpose, we can consider ε-paths Pε(Y = 1 |
A,W ) = 1

1+exp(−{Aβ0W+r0(W )+εh(W )}) for arbitrary functions h. This results in
the nuisance tangent space

Tnuis,r0(P0) = {h(W )(Y −Q0(A,W )) : h}.
We wish to construct a path Q(ε) through Q at ε = 0 so that its score at
ε = 0 is orthogonal to the nuisance tangent space. Since any score is already
orthogonal to the nuisance scores generated by the distribution of (A,W ), it
follows that is suffices to establish that this score is orthogonal to Tnuis,r0(P0).
Consider the candidate paths

Q0h1(ε)(Y = 1 | A,W ) =
1

1 + exp(−{A(β0 + ε)W + r0(W ) + εh1(W )}) .

The score of this path at ε = 0 equals

S(h1) ≡ (AW + h1(W ))(Y −Q0(A,W )).

We now need to select h1 so that for each h(W ) we have

0 = E0(AW + h1(W ))(Y −Q0(A,W ))h(W )(Y −Q0(A,W ))

= E0(AW + h1(W ))h(W )σ2
0(A,W )),
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where σ2
0(A,W ) = Q0(A,W )(1−Q0(A,W )). It follows that the unique solu-

tion is given by

h∗1(Q0, g0)(W ) = −E0{AWQ0(1−Q0)(A,W ) | W}
E0{Q0(1−Q0)(A,W ) | W} ,

where g0 denotes the conditional distribution of A, given W . In particular,
this shows that the efficient influence curve is up till a scaling matrix given by:

D∗(Q0, g0)(O) = {AW + h∗1(Q0, g0)(W )} (Y −Q0(A,W )).

We note that one can also represent D∗ as function in g0, β0, r0:

D∗(β0, r0, g0)(O) = {AW + h∗1(β0, r0, g0)(W )} (Y −Qβ0,r0(A,W )).

We are now ready to define the targeted MLE. Let Q0, g0 be initial esti-
mators of Q0, g0, where Q0 is defined by (β0, r0). Construct path Q0

h∗1(Q0,g0)(ε)

and compute MLE ε0n of ε. This corresponds with fitting a logistic regression
model in covariate AW and h∗1, with offset β0AW + r0(W ). We now update
Q1 = Q0

h∗1(Q0,g0)(ε
0
n). We iterate this process till εkn ≈ 0 at which point we have

0 =
n∑
i=1

D∗(βkn, r
k
n, g

0
n)(Oi)

up till a user supplied numerical precision. The estimator βkn’s influence curve
and thereby statistical inference can now be derived from the fact that it solves
this estimating equation.

18 Double robust targeted MLE for direct ef-

fect model.

Consider a direct effect model E(
∑

z YazQ0(z | W ) | V ) = m(a, V | β0) for a
given distribution Q0(z | W ), where one particular choice is the distribution of
Z, given A = 0,W , typically replaced by an estimator. Let O = (W,A,Z, Y =
Y (A,Z)) be a missing data structure on X∗ = (W, (Y (a, z) : a, z)) and assume
the usual coarsening at random assumption. Let g(a, z | X∗) be the conditional
probability distribution of (A,Z), given X∗, which only depends on W (by
CAR). In addition, let QY 0 = E0(Y | A,Z,W ) and QW0 denotes the true
probability distribution of W .
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In van der Laan, Petersen (2008), we discussed estimators as solutions
of the double robust IPCW estimating equations. An important issue with
defining an estimator of β0 as a solution of estimating equations is that its
solutions are typically not compatible with a particular probability distribution
of the data, and that there is a lack of criteria to select among a possible set
of solutions. Targeted maximum likelihood estimation address these issues by
providing a maximum likelihood based estimation procedure resulting in an
estimator Qn = (QWn, QY n) in which its substitution estimator βn = β(Qn)
solves the wished double robust estimating equation.

We start with noting that the class of double robust estimating functions
indexed by h can be decomposed as a sum of two estimating functions:

D∗h,DR(O | β0, g0, QY 0) =
g∗(A|V )

g0(A,Z|X∗)
{h1(A, V )− Eg∗(h1(A, V ) | V )}Q0(Z | W )(Y −QY 0(A,Z,W ))

+
∑

a,z g
∗(a | V ) {h1(a, V )− Eg∗(h1(A, V ) | V )}Q0(z | W )×

{QY 0(a, z,W )−m(a, V | β0)− h2(V )}
≡ D∗1h(g0, QY 0) +D∗2h(β0, QY 0),

where we suppress the dependence on Q0(Z | W ).
This class of estimating functions indexed by h are double robust in the

sense that they are solved at the true β0 if either g = g0 or Q = Q0, and the
model is correctly specified.

Based on efficiency considerations, as target choice h = (g∗, h1, h2) we
recommended h1(a, V ) = d

dβ0
m(a, V | β0), h2(V ) = m0(V ) ≡ E(

∑
z Q0(z |

W )QY 0(0, z,W ) | V ), and g∗(A | V ) = g0(A | V ). If m(· | β) is lin-
ear in β, then h1 is known. Either way, we replace each of these target
choices by estimates of the corresponding quantities, resulting in a choice hn
with an asymptotic limit h∞, not necessarily equal to this wished choice h.
We note that under the assumption that m(a, V | β0) is correctly specified,
E(
∑

z YazQ)(z | W ) | V ) = m(a, V | β0) + m0(V ) so that one can view
m(a, V | β0) + m0(V ) as a semi-parametric additive causal regression model
modeling direct effects.

Since it is hard to construct an estimator QY n of QY 0 satisfying a par-
ticular direct effect model m(· | β), we wish to work in the nonparametric
model in which m(·β) is merely viewed as a working model. In this nonpara-
metric model one can view the (standardized version of the) recommended
choice of double robust estimating function as an efficient influence curve in
a nonparametric model for a parameter Q = (QW , QY ) → β(Q) defined non-
parametrically as a solution of the second component equation: β(Q) is a β
solving EQWD2h∗(β,QY ) = 0, where QW denotes a distribution of W and EQW
the expectation w.r.t. distribution QW .
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Our particular choice of mapping from a distribution QW of W and the
conditional mean QY into β(QW , QY ) solving this equation is defined now. We
note that if the direct effect model m(· | β) is correctly specified, then β(Q0)
corresponds with the true parameter in this direct effect model.

Nonparametric definition of β(Q) solving the second component
of efficient influence curve equation: We note that, given an estimator
Q = (QW , QY ), we can define (β(Q),m(Q)) as follows. We consider the case
that the marginal distribution of W under Q is the empirical probability dis-
tribution of W .

This definition relies on the specification of an initial estimator β0,m0

(which could be implied by Q = (QW , QY ) itself) of β0,m0. Firstly, we com-
pute the following weighted linear regression estimator:

ε0n ≡ arg max
ε

∑
i

∑
a,z

g∗n(a | Vi)Q0(z | W ){QY (a, z,Wi)

−mβ0+ε(a, Vi)−m0(Vi)− εh∗n(Vi)}2,

where we define h∗n(V ) = −Eg∗n(h1(A, V ) | V ) = −Eg∗n( d
dβ0mβ0(A, V ) | V ).

Thus, for example, if m(a, V | β) = βaV is linear, then ε0n is obtained as
a repeated measures weighted linear least squares regression fit with off-set
β0aV +m0(V ), adding covariate extension ε{aV + h∗(V )}, where the weights
are g ∗ (a | Vi)Q0(z | Wi).

Let β1 = β0 + ε0n and m1 = m0 + εh∗ be the updates, which can be
interpreted as a targeted estimator of β0,m0 targeting β0, given an initial
estimator (β0,m0).

In general, if one wishes to update h∗ itself as well based on the newly
obtained estimate β1, then, we can iterate this process till convergence (i.e.,
εkn ≈ 0) and let β(Q) = βk and m(Q) = mk for this large enough choice k. If
either mβ is linear or one simply uses a fixed h∗ according to its initial estimate,
then the convergence occurs in a single step so that βkn = β1 and mk

n = m1.
For simplicity, and since it comes without cost of asymptotic performance, we
recommend to use a fixed h∗ so that the first step β1 already represents the
evaluation β(Q).

Because the score of the used ε-extension for the final k is solved at ε = 0
it follows that β(Q),m(Q) solve the estimating equation:

0 =
∑
i

∑
a,z

g∗n(a | Vi)Q0(z | Wi)

{
d

dβ0
n

mβ0
n
(a, Vi) + h∗n(Vi)

}
×

(Q0(a, z,Wi)−mβ(Q)(a, Vi)−m(Q)(Vi)),
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or equivalently
∑

iD2hn(β(QW , QY ), QY )(Oi) = 0 with hn = (g∗n, h
∗
n, h2 =

m(Q)).
Solving first component of efficient influence curve equation with

targeted MLE: Let Q0 = (Q0
Y , Q

0
W ) be an initial estimator estimating

QY 0(A,Z,W ) = E0(Y | A,Z,W ) according to a regression model, and esti-
mating the marginal distribution of W with the empirical distribution of W .
Targeted maximum likelihood estimation involves updating such an initial es-
timator by maximizing the likelihood in a particular direction targeting the
parameter β(Q) of interest, thereby reducing the bias of this initial likelihood
based estimator β(Q0).

LetQ0(ε) be obtained by adding εCn(A,Z,W ) to the regression fitQ0
Y (A,W ),

while keeping Q0
W the same, where

Cn(A,Z,W ) =
g∗n(A | V )

gn(A,Z | X∗)Q0(Z | W )

{
d

dβ0
mβ0(A, V ) + h∗n(V )

}
.

Let ε0n be the MLE according to a normal regression model:

ε0n = arg min
ε

n∑
i=1

(Yi −QY (ε)(Ai, Zi,Wi))
2.

Let Q1
n be the corresponding update. In principle, if one decides to update Cn

at each step, we iterate this till εkn ≈ 0 and thereby Qk
n solves

0 =
∑
i

D1hn(Qk
n, gn)(Oi).

However, if the covariate Cn does not depend on Qk
n (i.e., we fix it at its initial

estimate), then it follows that convergence occurs at the first step so that we
already have

0 =
∑
i

D1hn(Q1
n, gn)(Oi)

for hn = (g∗n, h
∗
n, h2) for arbitrary choice h2 (since D1h does not depend on h2).

Again, we recommend to use a fixed Cn so that the targeted MLE is attained
in a single step.

The targeted MLE solves the efficient influence curve equation:
We start out with specifying an estimator g∗n, corresponding estimate h∗n, and
an estimator h2n(V ) = m0

n(V ) of θ0(V ), resulting in hn = (g∗n, h
∗
n, h2n). In

addition, we specify an initial estimator Q0
n = (Q0

Wn, Q
0
Y n) of (QW0, QY 0),
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where we set Q0
Wn equal to the empirical distribution of W1, . . . ,Wn. Given

Q0
n, we find the one step targeted MLE Q1

n = Q0
n(ε0n) (defined above) solving

0 =
∑
i

D1,g∗n,h∗n(Q1
n, gn)(Oi) = 0.

Given Q1
n (and say corresponding β0

n,m
0
n), we determine β1

n = β(Q1
n), θ1

n =
θ(Q1

n) defined above as a targeted semi-parametric repeated measures regres-
sion solving

0 =
∑
i

D2,g∗n,h∗n,m(Q1
n)(β

1, Q1
n)(Oi) = 0.

We conclude that the targeted MLE β1
n = β(Q1

n) solves the double robust
estimating equation

0 =
∑
i

Dhn,DR(β1 = β(Q1
n), Q1

n, gn)(Oi) = 0,

where hn = (g∗n, h
∗
n, θ(Q

1
n)).

Since β1
n solves the double robust estimating equation, statistical inference

for β0 based on the targeted MLE proceeds in the same manner as for the
DR-IPTW estimator.

19 Semi-parametric logistic MSM for point treat-

ment.

Let X = (W, (Y (a) : a ∈ A)) and O = (A,W, Y = Y (A)). Consider the
working model

E(Y (a) | V ) = mβ0,r0(a, V ) ≡ 1

1 + exp (−{β0aV + r0(V )}) ,

for some vector β0 and function r0, where V ⊂ W . Let g0(A | X) = g0(A | W )
be the treatment mechanism satisfying the missing at random assumption. In
the special case that g0(A | X) = g0(A | V ), the previous section determines
an appropriate estimating function:

D∗(β0, r0, g
∗
0)(O) = {AV + h∗1(β0, r0, g

∗
0)(V )} (Y −mβ0,r0(A, V )),

where

h∗1(β0, r0, g0)(W ) = −E0{AVmβ0,r0(1−mβ0,r0)(A, V ) | V }
E0{mβ0,r0(1−mβ0,r0)(A, V ) | V } .

Appendix B. Targeted Maximum Likelihood Learning: Examples and Generalizations
M.J. van der Laan (2009)

626
Hosted by The Berkeley Electronic Press



Note that D∗ equals the efficient influence curve for the semi-parametric lo-
gistic regression model mβ0,r0 for Y , given A, V , based on the reduced data
(V,A, Y ) ∼ Pβ0,r0,g∗0 . The Inverse Probability of Treatment Weighted (IPTW)-
version of D∗ is given by:

DIPTW,g∗0 (β0, r0, g0) =
g∗0(A | V )

g0(A | W )
{AV + h∗1(β0, r0, g

∗
0)(V )} (Y −mβ0,r0(A, V ))

The IPTW estimator as an iterative targeted MLE procedure:
Before we proceed we wish to show that we can represent and compute the
corresponding IPTW estimator of β0 and r0 as an iterative targeted MLE
type estimator. This is important since it provides us with a powerful way to
deal with multiple solutions and a fast way to compute the IPTW-estimator.
Consider an initial estimator β0, r0 of β0, r0. Now, compute the following
weighted logistic regression estimator:

ε0n ≡ arg max
ε

∑
i

g∗n(Ai | Vi)
gn(Ai | Wi)

log{
mβ0+ε,r0+εh∗1(β0,r0,g∗n)(Ai, Vi)

Yi
(
1−mβ0+ε,r0+εh∗1(β0,r0,g∗n)(Ai, Vi)

)1−Yi
}
.

Thus, ε0n is obtained as a weighted logistic regression maximum likelihood fit
with off-set β0aV +r0(V ), adding covariate extension ε(aV +h∗1(β0, r0, g∗n)(V )),
where the weights are g∗n(Ai | Vi)/gn(Ai | Wi). Now, we update β1 = β0 + ε0n
and r1 = r0 + εh∗1(β0, r0, g∗0), and iterate this updating process till convergence
(i.e., εkn ≈ 0) and let βn = βk and rn = rk for this large enough choice k.
Because the score of the used ε-extension for the final k is solved at ε = 0 it
follows that the final updateβn, rn solves the estimating equation:

0 =
∑
i

g∗n(Ai | Vi)
gn(Ai | Wi)

{AiVi + h∗1(βn, rn, g
∗
n)(Vi)} (Yi −mβn,rn(Ai, Vi)).

Thus, βn solves the IPTW estimator function with nuisance parameter r0

estimated with the estimator rn. We can use the weighted log likelihood as
criteria to select among different choices of initial estimators r0, β0 (e.g. using
likelihood based cross-validation).

Double robust estimating function: The with DIPTW corresponding
double robust estimating function is obtained by subtracting from DIPTW its
projection on all functions of A,W with conditional mean zero, given W , and
is thus given by:
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DDR,g∗0 (β(Q0), r(Q0), Q0, g0) =
g∗0(A | V )

g0(A | W )
{AV + h∗1(β(Q0), r(Q0), g∗0)(V )}

×(Y −Q0(A,W ))

+
∑
a

g∗0(a | V ) {aV + h∗1(β(Q0), r(Q0), g∗0)(V )}

×(Q0(a,W )−mβ(Q0),r(Q0)(a, V ))

≡ D1g∗0 (β(Q0), r(Q0), Q0, g0)

+D2g∗0 (β(Q0), r(Q0), Q0, g0),

where Q0 represents the conditional distribution of Y , given A,W , and the
marginal distribution of W , and, given Q0, we define β(Q0), r(Q0) so that it
is a solution of P0D2g∗0 (β, r,Q0, g0) = 0.

Solving the second component of efficient influence curve equa-
tion, given Q0: We note that, given a Q0, we can define (β(Q0), r(Q0)) as
the following iterative targeted MLE type solution. This is important since it
provides us with a powerful way to deal with multiple solutions of the efficient
influence curve equation, and a fast way to compute the estimator β(Q0). Con-
sider the case that the marginal distribution of W under Q0 is the empirical
probability distribution of W .

Consider an initial estimator β0, r0 of β0, r0. Now, compute the following
weighted logistic regression estimator:

ε0n ≡ arg max
ε

∑
i

∑
a

g∗0(a | Vi)
mβ0,r0(1−mβ0,r0)(a, Vi)

{
Q0(a,Wi)−mβ0+ε,r0+εh∗1(β0,r0,g∗0)(a, Vi)

}2
.

Thus, ε0n is obtained as a repeated measures weighted least squares logistic
regression fit with off-set β0aV + r0(V ), adding covariate extension ε(aV +
h∗1(β0, r0, g∗0)(V )), where the weights are g∗n(a | Vi)/mβ0,r0(1 −mβ0,r0)(a | Vi).
Now, let β1 = β0 +ε0n and r1 = r0 +εh∗1(β0, r0, g∗0). We now iterate this process
till convergence (i.e., εkn ≈ 0) and let β(Q0) = βk and r(Q0) = rk for this large
enough choice k. Because the score of the used ε-extension for the final k is
solved at ε = 0 it follows that β(Q0), r(Q0) solve the estimating equation:

0 =
∑
i

∑
a

g∗n(a | Vi)
{
aVi + h∗1(β(Q0), r(Q0), g∗n)(Vi)

}
(Q0(a,Wi)−mβ(Q0),r(Q0)(a, Vi)),

or equivalently
∑

iD2g∗n(β(Q0), r(Q0), Q0)(Oi) = 0.
Solving first component of efficient influence curve equation, given

β0, r0: LetQ0 be an initial estimator estimatingQ0(A,W ) = P0(Y = 1 | A,W )
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according to a logistic regression model and estimating the marginal distribu-
tion of W with the empirical distribution of W . Let Q0(ε) be obtained by
adding εC(β0, r0)(A,W ) to the logit of Q0(Y | A,W ), where

C(β0, r0) =
g∗n(A | V )

gn(A | W )

{
AV + h∗1(β0, r0, g∗n)(V )

}
.

Let ε0n be the MLE and let Q1
n be the corresponding update. In principle, we

iterate this till εkn ≈ 0 and thereby Qk
n solves

0 =
∑
i

D1g0∗(β
0, r0, Qk

n, g
0
n)(Oi).

However, since the covariate does not depend on Qk
n it follows that convergence

occurs at the first step so that we already have

0 =
∑
i

D1g0∗(β
0, r0, Q1

n, g
0
n)(Oi).

Solving the efficient influence curve equation: GivenQ0 (and say cor-
responding β0, r0), we solve for the iteratively obtained update β1 = β(Q0), r1 =
r(Q0) solving

0 =
∑
i

D2g∗n(β1, r1, Q0)(Oi) = 0.

Given β1, r1, we find one step update Q1 solving

0 =
∑
i

D1g∗n(β1, r1, Q1, gn)(Oi) = 0.

At each step the log likelihood of Qk increases in k and we stop till convergence
is established (i.e., εkn ≈ 0 in the update step for Qk) at which point both
estimating equations are solved so that

0 =
∑
i

DDR,g∗0(β
k = β(Qk), rk = r(Qk), Qk, gn)(Oi) = 0.

That is, we solved the double robust estimating equation.
The influence curve of βkn can now be derived from the fact that it solves

this estimating equation and statistical inference can be based on this influence
curve.
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20 IPCW-Reduced Data Targeted MLE.

Let X = (La : a = (a(0), . . . , a(K)) ∈ A) be a collection of action specific
random variables La indexed by action regimen a, and let the observed data
structure be given by

O = (A,L = LA) = (L(0), A(0), . . . , LA(K), A(K), LA(K + 1).

The latter represents the time ordering which implies that La(t) = Lā(t−1)(t).
Typically, La(t) includes a component Ra(t) = I(Ta ≤ t) for a failure/end of
follow up time Ta, and La(t) = La(min(t, Ta)) becomes degenerate after the
counterfactual time variable Ta. The action process A(t) can have various
components describing censoring as well as treatment actions at time t, and
for certain values of A(t − 1), such as values implying right-censoring, the
future process A(t), . . . , A(K) will be a deterministic function of Ā(t − 1) =
(A(0), . . . , A(t − 1)). In addition, typically, certain values of the observed
history L̄(t), Ā(t− 1), such as one implying the failure time event TA = t, will
determine the future values A(t), . . . , A(K).

We assume the sequential randomization assumption on the conditional
distribution of A, given X, which implies the coarsening at random assump-
tion:

g(a | X) =
∏
t

gt(a(t) | Ā(t− 1) = ā(t− 1), X)

SRA
=
∏
t

gt(a(t) | Ā(t− 1) = ā(t− 1), LĀ(t−1)(t)),

where, by support restrictions on A and the possibly deterministic rela-
tion between an observed history Ā(t− 1), L̄(t) and the future action process
A(t), . . . , A(K), this product over time t can often be represented as

g0(a | X) =

min(Ta−1,Ca)∏
t=0

gt(a(t) | Ā(t−1) = ā(t−1), L̄(t))
K∏

t=min(Ta−1,Ca)+1

I(a(t+1) = a(t)),

where Ca denotes the censoring/end of follow up time implied by action regi-
men a.

Under this CAR/SRA, the probability distribution of the observed data
random variable O = (A,LA) for a single experimental unit factorizes in a
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factor Q0 implied by the full data distribution of X and a factor g0(· | X).

dPQ0,g0(O) =
K+1∏
t=0

PQ0(L(t) | L̄(t− 1), Ā(t− 1))g0(A | X)

≡
K+1∏
t=0

Q0t(L(t) | L̄(t− 1), Ā(t− 1))g0(A | X),

where, by CAR we have Q0t(l(t) | l̄(t − 1), ā(t − 1)) = P (La(t) = l(t) |
L̄a(t− 1) = l̄(t− 1)) so that indeed Q0 represents the identifiable part of the
full data distribution of X.

Consider a particular model M = {PQ,g0 : Q ∈ Q, g0 ∈ G1} implied by a
model Q for Q0 and a model G1 for the censoring mechanism g0 contained in
the set G of all SRA-conditional distributions of A, given X. Consider also
a particular parameter Ψ : Q → IRd defined on this model Q for Q0, and let
ψ0 = Ψ(Q0) denote the true parameter value. Since Q0 is identifiable, one
can also view Ψ as a parameter on the model M of possible data generating
distributions of O.

In this article we provide a class of so called Inverse Probability of Censoring
Weighted-Reduced Data- Targeted Maximum Likelihood estimator (IPCW-R-
TMLE), obtained by applying the iterative targeted MLE for a reduced data
structure but using inverse probability of censoring weighted log-likelihoods at
each step. The general targeted MLE methodology is proposed and developed
in ? and can thus also be applied to the complete longitudinal data structure
O, as illustrated earlier. The advantage of the IPCW-R-TML estimators is
mainly of a practical nature. That is, the IPCW-R-TMLE is often far less
complex (and thereby much easier to implement with standard software pack-
ages implementing maximum likelihood procedures for the reduced data) than
the actual targeted MLE for the actual observed longitudinal data structure
which includes time-dependent covariate processes, while the IPCW-R-TMLE
still preserves and improves upon important efficiency and robustness prop-
erties of the targeted MLE for the reduced data structure. Specifically, an
IPCW-R-TML estimator is defined by the following steps.

Specify Reduced Data Structure: Determine a reduction Or = (A,LrA)
(i.e., Or is a function of O), where LrA is a measurable function of LA,
where the reduction needs to be so that it is still possible to identify the
parameter of interest ψ0 from the probability distribution of Or under the
under the SRA assumption for the reduced full data structure Xr = (Lra :
a ∈ A). For example, O = (W = L(0), A, L̄(K), Y = L(K + 1)) consists
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of baseline covariates W , treatment regimen A = (A(0), . . . , A(K)), time
dependent covariate process L̄(K), and a final outcome Y , while one
defines Or = (W,A, Y ), which is obtained from O by deleting all time-
dependent covariates.

Reduced Data Model. Consider the corresponding reduced data SRA model
Mr = {P r

Qr,gr = Qrgr : Qr ∈ Qr, gr ∈ Gr} (as described above in gen-
eral) for Or = (A,LrA), where Gr is a set of conditional distributions of A,
given Xr = (Lra : a ∈ A), satisfying the SRA assumption for the reduced
data structure Or, and Qr is a model for the identified component Qr

0 of
the full data distribution of Xr: since Qr

0 is a function of Q0, it follows
that the model Qr = {Qr : Q ∈ Q} for Qr

0 is implied by model Q for Q0.
Let Ψr : Qr → IRd be such that Ψr(Qr) = Ψ(Q) for all Q ∈ Qr, and, in
particular, Ψr(Qr

0) = Ψ(Q0).

Factorization of Qr: Suppose dPQr0,gr0 =
∏

j Q
r
j0g

r
0 factors in various terms

Qr
j0, j = 1, . . . , J (e.g., J = K + 1). Suppose that Qr

j0(Or) depends on
Or only through ((A(0), . . . , A(jr−1), L̄r(jr)), j = 1, . . . , J . In a typical
scenario, we have that Qr

j0 denotes the conditional distribution of Lr(jr),
given (A(0), . . . , A(jr − 1) and L̄r(jr − 1). For notational convenience,
we used the short-hand notation jr = jr(j).

Determine Qr
j-components of efficient influence curve for reduced data model:

Let Dr(P r) be the efficient influence curve at dP r = dP r
Qr,gr = Qrgr for

the parameter Ψr in the model Mr. This efficient influence curve can
be decomposed as:

Dr(P r) = Dr(Qr, gr) =
J∑
j=1

Dr
j (P

r),

where Dr
j (P

r) is an element of the tangent space generated by the j-th
factor Qr

j of Qr =
∏

j Q
r
j at P r.

Determine hardest Qr
j-fluctuation functions: Given a Qr construct sub-

models {Qr
j(ε) : ε} through Qr

j at ε = 0, with score at ε = 0 equal to
Dr
j (Q

r, gr):

d

dε
logQr

j(ε)

∣∣∣∣
ε=0

= Dr
j (Q

r, gr), j = 1, . . . , J.
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Construct IPCW-weights for each Qr
j-factor: For each j construct weight-

function

wj =
gr(Ā(jr) | Xr)

g0(Ā(jr) | X)
, j = 1, . . . , J .

In short, we will often represent the weights gr(Ā(jr) | Xr)/g0(Ā(jr) | X)
as grj/g0j. We note

Qr
j0 = arg max

Qrj∈Qrj
PQ0,g0{logQr

jwj}
= arg max

Qrj∈Qrj
PQr0,gr0 logQr

j , j = 1, . . . , J .

IPCW-(Iterative) Targeted MLE based on reduced data at specified gr:
We will now compute the iterative targeted MLE under i.i.d sampling
Or

1, . . . , O
r
n from P r

Qr0,g
r , treating gr as known (e.g., estimated a priori),

but assigning IPCW-weights, as follows. Let Qr0 be an initial estimator
of Qr

0 such as a weighted-MLE according to a working model Qrj :

Qr0
j = arg max

Qrj∈Qrj

∑
i

logQr
j(O

r
i )wji.

Compute the overall amount of fluctuation with weighted maximum like-
lihood estimation:

ε1n = arg max
ε

∑
i

∑
j

logQr0
j (ε)(Or

i )wji,

and compute the corresponding first step targeted ML update Qr1
j =

Qr0
j (ε1n), j = 1, . . . , J , and thereby the overall update Qr1 = Qr0(ε1n).

Iterate this process till convergence (i.e., εkn ≈ 0) and denote the final
update with Qr

n = (Qr
jn : j = 1, . . . , J).

Let D(Qr, gr, g0) =
∑

j D
r
j (Q

r, gr)
grj
g0j

. Under a weak regularity condition

we have (see proof in ?)

0 =
∑
i

D(Qr
n, g

r, g0)(Oi) =
∑
i

∑
j

Dr
j (Q

r
n, g

r)(Or
i )wji. (7)

Substitution estimator: Our estimator of ψ0 is given by Ψr(Qr
n).

The IPCW-R-TMLE is an estimator Qr
n solving an IPCW-reduced data

efficient influence curve equation (7). Firstly, we establish that this IPCW-
reduced data efficient influence curve is an ”estimating function” for the target
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parameter with nice robustness properties w.r.t its nuisance parameters Qr
0 and

g0. Subsequently, we discuss the corresponding implications on the statistical
properties of the IPCW-R-TMLE.

Robustness properties of IPCW-Reduced Data Efficient Influence
Function: Recall that Dr(Qr, gr) denotes the efficient influence curve for the
reduced data Or ∼ PQr,gr for model Mr and parameter Ψr. It follows from
general results in ? that PQr0,gr0D

r(Qr, gr) = 0 if either Qr = Qr
0 or Ψ(Qr) =

Ψ(Qr
0) and gr = gr0. This double robustness result for Dr is exploited/inherited

by the estimating function

D(Qr, gr, g0) ≡
∑
j

Dr
j (Q

r, gr)grj/g0j,

whose corresponding estimating equation is solved by our IPCW targeted
MLE, in the following manner. We have

PQ0,g0D(Qr, gr, g0) = PQ0,g0

∑
j

Dr
j (Q

r, gr)
grj
gj

= PQ0,gr

∑
j

Dr
j (Q

r, gr)
g0j

gj
.

This implies that if gj = g0j (i.e., the action mechanism is correctly specified),
then PQ0,g0D(Qr, gr, g0) = 0 for all choices of Qr, gr with Ψ(Qr) = Ψ(Qr

0). In
a typical scenario, we have that Qr

j0 denotes the conditional distribution of
Lr(jr), given A(0), . . . , A(jr − 1) and L̄r(jr − 1). In this case, if g0j is only
a function of Or, then if Qr = Qr

0, it follows that PQ0,grD
r
j (Q

r
0, g

r)
g0j
gj

= 0 for

all gj only being a function of Or (by using that the conditional expectation
of a score Dr

j (Q
r
0, g

r) of Qr
j0, given (A(0), . . . , A(jr − 1) and L̄r(jr − 1), equals

zero), and as a consequence, PQ0,g0D(Qr
0, g

r, g) = 0 for such misspecified g.
That is, in the case that the true g0 and its asymptotic fit are only functions
of the reduced data structure, we have the double robustness of the estimating
function D(Qr, gr, g) in the sense that PQ0,g0D(Qr, gr, g) = 0 if either Qr = Qr

0

or g = g0, for all gr.
Statistical Properties of IPCW-Reduced Data Targeted MLE:

The above mentioned robustness property of the estimating equation∑
iD(Qr

n, g
r
n, gn) = 0, gn an estimator of g0, as solved by the IPCW-R-TMLE

Qr
n translates under regularity conditions in the following statistical properties

of the substitution estimator ψn = Ψr(Qr
n). Firstly, under appropriate regu-

larity conditions, if gn consistently estimates g0, then ψn will be a consistent
and asymptotically linear estimator of ψ0. In addition, if gn(A | X) and its
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target g0(A | X) are only functions of the reduced data structure Or, then 1)
ψn is consistent and asymptotically linear if either Qr

n consistently estimates
Qr

0 or gn consistently estimates g0, and if both estimates are consistent, then
the estimator ψn is more efficient than an efficient estimator based on n i.i.d.
observations of the reduced data structure Or only.

21 IPCW-Reduced Data-Targeted-MLE for

Marginal Structural Models.

Let O = (W = L(0), A(0), . . . , L(K), A(K), Y = L(K + 1)), L(0) are base-
line co-variates, A(j) = (A1(j), A2(j)), A1(j) denotes a treatment at time j,
A2(j) = I(C ≤ j) indicates a censoring event/drop out at time j, L(j) are
time dependent co-variates collected after A(j − 1) and before A(j), and Y is
a final outcome of interest collected at time K+1. The chronological ordering
of the data implies that L(j) = LĀ(j−1)(j) is affected by past action history
Ā(j − 1). Let the full data structure be X = (La : a ∈ A), La(t) = Lā(t−1)(t),
so that the observed data structure O can be presented as a missing data
structure O = (A,LA). We assume the sequential randomization assumption
g0(A(j) | Ā(j − 1), X) = g(A(j) | Ā(j − 1), L̄(j)), j = 0, . . . , K. We have
O ∼ dPQ0,g0(A,L) = Q0(A,L)g0(A | X), where Q0(a, l) = P (La = l), under
the assumption that g(a | X) > 0 for all a ∈ A.

Consider a marginal structural working model E0(Ya10 | V ) = m(a1, V | β0)
for a user supplied working model {m(· | β) : β} for the counterfactual mean of
Ya10 under treatment regimen a1 = (a1(0), . . . , a1(K)) and no censoring (i.e.,
a2 = 0), conditional on baseline covariates V included in the set of baseline
covariates W = L(0). Our goal is to estimate β0 defined non-parametrically
as

β0 = Ψ(Q0) ≡ arg min
β
EQ0

∑
a1

h(a1, V )(m(a1, V | β)− EQ0(Ya10 | V ))2

for some user supplied weight function h(a1, V ). A typical choice is h(a1, V ) =
g∗(a1 | V ), where g∗ is a conditional distribution of A1, given V , representing
the limit of an estimate of the true conditional distribution of A1, given V
according to a possibly misspecified working model. Equivalently,

β0 = Ψ(Q0) = arg min
β
EQ0

∑
a1

h(a1, V )(Q0(a1,W )−m(a1, V | β))2,

where we define Q0(a1,W ) = E0(Ya10 | W ).
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The model for the observed data structure O ∼ dPQ0,g0 = Q0g0 can be
written as M = {PQ,g : Q, g ∈ G}, where Q can be arbitrary and G is the set
of conditional distributions of A, given X, satisfying SRA.

Data reduction: Let the reduced data be obtained by excluding all the
time-dependent co-variates Or = (W,A = (A(0), . . . , A(K)), YA). Let Xr =
(W, (Ya : a ∈ A)), so that Or = (W,A, YA) is a missing data structure on Xr.

SRA for reduced data: Consider an action mechanism gr satisfying
gr(A | X) = gr(A | Xr) = gr(A | W ). We consider a choice gr so that
P (A2 = 0) = 1 under gr.

Reduced Data Model: In the reduced data model for Or one assumes
gr(A | Xr) = gr(A | W ), so that Or ∼ pQr0,gr = Qr

0g
r, Qr

0 = Qr
01 ∗ Qr

02, where
Qr

01 is a marginal distribution of W , Qr
02 is a conditional distribution of Y ,

given A,W , and gr is the conditional distribution of A, given Xr. We have
Qr

02(y | a, w) = P (Ya = y | W = w). Let Mr = {pQr,gr : Qr, gr ∈ Gr}, where
Gr = {g(· | Xr) = g(· | W )} is the class of conditional distributions of A, given
Xr, only depending on Xr through W . We note that Qr

0 is a function of Q0,
and both are identified as counterfactual distributions: Qr

0(w, a, y) = P (W =
w, Ya = y) is a sub-distribution of Q0(a, l) = P (La = l).

Consider the parameter

βr0 = Ψr(Qr
0) ≡ arg min

β
E0

∑
a1

h(a1, V ){Qr
0(a1,W )−m(a1, V | β)}2,

where Qr
0(a1,W ) = E0(Ya10 | W ). It follows that βr0 = β0. In general,

Ψr(Qr) = Ψ(Q) for any Q and corresponding Qr.
Efficient influence curve of Ψr in reduced data model: The efficient

influence curve of Ψr at pQr0,gr ∈Mr is given by

Dr =
h(A1, V )

gr(A10 | W )

d

dβ0

m(A1, V | β0)(Y −Qr
0(A1,W ))I(A2 = 0)

+
∑
a1

h(a1, V )
d

dβ0

m(a1, V | β0)(Qr
0(a1,W )−m(a1, V | β0))

≡ Dr
1(Qr

0, g
r) +D2(Qr

0),

where Qr
0(a1,W ) = E0(Ya10 | W ). We also note that gr can be factored as

gr(A10 | W ) =
K∏
j=0

gr1(A1(j) | A2(j) = 0, Ā1(j),W )

K∏
j=1

gr2(A2(j) = 0 | Ā1(j − 1), A2(j − 1) = 0,W ),
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where gr1 represents a treatment mechanism and gr2 a censoring mechanism.
IPCW-Weighted Reduced Data Efficient Influence Curve: By

weighting the first component Dr
1 with gr/g0, we obtain

D1(Qr
0, g

r)gr(A | Xr)/g0(A | X) = D1(Qr
0, g

r)gr(A10 | Xr)/g0(A10 | X),

which yields the following IPCW-Weighted Reduced Data Efficient Influence
Curve:

D(Q0, g0) =
h(A1, V )

g0(A10 | X)

d

dβ0

m(A1, V | β0)(Y −Qr
0(A1,W ))I(A2 = 0)

+
∑
a1

h(a1, V )
d

dβ0

m(a1, V | β0)(Qr
0(a1,W )−m(a1, V | β0))

≡ D1(Qr
0, g0) +D2(Qr

0).

IPCW-R-Targeted MLE solving IPCW-Reduced Data Efficient
Influence Curve Equation: We will now compute the iterative targeted
MLE under i.i.d sampling Or

1, . . . , O
r
n from P r

Qr0,g
r , treating gr as known, but

assigning IPCW-weights, as follows. Firstly, we estimate the marginal distri-
bution Qr

01 of W with the empirical probability distribution of W1, . . . ,Wn.
Let Qr0

2 be an initial estimator of the conditional distribution Qr
20 of Ya10,

given W , such as a weighted-MLE according to a working model for Y , given
A,W :

Qr0
2 = arg max

Qr2∈Qr2

∑
i

logQr
2(Yi | Ai,Wi)wi,

where

wi = I(A2i = 0)
grn(A1i0 | Wi)

gn(A1i0 | Xi)
.

For example, if one assumes a normal error regression model for Y on A,W ,
then this corresponds with weighted least squares regression, and if Y is binary,
and one assumes a logistic regression model for Y , given A,W , then this
corresponds with weighted logistic linear regression.

Subsequently, we extend the current fit Qr0
2 with an ε-extension so that

the score at ε = 0 equals D1(Qr0, gr). As shown previously, in the normal
regression model case, this corresponds with adding a covariate-extension

ε
h(A1i, Vi)

gr(A1i0 | Wi)

d

dβ0

m(A1i, Vi | β0)

and, in the logistic regression case, one adds the covariate extension

ε
h(A1i, Vi)

gr(A1i0 | Wi)

d
dβ0
m(A1i, Vi | β0)

mβ0(1−mβ0)(A1i, Vi)
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to the logit. We now compute the amount of fluctuation with weighted maxi-
mum likelihood

ε1n = arg max
ε

∑
i

∑
j

logQr0
2 (ε)(Or

i )wi,

which corresponds with univariate weighted least squares regression or univari-
ate weighted logistic regression, and can thus be done with standard software.

We now compute the corresponding first step targeted ML update Qr1
2 =

Qr0
2 (ε1n). We iterate this process till convergence (i.e., εkn ≈ 0) and denote the

final update with Qr
2n. If m(· | β) is linear in β or if it is a logistic linear

model, then it follows that the ε-extensions mentioned above do not depend
on the updates Qrk

2 , and, as a consequence, convergence occurs in one single
update step: Qrk

2 = Qr1
2 , k = 2, 3, . . ..

Let Qr
n = (Qr

1n, Q
r
2n) be the corresponding estimate of the true Qr

0 =
(Qr

01, Q
r
02). Under a weak regularity condition we have that the IPCW-R-

TMLE Qr
n of Qr

0 solves the IPCW-R-Efficient influence curve equation

0 =
∑
i

D(Qr
n, gn)(Oi).

Substitution estimator: The IPCW-R-TML estimator of β0 = Ψ(Q0) is
given by Ψr(Qr

n).
Estimation of Treatment and Censoring mechanism: When es-

timating g0(A | X) it is a good strategy to give preference to the base-
line covariates W , so that the time-dependent covariates are only entered
if they provide significant improvement relative to a fit based on the base-
line covariates only. In this manner, one obtains relatively stable weights
wi = gr0(Ai | Xi)/g0(Ai | Xi). In addition, as point out above, it exploits max-
imally the double robust property of the IPCW-R-Efficient influence curve
function w.r.t. the baseline covariates.

22 IPCW-Reduced Data-Targeted-MLE for

Marginal Structural hazard models

Let O = (W = L(0), A(0), . . . , L(K), A(K), L(K + 1)), L(0) are baseline co-
variates, A(j) = (A1(j), A2(j)), A1(j) denotes a treatment at time j, A2(j) =
I(C ≤ j) indicates a censoring event/drop out at time j, L(j) are time depen-
dent co-variates collected after A(j − 1) and before A(j), and L(j) includes a
survival component Y (j) = I(T ≤ j). The observed data structure becomes
degenerate after a censoring or survival event.
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We have that L(j) = LĀ(j−1)(j) is affected by past action history Ā(j− 1).
Let the full data structure be X = (La : a ∈ A). We have that La(t) =
Lā(t−1)(t) = Lā(t−1)(min(t, Ta)) is truncated at the survival time, and La(t)
includes the survival component Ya(t) = I(Ta ≤ t) itself. The observed data
structure O can be presented as a missing data structure O = (A,LA). We
assume the sequential randomization assumption g0(A(j) | Ā(j − 1), X) =
g(A(j) | Ā(j − 1), L̄(j)), j = 0, . . . , K. We have O ∼ dPQ0,g0(A,L) =
Q0(A,L)g0(A | X), where Q0(a, l) = P (La = l), under the assumption that
g(a | X) > 0 for all a ∈ A.

Consider a marginal structural model E0(dYa10(t) | Ȳa10(t−), V ) = Y ∗a10(t)λβ0(t, a1, V )
for a user supplied working model {λβ : β} for the intensity of Ya10 under
treatment regimen a1 = (a1(0), . . . , a1(K)) and no censoring, conditional on
baseline covariates V included in the set of baseline covariates W = L(0). The
model for the observed data structure O ∼ dPQ0,g0 = Q0g0 can be written
as M = {PQ,g : Q, g ∈ G}, where Q can be arbitrary and G is the set of
conditional distributions of A, given X, satisfying SRA.

Data reduction: Let the reduced dataOr = (W,A = (A(0), . . . , A(K)), (YA(t) :
t)) be obtained by excluding all the time-dependent co-variates . Let Xr =
(W, (Ya : a ∈ A)), so that Or = (W,A, YA) is a missing data structure on Xr.

SRA-Reduced Data Model: In the reduced data model for Or one
assumes that the conditional probability distribution gr(A | Xr) of A, given
Xr, satisfies the SRA assumption w.r.t. Xr (i.e., gr(A | Xr) is a measurable
function of W,A, Y ), so that Or ∼ pQr0,gr = Qr

0g
r, Qr

0 = Qr
01 ∗

∏
j Q

r
02j, where

Qr
01 is a marginal distribution of W , Qr

02j is a conditional distribution of Y (j),
given Ȳ (j − 1), Ā(j − 1),W , and gr is the conditional distribution of A, given
Xr. Let Mr = {pQr,gr : Qr, gr ∈ Gr}, where Gr is the class of conditional
distributions of A, given Xr satisfying the SRA w.r.t Xr. We note that Qr

0 is
a function of Q0, and both are identified as counterfactual distributions: Qr

0

identifies the distribution of (Ta,W ) and is thus a sub-distribution of Q0, since
Q0 identifies the marginal distribution of La.

Below, we first present the targeted MLE based on the reduced data struc-
ture under i.i.d. sampling from P r

Qr0,g
r , and subsequently we show how to bring

in the IPCW-weights to obtain the IPCW-R-TMLE.

Reduced data Targeted MLE for a marginal structural
logistic regression model for survival outcome:

For each treatment strategy a1 ∈ A, let Ta10 be a treatment specific counterfac-
tual survival time, and let the full data on each experimental unit be given by
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(W, (Ta1a2 : a ∈ A)). Suppose we observe O = (W,A, T = TA). Suppose that
the survival times are discrete on time points indexed by j = 0, 1, . . .. Consider
the following class of causal working models for the treatment specific hazard:

P (Ta10 = t | Ta10 ≥ t, V ) = λβ0(a1, t, V ),

for a given working model λβ(a1, t, V ) indexed by parameter vector β. Let
dY (t) = I(T = t) and dYa10(t) = I(Ta10 = t). The typical working model will
be a logistic regression model:

λβ(a1, t, V ) =
1

1 + exp(−mβ(t, a1, V ))
,

where mβ(t, a1, V ) is a specified function linear in summary measures of (ā1(t−
1), t, V ). We also assume that A1 is independent of X = (W, (Ya10 : a1)), given
W , and P (A2 = 0) = 1.

The class of so called IPTW-estimating functions for β0 are given by:

DIPTW,h =
∑
t

I(C > t)
h(A1, t, V )

gr(Ā1(t− 1), C > t | X)

× d

dβ0

λβ0(t, A1, V )(dY (t)− I(T ≥ t)λβ0(t, A1, V )). (8)

By projecting the DIPTW,h on the tangent space of the relevant (i.e., ignor-
ing the treatment mechanism) factor of the likelihood of O, given by

P (W )
∏
t

P (dY (t) | Ȳ (t− 1), Ā(t− 1),W ),

we obtain the efficient influence curve of β0 = β0h defined non-parametrically
as the solution of P0DIPTW,h(β, g0) = 0.

This yields the following representation of this efficient influence curve

D∗h(β0, Q
r
0, g

r) =
∑
t=0

h∗(Qr
0, g

r)(t, Ā(t− 1),W )(dY (t)

−E(dY (t) | Ȳ (t− 1), Ā(t− 1),W )) + E(DIPTW,h | W )

≡ D1(Qr
0, g

r
0)(W,A, Y ) +D2(Qr

0)(W ),

where

h∗ = {EQr0,gr0(DIPTW,h | dY (t) = 1, Ȳ (t− 1), Ā(t− 1),W )

−EQr0,gr0(DIPTW,h | dY (t) = 0, Ȳ (t− 1), Ā(t− 1),W )},
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where D2 represents a score of the marginal distribution of W and the first
term D1 represents a sum over t of scores of P (dY (t) | Ȳ (t− 1), Ā(t− 1),W ).
In the special case that V = W and an appropriate choice of h we have that
D∗h = DIPTW,h since DIPTW,h is already an element of the tangent space.

The second term defines β(Q) as a function of Q through the following
least squares solution (check):

β(Q) = arg min
β
EQ
∑
a

∑
t

h(t, ā1(t−1), V )
{
q(t, a1, V )− Q̄(t, a1, V )λβ(t, a1, V )

}2
,

and for Q1n being the empirical distribution of W1, . . . ,Wn this gives us:

β(Q1n, Q2n) = arg min
β

∑
i

∑
a

∑
t

h(a1, t, Vi)
{
qn(t, a1, Vi)− Q̄n(t, a1, Vi)λβ(t, a1, Vi)

}2
.

Here q(t, a1, V ) = E(dYa10(t) | V ) and Q̄(t, a1, V ) = E(I(Ta10 ≥ t) | V ). In
other words, the choice of h defines β0 as a weighted projection of of the true
hazard q0/Q̄0 on the working model {λβ(a1, t, V ) : β}.

Consider an initial fit of λ0 of E(dY (t) | Ȳ (t− 1) = 0, Ā(t− 1),W ) based
on a logistic regression model:

λ0 = I(TA ≥ t)
1

1 + exp(−m0)
.

Consider the following ε-extension:

λ0(ε) =
1

1 + exp(−m0 − εh∗(Q0r, gr))
.

The score of λ0(ε) at ε = 0 equals the wished component D2(β(Qr0), Qr0, gr)
of the efficient influence curve. Thus, assuming an initial fit Q0 for which
Q0

1 is the empirical distribution of W1, . . . ,Wn, it follows that the with λ0(ε)
corresponding Q0(ε) (and no update of the already nonparametric MLE Q0

1)
has score at ε = 0 equal to the efficient influence curve D∗(β0, Qr0, gr).

The iterative targeted-MLE: This defines the wished ε-extension Q0(ε)
of an initial fit Q0. Let ε0n be the MLE over ε for Q0(ε). Let Q1

n = Q0
n(ε0n) be

the updated estimate which corresponds with an updated β1
n = βh(Q

1
n). We

iterate this updating process till the corresponding sequence βkn is such that
βkn − βk−1

n does not significantly change anymore.
We denote the selected final update with Qn = Qk∗

n for some k∗, and
βn = βk∗n , respectively, and we refer to this estimate βn as the (iterative)
targeted MLE of β0.

Important special case: W = V . In this special case and by setting
h so that it cancels out gr(Ā1 | Xr), it follows that the targeted MLE is
nothing else than the MLE which corresponds with fitting a logistic regression
of E(dY (t) | Ȳ (t− 1), Ā(t− 1), V ) = I(T ≥ t)λβ(t, A1, V ).
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IPCW-Reduced data targeted MLE.

We have the following IPCW-reduced data efficient influence curve

D∗h(β0, Q
r
0, g

r, g0) =∑
t=0 I(C > t)g

r(Ā1(t−1),C>t|Xr)

g0(Ā1(t−1),C>t|X)
h∗(Qr

0, g
r)(t, Ā1(t− 1),W )

×(dY (t)− E(dY (t) | Ȳ (t− 1), Ā1(t− 1),W )) + E(DIPTW | W )
≡ D1(Qr

0, g
r
0)(W,A, Y ) +D2(Qr

0)(W ),

where

h∗ = EQr0,gr0(DIPTW | dY (t) = 1, Ȳ (t− 1), Ā(t− 1),W )

−EQr0,gr0(DIPTW | dY (t) = 0, Ȳ (t− 1), Ā(t− 1),W ).

The corresponding implementation of the IPCW-reduced data targeted
MLE corresponds with computing the reduced data targeted MLE under the
assumption that A, given Xr, follows distribution gr, but where we used IPCW
weights for each time point I(C > t)gr(Ā1(t − 1), C > t | Xr)/g0(Ā1(t −
1), C > t | X). A particular attractive approach is to set W = V (i.e., let the
reduced data structure only contain baseline covariates V ), since in that case
the reduced data targeted MLE is just a regular MLE according to the working
model for the hazard, so that the IPCW-reduced data T-MLE is obtained as
an equally easy to compute IPCW-weighted MLE. That is, one fits a standard
logistic regression hazard model based on the baseline covariates V using the
time-dependent IPCW-weights, and subsequently one evaluates the obtained
fit to obtain the wished estimator of β0.

23 Targeted Empirical Bayesian Learning.

The iterative targeted maximum likelihood estimation methodology resulting
in a sequence of updated density estimators converging to a solution of the
efficient influence curve equation can be generalized to a targeted empirical
Bayesian learning method in which one assumes a prior distribution on the
parameter of interest and ends up with a targeted posterior distribution of
this parameter of interest.

Consider the setting in which we observe n i.i.d. observations O1, . . . , On

of a random variable O ∼ P0, which is known to be an element of a modelM,
and let Ψ :M→ IRd be the target parameter mapping of interest.

Step 1, Determine Prior Distribution on Parameter of Interest: Specify
a prior distribution Π of the parameter ψ0. Let fΠ be the density of Π.
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Step 2, Determine targeted (frequentist) estimator of distribution P0:
Consider an (e.g., initial) estimated probability distribution P̂ in the
model M. This estimator is recommended to be a targeted estimator
itself such as the iterative targeted MLE.

Step 3, Determine targeted fluctuation function: Let {P̂ (ε) : ε} ⊂ M
be a fluctuation through P̂ at ε = 0 with score at ε = 0 equal to the
efficient influence curve D∗(P̂ ) at ε = 0.

Step 4, Derive prior distribution on ε equivalent with prior on ψ0: Determine
a prior distribution on ε that yields the assumed prior distribution on
the true parameter ψ0 of interest. For this purpose one notes that a
prior distribution on a set E of ε-values implies a prior distribution on
{Ψ(P̂ (ε)) : ε ∈ E} (and thus on ψ0) through the mapping f(P̂ ) : ε →
Ψ(P̂ (ε)). As a consequence, one can choose the prior distribution of ε as
the probability distribution of f(P̂ )−1(X) with X ∼ Π, assuming f(P̂ ) is
invertible. This corresponds with a random variable E defined by draw-
ing from Π and applying f(P̂ )−1 to it. Let Π∗ be this prior distribution
of ε. The density of Π∗ is given by

fΠ∗(ε) = fΠ(f(P̂ )(ε))J(ε),

where J(ε) =| d
dε
f(P̂ )(ε) | is the Jacobian corresponding with transfor-

mation ψ = f(P̂ )(ε).

Step 5, Determine (targeted) posterior distribution of ε, given data,
treating P̂ as fixed/non random: Since, from a Bayesian perspective,
the conditional density of O1, . . . , On, given ε, is given by

∏n
i=1 dP̂ (ε)(Oi),

by Bayes formula, the posterior density of ε, given the data O1, . . . , On,
treating P̂ as fixed and given, is given by (up till normalizing constant)

∞
n∏
i=1

dP̂ (ε)(Oi)fΠ∗(ε).

One can use standard Bayesian methodology such as Monte-Carlo Markov
Chain sampling to sample a large number of draws, say, E1, . . . , EB, from
this posterior distribution of ε, given O1, . . . , On.

Step 6, Output targeted posterior distribution of ψ0, given data, treating
P̂ as fixed/non random: The posterior distribution of ψ0 is now de-
scribed by the sample f(P̂ )(Eb) = Ψ(P̂ (Eb)), b = 1, . . . , B.
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Optional: Iterate. If P̂ was not a targeted estimator, then one could com-
pute the posterior mean of ε, given O1, . . . , On, and compute the updated
distribution P 1 = P̂ (E0(ε | O1, . . . , On)) by substituting the posterior
mean of ε into the fluctuation function P̂ (ε) for ε. One now carries out
Step 3-5 (thus with the same a priori specified prior distribution on ψ0)
and one iterates this process till the posterior mean of ε converges to zero
at which point we have achieved out wished targeted estimator of P0.
One now finalizes the procedure with Step 6, by outputting the posterior
distribution of ψ0.

We refer to this methodology as empirical targeted Bayesian because we
treat the (initial) frequentist estimator P̂ in the model {P̂ (ε) : ε} for the data
generating distribution as fixed so that only ε is treated as a parameter on
which we put a prior distribution, and we calculate its posterior distribution
accordingly.

Rational behind the targeted posterior distribution on parame-
ter of interest: The rational of this methodology for generating a posterior
distribution of ψ0 is as follows. To evaluate the posterior distribution of ψ0

we need to be concerned about its bias w.r.t to ψ0 and its spread needs to be
representative of the actual standard error of the posterior mean. Regarding
the bias, because P̂ is a targeted estimator of the data generating distribution
such as the iterative targeted MLE, Ψ(P̂ ) is a robust and locally efficient esti-
mator of ψ0. Consequently, also the posterior mean of the outputted posterior
distribution of ψ0 will be centered closely around Ψ(P̂ ) and will thus represent
a robust and locally efficient estimator w.r.t to frequentist theory. Regarding
the spread, one needs to know that {P0(ε) : ε}, whose score at ε0 = 0 equals
the efficient influence curve of Ψ :M→ IRd at P0, is a so called hardest sub-
model for estimation of ψ0 (e.g., see ? or ?) in the sense that estimation of the
parameter ψ0 = Ψ(P0(ε0)) of ε0 in this hardest sub-model of M is asymptoti-
cally as hard as it is to estimate ψ0 in the actual modelM. As a consequence,
statistical inference (i.e., asymptotic covariance matrix, and information ma-
trix) for a maximum likelihood estimator of ψ0 = Ψ(P0(ε0)) in this sub-model
will be representative of the actual estimator Ψ(P 0(E(ε | O1, . . . , On)) of ψ0.

23.1 Example: Targeted Bayesian learning of Survival
function.

We now illustrate this completely general empirical targeted Bayesian analogue
of the iterative targeted MLE methodology with a simple example. Suppose,
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we wish to estimate a survival function at a point, ψ0 = P0(O > x0), based on
n i.i.d. observations O1, . . . , On ∼ P0 in a nonparametric model for P0.

Prior distribution: Consider a prior distribution on ψ0 such as a uniform
distribution on [a0, b0] ⊂ [0, 1] for some numbers 0 ≤ a0 < b0 ≤ 1. Let π be its
density.

Targeted density estimator: Consider a targeted ML density estimator
p̂ = p0(ε0) of the density p0, given an initial density estimator p0, a one-
dimensional fluctuation function ε→ p0(ε) (into valid densities), and

ε0 = arg max
ε

n∏
i=1

p0(ε)(Oi),

satisfying 0 =
∑

iD
∗(p0(ε0))(Oi), where D∗(p) = I(O ≤ x0) − ∫∞

x0
p(x)dx is

the efficient influence curve of Ψ at p. In ? we showed that indeed the first
step targeted MLE’s can be constructed to already solve the efficient influence
curve estimating equation: e.g. choose p0(ε) = (1 + εD∗(p0)(O))p0.

Targeted fluctuation of targeted density estimator: Let p̂(ε) = (1 +
εD∗(p̂))p̂ be the targeted fluctuation function of p̂ whose score at ε = 0 indeed
equals D∗(p̂).

Evaluate prior distribution for ε implied by prior of ψ0: We have
ε → f(P̂ )(ε) = Ψ(p̂(ε)) =

∫∞
x0

(1 + εD∗(P̂ )(x))p̂(x)dx. The inverse of ε →
f(P̂ )(ε) is given by

g(ψ) ≡ f(P̂ )−1(ψ) =
ψ −Ψ(p̂)

Ep̂D∗2(p̂)
,

which shows that f(P̂ ) is invertible. In particular, this shows that we can
choose the prior distribution of ε as the distribution of g(X) with X ∼ Π,
where Π is the prior distribution on ψ0 specified initially.

Targeted posterior density of ε: The derivative of f(P̂ ) at ε is given
by σ2 ≡ Ep̂D

∗2(P̂ ) so that the Jacobian is given by a constant J(ε) = σ2. The
univariate posterior density of ε, given O1, . . . , On, is thus given by

π(ε | O1, . . . , On) =

∏n
i=1 p̂(ε)(Oi)π(f(P̂ (ε))∫

ε

∏n
i=1 p̂(ε)(Oi)π(f(P̂ (ε))

, (9)

where we recall that π is the density of the prior distribution on ψ0.
Targeted posterior density of survival function: The posterior den-

sity of ε implies the posterior distribution of f(P̂ (ε)) = Ψ(P̂ (ε)), i.e. the
survival function at x0. In this example, one can even pursue analytic calcu-
lation of this posterior density of the survival function since it only involves
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univariate density calculations. The Monte Carlo simulation approach would
be to sample E1, . . . , EB from the posterior density π(· | O1, . . . , On) specified
in (9), and evaluate the corresponding Ψ(P̂ (Eb)), b = 1, . . . , B, which gives us
a random sample from the posterior distribution of the survival function at
x0, given the observed data O1, . . . , On.

Properties of targeted posterior distribution of survival function
and comparison with standard Bayesian learning: A standard Bayesian
approach would involve specifying a parametric model, specifying a prior dis-
tribution on all the parameters of this parametric model, calculating the cor-
responding posterior distribution involving sampling from a high dimensional
multivariate density (since there are many parameters), and model selection
(e.g.) based on the posterior density so that these calculations will have to
be carried out for lots of candidate parametric models. In spite of the com-
putational challenges and effor of this standard Bayesian approach, the re-
sulting estimator of the survival function will typically be too biased due to
model miss-specification. Model selection using a likelihood or Bayesian cri-
teria would generally not reduce the bias at the wished rate of o(1/

√
n), since

the selection is in essence based on a bias variance trade off for the purpose of
estimating the whole density. As a consequence, the relative efficiency of the
simple empirical survival probability and such a standard Bayesian estimator
(e.g posterior mean) would converge to infinity in favor of the empirical sur-
vival function. The same criticism would apply to a sieve based (frequentist)
maximum likelihood estimator using (say) likelihood based cross-validation
to select models or other fine tuning parameters. The problem of both the
Bayesian and maximum likelihood estimation methodology is that the estima-
tion and model selection are not targeted towards the nice smooth parameter
being the survival probability, so that the resulting estimation procedure in-
volves the wrong bias variance trade off.

On the other hand, the targeted empirical posterior Bayesian distribu-
tion is centered at the efficient empirical survival probability (recall Ψ(P̂ ) =
1/n

∑
i I(Oi > x0)), and the spread of the posterior distribution is asymp-

totically completely driven by the variance of this efficient empirical survival
function estimate (and by the prior distribution for small samples). In addi-
tion, the calculations for establishing this targeted posterior distribution only
involve sampling from a univariate posterior density and is therefore easy and
fast from a computational point of view.
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24 Generalizations of targeted MLE to gen-

eral loss functions.

The targeted MLE methodology is a variation of the general method of mod-
ifying a current estimate P 0 of the true probability distribution P0 in a new
estimate P ∗ = P ∗(P 0) of the true probability distribution in such a way that
it ”targets” a particular parameter of the true probability distribution in a
particular model, where this ”targeting” is formalized by requiring that the
updated estimate solves the efficient influence curve based estimating equation,
and preferably it also increases the likelihood relative to P 0: i.e., if D∗(P ) is
the efficient influence curve of the parameter at a P in the model M for all
P , then we require for the update P ∗ that

0 =
n∑
i=1

D∗(P ∗)(Oi).

We showed how this can be achieved by either defining an ε-extension P 0(ε)
and finding an εn solving 0 =

∑
iD
∗(P 0(εn))(Oi), or, 2) by requiring that the

model {P 0(ε) : ε} has score at ε = 0 contained in the linear span of the efficient
influence curve D∗(P 0) and iteratively maximizing the likelihood over ε while
updating the current estimate accordingly till convergence.

The fact that P ∗ solves the efficient influence curve equation allows one to
establish that the corresponding parameter Ψ(P ∗) of P ∗ is a double robust and
locally efficient estimator of ψ0 = Ψ(P0) in censored and causal inference mod-
els and general data structures, under similar conditions as required for the
analysis of solutions of optimal estimating equations (van der Laan, Robins,
2003). A very nice advantage of targeted MLE relative to the estimating
equation approach in (van der Laan, Robins, 2003) is that we can still evalu-
ate the performance of the updated P ∗(P 0) by its log-likelihood value, so that
we can easily handle selection of the initial P 0, selection of the ε-fluctuation
model among a set of such ε-fluctuations, and/or multiple solutions for εn. In
addition, having the log-likelihood criteria also allows us to nicely generalize
the targeted maximum likelihood method for estimation of path-wise differ-
entiable parameters to non-pathwise differentiable parameters as in van der
Laan, Rubin (2006).

Although we focussed in our presentation of the targeted ML methodol-
ogy and in the examples on using the log-likelihood as criteria, other criteria
than the log-likelihood can be used as well, while still preserving the statistical
properties of the resulting substitution estimator Ψ(P ∗) for the parameter of
interests. In fact, one can use any loss function L(P )(O) for the true proba-
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bility distribution P0 satisfying that arg minP∈ME0L(P )(O) (which can have
lots of solutions) uniquely identifies D∗(P0). Thus, if D∗(P0) only depends on
”components” of the probability distribution P0, then the loss function L(P )
is allowed to also only use these components of P . In this case, we should call
the methodology targeted minimum loss learning instead of targeted maximum
likelihood learning. In this case, given an initial P 0, one finds an update P ∗

with a preferably improved loss (i.e,
∑

i L(P ∗)(Oi) ≥
∑

i L(P 0)(Oi)) solving
0 =

∑
iD
∗(P ∗)(Oi). Our iterative targeted maximum likelihood can also be

generalized by selecting an ε-fluctuation, {P k(ε) : ε}, for each current fit P k,
satisfying

d

dε

∑
i

L(P k(ε))(Oi)

∣∣∣∣∣
ε=0

=
∑
i

D∗(P k)(Oi).

By our proofs it follows that by iteratively carrying out the update P k(εkn)
with

εkn = arg min
ε

∑
i

L(P k(ε))(Oi),

it follows that we converge to a solution of the efficient influence curve equation,
while also increasing the performance w.r.t. to the empirical loss.

Another generalization is obtained by replacing the efficient influence curve
by an alternative inefficient influence curve (i.e., a gradient of the path-wise
derivative). In other words, in the above one can replace the efficient influence
curve D∗(P ) at P by any influence curve D(P ) at P . In this case, one finds
an update P ∗ = P ∗(P 0) of P 0 so that 0 =

∑
iD(P ∗)(Oi), and preferably this

update improves the empirical loss. The ε-fluctuation would now also be based
on more ad hoc ε-fluctuations, but still allowing for an improved empirical loss.
The resulting substitution estimator Ψ(P ∗) of ψ0 = Ψ(P0) will still have the
(e.g., double) robustness and asymptotic linearity properties, but it will not
be fully efficient.

25 The inclusion of data adaptive regression

methodology into targeted maximum like-

lihood learning.

In this section we discuss different methods for targeted maximum likelihood
learning that include machine learning to fit the nuisance parameters. In order
to carefully define different proposals we will consider the semi-parametric
regression problem as example. After having presented the various approaches,
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we will aim to compare them w.r.t their properties and make a decision for a
favorite proposal.

So we observe Oi = (Wi, Ai, Yi), i = 1, . . . , n, and we assume the model
E0(Y | A = a,W )−E0(Y | A = 0,W ) = m(a,W |β0) = A(β>0 V ) for a V ⊂ W .
Let β0 be the parameter of interest. Here W will represent a user supplied
adjustment set that can thus be a subset of the total set of baseline covariates,
but in order to avoid unnecessary notation we will just denote this target
adjustment set with W .

The targeted MLE of β0 is an estimator Pn → Ψ̂(Pn) that is indexed by
the initial estimator of Qβ0,θ0(A,W ) = E0(Y | A,W ) = m(A,W | β0)+θ0(W ),
where θ0(W ) = E0(Y | A = 0,W ), and Π0(W ) = E0(A | W ): i.e., the TMLE
requires an initial density estimator of the distribution P0 of O = (W,A, Y ).
Specifically, let Γ̂1(Pn) be an initial estimator of Q0(A,W ), and let Γ̂2(Pn) be
an estimator of Π0(W ), so that we can denote these two nuisance parameters
and estimator with γ0 and Γ̂(Pn), respectively.

Given an estimator Γ̂(Pn), the targeted maximum likelihood estimator is
obtained by iterating the following procedure:

Initial estimators: Q̂0, Π̂0 Let β̂0, and θ̂0(Pn) be initial estimators of β0 and
θ0(W ) based on Γ̂1(Pn). Let Π̂0(Pn) = Γ̂2(Pn) be the initial estimator of
E(A|W ).

Orthogonalize A: Let P̂ i
1
(Pn) be an update of Π̂0(Pn) obtained by adding

covariate ε(θ̂0(Pn)(W )Vj : j) extension, where ε is fitted with MLE, so

that Pn(A− Π̂1(W ))Vj(θ̂
0(W )) = 0, j = 1, . . . , J . Thus, A−E1(A | W )

is empirically uncorrelated with Vj θ̂
0(W ) for all Vj in model A(βV ).

Compute first step TMLE-update: Compute first step targeted MLE up-
date Q̂1, or equivalently, β̂1 and θ̂1, by regressingm(A, V | β̂0)+θ̂0(Pn)(W )+
ε(A− Π̂1(W ))V .

Iterate till convergence: Go back to the orthogonalization step and TMLE-
update step with this new choice Q̂1, Π̂1, and iterate carrying out these
two steps till convergence of Q̂k, Π̂k.

Therefore, to completely define a targeted MLE estimator Ψ̂(Pn) it re-
mains to define the initial estimator Q̂0 and Π̂0. We wish to use data adaptive
regression/estimation methodology to estimate these important nuisance pa-
rameters, which represents a data adaptive way to deal with confounding by
W . Our estimator will be double robust.
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25.1 Data adaptive estimation of Π0(W ).

Firstly we fit Π0(W ) by using the squared error loss function

Π0 = arg min
Π
E0(A− Π(W ))2.

In particular, we can use a super learner that involves proposing a set of
candidate learners Π̂j of Π0 and minimizing

α→
∑
v

∑
i∈V (v)

(Ai −
∑
j

α(j)Π̂jv(Wi))
2, (10)

where Π̂jv is the j-th learner Π̂j applied to the v-th learning sample P 1
nv,

and V (v) is the v-th validation sample. Let αn be the minimizer so that∑
j αn(j)Π̂j(Pn) is the super learner. We propose various ways of shrinking

this super learner to control its potential overfitting.

Select among candidate learners: Firstly, we propose to rank the candi-
dates by cross-validated risk, and run a linear regression of Ai on the top
k candidates to determine the super learner for these top k learners:

α→
∑
v

∑
i∈V (v)

(Ai −
k∑
j=1

α(j)Π̂(j)v(Wi))
2,

and select k based on BIC. Thus, the next best learner is only added to
the super learner if it improves the cross-validated risk by more than the
penalty induced by BIC for adding an extra parameter to a model.

Convex combinations only: We also suggest that it is a good idea to re-
strict the linear combinations of candidate learners in the super learner
to convex combinations. So αn is defined as a minimizer of (10) over
{α : 1 ≥ α(j) ≥ 0,

∑
j α(j) ≤ 1} or we could restrict to α(j) with∑

j α(j) = 1.

Double cross-validation to select among super learner and other candidates:
We can define the set of candidate learners as Π̂j(Pn), j = 1, . . . , J ,

augmented with the super learner Π̂(Pn) =
∑

j αn(j)Π̂(Pn), and select
among these J+1 candidates the one that minimizes cross-validated risk.
This requires double cross-validation so that it is recommended to select
V large, such as 10 or 20. One could also include here the super learner
based on the top k candidate learners as additional candidates and thus
use honest cross-validation to select among the candidate learners, and
the super learner based on the top k candidate learners, k = 1, . . . , J .

Appendix B. Targeted Maximum Likelihood Learning: Examples and Generalizations
M.J. van der Laan (2009)

650
Hosted by The Berkeley Electronic Press



25.2 (Targeted) squared error loss function for Q0, given
fit of Π0.

For fitting Q0(A,W ) = A(β0V )+θ0(W ) we use the squared error loss function
possibly with weights depending on Π0(W ):

Q0 = arg min
Q
E0(Y −Q(A,W ))2w(Π0)(A,W )).

In particular, these weights could be inspired directly by the efficient influence
curve of β0:

IC∗(P0)(O) =
{
c−1

0 (A− E0(A | W ))V
}

(Y −Qβ0,θ0(A,W ))

= (A− E0(A | W ))(Y −Qβ0,θ0(A,W ))c−1
0 V

Here c0 is the standardization matrix obtained by differentiating the estimating
function w.r.t. β:

c0 = − d

dβ0

E0(A− E0(A | W ))V (Y −Qβ0,θ0(A,W )).

Thus,

IC∗(P0)IC∗>(P0) = c−1
0 V V >c−1>

0 (A− E0(A | W ))2(Y −Qβ0,θ0(A,W ))2.

Since we wish to minimize variance of the efficient influence curve components,
this expression suggests the following weighted squared error loss function:

Lw(Π)(O,Q) = (A− Π(W ))2(Y −Q(A,W ))2,

where w(Π) = (A−Π(W ))2 is a weight implied by a fit of Π0. Thus, to obtain
a weighted targeted squared error loss function we simply substitute our data
adaptive fit Π0 to obtain the weights. Even, if Π is misspecified, the loss
function Lw(Π)(O,Q) remains a valid loss function for Q0. The advantage of
this weighted loss function relative to the regular squared error loss function
corresponding with w = 1 is that it aims to minimize the variance of the
parameter of interest while it still is concerned iwth the overall fit of Q0 as
well.

25.3 Super learning of Q0 given Π̂0:

Given this targeted squared error loss function, we can run any type of machine
learning algorithm including our super learning approach based on candidate
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fits (which could be the initial estimators or the actual updated targeted MLE
corresponding with these initial estimators) of Q0. For example, given candi-
date fits Q̂j(Pn) of Q0 of the form A(β̂jV )+ θ̂j(W ), j = 1, . . . , J , we can define

the super learner as
∑

j αn(j)Q̂j(Pn) where

αn = arg min
α

∑
v

∑
i∈V (v)

wi(Π
0)(Yi −

∑
j

α(j)Q̂j(P
0
nv)(Ai,Wi))

2,

and P 0
nv denotes the empirical distribution of the v-th training sample.

For example, the candidate learners Q̂j(Pn) could be a DSA algorithm,
MARS, or linear main term regression algorithms such as LARS always forcing
in the model terms AVj.

25.4 Candidate fits that are concerned about lack of
adjustment due to forced inclusion of A-terms.

The forced inclusion of the m(A, V | β) component makes it harder for terms
that are correlated with A to be selected by the particular regression algorithm
concerned with fitting θ0(W ). For the assessment of the effect of A controlling
for W this is a serious concern. In this subsection we consider approaches
that aims to select variables taht would also have been selected if the A-terms
would not have been present.

Consider the following approach: First apply an arbitrary data adaptive
regression of Y on A,W (e.g., MARS, Random Forest, Neural Networks), then
evaluate this data adaptive fit at A = 0 to obtain a fit of θ0(W ), and finally
fit a linear regression in main terms AVj using as off-set the just obtained fit
of E(Y | A = 0,W ). The advantage of such fits, relative to fits that force in
the AVj terms from the start, is that the terms AVj are added afterwards so
that confounders W that are correlated with A (and AVj) have a fair chance
to be included in the model, which is important for assessing the causal effect
of A. A disadvantage of such fits is that this approach results in slight over-
fits of Q0, due to the use of internal cross-validation in the machine learning
algorithms that does not take into account the additional terms AVj to be
added afterwards. In the following paragraph we argue that this type of over-
fitting might be handled by the super learning that allows shrinkage.

Shrinking slight overfits based on cross-validation: Even though the
latter types of fit could result in overfits of Q0, due to the use of internal cross-
validation in the machine learning algorithms that does not take into account
the additional terms AVj to be added, at the super learning step such fits
can be shrunk by the selection of αj, and might thereby be very appropriate
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for our goal. For example, consider such a data adaptive regression fit of
A(β0V ) + θ0(W ) and denote it with Q̂j(Pn). One could now define candidate

learners as α(j)Q̂j(Pn) and select the shrinkage constant α(j) as

αn(j) = arg min
∑
v

∑
i∈V (v)

{
Yi − α(j)Q̂j(P

0
nv)(Wi, Ai)

}2

,

whose solution exists in closed form and is given by:

αn(j) =

∑
v

∑
i∈V (v) YiQ̂j(P

0
nv)(Wi, Ai)∑

v

∑
i∈V (v)

{
Q̂j(P 0

nv)(Wi, Ai)
}2 .

Note that indeed, if the candidate learner is weakly performing as a predictor
due to being an overfit the numerator will be small relative to the denomi-
nator resulting in shrinkage of the predictor. In general, by using the super
learner based on various candidate learners, this shrinkage will be applied in
a multivariate context.

Other approaches for estimation of E0(Y | A,W ): First fit E(Y |
W ). In the above algorithm one runs a regression of Y on A,W in which
no preference is given to the A term (e.g., it might not be selected), and
subsequently, one adds to the resulting E(Y | A = 0,W )-fit the parametric
component m(A, V | β). There is still a concern that A might be selected early
on in the algorithm and thereby obstruct inclusion of important confounders
that are strongly correlated with A. So we now wish to consider approaches
that completely leave out A at the start by first focussing on fitting E(Y | W ).
Firstly, we note that given a model E(Y | A,W ) = m(A, V | β0) + θ0(W ) with
m(0, V | β0) = 0 and θ0(W ) = E(Y | A = 0,W ), we have

E(Y | W ) = E(m(A, V | β0) | W ) + θ0(W )

so that
θ0(W ) = E(Y | W )− E(m(A, V | β0) | W ).

In other words, if m is linear in A, then one can represent

Q0(A,W ) = m(A− E0(A | W ), V | β0) + E0(Y | W ).

This suggests the following estimator of Q0: given a fit Π0(W ) of E0(A | W ),
a fit Q0(W ) of E(Y | W ), fit β in the model m(A− Π0(W ), V | β) + Q0(W ),
and let Q0(A,W ) = m(A− Π0(W ), V | βn) +Q0(W ).

A nice advantage of this approach is that one can use super learning to fit
E(Y | W ) ignoring A, and subsequently carry out targeted further adjustment

Appendix B. Targeted Maximum Likelihood Learning: Examples and Generalizations
M.J. van der Laan (2009)

653
http://biostats.bepress.com/ucbbiostat/paper254



through a fit of E(A | W ) to adjust the fit E(Y | W ) into a fit of E(Y |
A = 0,W ). The disadvantage is that the consistency of the resulting fit of
E(Y | A = 0,W ) does now rely on the consistency of the fit of E(A | W ), so
that we loose the double robustness property. On the other hand, we can also
think of double robustness in terms of the fact that the bias of the estimating
function is a product in the bias of the E(A | W ) fit and the bias of the
E(Y | A = 0,W ) fit. From that point of view, this second order bias is still
preserved, but one cannot only bet on a good fit of E(Y | A = 0,W ) anymore.

Inspection of bias of two TMLE approaches: To investigate the bias
terms for the two approaches, let’s consider the case of m(A, V | β) = βA. The
targeted MLE βn = βn(θn,Πn) based on an initial fit βnA+ θn(W ) solves the
equation Pn(A− Πn(W ))(Y − betaA− θn(W )) = 0 where Πn is an estimator
Π0(W ) = E0(A | W ) and θn(W ) is an estimator of E(Y | A = 0,W ). The
targeted MLE βn = βn(θ̃n,Πn) based on an initial fit βn(A−Πn(W )) + θ̃n(W )
with θ̃n(W ) an estimator of θ̃0(W ) = E0(Y | W ) solves the equation Pn(A −
Πn(W ))(Y −β(A−Πn(W ))− θ̃n(W )) = 0. Thus the relevant asymptotic bias
terms β(θ,Π)− β0 and β(θ̃,Π)− β0 at fixed (θ,Π) and (θ̃,Π) follow from the
equations P0(A − Π(W ))(Y − βA − θ(W )) = 0 and and P0(A − Π(W ))(Y −
β(A− Π(W ))− θ̃(W )) = 0, respectively. Simple algebra yields

β(θ,Π)− β0 =
E0(Π0 − Π)(θ0 − θ)(W )

E0(A− Π(W ))A

β(θ̃,Π)− β0 =
E0(−β(Π− Π0)2 + (Π− Π0)(θ̃0 − θ̃)

E0(A− Π)(A− Π0)
.

Note that if both approximations (Π−Π0) and θ̃ − θ̃0 are equally effective or
Π0 is easier to fit than θ̃0, then the targeted MLE based on initial estimator
βn(A − Πn(W )) + θ̃n(W )) based on fit θ̃n(W ) of E0(Y | W ) also results in
second order bias. If on the other hand, Π0 is harder to approximate than θ0,
then the latter targeted MLE is not the preferred method.

Given the semiparametric regression model Y = A(βV )+θ0(W ), it follows
that E(Y | W ) = Π(W )(βV ) + θ0(W ). Therefore, if one first fits E(Y |
W ), then it makes sense to include as candidate covariates in the regression
algorithm the term Π(W ) or terms Π(W )Vj. These covariates Π(W )Vj should
not get a special treatment at this stage but selection is driven by obtaining
a good overall fit of E(Y |A,W ): these special covariates will be used in the
targeted MLE step to obtain the wished bias reduction and thus do not need
to obtain twice special treatment.
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26 General proposal for TMLE of additive model

based variable importance, including model

selection on effect modification.

Firstly, we consider the semiparametric regression model Y = A(β0V )+θ0(W )
and present our proposal of targeted maximum likelihood estimation of β0 and
θ0. Subsequently, we show how we can also data adaptively select the model
for the effect modification component A(βV ).

Semiparametric regression model: Assume the model Y = A(β0V ) +
θ0(W ) for user supplied V ⊂ W and unspecified function θ0(W ).

Predictor of outcome covariate: Consider an estimator Pn → θ̂(Pn) of
θ0(W ) = E0(Y | A = 0,W ) or E0(Y | W ). This could be an arbitrary
data adaptive estimator such as one based on super learning of Y on
A,W and evaluation at A = 0, or super learning of Y on W .

Define W1nv = W1nv(W ) = θ̂(P 0
nv)(W ) as the univariate summary mea-

sure of W obtained by applying this estimator to the empirical distri-
bution P 0

nv of the training sample corresponding with the v-th split in
a V-fold cross-validation sample splitting scheme, v = 1, . . . , V , and let
W1n = θ̂(Pn)(W ) be the summary measure obtained by applying the
estimator to the whole sample.

Propensity score covariate: Consider an estimator Pn → Π̂(Pn) of Π0(W ) =
E0(A | W ). This could be an arbitrary data adaptive estimator such as
one based on super learning.

Define W2n = W2n(W ) = θ̂(Pn)(W ) as the univariate summary measure
of W obtained by applying this estimator to the empirical distribution
Pn.

Reduced Data Structure TMLE: Reduce the observed data to
O = (W1ni,W2ni, Vi, Ai, Yi) and we will now compute the targeted MLE
based on this reduced data structure. We will need the covariates on
training samples as well to control overfitting and honest evaluation of
a regression of Y on these covariates.

As initial estimator of E(Y | A,W ) we fit a parametric regression of Y =
A(βV ) + θ(W1,W2, V | α). We suggest as simple model θ(W1,W1, V |
α) = α0 + α1W1 + α2W2 or one can also add an interaction α2W1W2.

Appendix B. Targeted Maximum Likelihood Learning: Examples and Generalizations
M.J. van der Laan (2009)

655
http://biostats.bepress.com/ucbbiostat/paper254



We estimate E(A | W ) with the already available Πn(W ). The tar-
geted MLE is now computed based on this initial estimator Q0(A,W ) =
A(βnV ) + θ(W1,W2 | αn) and Π0

n = Πn, where we can apply the joint
updating of both fits Qk and Πk, iteratively.

We could use cross-validation to select among different models θ(W | α).
For example, consider different estimators θ̂j(Pn) of θ0(W ). One can
then select

jn = arg min
j

∑
v

∑
i∈V (v)

(Yi−Aiβ(P 0
nv)Vi− θ̂j(P 0

nv)(W1nv(Wi),W2n(Wi)))
2.

Note that we substitute the covariate values for W1 based on the training
sample specific transformations θ̂(P 0

nv) of W . In this way we can also run
a j-specific data adaptive regression algorithm of Y on (W1nv,W2n, V, A)
on the training sample v according to the semiparametric regression
model AβV + θ(W1,W2, V ), for each v, and then fine tune the choice
j of this algorithm based on the cross-validation. In particular, one can
use cross-validation to decide between the models αW1, α(W1,W2) and
α(W1,W2,W1W2).

Selection of effect modifiers: Suppose now that we wish to select a model
for E(Y | A,W ) − E(Y | A = 0,W ). As above, we first compute the
reduced data structure (W1n,W2n, V, A, Y ) as above, based on estimators
of E(Y | A = 0,W ) (now not based on a model for E(Y | A,W )−E(Y |
A = 0,W )) or E(Y | W ), and E(A | W ). We now determine a data
adaptive estimator of the regression of Y on W1,W2, V, A where we use
cross-validation to select a final model Y = m(A, V | β) + θ(W | α).
For example, one might run the DSA algorithm indexed by the size of
the model k and we would use cros-validation to select k. One can use
such a data adaptive regression algorithm to select both functional forms
m(A, V | β) and θ(W | α), or we could assume a fixed model α(W1,W2)
(say) for θ, and we could also assume a linear form AβV for m, so
that the model is determined by the selected set of effect modifiers. To
evaluate the cross-validated risk of any regression fit we need to know
the covariate transformation W1 on the training sample.

Once the model m(A, V | β) is selected, we run the targeted maximum
likelihood estimator of β for that fixed model corresponding with an
initial fit Q0 = m(A, V | βn) + θ(W | αn) and Π0

n = Πn.

We note that the squared error loss function for Q0 can here be replaced
by the targeted loss function that assigns weights (A− Π(W ))2.
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27 Fitting a marginal structural model with-

out inverse weighting

Let O = (W,A, Y ) and suppose we wish to estimate E(Y (a) | V ) − E(Y (0) |
V ) = m(a, V | ψ0) according to parametric model. First we run a data
adaptive targeted maximum likelihood estimator for the parameter E(Y |
A = a,W ) − E(Y | A = 0,W ), involving model selection on this parameter,
according to methods discussed above. Consider this data adaptively selected
model as given and denote it with m(A,W | β0). So now we work in the model
E(Y | A = a,W ) − E(Y | A = 0,W ) = m(a,W | β0) and we treat ψ0 as a
parameter of β0, P0. We can work out the influence curve of the estimator
obtained by plugging in an efficient estimator for β0, which is a simple delta
method application. We estimate α by simple substitution of the TMLE of β0

according to this model, and it follows that that is also the actual TMLE of
α0.

If we apply the statistical inference based on the influence curve implied
by this model m(a,W | β0), then this does not take into account the model
selection on m, so that that can be used as optimistic statistical inference.

This TMLE can now also be used to compute a IPCW-reduced data TMLE
for E(Y (ā) − Y (0̄) | V ) = m(ā, V | ψ0) for time-dependent treatment based
on longitudinal data structure.

28 Causal effect modification in randomized

trial.

In a randomized trial in which one observes O = (W,A, Y ), a parameter of
interest is

ψ0j(w) = E0E(Y |A = 1,W (j) = w,W (−j))−E(Y |A = 0,W (j) = w,W (−j))
− E(Y |A = 1,W (j) = 0,W (−j)) + E(Y |A = 0,W (j) = 0,W (−j)),

which measures effect modification by covariate W (j) while controlling for
other covariates.

Define m0(w,W (−j)) = E(Y |A = 1,W (j) = w,W (−j)) − E(Y | A =
0,W (j) = w,W (−j)). Then

ψ0j(w) = m(w,W (−j))−m(0,W (−j))
= = E(Y |A = 1, wj,W (−j))− E(Y |A = 0, wj,W (−j))
−E(Y |A = 1, 0,W (−j)) + E(Y |A = 0, 0,W (−j)).
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If W (j) is binary, then we can compute the nonparametric efficient in-
fluence curve of ψ0j since it equals a simple linear combination of the four
parameters (E(Y (1, 1), EY (1, 0), EY (0, 1), EY (0, 0)). In particular, we can
apply the TMLE targeting all four parameters, or direclty ψ0j with a sin-
gle covariate extension. This would involve adding covariate extensions with
covariates like I(A = 1,Wj = 1)/g(1, 1|W ), and we can factorize the joint
treatment mechanism, with one factor being known, but the other is not. So
this methodology will require inverse probability of treatment weighting.

Let’s now consider a model based approach. Firstly, we assume E(Y |A1 =
a1, A2 = a2,W ) − E(Y |A1 = 0, A2 = 0) = m(a1, a2, V |β0), where A1 denotes
the randomized treatment, and A2 is the effect modifier W (j). Then our
estimator of ψ0j is given by m(a1, a2, V | βn)−m(a1, 0, V | βn)−m(0, a2, V |
βn)+m(0, 0 | βn), where βn is the TMLE. The TMLE involves fitting E(A1|W )
and E(A2|W ), where the first one is known in a randomized trial. For example,
consider a model m(a1, a2, V | β0) = a1m1(V | β0)+a2m2(V | β0)+a1a2m3(V |
β0). Then, ψ0j(w) = wm3(V | β0).
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