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History-Adjusted Marginal Structural Models:
Optimal Treatment Strategies

Maya L. Petersen and Mark J. van der Laan

Abstract

Much of clinical medicine involves choosing a future treatment plan that is ex-
pected to optimize a patient’s long-term outcome, and modifying this treatment
plan over time in response to changes in patient characteristics. However, dy-
namic treatment regimens, or decision rules for altering treatment in response to
time-varying covariates, are rarely estimated based on observational data. In a
companion paper, we introduced a generalization of Marginal Structural Models,
named History-Adjusted Marginal Structural Models, that estimate modification
of causal effects by time-varying covariates. Here, we illustrate how History-
Adjusted Marginal Structural Models can be used to identify a specific type of
optimal dynamic treatment regimen. Estimation and interpretation of this dynamic
treatment regimen are illustrated using an example drawn from the treatment of
HIV infection using antiretroviral drugs.



1 Introduction.

The practice of much of modern medicine involves monitoring patient covari-
ates over time and using these measurements to make treatment decisions.
For example, patient risk factors and sequential measurements of blood pres-
sure inform when antihypertensive medication is initiated, dose of antidepres-
sant medication is often modified in response to changes in patient symptoms
and side effects, and the decision to switch antiretroviral therapy regimen for
an HIV-infected patient is based on measures of viral and patient response to
treatment. Understanding how to use past covariates measured on a patient
to make the best immediate treatment decision is central to clinical practice.

In the statistical literature, strategies or rules for changing treatment in
response to changing covariates are termed ”dynamic treatment regimens”.
Dynamic treatment regimens can be contrasted with static treatment reg-
imens, which allow treatment to change over time but not in response to
changing patient covariates. While dynamic treatment regimens are often
of primary clinical interest, the focus of the majority of both randomized
trials and observational studies has been estimation of the effects of static
treatment regimens.

The discrepancy between the questions posed by clinical medicine and
the questions currently being answered by epidemiologic research may be
due in part to a lack of accessible analytic tools for estimating the causal ef-
fects of dynamic treatment regimens and for identifying dynamic treatment
regimens that will optimize expected patient outcome. Two analytic meth-
ods currently available, Structural Nested Mean Models and G-computation
(Murphy (2003),Robins (1997),Robins (2000)) both require substantial mod-
eling and programming effort to implement.

Marginal Structural Models (MSM) are a well-established and powerful
tool for causal inference. In longitudinal studies, MSM allow for control of
confounders that are also affected by previous treatment (time-dependent
confounders), and that are thus not amenable to traditional analytic ap-
proaches to confounding such as multivariable regression. In addition, MSM
can be more robust to model misspecification, particularly when data are
high dimensional, and can be implemented using standard software. How-
ever, until recently MSM could not identify or estimate modification of the
causal effect of treatment by covariates that change over time. As a result,
MSM have been able to identify optimal static treatment regimens, but have
not been applied to identify optimal dynamic treatment regimens.
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In a companion paper, we introduce a generalization of Marginal Struc-
tural Models, called History-Adjusted Marginal Structural Models (HA-MSM),
that allow for the identification and estimation of causal effect modification
by time-varying covariates in longitudinal data settings with time-dependent
confounding. These models can be implemented using weighted least squares
regression and standard software. In this article, we illustrate how HA-MSM
can be used to identify a rule for making treatment decisions over time, based
on current history of time-varying covariates, that represents a specific type
of optimal dynamic treatment regimen. This dynamic treatment regimen
corresponds closely to the needs of clinical practitioners, in that it allows a
practitioner to use a patient’s most recent measured covariates to update,
at each patient visit, the future (static) treatment plan that will maximize
the patient’s expected long-term outcome. We use an example drawn from
the treatment of human immunodeficiency virus (HIV) infection to illustrate
how HA-MSM can be used to identify and estimate this type of optimal dy-
namic treatment regimen, and how this dynamic treatment regimen can be
interpreted.

2 Antiretroviral therapy for the treatment of

HIV infection: When to switch treatment

regimens?

In this article, we address the issue of how long an HIV-infected patient who
is virologically failing his/her antiretroviral therapy (ART) regimen should
wait before switching to a new regimen. Switching to a new suppressive
regimen immediately will prevent the potential decline in CD4 T-cells asso-
ciated with ongoing viral replication. However, delay also runs the risk of
prematurely depleting future treatment options. In addition, some patients
may experience continued immunologic benefit from regimens that do not
achieve complete virologic suppression (Piketty et al. (2001), Deeks et al.
(2002), Deeks et al. (2000)). It has been hypothesized that this phenomenon
is due to a decrease in viral fitness that occurs as a result of viral muta-
tions which confer resistance to some antiretroviral therapies (Deeks et al.
(2002)). Switching too early for these patients may represent a switch from
a moderately effective but potentially long-lived regimen to a more effec-
tive but shorter-lived regimen. Finally, immunologic benefits conferred by
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regimens despite incomplete virologic suppression may attenuate over time,
with the accumulation of additional resistance mutations that restore viral
fitness (Deeks (2003). The optimal time to switch may change as a result
of time-varying covariates. For example, the emergence over time of certain
viral mutations associated with increased resistance or improved viral fitness
may increase the depletion of CD4 T-cells that results from ongoing viral
replication, and thus alter the optimal switch time (Deeks (2001)).

To illustrate the dynamic treatment regimen identified by HA-MSM, we
use the following data structure. HIV-infected subjects become eligible for
our analysis when they virologically rebound on an ART regimen. On each
randomly sampled subject, we measure the following data at each time point
during the study:

1. Treatment status, a binary variable indicating whether or not the sub-
ject has switched ART regimens. We denote treatment status at time
point t as A(t), where A(t) = 1 as long as a subject remains on his/her
original non-suppressive therapy, and A(t) = 0 from the time point
when a subject switches to a new therapy until the end of the study.
In order to simplify presentation, we assume in this paper that subjects
can switch therapy only once.

2. Covariates, denoted L(t). These may include covariates measured only
at baseline, L(0), as well as time-dependent covariates. We focus here
on one time-dependent covariate of particular interest, the presence
of specific viral mutations thought to improve viral fitness, which we
denote using the binary variable S(t). Covariates measured on a subject
also include CD4 T-cell count. Our outcome of interest for a given time
point t is CD4 T-cell count m months in the future, which we denote
Y (t + m).

The observed data for each randomly sampled subject can be represented
chronologically as:

O = (L(0), A(0), ..., L(K), A(K), L(K + 1)) (1)

where we assume that L(t) occurs before A(t) and K +1 denotes the end
of the study
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3 Review of History-Adjusted Marginal Struc-

tural Models.

In this section, we briefly review the assumptions and statistical framework
for History-Adjusted Marginal Structural Models. For a thorough introduc-
tion to the methodology, we refer the reader to our companion papers.

HA-MSM are a generalization of standard Marginal Structural Models,
as introduced by Robins (Robins (2000),Robins (1999)). Both methods rely
on the identical counterfactual framework for causal inference, which as-
sumes that each individual has counterfactual outcomes and other covariate
processes corresponding to each possible treatment history. Applied to the
HIV example, each individual has a set of counterfactuals corresponding to
the CD4 T-cell count, viral mutations, etc., over time that would have been
observed for that individual under each possible time until switching therapy.

This set of counterfactuals is the Full Data for a given individual, denoted:

XFull = (L̄ā(K + 1), ā ∈ A), (2)

where A denotes the set of possible treatment histories (in our example,
possible times until switching to a new antiretroviral therapy), and L̄ā(t)
denotes the counterfactual covariate processes that would have been observed
through time t under treatment history ā. We use the notation X̄(t) =
(X(0), X(1), ..., X(t)) to denote the history of a variable up through time t.

We make the following assumptions:

• Consistency assumption (CA) The observed data for an individual are
equal to the counterfactual covariate processes corresponding to the
individual’s observed treatment history

O = (L̄(K + 1), Ā(K)) = (L̄Ā(K + 1), Ā(K)) (3)

• Temporal ordering assumption (TA) Covariates are not affected by treat-
ment that occurs after they are measured

Lā(t) = Lā(t−1)(t) (4)

• Sequential randomization assumption (SRA) Treatment at each time
point is independent of the full data, given the observed past.

A(t) ⊥ XFull|Ā(t− 1), L̄(t), t = 0, ..., K (5)
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• Experimental treatment assignment assumption (ETA) For each time
point, for every subpopulation defined by treatment and covariate his-
tory up to that time point, every possible treatment which is compat-
ible with treatment history up till that time point must have positive
probability of occurring.

For all possible Ā(t− 1), L̄(t)), P (A(t) = a(t)|Ā(t− 1), L̄(t)) > 0 (6)

for all a(t) ∈ a∗(t) : (Ā(t− 1), a∗(t)) ∈ A(t)

Under these assumptions, Marginal Structural Models model the treatment-
specific counterfactual outcome, possibly conditional on baseline covariates.
History-Adjusted Marginal Structural Models extend this methodology by
recognizing that, at each time point during a study, the covariate and treat-
ment history up till that time-point can be considered baseline covariates. In
other words, one could imagine fitting, at each time point, a separate model
of the counterfactual outcome indexed by treatment after that time point,
conditional on some subset of interest of treatment and covariate history up
till that time point. However, in many settings fitting a separate model for
each time point may be neither practical nor desirable; HA-MSM also allow
one to assume a common model across time points.

Specifically, let a(j, j + m− 1) ≡ (a(j), a(j + 1), ..., a(j + m− 1)) denote
a future treatment regimen from time j until the outcome is measured. We
denote the counterfactual outcome m months later if a subject were to follow
his/her observed treatment history up till time j−1 (Ā(j−1)) and a specified
counterfactual future treatment regimen beginning at time j (a(j, j + m −
1)) as YĀ(j−1)a(j+m−1)(j + m). These counterfactuals are defined for each
time point j ∈ {0, ..., K + 1 −m} and for each possible treatment regimen,
beginning at each time point j, that is consistent with a subject’s treatment
history up till time j.

HA-MSM estimate the expectation (or some other parameter) of these
treatment-specific counterfactuals, indexed by future treatment regimens be-
ginning at time j, conditional on a subset of covariate processes observed up
till time j (V (j) ⊂ (Ā(j − 1)L̄(j)))

E0(YĀ(j−1)a(j,j+m−1)(j+m)|V (j)) ≡ θ0(j, a(j, j+m−1)|V (j)), j = 0, ..., K+1−m
(7)

We note that if the set of possible future treatment regimens depends on
a subject’s treatment history, treatment history must be included in V (j).
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For example, if only a single change in treatment regimen is allowed during
the course of the study, whether or not such a change has already occurred
will restrict whether or not it can occur in the future, and thus past history
of treatment change must be included in V (j). In our example, HA-MSM
are concerned with estimating the conditional expectation of counterfactual
CD4 T-cell count m months later among subjects who have not yet switched
therapy, given observed treatment history and the current presence of viral
mutations (V (j) = (Ā(j − 1), S(j))), if a subject were to follow his/her
observed treatment up till time j (not switching) and then switch treatment
at a specified time after j.

4 The HA-MSM dynamic treatment regimen:

Updating the best future treatment plan

based current covariate values.

A dynamic treatment regimen is a rule or function that gives a recommended
treatment decision at each time point, based on patient characteristics mea-
sured up till the time point. For example, we are interested here in decision
rules for when to switch to a new antiretroviral treatment, given time spent
on current non-suppressive treatment and current viral mutation profile. We
can represent a dynamic treatment regimen with a vector d = (d0, . . . , dK),
where dt represents the treatment decision at time t (switch treatment or
not). In our current example, say we wish to find the dynamic treatment
regimen, beginning at time j = 0 that maximizes the mean outcome (CD4
T-cell count) at time m. In other words, we wish to maximize E[Yd(m)],
for t = 0, ..., m − 1, and where Yd(m) is the CD4 T-cell count we would
have observed at time m if the whole population had followed the dynamic
treatment regimen d.

For each time point, HA-MSM allow us to identify the future static treat-
ment regimen that, given treatment history and covariates of interest up till
that time point, will maximize the expectation of the outcome. Applied
to our example, History-Adjusted Marginal Structural Models can be used
to estimate how much longer subjects should remain on their current non-
suppressive therapy, given how long they have already been on it and their
viral mutation profile, in order to maximize the expected CD4 T-cell count
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m months later. Formally,

a0(j, j + m− 1|V (j)) ≡
arg max

a(j,j+m−1)∈a∗(j,j+m−1):(Ā(j−1),a∗(j,j+m−1))∈A
θ0(j, a(j, j + m− 1)|V (j)) (8)

Note that a0(j, j+m−1|V (j)) is the optimal future static treatment regimen
at time j; it represents a fixed point in the future, within subgroups defined
by treatment and covariate history at that time point, at which treatment
should be switched to maximize CD4 T-cell count m months later.

The optimal future static treatment regimen estimated by HA-MSM (8)
immediately suggests an interesting dynamic treatment regimen. At each
time point j, .., K +1−m, HA-MSM identify the best future static treatment
regimen given a subset of an individual’s treatment history and covariates
up till that time point (where ”best” is defined as the future static regimen
that is expected to maximize outcome at time j + m). The dynamic treat-
ment regimen consists of following, at each time point, the first action of
an individual’s optimal static future treatment regimen at that time point.
At subsequent time points, the optimal static future treatment regimen can
then be updated in response to changes in covariates and treatment history.
Formally, the dynamic treatment regimen given by HA-MSM consists of

d0(V (j)) ≡ a0(j, | V (j)), j = 0, . . . , K + 1−m. (9)

That is, d0(V (j)) equals the first treatment action of the history- (at time j)
adjusted optimal static treatment regimen a0(j, j + m− 1 | V (j)).

Applied to the HIV example, d0(V (j)) represents a dynamic treatment
regimen in which subjects either switch treatment or not at each time point,
based on the history-adjusted optimal static future treatment regimen at that
time point. This approach yields for each subject a vector of recommended
treatment actions (switch or not at each time point), d0 = (d00, . . . , d0(K+1−m))
that can depend on the subject’s current measured covariates. In practice,
applying this dynamic treatment regimen consists of following a patient on
non-suppressive therapy over time, and at each follow-up visit, using the pa-
tient’s current treatment history and viral mutations to choose the future
treatment plan (switch time) that will maximize the patient’s expected CD4
T-cell count m months later. This treatment plan is then followed until the
next visit, at which point the treatment plan can be revised based on new
covariate values. Note that this does indeed constitute a dynamic treatment
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regimen, in that the treatment decision made at each time point can change
in response to changes in patient covariates.

The dynamic treatment regimen (9) identified by HA-MSM can be com-
pared to two common types of optimal treatment regimens discussed in the
literature. The optimal static treatment regimen (as can be estimated with
a standard MSM), as applied to the HIV example is the total duration of
non-suppressive therapy (measured from a fixed time point, such as the be-
ginning of the study, j = 0) within subgroups defined by baseline covariates
that would result in the highest mean CD4 T-cell count in the population
m months later. In other words, the optimal static treatment regimen indi-
cates how long subjects should remain on non-suppressive therapy in total,
given only their characteristics at the beginning of the study. Unlike the
history-adjusted dynamic treatment regimen, the decision about when to
switch therapy cannot be modified over the course of follow-up in response
to changing patient characteristics.

In contrast the optimal dynamic treatment regimen as defined by Mur-
phy (2003), Robins (2003) optimizes a dynamic treatment regimen-specific
marginal outcome (at a fixed time point) over a collection of dynamic treat-
ment regimens. Applied to the HIV example, the optimal dynamic treatment
regimen is the decision rule for when to switch therapy, based on how long
subjects have already been on current therapy and viral mutation profile,
that, if applied to all members of the population, would result in the highest
mean CD4 T-cell count m months after the start of the study. This differs
from the HA-MSM dynamic treatment regimen, which identifies at each time
point the first action of the optimal static treatment regimen. Certainly, this
is an interesting dynamic treatment regimen, and has the advantage of be-
ing easier to estimate than the truly optimal dynamic treatment regimen.
Finally, it is interesting to note that in the current example we identify a
dynamic treatment regimen aimed at optimizing a continuously changing
outcome (CD4 T-cell count m months in the future). In many applications,
optimizing such a ”moving” outcome, rather than an outcome at a fixed time
point, may indeed be the researchers goal.
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5 Using HA-MSM to identify the best time

to switch therapy

Implementation of HA-MSM is presented in detail in our companion papers.
Here we illustrate how the parameters estimated by HA-MSM can be used to
identify the optimal history-adjusted treatment regimen (9), and how that
regimen can be interpreted. We are interested in the question “Given a
subject’s current viral mutation profile and the length of time he/she has
already been on the current non-suppressive ART regimen, when should a
subject switch therapy?” We remind the reader that, because in our example
a subject is only allowed to switch therapy once, the decision of when to
switch will only apply to those individuals who have not switched already.

We begin by proposing a simple HA-MSM model for the effect of total
exposure time on final CD4 T-cell count with effect modification by current
mutation profile. We summarize the a(j, j + m − 1) as the duration from
time j until a subject switches therapy: c(j) ≡ ∑j+m−1

l=j a(l). Consider the
model

E0(YĀ(j−1),a(j,j+m−1)(j + m) | A(j − 1) = 1, S(j))

= I(A(j − 1) = 1)(β0 + β1c(j) + β2S(j) + β3j + β4c(j)S(j) + β5c(j)j),

j = 0, . . . , K +1−m. Note that we condition on not already having switched
therapy I(A(j − 1) = 1), and that, among this population, j is the elapsed
time a subject has already spent on non-suppressive therapy.

In this linear model, the history-adjusted optimal static treatment reg-
imen is relatively straightforward. To choose the future treatment regi-
men that maximizes the expected CD4 T-cell count, we simply look at
our estimates of β. Among subjects with key viral mutations (S(j) = 1),
the estimated effect of each additional month waiting to switch therapy is:
β1+β4+β5(j); similarly, among subjects without viral mutations (S(j) = 0),
the estimated effect of each additional month waiting to switch is β1 +β5(j).
If the goal is to maximize CD4 count m months later, when this sum is
positive the best statically optimal treatment plan is to wait to switch, and
when this sum becomes negative, the best plan is to switch immediately. The
resulting dynamic treatment regimen suggested is thus the following:

• For β5 < 0, when a subjects has key viral mutations, switch therapy
immediately if the subject has already been on non-suppressive therapy
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for more than (β1 +β4)/β5 months. If a subject does not have key viral
mutations, switch therapy immediately if a subject has been on non-
suppressive therapy for more than β1/β5 months. Note that this rule
implies that, for β1, β4, β5 all negative, never wait to switch regardless
of a patient’s current viral mutations or duration on non-suppressive
therapy.

• For β5 > 0 when a subject has key viral mutations, switch therapy if
a subject has already been on non-suppressive therapy for less than
−(β1 + β4)/β5 months, If a subject does not have key viral muta-
tions, switch therapy immediate if a subject has already been on non-
suppressive therapy for less than −β1/β5 months. Note that this rule
implies that, for β1, β4, β5 all positive, always wait to switch regardless
of a patients current viral mutations or duration on non-suppressive
therapy.

6 Discussion

In our previous paper, we introduced history-adjusted marginal structural
models, a generalization of marginal structural models that make possible the
estimation of time-dependent effect modification. Here, we have illustrated
how history-adjusted marginal structural models also make possible the iden-
tification of a specific type of dynamic treatment regimen. HA-MSM allow
us to identify treatment decision rules that can be based on time-dependent
covariates, a crucial application in the medical sciences.
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