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Multiple Testing Procedures: R multtest
Package and Applications to Genomics

Katherine S. Pollard, Sandrine Dudoit, and Mark J. van der Laan

Abstract

The Bioconductor R package multtest implements widely applicable resampling-
based single-step and stepwise multiple testing procedures (MTP) for controlling
a broad class of Type I error rates, in testing problems involving general data gen-
erating distributions (with arbitrary dependence structures among variables), null
hypotheses, and test statistics. The current version of multtest provides MTPs for
tests concerning means, differences in means, and regression parameters in linear
and Cox proportional hazards models. Procedures are provided to control Type
I error rates defined as tail probabilities for arbitrary functions of the numbers of
false positives and rejected hypotheses. These error rates include tail probabilities
for the number of false positives (generalized family-wise error rate, gFWER) and
the proportion of false positives among the rejected hypotheses (TPPFP). Single-
step and step-down common-cut-off (maxT) and common-quantile (minP) proce-
dures, that take into account the joint distribution of the test statistics, are proposed
to control the family-wise error rate (FWER), or chance of at least one Type I er-
ror. In addition, augmentation multiple testing procedures are provided to control
the gFWER and TPPFP, based on any initial FWER-controlling procedure. The
results of a multiple testing procedure can be summarized using rejection regions
for the test statistics, confidence regions for the parameters of interest, or adjusted
p-values. A key ingredient of our proposed MTPs is the test statistics null distri-
bution (and estimator thereof) used to derive rejection regions and corresponding
confidence regions and adjusted p-values. Both bootstrap and permutation esti-
mators of the test statistics null distribution are available. The S4 class/method
object-oriented programming approach was adopted to summarize the results of a
MTP. The modular design of multtest allows interested users to readily extend the
package’s functionality. Typical testing scenarios are illustrated by applying vari-
ous MTPs implemented in multtest to the Acute Lymphoblastic Leukemia (ALL)



dataset of Chiaretti et al. (2004), with the aim of identifying genes whose ex-
pression measures are associated with (possibly censored) biological and clinical
outcomes.



i

Note. This document is an expanded version of a chapter to be published in
the monograph Bioinformatics and Computational Biology Solutions Using
R and Bioconductor [Gentleman et al., 2005]. The reader is referred to this
book for a discussion of other relevant packages developed as part of the
Bioconductor project.

0.1 Introduction

0.1.1 Motivation

Current statistical inference problems in biomedical and genomic data anal-
ysis routinely involve the simultaneous test of thousands, or even millions,
of null hypotheses. Examples include:

• identification of differentially expressed genes in microarray exper-
iments, i.e., genes whose expression measures are associated with
possibly censored responses or covariates;

• tests of association between gene expression measures and Gene
Ontology (GO) annotation;

• identification of transcription factor binding sites in ChIP-Chip
experiments [Keleş et al., 2004];

• genetic mapping of complex traits using single nucleotide polymor-
phisms (SNP).

The above testing problems share the following general characteristics:

• inference for high-dimensional multivariate distributions, with com-
plex and unknown dependence structures among variables;

• broad range of parameters of interest, such as, regression coefficients
and correlations;

• many null hypotheses, in the thousands or even millions;

• complex dependence structures among test statistics.

Motivated by these applications, we have developed and implemented (in
R and SAS) resampling-based single-step and stepwise multiple testing pro-
cedures (MTP) for controlling a broad class of Type I error rates, in testing
problems involving general data generating distributions (with arbitrary
dependence structures among variables), null hypotheses (defined in terms
of submodels for the data generating distribution), and test statistics (e.g.,
t-statistics, F -statistics). The different components of our multiple testing
methodology are treated in detail in a collection of related articles [Pollard
and van der Laan, 2004, Dudoit et al., 2004, van der Laan et al., 2004,,
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Dudoit et al., 2004] and a book in preparation [Dudoit and van der Laan,
2004].

The early article of Pollard and van der Laan [2004] and subsequent ar-
ticle of Dudoit et al. [2004] establish a general statistical framework for
multiple hypothesis testing. A key feature of the proposed MTPs is the
test statistics null distribution (rather than data generating null distribu-
tion) used to derive rejection regions (i.e., cut-offs) for the test statistics
and resulting confidence regions and adjusted p-values. For Type I error
rates defined as arbitrary parameters θ(FVn

) of the distribution of the
number of Type I errors Vn (e.g., the generalized family-wise error rate,
gFWER(k) = Pr(Vn > k), or chance of at least (k+1) false positives), this
null distribution is the asymptotic distribution of the vector of null value
shifted and scaled test statistics. Resampling procedures (e.g., based on the
non-parametric or model-based bootstrap) are proposed to conveniently
obtain consistent estimators of the null distribution and the correspond-
ing test statistic cut-offs and adjusted p-values [Pollard and van der Laan,
2004, Dudoit et al., 2004, van der Laan et al., 2004, Dudoit and van der
Laan, 2004].

Pollard and van der Laan [2004] and Dudoit et al. [2004] also derive
single-step common-cut-off and common-quantile procedures for controlling
general Type I error rates of the form θ(FVn

).
van der Laan et al. [2004] focus on control of the family-wise error

rate, FWER = gFWER(0), and provide step-down common-cut-off and
common-quantile procedures, based on maxima of test statistics (maxT)
and minima of unadjusted p-values (minP), respectively. van der Laan et al.
[2004], and subsequently Dudoit et al. [2004] and Dudoit and van der Laan
[2004], propose general classes of augmentation multiple testing procedures
(AMTP), obtained by adding suitably chosen null hypotheses to the set of
null hypotheses already rejected by an initial MTP. In particular, given
any FWER-controlling procedure, they show how one can trivially ob-
tain augmentation procedures controlling tail probabilities for the number
(gFWER) and proportion (TPPFP) of false positives among the rejected
hypotheses. The results of a simulation study comparing augmentation pro-
cedures to existing gFWER- and TPPFP-controlling MTPs are reported in
Dudoit et al. [2004]. Finally, the multiple testing methodology and appli-
cations to genomic data analysis are the subject of a book in preparation
for Springer [Dudoit and van der Laan, 2004].

In order to make this general methodology broadly and readily accessible
to the biomedical and genomic data analysis community, we have imple-
mented the above MTPs in the Bioconductor R package multtest, which is
the subject of the present paper.
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0.1.2 Outline

The Bioconductor R package multtest provides software implementations
of the multiple testing procedures mentioned in Section 0.1.1 and discussed
in greater detail in Section 0.2. Specifically, given a multivariate dataset
and user-supplied choices for the test statistics, Type I error rate and its
target level(s), estimator of the test statistics null distribution, and proce-
dure for deriving rejection regions, the main user-level function MTP returns
unadjusted and adjusted p-values, cut-off vectors for the test statistics, and
estimates and confidence regions for the parameters of interest. Both boot-
strap and permutation estimators of the test statistics null distribution are
available and can optionally be output to the user. The S4 class/method
object-oriented programming approach was adopted to represent the re-
sults of a MTP. Several methods are defined to produce numerical and
graphical summaries of these results. A modular programming approach,
which uses function closures, allows interested users to readily extend the
package’s functionality, by inserting functions for new test statistics and
testing procedures.

The present paper is organized as follows. Section 0.2 provides a sum-
mary of our proposed multiple testing procedures. Section 0.3 discusses
their software implementation in the Bioconductor R package multtest.
Section 0.4 describes applications of the MTPs to the Acute Lymphoblas-
tic Leukemia (ALL) dataset of Chiaretti et al. [2004], with the aim of
identifying genes whose expression measures are associated with (possibly
censored) biological and clinical outcomes such as: tumor cellular subtype
(B-cell vs. T-cell), tumor molecular subtype (BCR/ABL, NEG, ALL1/AF4,
E2A/PBX1, p15/p16, NUP-98), and time to relapse. Finally, Section 0.5
discusses ongoing efforts.

0.2 Multiple hypothesis testing methodology

0.2.1 Multiple hypothesis testing framework

Hypothesis testing is concerned with using observed data to test hypotheses,
i.e., make decisions, regarding properties of the unknown data generating
distribution. For example, microarray experiments might be conducted on
a sample of patients in order to identify genes whose expression levels are
associated with survival. Below, we discuss in turn the main ingredients
of a multiple testing problem. These include data, null and alternative hy-
potheses, test statistics, multiple testing procedure, Type I and Type II
errors, adjusted p-values, test statistics null distribution, rejection regions.
Further detail on each of these components can be found in Dudoit et al.
[2004] and Dudoit and van der Laan [2004]; specific proposals of MTPs are
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given in Sections 0.2.4 – 0.2.6.

Software implementation. The multtest package is designed so that the
main components of a MTP are specified as arguments to the package’s
primary user-level function, MTP: the data via the arguments X, W, Y, Z,
Z.incl, and Z.test; the test statistics via test, robust, standardize,
alternative, and psi0; the Type I error rate via typeone and alpha (and
also the error rate-specific parameters k and q); the test statistics null dis-
tribution via nulldist and B; and the MTP itself via method. The desired
output, i.e., adjusted p-values, rejection regions, and confidence regions, are
specified using the arguments get.adjp, get.cutoff, and get.cr, respec-
tively. The main steps in applying a multiple testing procedure are listed
in the flowchart of Table 1 and typical testing scenarios are illustrated in
Section 0.4, using the ALL dataset of Chiaretti et al. [2004] as a case study.

Data. Let X1, . . . , Xn be a random sample of n independent and identi-
cally distributed (i.i.d.) random variables, X ∼ P ∈ M, where the data
generating distribution P is an element of a particular statistical model M
(i.e., a set of possibly non-parametric distributions). In a microarray exper-
iment, for example, X is a vector of gene expression measurements, which
we observe for each of n arrays.

Null and alternative hypotheses. In order to cover a broad class of
testing problems, define M null hypotheses in terms of a collection of sub-
models, M(m) ⊆ M, m = 1, . . . ,M , for the data generating distribution
P . The M null hypotheses are defined as H0(m) ≡ I(P ∈ M(m)) and the
corresponding alternative hypotheses as H1(m) ≡ I(P /∈ M(m)). In many
testing problems, the submodels concern parameters, i.e., functions of the
data generating distribution P , Ψ(P ) = ψ = (ψ(m) : m = 1, . . . ,M),
such as means, differences in means, correlation coefficients, and regression
parameters. For instance, the full model M might refer to the set of all con-
tinuous M–variate distributions and the submodel M(m), corresponding
to the mth null hypothesis, might be the subset of M for which the mth
component of the mean vector ψ = E[X] is non-negative, i.e., M(m) =
{P ∈ M : ψ(m) ≥ 0} (further parametric restrictions, such as normal-
ity, may be imposed on the models). One distinguishes between two types
of testing problems: one-sided tests, where H0(m) = I(ψ(m) ≤ ψ0(m)),
and two-sided tests, where H0(m) = I(ψ(m) = ψ0(m)). The user-supplied
hypothesized null values, ψ0(m), are frequently zero.

Let H0 = H0(P ) ≡ {m : H0(m) = 1} = {m : P ∈ M(m)} be the
set of h0 ≡ |H0| true null hypotheses, where we note that H0 depends on
the data generating distribution P . Let H1 = H1(P ) ≡ Hc

0(P ) = {m :
H1(m) = 1} = {m : P /∈ M(m)} be the set of h1 ≡ |H1| = M − h0 false
null hypotheses, i.e., true positives. The goal of a multiple testing procedure
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is to accurately estimate the set H0, and thus its complement H1, while
controlling probabilistically the number of false positives.

Test statistics. A testing procedure is a data-driven rule for deciding
whether or not to reject each of the M null hypotheses H0(m), i.e., declare
that H0(m) is false (zero) and hence P /∈M(m). The decisions to reject or
not the null hypotheses are based on an M–vector of test statistics, Tn =
(Tn(m) : m = 1, . . . ,M), that are functions Tn(m) = T (X1, . . . , Xn)(m) of
the data, X1, . . . , Xn. Denote the typically unknown (finite sample) joint
distribution of the test statistics Tn by Qn = Qn(P ).

Single-parameter null hypotheses are commonly tested using t-statistics,
i.e., standardized differences,

Tn(m) ≡ Estimator−Null value
Standard error

=
√
n
ψn(m)− ψ0(m)

σn(m)
. (1)

In general, the M–vector ψn = (ψn(m) : m = 1, . . . ,M) denotes an asymp-
totically linear estimator of the parameter M–vector ψ = (ψ(m) : m =
1, . . . ,M) and (σn(m)/

√
n : m = 1, . . . ,M) denote consistent estimators

of the standard errors of the components of ψn. For tests of means, one
recovers the usual one-sample and two-sample t-statistics, where ψn(m)
and σn(m) are based on empirical means and variances, respectively (e.g.,
two-sample t-statistic in Equation (3), p. vi, for the ALL microarray data
analysis of Section 0.4). In some settings, it may be appropriate to use (un-
standardized) difference statistics, Tn(m) ≡

√
n(ψn(m) − ψ0(m)) [Pollard

and van der Laan, 2004]. Test statistics for other types of null hypotheses
include F -statistics, χ2-statistics, and likelihood ratio statistics.

Multiple testing procedure. A multiple testing procedure (MTP) pro-
vides rejection regions, Cn(m), i.e., sets of values for each test statistic
Tn(m) that lead to the decision to reject the null hypothesis H0(m). In
other words, a MTP produces a random (i.e., data-dependent) subset Rn

of rejected hypotheses that estimates H1, the set of true positives,

Rn = R(Tn, Q0n, α) ≡ {m : H0(m) is rejected} = {m : Tn(m) ∈ Cn(m)},
(2)

where Cn(m) = C(Tn, Q0n, α)(m), m = 1, . . . ,M , denote possibly random
rejection regions. The long notation R(Tn, Q0n, α) and C(Tn, Q0n, α)(m)
emphasizes that the MTP depends on: (i) the data,X1, . . . , Xn, through the
M–vector of test statistics, Tn = (Tn(m) : m = 1, . . . ,M); (ii) a (estimated)
test statistics null distribution, Q0n, for deriving rejection regions for each
Tn(m) and the resulting adjusted p-values (Section 0.2.2); and (iii) the
nominal level α, i.e., the desired upper bound for a suitably defined Type
I error rate.

Unless specified otherwise, it is assumed that large values of the test
statistic Tn(m) provide evidence against the corresponding null hypoth-
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esis H0(m), that is, we consider rejection regions of the form Cn(m) =
(cn(m),∞), where cn(m) are to-be-determined critical values, or cut-offs,
computed under the null distribution Q0n for the test statistics Tn (Section
0.2.2).

Example. Suppose that, as in the analysis of the ALL dataset of Chiaretti
et al. [2004] (Section 0.4), one is interested in identifying genes that are
differentially expressed in two populations of ALL cancer patients, those
with the B-cell subtype and those with the T-cell subtype. The data con-
sist of random J–vectors X, where the first M entries of X are microarray
expression measures on M genes of interest and the last entry, X(J), is an
indicator for the ALL subtype (1 for B-cell, 0 for T-cell). Then, the param-
eter of interest is an M–vector of differences in mean expression measures
in the two populations, ψ(m) = E[X(m)|X(J) = 1]− E[X(m)|X(J) = 0],
m = 1, . . . ,M . To identify genes with higher mean expression measures in
the B-cell compared to T-cell ALL subjects, one can test the one-sided
null hypotheses H0(m) = I(ψ(m) ≤ 0) vs. the alternative hypotheses
H1(m) = I(ψ(m) > 0), using two-sample Welch t-statistics

Tn(m) ≡ X̄1,n1(m)− X̄0,n0(m)√
n−1

0 (m)σ2
0,n0

(m) + n−1
1 (m)σ2

1,n1
(m)

, (3)

where nk(m), X̄k,nk
(m), and σ2

k,nk
(m) denote, respectively, the sample

sizes, sample means, and sample variances, for patients with tumor sub-
type k, k = 0, 1. The null hypotheses are rejected, i.e., the corresponding
genes are declared differentially expressed, for large values of the test statis-
tics Tn(m).

Type I and Type II errors. In any testing situation, two types of errors
can be committed: a false positive, or Type I error, is committed by rejecting
a true null hypothesis, and a false negative, or Type II error, is committed
when the test procedure fails to reject a false null hypothesis. The situation
can be summarized by Table 2, below, where the number of Type I errors
is Vn ≡ |Rn ∩H0| =

∑
m∈H0

I(Tn(m) ∈ Cn(m)) and the number of Type II
errors is Un ≡ |Rc

n ∩H1| =
∑

m∈H1
I(Tn(m) /∈ Cn(m)).

Note that both Un and Vn depend on the unknown data generating
distribution P through the unknown set of true null hypotheses H0 =
H0(P ). The numbers h0 = |H0| and h1 = |H1| = M − h0 of true and false
null hypotheses are unknown parameters, the number of rejected hypotheses
Rn ≡ |Rn| =

∑M
m=1 I(Tn(m) ∈ Cn(m)) is an observable random variable,

and the entries in the body of the table, Un, h1 −Un, Vn, and h0 − Vn, are
unobservable random variables (depending on P through H0(P )).

Ideally, one would like to simultaneously minimize both the number of
Type I errors and the number of Type II errors. Unfortunately, this is not
feasible and one seeks a trade-off between the two types of errors. A stan-
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dard approach is to specify an acceptable level α for the Type I error rate
and derive testing procedures, i.e., rejection regions, that aim to minimize
the Type II error rate, i.e., maximize power, within the class of procedures
with Type I error rate at most α.

Type I error rates. When testing multiple hypotheses, there are many
possible definitions for the Type I error rate and power of a test proce-
dure. Accordingly, we adopt the general framework proposed in Dudoit
et al. [2004] and Dudoit and van der Laan [2004], and define Type I error
rates as parameters, θn = θ(FVn,Rn

), of the joint distribution FVn,Rn
of the

numbers of Type I errors Vn and rejected hypotheses Rn. Such a general
representation covers the following commonly-used Type I error rates.

Generalized family-wise error rate (gFWER), or probability of at least
(k + 1) Type I errors, k = 0, . . . , (h0 − 1),

gFWER(k) ≡ Pr(Vn > k) = 1− FVn(k), (4)

where FVn
is the discrete cumulative distribution function (c.d.f.) on

{0, . . . ,M} for the number of Type I errors, Vn. When k = 0, the
gFWER is the usual family-wise error rate (FWER), or probability
of at least one Type I error,

FWER ≡ Pr(Vn > 0) = 1− FVn(0). (5)

The FWER is controlled, in particular, by the classical Bonferroni
procedure.

Per-comparison error rate (PCER), or expected value of the proportion
of Type I errors among the M tests,

PCER ≡ 1
M
E[Vn] =

1
M

∫
vdFVn

(v). (6)

Tail probabilities for the proportion of false positives (TPPFP) among the
rejected hypotheses,

TPPFP (q) ≡ Pr(Vn/Rn > q) = 1− FVn/Rn
(q), q ∈ (0, 1), (7)

where FVn/Rn
is the c.d.f. for the proportion Vn/Rn of false positives

among the rejected hypotheses, with the convention that Vn/Rn ≡ 0
if Rn = 0.

False discovery rate (FDR), or expected value of the proportion of false
positives among the rejected hypotheses,

FDR ≡ E[Vn/Rn] =
∫
qdFVn/Rn

(q), (8)

again with the convention that Vn/Rn ≡ 0 if Rn = 0 [Benjamini and
Hochberg, 1995].
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Note that while the gFWER is a parameter of only the marginal distri-
bution FVn of the number of Type I errors Vn (tail probability, or survivor
function, for Vn), the TPPFP is a parameter of the joint distribution of
(Vn, Rn) (tail probability, or survivor function, for Vn/Rn).

Error rates based on the proportion of false positives (e.g., TPPFP and
FDR) are especially appealing for large-scale testing problems such as those
encountered in genomics, compared to error rates based on the number of
false positives (e.g., gFWER), as they do not increase exponentially with
the number of tested hypotheses.

The aforementioned error rates are part of the broad class of Type I er-
ror rates considered in Dudoit et al. [2004] and Dudoit and van der Laan
[2004], and defined as tail probabilities Pr(g(Vn, Rn) > q) and expected
values E[g(Vn, Rn)] for an arbitrary function g(Vn, Rn) of the numbers of
false positives Vn and rejected hypotheses Rn. The gFWER and TPPFP
correspond to the special cases g(Vn, Rn) = Vn and g(Vn, Rn) = Vn/Rn,
respectively.

Adjusted p-values. The notion of p-value extends directly to multiple
testing problems, as follows. Given a MTP Rn(α) = R(Tn, Q0n, α), the
adjusted p-value P̃0n(m) = P̃ (Tn, Q0n)(m), for null hypothesis H0(m), is
defined as the smallest Type I error level α at which one would reject
H0(m), that is,

P̃0n(m) ≡ inf {α ∈ [0, 1] : m ∈ Rn(α)} (9)
= inf {α ∈ [0, 1] : Tn(m) ∈ Cn(m)} , m = 1, . . . ,M.

Note that unadjusted or marginal p-values, for the test of a single hy-
pothesis, correspond to the special case M = 1. For a continuous null
distribution Q0n, the unadjusted p-value for null hypothesis H0(m) is given
by P0n(m) = P (Tn(m), Q0n,m) = Q̄0n,m(Tn(m)), where Q0n,m and Q̄0n,m

denote, respectively, the marginal c.d.f.’s and survivor functions for Q0n.
For example, the adjusted p-values for the classical Bonferroni procedure
for FWER control are given by P̃0n(m) = min(MP0n(m), 1).

As in single hypothesis tests, the smaller the adjusted p-value, the
stronger the evidence against the corresponding null hypothesis. If Rn(α)
is right-continuous at α, in the sense that limα′↓αRn(α′) = Rn(α), then
one has two equivalent representations for the MTP, in terms of rejection
regions for the test statistics and in terms of adjusted p-values,

Rn(α) = {m : Tn(m) ∈ Cn(m)} = {m : P̃0n(m) ≤ α}. (10)

Reporting the results of a MTP in terms of adjusted p-values, as op-
posed to the binary decisions to reject or not the hypotheses, offers several
advantages. (i) Adjusted p-values can be defined for any Type I error rate
(gFWER, TPPFP, FDR, etc.). (ii) They reflect the strength of the evi-
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dence against each null hypothesis in terms of the Type I error rate for the
entire MTP. (iii) They are flexible summaries of a MTP, in that results are
supplied for all levels α, i.e., the level α need not be chosen ahead of time.
(iv) Finally, adjusted p-values provide convenient benchmarks to compare
different MTPs, whereby smaller adjusted p-values indicate a less conser-
vative procedure.

Confidence regions. For the test of single-parameter null hypotheses and
for any Type I error rate of the form θ(FVn

), Pollard and van der Laan [2004]
and Dudoit and van der Laan [2004] provide results on the correspondence
between single-step MTPs and θ–specific confidence regions.

0.2.2 Test statistics null distribution

One of the main tasks in specifying a MTP is to derive rejection regions
for the test statistics such that the Type I error rate is controlled at a
desired level α, i.e., such that θ(FVn,Rn

) ≤ α, for finite sample control,
or lim supn θ(FVn,Rn

) ≤ α, for asymptotic control. It is common practice,
especially for FWER control, to set α = 0.05. However, one is immediately
faced with the problem that the true distribution Qn = Qn(P ) of the test
statistics Tn is usually unknown, and hence, so are the distributions of the
numbers of Type I errors, Vn =

∑
m∈H0

I(Tn(m) ∈ Cn(m)), and rejected
hypotheses, Rn =

∑M
m=1 I(Tn(m) ∈ Cn(m)). In practice, the test statistics

true distribution Qn(P ) is replaced by a null distribution Q0 (or estimate
thereof, Q0n), in order to derive rejection regions and resulting adjusted
p-values.
The choice of null distribution Q0 is crucial, in order to ensure that (finite
sample or asymptotic) control of the Type I error rate under the assumed
null distribution Q0 does indeed provide the required control under the
true distribution Qn(P ). For proper control, the null distribution Q0 must
be such that the Type I error rate under this assumed null distribution
dominates the Type I error rate under the true distribution Qn(P ). That
is, one must have θ(FVn,Rn) ≤ θ(FV0,R0), for finite sample control, and
lim supn θ(FVn,Rn

) ≤ θ(FV0,R0), for asymptotic control, where V0 and R0

denote, respectively, the numbers of Type I errors and rejected hypotheses
under the assumed null distribution Q0.
For error rates θ(FVn

) (e.g., gFWER), defined as arbitrary parameters of
the distribution of the number of Type I errors Vn, we propose as null
distribution the asymptotic distribution Q0 = Q0(P ) of the M–vector Zn

of null value shifted and scaled test statistics [Pollard and van der Laan,
2004, Dudoit et al., 2004, van der Laan et al., 2004, Dudoit and van der
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Laan, 2004],

Zn(m) ≡

√
min

(
1,

τ0(m)
V ar[Tn(m)]

)(
Tn(m) + λ0(m)− E[Tn(m)]

)
. (11)

For the test of single-parameter null hypotheses using t-statistics, the null
values are λ0(m) = 0 and τ0(m) = 1. For testing the equality of K
population means using F -statistics, the null values are λ0(m) = 1 and
τ0(m) = 2/(K − 1), under the assumption of equal variances in the differ-
ent populations. By shifting the test statistics Tn(m) as in Equation (11),
one obtains a sequence of random variables Zn(m) that are asymptotically
stochastically greater than the test statistics Tn(m) for the true null hy-
potheses. Thus, the number of Type I errors V0 under the null distribution
Q0, is asymptotically stochastically greater than the number of Type I er-
rors Vn under the true distribution Qn = Qn(P ). Dudoit et al. [2004] and
van der Laan et al. [2004] prove that the null distribution Q0 does indeed
provide the desired asymptotic control of the Type I error rate θ(FVn),
for general data generating distributions (with arbitrary dependence struc-
tures among variables), null hypotheses (defined in terms of submodels
for the data generating distribution), and test statistics (e.g., t-statistics,
F -statistics).

For a broad class of testing problems, such as the test of single-parameter
null hypotheses using t-statistics as in Equation (1), the null distributionQ0

is anM–variate Gaussian distribution with mean vector zero and covariance
matrix Σ∗(P ): Q0 = Q0(P ) ≡ N(0,Σ∗(P )). For tests of means, where the
parameter of interest is the M–dimensional mean vector Ψ(P ) = ψ =
E[X], the estimator ψn is simply the M–vector of sample averages and
Σ∗(P ) is the correlation matrix of X ∼ P , Cor[X]. More generally, for an
asymptotically linear estimator ψn, Σ∗(P ) is the correlation matrix of the
vector influence curve (IC).

Note that the following important points distinguish our approach from
existing approaches to Type I error rate control. Firstly, we are only con-
cerned with Type I error control under the true data generating distribution
P . The notions of weak and strong control (and associated subset pivotal-
ity, Westfall & Young [Westfall and Young, 1993], p. 42–43) are therefore
irrelevant to our approach. Secondly, we propose a null distribution for
the test statistics, Tn ∼ Q0, and not a data generating null distribution,
X ∼ P0 ∈ ∩M

m=1M(m). The latter practice does not necessarily provide
proper Type I error control, as the test statistics’ assumed null distribution
Qn(P0) and their true distribution Qn(P ) may have different dependence
structures, in the limit, for the true null hypotheses H0.

Procedure 1 Bootstrap estimation of the null distribution Q0

1. Let P ?
n denote an estimator of the data generating distribution P . For

the non-parametric bootstrap, P ?
n is simply the empirical distribution
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Pn, that is, samples of size n are drawn at random, with replacement
from the observed data, X1, . . . , Xn. For the model-based bootstrap,
P ?

n is based on a model M for the data generating distribution P ,
such as the family of M–variate Gaussian distributions.

2. Generate B bootstrap samples, each consisting of n i.i.d. realizations
of a random variable X# ∼ P ?

n .

3. For the bth bootstrap sample, b = 1, . . . , B, compute an M–vector of
test statistics, T#

n (·, b) = (T#
n (m, b) : m = 1, . . . ,M). Arrange these

bootstrap statistics in an M × B matrix, T#
n =

(
T#

n (m, b)
)
, with

rows corresponding to the M null hypotheses and columns to the B
bootstrap samples.

4. Compute row means, E[Tn
#(m, ·)], and row variances, V ar[Tn

#(m, ·)],
of the matrix T#

n , to yield estimates of the true means E[Tn(m)] and
variances V ar[Tn(m)] of the test statistics, respectively.

5. Obtain an M × B matrix, Z#
n =

(
Z#

n (m, b)
)
, of null value shifted

and scaled bootstrap statistics Z#
n (m, b), by row-shifting and scaling

the matrix T#
n as in Equation 11 using the bootstrap estimates of

E[Tn(m)] and V ar[Tn(m)] and the user-supplied null values λ0(m)
and τ0(m). That is, compute

Z#
n (m, b) ≡

√
min

(
1,

τ0(m)
V ar[Tn

#(m, ·)]

)
(12)

×
(
T#

n (m, b) + λ0(m)− E[Tn
#(m, ·)]

)
.

6. The bootstrap estimate Q0n of the null distribution Q0 is the empirical
distribution of the B columns Z#

n (·, b) of matrix Z#
n .

In practice, since the data generating distribution P is unknown, then so
is the proposed null distribution Q0 = Q0(P ). Resampling procedures, such
as the bootstrap procedure of section 1, may be used to conveniently obtain
consistent estimators Q0n of the null distribution Q0 and of the correspond-
ing test statistic cut-offs and adjusted p-values [Pollard and van der Laan,
2004, Dudoit et al., 2004, van der Laan et al., 2004, Dudoit and van der
Laan, 2004]. This bootstrap procedure is implemented in the internal func-
tion boot.resample and may be specified via the arguments nulldist and
B of the main user-level function MTP. The reader is referred to our earlier
articles and book in preparation for further detail on the choice of test
statistics Tn, null distribution Q0, and approaches for estimating this null
distribution. Accordingly, we take the test statistics Tn and their null dis-
tribution Q0 (or estimate thereof, Q0n) as given, and denote the set and
number of rejected hypotheses by Rn(α) = R(Tn, Q0n, α) and Rn(α) (or
the shorter Rn and Rn), respectively, to emphasize only the dependence
on the nominal Type I error level α.
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0.2.3 Rejection regions

Having selected a suitable test statistics null distribution, there remains
the main task of specifying rejection regions for each null hypothesis, i.e.,
cut-offs for each test statistic. Among the different approaches for defining
rejection regions, we distinguish between the following.

Common-cut-off vs. common-quantile multiple testing proce-
dures. In common-cut-off procedures, the same cut-off c0 is used
for each test statistic (cf. FWER-controlling maxT procedures [sec-
tions 2 and 4], based on maxima of test statistics). In contrast, in
common-quantile procedures, the cut-offs are the δ0–quantiles of the
marginal null distributions of the test statistics (cf. FWER-controlling
minP procedures [sections 3 and 5], based on minima of unadjusted
p-values). The latter procedures tend to be more “balanced” than the
former, as the transformation to p-values places the null hypotheses
on an equal footing. However, this comes at the expense of increased
computational complexity.

Single-step vs. stepwise multiple testing procedures. In single-step
procedures, each null hypothesis is evaluated using a rejection region
that is independent of the results of the tests of other hypotheses.
Improvement in power, while preserving Type I error rate control,
may be achieved by stepwise procedures, in which rejection of a par-
ticular null hypothesis depends on the outcome of the tests of other
hypotheses. That is, the (single-step) test procedure is applied to a
sequence of successively smaller nested random (i.e., data-dependent)
subsets of null hypotheses, defined by the ordering of the test statistics
(common-cut-off MTPs) or unadjusted p-values (common-quantile
MTPs). In step-down procedures, the hypotheses corresponding to
the most significant test statistics (i.e., largest absolute test statistics
or smallest unadjusted p-values) are considered successively, with fur-
ther tests depending on the outcome of earlier ones. As soon as one
fails to reject a null hypothesis, no further hypotheses are rejected. In
contrast, for step-up procedures, the hypotheses corresponding to the
least significant test statistics are considered successively, again with
further tests depending on the outcome of earlier ones. As soon as
one hypothesis is rejected, all remaining more significant hypotheses
are rejected.

Marginal vs. joint multiple testing procedures. Marginal multiple
testing procedures are based solely on the marginal distributions of
the test statistics, i.e., on cut-off rules for individual test statistics
or their corresponding unadjusted p-values (e.g., classical Bonferroni
FWER-controlling single-step procedure). In contrast, joint multiple
testing procedures take into account the dependence structure of the
test statistics (e.g., gFWER-controlling single-step common-cut-off
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and common-quantile procedures [sections 2 and 3], based on maxima
of test statistics and minima of unadjusted p-values, respectively).

The next three sections summarize three general approaches for de-
riving rejection regions and corresponding adjusted p-values. The chosen
procedure is specified using the method argument to the function MTP.

Single-step common-cut-off and common-quantile procedures for control-
ling general Type I error rates θ(FVn

): Procedures 2 and 3, Section
0.2.4; details in Pollard and van der Laan [2004], Dudoit et al. [2004],
Dudoit and van der Laan [2004].

Step-down common-cut-off (maxT) and common-quantile (minP) proce-
dures for controlling the FWER: Procedures 4 and 5, Section 0.2.5;
details in van der Laan et al. [2004], Dudoit and van der Laan [2004].

Augmentation procedures for controlling the gFWER and TPPFP, based
on an initial FWER-controlling procedure: Procedures 6 and 7, Sec-
tion 0.2.6; details and extensions in van der Laan et al. [2004], Dudoit
et al. [2004], Dudoit and van der Laan [2004].

0.2.4 Single-step procedures for controlling general Type I
error rates θ(FVn)

Pollard and van der Laan [2004] and Dudoit et al. [2004] propose single-step
common-cut-off and common-quantile procedures for controlling arbitrary
parameters θ(FVn) of the distribution of the number of Type I errors. The
main idea is to substitute control of the parameter θ(FVn

), for the unknown,
true distribution FVn

of the number of Type I errors, by control of the
corresponding parameter θ(FR0), for the known, null distribution FR0 of the
number of rejected hypotheses. That is, one considers single-step procedures
of the form Rn(α) ≡ {m : Tn(m) > cn(m)}, where the cut-offs cn(m) are
chosen so that θ(FR0) ≤ α, for R0 ≡

∑M
m=1 I(Z(m) > cn(m)) and Z ∼ Q0.

Among the class of MTPs that satisfy θ(FR0) ≤ α, Pollard and van der
Laan [2004] and Dudoit et al. [2004] propose two procedures, based on
common cut-offs and common-quantile cut-offs, respectively (Procedures 2
and 1, in Dudoit et al. [2004]). The procedures are summarized below and
the reader is referred to the articles for proofs and details on the derivation
of cut-offs and adjusted p-values.

Procedure 2 General θ–controlling single-step common-cut-off
procedure

The set of rejected hypotheses for the general θ–controlling single-step
common-cut-off procedure is of the form Rn(α) ≡ {m : Tn(m) > c0},
where the common cut-off c0 is the smallest (i.e., least conservative) value
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for which θ(FR0) ≤ α. For gFWER(k) control (i.e., θ(FVn
) = 1−FVn

(k)),
the procedure is based on the (k + 1)st ordered test statistic. The adjusted
p-values for the single-step T (k + 1) procedure are given by

p̃0n(m) = PrQ0 (Z◦(k + 1) ≥ tn(m)) , m = 1, . . . ,M, (13)

where Z◦(m) denotes the mth ordered component of Z = (Z(m) : m =
1, . . . ,M) ∼ Q0, so that Z◦(1) ≥ . . . ≥ Z◦(M). For FWER control, k = 0,
one recovers the single-step maxT procedure, based on the maximum test
statistic, Z◦(1) = maxm Z(m), with adjusted p-values given by

p̃0n(m) = PrQ0

(
max

m∈{1,...,M}
Z(m) ≥ tn(m)

)
, m = 1, . . . ,M. (14)

Procedure 3 General θ–controlling single-step common-quantile
procedure

The set of rejected hypotheses for the general θ–controlling single-step
common-quantile procedure is of the form Rn(α) ≡ {m : Tn(m) > c0(m)},
where c0(m) = Q−1

0,m(δ0) is the δ0–quantile of the marginal null distribu-
tion Q0,m of the test statistic for the mth null hypothesis, i.e., the smallest
value c such that Q0,m(c) = PrQ0(Z(m) ≤ c) ≥ δ0 for Z ∼ Q0. Here, δ0 is
chosen as the smallest (i.e., least conservative) value for which θ(FR0) ≤ α.

For gFWER(k) control (i.e., θ(FVn) = 1 − FVn(k)), the procedure is
based on the (k + 1)st ordered unadjusted p-value. Specifically, let Q̄0,m ≡
1 − Q0,m denote the survivor functions for the marginal null distributions
Q0,m and define unadjusted p-values P0(m) ≡ Q̄0,m(Z(m)) and P0n(m) ≡
Q̄0,m(Tn(m)), for Z ∼ Q0 and Tn ∼ Qn, respectively. The adjusted p-values
for the single-step P (k + 1) procedure are given by

p̃0n(m) = PrQ0 (P ◦
0 (k + 1) ≤ p0n(m)) , m = 1, . . . ,M, (15)

where P ◦
0 (m) denotes the mth ordered component of the M–vector of un-

adjusted p-values P0 = (P0(m) : m = 1, . . . ,M), so that P ◦
0 (1) ≤ . . . ≤

P ◦
0 (M). For FWER control (k = 0), one recovers the single-step minP pro-

cedure, based on the minimum unadjusted p-value, P ◦
0 (1) = minm P0(m),

with adjusted p-values given by

p̃0n(m) = PrQ0

(
min

m∈{1,...,M}
P0(m) ≤ p0n(m)

)
, m = 1, . . . ,M. (16)

0.2.5 Step-down procedures for controlling the family-wise
error rate

van der Laan et al. [2004] propose step-down common-cut-off (maxT) and
common-quantile (minP) procedures for controlling the family-wise error
rate, FWER. These procedures are similar in spirit to their single-step
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counterparts in Section 0.2.4, for the special case θ(FVn
) = 1 − FVn

(0),
with the important step-down distinction that hypotheses are consid-
ered successively, from most significant to least significant, with further
tests depending on the outcome of earlier ones. That is, the test pro-
cedure is applied to a sequence of successively smaller nested random
(i.e., data-dependent) subsets of null hypotheses, defined by the order-
ing of the test statistics (common-cut-off MTPs) or unadjusted p-values
(common-quantile MTPs).

Procedure 4 FWER-controlling step-down common-cut-off (maxT)
procedure
Let On(m) denote the indices for the ordered test statistics Tn(m), so that
Tn(On(1)) ≥ . . . ≥ Tn(On(M)). The step-down common-cut-off (maxT)
procedure is based on the distributions of maxima of test statistics over the
nested subsets of ordered null hypotheses On(h) ≡ {On(h), . . . , On(M)}.
The adjusted p-values are given by

p̃0n(on(m)) = max
h=1,...,m

{
PrQ0

(
max

l∈on(h)
Z(l) ≥ tn(on(h))

)}
, (17)

where Z = (Z(m) : m = 1, . . . ,M) ∼ Q0.

Thus, unlike single-step maxT procedure, based solely on the distribu-
tion of the maximum test statistic over all M hypotheses, the step-down
common cut-offs and corresponding adjusted p-values are based on the
distributions of maxima of test statistics over successively smaller nested
random subsets of null hypotheses. Taking maxima of the probabilities over
h ∈ {1, . . . ,m} enforces monotonicity of the adjusted p-values and ensures
that the procedure is indeed step-down, that is, one can only reject a partic-
ular hypothesis provided all hypotheses with more significant (i.e., larger)
test statistics were rejected beforehand.

Likewise, the step-down common-quantile cut-offs and corresponding ad-
justed p-values are based on the distributions of minima of unadjusted
p-values over successively smaller nested random subsets of null hypotheses.

Procedure 5 FWER-controlling step-down common-quantile (minP)
procedure
Let On(m) denote the indices for the ordered unadjusted p-values P0n(m),
so that P0n(On(1)) ≤ . . . ≤ P0n(On(M)). The step-down common-
quantile (minP) procedure is based on the distributions of minima of
unadjusted p-values over the nested subsets of ordered null hypotheses
On(h) ≡ {On(h), . . . , On(M)}. The adjusted p-values are given by

p̃0n(on(m)) = max
h=1,...,m

{
PrQ0

(
min

l∈on(h)
P0(l) ≤ p0n(on(h))

)}
, (18)
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where P0(m) ≡ Q̄0,m(Z(m)) and P0n(m) ≡ Q̄0,m(Tn(m)), for Z ∼ Q0 and
Tn ∼ Qn, respectively.

0.2.6 Augmentation multiple testing procedures for controlling
tail probability error rates

van der Laan et al. [2004], and subsequently Dudoit et al. [2004] and Dudoit
and van der Laan [2004], propose augmentation multiple testing procedures
(AMTP), obtained by adding suitably chosen null hypotheses to the set
of null hypotheses already rejected by an initial gFWER-controlling MTP.
Specifically, given any initial procedure controlling the generalized family-
wise error rate, augmentation procedures are derived for controlling Type
I error rates defined as tail probabilities and expected values for arbitrary
functions g(Vn, Rn) of the numbers of Type I errors and rejected hypotheses
(e.g., proportion g(Vn, Rn) = Vn/Rn of false positives among the rejected
hypotheses). Adjusted p-values for the AMTP are shown to be simply
shifted versions of the adjusted p-values of the original MTP. The impor-
tant practical implication of these results is that any FWER-controlling
MTP and its corresponding adjusted p-values immediately provide multi-
ple testing procedures controlling a broad class of Type I error rates and
their adjusted p-values. One can therefore build on the large pool of avail-
able FWER-controlling procedures, such as the single-step and step-down
maxT and minP procedures discussed in Sections 0.2.4 and 0.2.5, above.

Augmentation procedures for controlling tail probabilities of the num-
ber (gFWER) and proportion (TPPFP) of false positives, based on an
initial FWER-controlling procedure, are treated in detail in van der Laan
et al. [2004] and Dudoit et al. [2004], and are summarized below. The
gFWER and TPPFP correspond to the special cases g(Vn, Rn) = Vn and
g(Vn, Rn) = Vn/Rn, respectively.
Denote the adjusted p-values for the initial FWER-controlling procedure
Rn(α) by P̃0n(m). Order the M null hypotheses according to these p-
values, from smallest to largest, that is, define indices On(m), so that
P̃0n(On(1)) ≤ . . . ≤ P̃0n(On(M)). Then, for a nominal level α test, the
initial FWER-controlling procedure rejects the following null hypotheses

Rn(α) ≡ {m : P̃0n(m) ≤ α}. (19)

Procedure 6 gFWER-controlling augmentation multiple testing
procedure

For control of gFWER(k) at level α, given an initial FWER-controlling
procedure Rn(α), reject the Rn(α) = |Rn(α)| null hypotheses specified by
this MTP, as well as the next An(α) most significant hypotheses,

An(α) = min{k,M −Rn(α)}. (20)

http://biostats.bepress.com/ucbbiostat/paper164



xvii

The adjusted p-values P̃+
0n(On(m)) for the new gFWER-controlling AMTP

are simply k–shifted versions of the adjusted p-values of the initial FWER-
controlling MTP, with the first k adjusted p-values set to zero. That is,

P̃+
0n(On(m)) =

{
0, if m ≤ k

P̃0n(On(m− k)), if m > k
. (21)

The AMTP thus guarantees at least k rejected hypotheses.

Procedure 7 TPPFP-controlling augmentation multiple testing
procedure

For control of TPPFP (q) at level α, given an initial FWER-controlling
procedure Rn(α), reject the Rn(α) = |Rn(α)| null hypotheses specified by
this MTP, as well as the next An(α) most significant hypotheses,

An(α) = max
{
m ∈ {0, . . . ,M −Rn(α)} :

m

m+Rn(α)
≤ q

}
(22)

= min
{⌊

qRn(α)
1− q

⌋
,M −Rn(α)

}
,

where the floor bxc denotes the greatest integer less than or equal to x,
i.e., bxc ≤ x < bxc + 1. That is, keep rejecting null hypotheses until the
ratio of additional rejections to the total number of rejections reaches the
allowed proportion q of false positives. The adjusted p-values P̃+

0n(On(m))
for the new TPPFP-controlling AMTP are simply mq–shifted versions of
the adjusted p-values of the initial FWER-controlling MTP. That is,

P̃+
0n(On(m)) = P̃0n(On(d(1− q)me)), m = 1, . . . ,M, (23)

where the ceiling dxe denotes the least integer greater than or equal to x.

FDR-controlling procedures

Given any TPPFP-controlling procedure, van der Laan et al. [2004] derive
two simple (conservative) FDR-controlling procedures. The more general
and conservative procedure controls the FDR at nominal level α, by control-
ling TPPFP (α/2) at level α/2. The less conservative procedure controls
the FDR at nominal level α, by controlling TPPFP (1 −

√
1− α) at level

1 −
√

1− α. The reader is referred to the original article for details and
proofs of FDR control (Section 2.4, Theorem 3). In what follows, we refer
to these two MTPs as conservative and restricted, respectively.
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0.3 Software implementation: R multtest package

0.3.1 Overview

The MTPs proposed in Sections 0.2.4 – 0.2.6 are implemented in the lat-
est version of the Bioconductor R package multtest (Version 1.6.0). New
features include: an expanded class of tests, such as tests for regression pa-
rameters in linear models and in Cox proportional hazards models; control
of a wider selection of Type I error rates (e.g., gFWER, TPPFP, FDR);
bootstrap estimation of the test statistics null distribution; augmentation
multiple testing procedures; confidence regions for the parameter vector
of interest. Because of their general applicability and novelty, we focus in
this section on MTPs that utilize a bootstrap estimated test statistics null
distribution and that are available through the package’s main user-level
function, MTP. Note that for many testing problems, MTPs based on a
permutation (rather than bootstrap) estimated null distribution are also
applicable. In particular, FWER-controlling permutation-based step-down
maxT and minP MTPs are implemented in the functions mt.maxT and
mt.minP, respectively, and can also be applied directly through a call to
the MTP function.
We stress that all the bootstrap-based MTPs implemented in multtest
can be performed using the main user-level function MTP. Note that the
multtest package also provides several simple, marginal FWER-controlling
MTPs, such as the Bonferroni, Holm [1979], Hochberg [1988], and Šidák
Šidák [1967] procedures, and FDR-controlling MTPs, such as the Benjamini
& Hochberg [Benjamini and Hochberg, 1995] and Benjamini & Yekutieli
[Benjamini and Yekutieli, 2001] step-up procedures. These procedures are
available through the mt.rawp2adjp function, which takes a vector of un-
adjusted p-values as input and returns the corresponding adjusted p-values.
For greater detail on multtest functions, the reader is referred to the pack-
age documentation, in the form of help files, e.g., ?MTP, and vignettes, e.g.,
openVignette("multtest").

As detailed in Section 0.2.1, above, one needs to specify the following
main ingredients when applying a MTP: the data, X1, . . . , Xn; suitably de-
fined test statistics, Tn, for each of the null hypotheses under consideration
(e.g., one-sample t-statistics, robust rank-based F -statistics, t-statistics for
regression coefficients in Cox proportional hazards model); a choice of Type
I error rate, θ(FVn,Rn), providing an appropriate measure of false posi-
tives for the particular testing problem (e.g., TPPFP (0.10)); a proper
joint null distribution, Q0 (or estimate thereof, Q0n), for the test statistics
(e.g., bootstrap null distribution as in the bootstrap procedure of section
1); given the previously defined components, a multiple testing procedure,
Rn = R(Tn, Q0n, α), for controlling the error rate θ(FVn,Rn) at a target
level α.
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Accordingly, the multtest package has adopted a modular and extensible
approach to the implementation of MTPs, with the following four main
types of functions.

Functions for computing the test statistics, Tn. These are internal func-
tions (e.g., meanX, coxY), i.e., functions that are generally not called
directly by the user. As shown in Section 0.3.2, below, the type of test
statistic is specified by the test argument of the main user-level func-
tion MTP. Advanced users, interested in extending the class of tests
available in multtest, can simply add their own test statistic func-
tions to the existing library of such internal functions (see Section
0.3.4, below, for a brief discussion of the function closure approach
for specifying test statistics).

Functions for obtaining the test statistics null distribution, Q0, or an
estimate thereof, Q0n. The main function currently available is the
internal function boot.resample, implementing the non-parametric
version of the bootstrap procedure of section 1.

Functions for implementing the multiple testing procedure,Rn = R(Tn, Q0n, α).
The main user-level function is the wrapper function MTP, which re-
turns rejection regions, confidence regions, and adjusted p-values, for
MTPs controlling a variety of Type I error rates. In particular, it
implements the single-step and step-down maxT and minP proce-
dures for FWER control (Sections 0.2.4 and 0.2.5). The functions
fwer2gfwer, fwer2tppfp, and fwer2fdr implement, respectively,
gFWER-, TPPFP-, and FDR-controlling augmentation multiple
testing procedures, based on adjusted p-values from any FWER-
controlling procedure, and can be called via the typeone argument
to MTP (Section 0.2.6).

Functions for numerical and graphical summaries of a MTP. As described
in Section 0.3.3, below, a number of summary methods are available to
operate on objects of class MTP, output from the main MTP function.

0.3.2 Resampling-based multiple testing procedures: MTP
function

The main user-level function for resampling-based multiple testing is MTP.

> args(MTP)

function (X, W = NULL, Y = NULL, Z = NULL, Z.incl = NULL, Z.test = NULL,
na.rm = TRUE, test = "t.twosamp.unequalvar", robust = FALSE,
standardize = TRUE, alternative = "two.sided", psi0 = 0,
typeone = "fwer", k = 0, q = 0.1, fdr.method = "conservative",
alpha = 0.05, nulldist = "boot", B = 1000, method = "ss.maxT",
get.cr = FALSE, get.cutoff = FALSE, get.adjp = TRUE, keep.nulldist = FALSE,
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seed = NULL)
NULL

INPUT.

Data. The data, X, consist of a J–dimensional random vector, observed on
each of n sampling units (patients, cell lines, mice, etc.). These data
can be stored in a J×n matrix, data.frame, or exprs slot of an object
of class exprSet. In some settings, a J–vector of weights may be associ-
ated with each observation, and stored in a J×n weight matrix, W (or
an n–vector W, if the weights are the same for each of the J variables).
One may also observe a possibly censored continuous or polychoto-
mous outcome, Y, for each sampling unit, as obtained, for example,
from the phenoData slot of an object of class exprSet. In some studies,
L additional covariates may be measured on each sampling unit and
stored in Z, an n × L matrix or data.frame. When the tests concern
parameters in regression models with covariates from Z (e.g., val-
ues lm.XvsZ, lm.YvsXZ, and coxph.YvsXZ, for the argument test,
described below), the arguments Z.incl and Z.test specify, respec-
tively, which covariates (i.e., which columns of Z, including Z.test)
should be included in the model and which regression parameter is to
be tested (only when test="lm.XvsZ"). The covariates can be spec-
ified either by a numeric column index or character string. If X is
an instance of the class exprSet, Y can be a column index or char-
acter string referring to the variable in the data.frame pData(X) to
use as outcome. Likewise, Z.incl and Z.test can be column indices
or character strings referring to the variables in pData(X) to use as
covariates. The argument na.rm controls the treatment of missing
values (NA). It is TRUE by default, so that an observation with a miss-
ing value in any of the data objects’ jth component (j = 1, . . . , J) is
excluded from the computation of any test statistic based on this jth
variable.

Test statistics. The test statistics should be chosen based on the pa-
rameter of interest (e.g., location, scale, or regression parameters)
and the hypotheses one wishes to test. In the current implementa-
tion of multtest, the following test statistics are available through
the argument test, with default value t.twosamp.unequalvar, for
two-sample Welch t-statistics.

• t.onesamp: One-sample t-statistics for tests of means.
• t.twosamp.equalvar: Equal variance two-sample t-statistics for

tests of differences in means.
• t.twosamp.unequalvar: Unequal variance two-sample t-statistics

for tests of differences in means (also known as two-sample Welch
t-statistics).
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• t.pair: Two-sample paired t-statistics for tests of differences in
means.

• f: Multi-sample F -statistics for tests of equality of population
means.

• f.block: Multi-sample F -statistics for tests of equality of
population means in a block design.

• lm.XvsZ: t-statistics for tests of regression coefficients for vari-
able Z.test in linear models each with outcome X[j,] (j =
1, . . . , J), and possibly additional covariates Z.incl from the
matrix Z (in the case of no covariates, one recovers the
one-sample t-statistic, t.onesamp).

• lm.YvsXZ: t-statistics for tests of regression coefficients in linear
models with outcome Y and each X[j,] (j = 1, . . . , J) as covari-
ate of interest, with possibly other covariates Z.incl from the
matrix Z.

• coxph.YvsXZ: t-statistics for tests of regression coefficients in
Cox proportional hazards survival models with outcome Y and
each X[j,] (j = 1, . . . , J) as covariate of interest, with possibly
other covariates Z.incl from the matrix Z.

Robust, rank-based versions of the above test statistics can be specified
by setting the argument robust to TRUE (the default value is FALSE).
Consideration should be given to whether standardized or unstan-
dardized difference statistics are most appropriate (Equation (1); see
Pollard and van der Laan [2004] for a comparison). Both options are
available through the argument standardize, by default TRUE. The
type of alternative hypotheses is specified via the alternative argu-
ment: default value of two.sided, for two-sided test, and values of
less or greater, for one-sided tests. The (common) null value for
the parameters of interest is specified through the psi0 argument, by
default zero.

Type I error rate. The MTP function controls by default the FWER (ar-
gument typeone="fwer"). Augmentation procedures (Section 0.2.6),
controlling other Type I error rates such as the gFWER, TPPFP, and
FDR, can be specified through the argument typeone. Related argu-
ments include k and q, for the allowed number and proportion of false
positives for control of gFWER(k) and TPPFP (q), respectively, and
fdr.method, for the type of TPPFP-based FDR-controlling proce-
dure (i.e., "conservative" or "restricted" methods). The nominal
level of the test is determined by the argument alpha, by default 0.05.
Testing can be performed for a range of nominal Type I error rates
by specifying a vector of levels alpha.

Test statistics null distribution. The test statistics null distribution is es-
timated by default using the non-parametric version of the bootstrap
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procedure of section 1 (argument nulldist="boot"). The bootstrap
procedure is implemented in the internal function boot.resample,
which calls C to compute test statistics for each bootstrap sample.
The values of the shift (λ0) and scale (τ0) parameters are deter-
mined by the type of test statistics (e.g., λ0 = 0 and τ0 = 1
for t-statistics). Permutation null distributions are also available via
nulldist="perm". The number of resampling steps is specified by
the argument B, by default 1,000.

Multiple testing procedures. Several methods for controlling the chosen
Type I error rate are available in multtest.

• FWER-controlling procedures. The MTP function implements
the single-step and step-down (common-cut-off) maxT and
(common-quantile) minP MTPs for FWER control, described
in Sections 0.2.4 and 0.2.5, and specified through the argument
method (internal functions ss.maxT, ss.minP, sd.maxT, and
sd.minP). The default MTP is the single-step maxT procedure
(method="ss.maxT"), since it requires the least computation.

• gFWER-, TPPFP-, and FDR-controlling augmentation proce-
dures. As discussed in Section 0.2.6, any FWER-controlling
MTP can be trivially augmented to control additional Type
I error rates, such as the gFWER and TPPFP. Two FDR-
controlling procedures can then be derived from the TPPFP-
controlling AMTP. AMTPs are implemented in the functions
fwer2gfwer, fwer2tppfp, and fwer2fdr, which take FWER
adjusted p-values as input and return augmentation adjusted
p-values for control of the gFWER, TPPFP, and FDR, respec-
tively. Note that the aforementioned AMTPs can be applied
directly via the typeone argument of the main function MTP.

Output control. Various arguments are available to specify which com-
bination of the following quantities should be returned: confidence
regions (argument get.cr); cut-offs for the test statistics (argument
get.cutoff); adjusted p-values (argument get.adjp); test statistics
null distribution (argument keep.nulldist). Note that parameter
estimates and confidence regions only apply to the test of single-
parameter null hypotheses (i.e., not the F -tests). In addition, in the
current implementation of MTP, parameter confidence regions and test
statistic cut-offs are only provided when typeone="fwer", so that
get.cr and get.cutoff should be set to FALSE when using the error
rates gFWER, TPPFP, or FDR.

OUTPUT.
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The S4 class/method object-oriented programming approach was adopted
to summarize the results of a MTP (Section 0.3.4). The output of the MTP
function is an instance of the class MTP, with the following slots,

> slotNames("MTP")

[1] "statistic" "estimate" "sampsize" "rawp" "adjp" "conf.reg"
[7] "cutoff" "reject" "nulldist" "call" "seed"

MTP results. An instance of the MTP class contains slots for the following
MTP results:

• statistic: The numeric M–vector of test statistics, specified
by the values of the MTP arguments test, robust, standardize,
and psi0. In many testing problems, M = J = nrow(X).

• estimate: For the test of single-parameter null hypotheses us-
ing t-statistics (i.e., not the F -tests), the numeric M–vector of
estimated parameters.

• sampsize: The sample size, i.e., n = ncol(X).
• rawp: The numeric M–vector of unadjusted p-values.
• adjp: The numeric M–vector of adjusted p-values (computed

only if the get.adjp argument is TRUE).
• conf.reg: For the test of single-parameter null hypotheses us-

ing t-statistics (i.e., not the F -tests), the numeric M × 2×
length(alpha) array of lower and upper simultaneous confi-
dence limits for the parameter vector, for each value of the
nominal Type I error rate alpha (computed only if the get.cr
argument is TRUE).

• cutoff: The numeric M× length(alpha) matrix of cut-offs for
the test statistics, for each value of the nominal Type I error rate
alpha (computed only if the get.cutoff argument is TRUE).

• reject: The M× length(alpha) matrix of rejection indica-
tors (TRUE for a rejected null hypothesis), for each value of the
nominal Type I error rate alpha.

Null distribution. The nulldist slot contains the M × B matrix for the
estimated test statistics null distribution. This slot is returned only if
keep.nulldist=TRUE; option not currently available for permutation
null distribution, i.e., nulldist="perm". By default (i.e., for nulld-
ist="boot"), the entries of nulldist are the null value shifted and
scaled bootstrap test statistics, as defined in the bootstrap procedure
of section 1.

Reproducibility. The last two slots of an MTP object provide information
on the particular call to the MTP function and can be used for repro-
ducibility in a repeat call to MTP. The slot call contains the call to the
function MTP, and seed is an integer specifying the state of the random
number generator used to create the resampled datasets. The seed ar-
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gument is currently used only for the bootstrap null distribution (i.e.,
for nulldist="boot").

0.3.3 Numerical and graphical summaries

The following methods were defined to operate on MTP instances and
summarize the results of a MTP.

print: The print method returns a description of an object of class MTP,
including the sample size n, the number M of tested hypotheses, the
type of test performed (value of argument test), the Type I error rate
(value of argument typeone), the nominal level of the test (value of
argument alpha), the name of the MTP (value of argument method),
the call to the function MTP. In addition, this method produces a table
with the class, mode, length, and dimension of each slot of the MTP
instance.

summary: The summary method provides numerical summaries of the
results of a MTP and returns a list with the following three
components:

• rejections: A data.frame with the number(s) of rejected hy-
potheses for the nominal Type I error rate(s) specified by the
alpha argument of the function MTP (NULL values are returned
if all three arguments get.cr, get.cutoff, and get.adjp are
FALSE).

• index: A numeric M–vector of indices for ordering the hypothe-
ses according to first adjp, then rawp, and finally the absolute
value of statistic (not printed in the summary).

• summaries: When applicable (i.e., when the corresponding quan-
tities are returned by MTP), a table with six number summaries of
the distributions of the adjusted p-values, unadjusted p-values,
test statistics, and parameter estimates.

plot: The plot method produces the following graphical summaries of
the results of a MTP. The type of display may be specified via the
which argument.

1. Scatterplot of number of rejected hypotheses vs. nominal Type
I error rate.

2. Plot of ordered adjusted p-values; can be viewed as a plot of
Type I error rate vs. number of rejected hypotheses.

3. Scatterplot of adjusted p-values vs. test statistics (also known
as “volcano plot”).

4. Plot of unordered adjusted p-values.
5. Plot of confidence regions for user-specified parameters, by de-

fault the 10 parameters corresponding to the smallest adjusted
p-values (argument top).
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6. Plot of test statistics and corresponding cut-offs (for each
value of alpha) for user-specified hypotheses, by default the
10 hypotheses corresponding to the smallest adjusted p-values
(argument top).

The argument logscale (by default equal to FALSE) allows one to
use the negative decimal logarithms of the adjusted p-values in the
second, third, and fourth graphical displays. Note that some of these
plots are implemented in the older function mt.plot.

[: Subsetting method, which operates selectively on each slot of an MTP
instance to retain only the data related to the specified hypotheses.

as.list: Converts an object of class MTP to an object of class list, with
an entry for each slot.

0.3.4 Software design

The following features of the programming approach employed in multtest
may be of interest to users, especially those interested in extending the
functionality of the package.

Function closures. The use of function closures, as in the genefilter pack-
age, allows uniform data input for all MTPs and facilitates the extension
of the package’s functionality by adding, for example, new types of test
statistics. Specifically, a function closure is defined for each value of the
MTP argument test. The closure consists of a function for computing the
test statistic (with only two arguments, a data vector x and a corresponding
weight vector w, with default value of NULL) and its enclosing environment,
with bindings for relevant additional arguments, such as null values psi0,
outcomes Y, and covariates Z. Existing internal test statistic functions are
located in the file R/statistics.R. Thus, new test statistics can be added
to multtest by simply defining a new closure and adding a corresponding
value for the test argument to MTP.

Class/method object-oriented programming. Like many other Bio-
conductor packages, multtest has adopted the S4 class/method object-
oriented programming approach of Chambers [1998]. In particular, a new
class, MTP, and associated methods, were defined to represent and operate
on the results of multiple testing procedures.

Calls to C. Because resampling procedures, such as the non-parametric
bootstrap implemented in multtest, are computationally intensive, care
must be taken to ensure that the resampling steps are not prohibitively
slow. The use of function closures for the test statistics, however, prevents
writing the entire program in C. In the current implementation, we have
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chosen to define the closure and compute the observed test statistics in R,
and then call C to apply the closure to each bootstrap resampled dataset
(using the R random number generator). This approach puts the for loops
over bootstrap samples (B) and hypotheses (M) in the compiled code, thus
speeding up this computationally expensive part of the program.

0.4 Applications: ALL microarray dataset

0.4.1 ALL data package and initial gene filtering

We illustrate some of the functionality of the multtest package using the
Acute Lymphoblastic Leukemia (ALL) microarray dataset of Chiaretti
et al. [2004], available in the data package ALL. The main object in this
package is ALL, an instance of the class exprSet. The genes-by-subjects ma-
trix of 12,625 Affymetrix expression measures (chip series HG-U95Av2)
for each of 128 ALL patients is provided in the exprs slot of ALL. The
phenoData slot contains 21 phenotypes (i.e., patient level responses and
covariates) for each patient. Note that the expression measures have been
obtained using the three-step robust multichip average (RMA) preprocess-
ing method, implemented in the package affy. In particular, the expression
measures have been subject to a base 2 logarithmic transformation. For
greater detail, please consult the ALL package documentation.

> library("ALL")

> library("hgu95av2")

> data(ALL)

Our goal is to identify genes whose expression measures are associated
with (possibly censored) biological and clinical outcomes such as: tumor
cellular subtype (B-cell vs. T-cell), tumor molecular subtype (BCR/ABL,
NEG, ALL1/AF4), and time to relapse. Alternative analyses of this dataset
are discussed in Chapters ??, ??, ??, ??, and ??. Before applying the MTPs,
we perform initial gene filtering as in Chiaretti et al. [2004] and retain only
those genes for which: (i) at least 20% of the subjects have a measured
intensity of at least 100 and (ii) the coefficient of variation (i.e., the ratio
of the standard deviation to the mean) of the intensities across samples
is between 0.7 and 10. These two filtering criteria can be readily applied
using functions from the genefilter package.

> ffun <- filterfun(pOverA(p = 0.2, A = 100), cv(a = 0.7, b = 10))

> filt <- genefilter(2^exprs(ALL), ffun)

> filtALL <- ALL[filt, ]

> filtX <- exprs(filtALL)

> pheno <- pData(filtALL)
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The new filtered dataset, filtALL, contains expression measures on 431
genes, for 128 patients.

0.4.2 Association of expression measures and tumor cellular
subtype: two-sample t-statistics

FWER-controlling step-down minP MTP with two-sample Welch
t-statistics and bootstrap null distribution

Different tissues are involved in ALL tumors of the B-cell and T-cell sub-
types. The phenotypic data include a variable, BT, which encodes the tissue
type and stage of differentiation. In order to identify genes with higher mean
expression measures in B-cell ALL patients compared to T-cell ALL pa-
tients, we create an indicator variable, Bcell (1 for B-cell, 0 for T-cell), and
compute, for each gene, a two-sample Welch (unequal variance) t-statistic.
We choose to control the FWER using the bootstrap-based step-down minP
procedure with B = 100 bootstrap iterations, although more bootstrap
iterations are recommended in practice.

> table(pData(ALL)$BT)

B B1 B2 B3 B4 T T1 T2 T3 T4
5 19 36 23 12 5 1 15 10 2

> Bcell <- rep(0, length(pData(ALL)$BT))

> Bcell[grep("B", as.character(pData(ALL)$BT))] <- 1

> seed <- 99

> BT.boot <- MTP(X = filtX, Y = Bcell, alternative = "greater",

+ B = 100, method = "sd.minP", seed = seed)

running bootstrap...
iteration = 100

Let us examine the results of the MTP stored in the object BT.boot.

> summary(BT.boot)

MTP: sd.minP
Type I error rate: fwer

Level Rejections
1 0.05 194

Min. 1st Qu. Median Mean 3rd Qu. Max.
adjp 0.000 0.0000 0.8700 0.5314 1.0000 1.000
rawp 0.000 0.0000 0.0300 0.3559 0.9450 1.000
statistic -34.420 -1.5690 2.0120 2.0590 5.3830 22.330
estimate -4.655 -0.3168 0.3814 0.3258 0.9949 4.249

Hosted by The Berkeley Electronic Press



xxviii

The summary method prints the name of the MTP (here, sd.minP,
for step-down minP), the Type I error rate (here, fwer), the number of
rejections at each Type I error rate level specified in alpha (here, 194
at level α = 0.05), and six number summaries (mean and quantiles) of
the adjusted p-values, unadjusted p-values, test statistics, and parameter
estimates (here, difference in means).

The following commands may be used to obtain a list of genes that are
differentially expressed in B-cell vs. T-cell ALL patients at nominal FWER
level α = 0.05, i.e., genes with adjusted p-values less than or equal to 0.05.
Functions from the annotate and annaffy packages may then be used to
obtain annotation information on these genes (e.g., gene names, PubMed
abstracts, GO terms) and to generate HTML tables of the results. Here,
we list the names of three genes only.

> BT.diff <- BT.boot@adjp <= 0.05

> BT.AffyID <- geneNames(filtALL)[BT.diff]

> mget(BT.AffyID[1:3], env = hgu95av2GENENAME)

$"1005_at"
[1] "dual specificity phosphatase 1"

$"1065_at"
[1] "fms-related tyrosine kinase 3"

$"1096_g_at"
[1] "CD19 antigen"

Various graphical summaries of the results may be obtained using the
plot method, by selecting appropriate values of the argument which. Fig-
ure 1 displays four such plots. We see (top left) that the number of rejections
increases slightly when nominal FWER is greater than 0.6, and then in-
creases quickly as FWER approaches 1. Similarly, the adjusted p-values
for many genes are close to either 0 or 1 (top right) and the test statistics
for genes with small p-values do not overlap with those for genes with p-
values close to 1 (bottom left). Together these results indicate that there
is a clear separation between the rejected and accepted hypotheses, i.e.,
between genes that are declared differentially expressed and those that are
not.

> par(mfrow = c(2, 2))

> plot(BT.boot)

Marginal FWER-controlling MTPs with two-sample Welch t-statistics and
bootstrap null distribution

Given a vector of unadjusted p-values, the mt.rawp2adjp function com-
putes adjusted p-values for the marginal FWER-controlling MTPs of
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Figure 1. B-cell vs. T-cell ALL — FWER-controlling step-down minP MTP. By
default, four graphical summaries are produced by the plot method for instances
of the class MTP.

Bonferroni, Holm [1979], Hochberg [1988], and Šidák [Šidák, 1967], dis-
cussed in detail in Dudoit et al. [2003]. The mt.plot function may then be
used to compare the different procedures in terms of their adjusted p-values.

> marg <- c("Bonferroni", "Holm", "Hochberg", "SidakSS", "SidakSD")

> BT.marg <- mt.rawp2adjp(rawp = BT.boot@rawp, proc = marg)

> comp.marg <- cbind(BT.boot@adjp, BT.marg$adjp[order(BT.marg$index),

+ -1])

> par(mfrow = c(1, 1))

> mt.plot(adjp = comp.marg, teststat = BT.boot@statistic, proc = c("SD minP",

+ marg), leg = c(0.1, 400), col = 1:6, lty = 1:6, lwd = 3)

> tmp <- title("Comparison of FWER-controlling marginal MTPs and \n step-down minP MTP")

Figure 2 displays the number of rejected hypotheses vs. the nominal Type
I error rate for the various FWER-controlling MTPs. For the ALL dataset,
the marginal MTPs all perform similarly, making very few rejections at
nominal Type I error rates near zero. The step-down minP procedure, which
takes into account the joint distribution of the test statistics, leads to more
rejections than the marginal methods.
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Figure 2. B-cell vs. T-cell ALL — Marginal vs. joint FWER-controlling MTPs.
Plot of number of rejected hypotheses vs. nominal Type I error rate for comparing
bootstrap-based marginal MTPs and bootstrap-based step-down minP MTP.

FWER-controlling step-down minP MTP with two-sample Welch
t-statistics and permutation null distribution

Because the sample sizes are unequal for the B-cell and T-cell patients and
the expression measures may have different covariance structures in the two
populations, we expect the bootstrap and permutation null distributions
to yield different sets of rejected hypotheses (Pollard and van der Laan
[2004]). To compare the two approaches, we apply the permutation-based
step-down minP procedure, first using the mt.minP function and then using
the new MTP function (which calls mt.minP). Please note that while the
MTP and mt.minP functions produce the same results, these are presented
in a different manner. In particular, for the function MTP, the results (e.g.,
test statistics, parameter estimates, unadjusted p-values, adjusted p-values,
cut-offs) are given in the original order of the null hypotheses, while in
the mt.minP function, the hypotheses are sorted first according to their
adjusted p-values, next their unadjusted p-values, and finally their test
statistics. In addition, the function MTP implements a broader range of
MTPs and has adopted the S4 class/method design for representing and
summarizing the results of a MTP.

> set.seed(99)

> BT.perm.old <- mt.minP(X = filtX, classlabel = Bcell, side = "upper",

+ B = 100)
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> names(BT.perm.old)

[1] "index" "teststat" "rawp" "adjp" "plower"

The mt.minP function returns a list with five components: a vector of
row indices used to sort the hypotheses based on significance (index), the
test statistics sorted according to index (teststat), unadjusted p-values
(rawp), adjusted p-values (adjp), and adjusted p-values based on ignoring
ties in the permutation distribution (plower). See ?mt.minP for details.

> set.seed(99)

> BT.perm.new <- MTP(X = filtX, Y = Bcell, alternative = "greater",

+ nulldist = "perm", B = 100, method = "sd.minP")

> sum(BT.perm.old$adjp <= 0.05)

[1] 0

> sum(BT.perm.new@adjp <= 0.05)

[1] 0

> sum(BT.perm.new@adjp <= 0.05 & BT.boot@adjp <= 0.05)

[1] 0

At nominal FWER level α = 0.05, the permutation step-down minP
procedure identifies 0 genes as differentially expressed between patients
with B-cell and T-cell ALL. In contrast, the bootstrap step-down minP
procedure identifies 194 differentially expressed genes.

FWER-controlling step-down minP MTP with robust two-sample
t-statistics and bootstrap null distribution

The Wilcoxon rank sum statistic (also known as the Mann-Whitney
statistic) is a robust alternative to the usual two-sample t-statistic.

> BT.wilcox <- MTP(X = filtX, Y = Bcell, robust = TRUE, alternative = "greater",

+ B = 100, method = "sd.minP", seed = seed)

> sum(BT.wilcox@adjp <= 0.05)

[1] 193

> sum(BT.wilcox@adjp <= 0.05 & BT.boot@adjp <= 0.05)

[1] 186

At nominal FWER level α = 0.05, the bootstrap step-down minP MTP,
based on the robust Wilcoxon test statistic, identifies 193 genes as differ-
entially expressed, compared to 194 genes for the same MTP based on the
Welch t-statistic. 186 genes are identified by both procedures.
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0.4.3 Augmentation procedures

In the context of microarray gene expression data analysis or other high-
dimensional inference problems, one is often willing to tolerate some false
positives, provided their number is small in comparison to the number
of rejected hypotheses. In this case, the FWER is not a suitable choice
of Type I error rate and one should consider other rates that lead to
larger sets of rejected hypotheses. The augmentation procedures of Sec-
tion 0.2.6, implemented in the function MTP, allow one to reject additional
hypotheses, while controlling an error rate such as the generalized family-
wise error rate (gFWER), the tail probability for the proportion of false
positives (TPPFP), or the false discovery rate (FDR). We illustrate the use
of the fwer2gfwer, fwer2tppfp, and fwer2fdr functions, but note that the
gFWER, TPPFP, and FDR can also be controlled directly using the main
MTP function, with appropriate choices of arguments typeone, k, q, and
fdr.method.

gFWER control

> k <- c(5, 10, 50, 100)

> BT.gfwer <- fwer2gfwer(adjp = BT.boot@adjp, k = k)

> comp.gfwer <- cbind(BT.boot@adjp, BT.gfwer)

> mtps <- paste("gFWER(", c(0, k), ")", sep = "")

> mt.plot(adjp = comp.gfwer, teststat = BT.boot@statistic, proc = mtps,

+ leg = c(0.1, 430), col = 1:5, lty = 1:5, lwd = 3)

> tmp <- title("Comparison of gFWER(k)-controlling AMTPs \n based on SD minP MTP")

For gFWER-controlling AMTPs, Figure 3 illustrates that the number of
rejected hypotheses increases linearly with the number k of allowed false
positives, for nominal levels α such that the initial FWER-controlling MTP
does not reject more than M − k hypotheses. That is, the curve for the
gFWER(k)–controlling AMTP is obtained from that of the initial FWER-
controlling procedure by a simple vertical shift of k.

TPPFP control

> q <- c(0.05, 0.1, 0.25)

> BT.tppfp <- fwer2tppfp(adjp = BT.boot@adjp, q = q)

> comp.tppfp <- cbind(BT.boot@adjp, BT.tppfp)

> mtps <- c("FWER", paste("TPPFP(", q, ")", sep = ""))

> mt.plot(adjp = comp.tppfp, teststat = BT.boot@statistic, proc = mtps,

+ leg = c(0.1, 430), col = 1:4, lty = 1:4, lwd = 3)

> tmp <- title("Comparison of TPPFP(q)-controlling AMTPs \n based on SD minP MTP")

Figure 4 shows that, as expected, the number of rejections increases with
the allowed proportion q of false positives when controlling TPPFP (q) at
a given level α.
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FDR control

Given any TPPFP-controlling MTP, van der Laan et al. [2004] derive two
simple (conservative) FDR-controlling MTPs. Here, we compare these two
FDR-controlling approaches, based on a TPPFP-controlling augmentation
of the step-down minP procedure, to the marginal Benjamini & Hochberg
[Benjamini and Hochberg, 1995] and Benjamini & Yekutieli [Benjamini and
Yekutieli, 2001] procedures, implemented in the function mt.rawp2adjp.
The following code chunk first computes adjusted p-values for the augmen-
tation procedures, then for the marginal procedures, and finally makes a
plot of the numbers of rejections vs. the nominal FDR for the four MTPs.

> BT.fdr <- fwer2fdr(adjp = BT.boot@adjp, method = "both")$adjp

> BT.marg.fdr <- mt.rawp2adjp(rawp = BT.boot@rawp, proc = c("BY",

+ "BH"))

> comp.fdr <- cbind(BT.fdr, BT.marg.fdr$adjp[order(BT.marg.fdr$index),

+ -1])

> mtps <- c("AMTP Cons", "AMTP Rest", "BY", "BH")

> mt.plot(adjp = comp.fdr, teststat = BT.boot@statistic, proc = mtps,

+ leg = c(0.1, 430), col = c(2, 2, 3, 3), lty = rep(1:2, 2),

+ lwd = 3)

> tmp <- title("Comparison of FDR-controlling MTPs")

Figure 5 shows that the AMTPs based on conservative bounds for the
FDR (”AMTP Cons” and ”AMTP Rest”) are more conservative than the
Benjamini & Hochberg (“BH”) MTP for nominal FDR less than 0.4, but
less conservative than “BH” for larger FDR. The Benjamini & Yekutieli
(“BY”) MTP, a conservative version of the Benjamini & Hochberg MTP
(with ∼ logM penalty on the p-values), leads to the fewest rejections.

0.4.4 Association of expression measures and tumor
molecular subtype: multi-sample F -statistics

The phenotype data include a variable, mol.bio, which records chromo-
somal abnormalities, such as the BCR/ABL gene rearrangement; these
abnormalities concern primarily patients with B-cell ALL and may be re-
lated to prognosis. To identify genes with differences in mean expression
measures between different tumor molecular subtypes (BCR/ABL, NEG,
ALL1/AF4, E2A/PBX1, p15/p16), within B-cell ALL subjects, one can
perform a family of F -tests. Tumor subtypes with fewer than 10 subjects
are removed from the analysis. Adjusted p-values and test statistic cut-offs
(for nominal levels α of 0.01 and 0.10) are computed as follows for the
FWER-controlling bootstrap-based single-step maxT procedure.

> BX <- filtX[, Bcell == 1]

> Bpheno <- pheno[Bcell == 1, ]
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Figure 3. B-cell vs. T-cell ALL — gFWER-controlling AMTPs. Plot of
number of rejected hypotheses vs. nominal Type I error rate for comparing
gFWER-controlling AMTPs, based on the FWER-controlling bootstrap-based
step-down minP procedure, for different allowed numbers k of false positives.

> mb <- as.character(Bpheno$mol.biol)

> table(mb)

mb
ALL1/AF4 BCR/ABL E2A/PBX1 NEG p15/p16

10 37 5 42 1

> other <- c("E2A/PBX1", "p15/p16")

> mb.boot <- MTP(X = BX[, !(mb %in% other)], Y = mb[!(mb %in% other)],

+ test = "f", alpha = c(0.01, 0.1), B = 100, get.cutoff = TRUE,

+ seed = seed)

running bootstrap...
iteration = 100

Let us examine the results of the MTP.

> summary(mb.boot)

MTP: ss.maxT
Type I error rate: fwer

Level Rejections
1 0.01 118
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Figure 4. B-cell vs. T-cell ALL — TPPFP-controlling AMTPs. Plot of
number of rejected hypotheses vs. nominal Type I error rate for comparing
TPPFP-controlling AMTPs, based on the FWER-controlling bootstrap-based
step-down minP procedure, for different allowed proportions q of false positives.

2 0.10 135

Min. 1st Qu. Median Mean 3rd Qu. Max.
adjp 0.0000000 0.00 0.91 0.5890 1.000 1.00
rawp 0.0000000 0.00 0.01 0.1457 0.170 1.00
statistic 0.0003624 1.29 3.30 5.8360 7.979 67.84
estimate NA NA NA NaN NA NA

> mb.diff <- mb.boot@adjp <= 0.01

> sum(mb.diff)

[1] 118

> sum(mb.boot@statistic >= mb.boot@cutoff[, "alpha=0.01"] & mb.diff)

[1] 118

For control of the FWER at nominal level α = 0.01, the bootstrap-
based single-step maxT procedure with F -statistics identifies 118 genes as
having significant differences in mean expression measures between tumor
molecular subtypes. This set can be identified through either adjusted p-
values or cut-offs for the test statistics. Figure 6 is a plot of the F -statistics
and corresponding cut-offs for the ten hypotheses (genes) with the smallest
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Figure 5. B-cell vs. T-cell ALL — FDR-controlling MTPs. Plot of num-
ber of rejected hypotheses vs. nominal Type I error rate for comparing four
FDR-controlling MTPs.

adjusted p-values. Each observed F -statistic is represented by a circle and
the cut-offs are represented by text indicating the corresponding nominal
level (0.01 or 0.10). The plot illustrates that the F -statistics for the ten
genes with the smallest adjusted p-values are much larger than expected
under the null distribution. Also, cut-offs for level 0.01 and 0.10 tests are
nearly identical.

> plot(mb.boot, which = 6, sub.caption = NULL)

0.4.5 Association of expression measures and time to relapse:
Cox t-statistics

The bootstrap-based MTPs implemented in the main MTP function
(nulldist="boot") allow the test of hypotheses concerning regression pa-
rameters in models for which the subset pivotality condition may not hold
(e.g., logistic and Cox proportional hazards models). The phenotype infor-
mation in the ALL package includes the original remission status of the
ALL patients (remission variable in the data.frame pData(ALL)). There
are 66 B-cell ALL subjects who experienced original complete remission
(remission="CR") and who were followed up for remission status at a later
date. We apply the single-step maxT procedure to test for a significant asso-
ciation between expression measures and time to relapse amongst these 66
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Figure 6. Tumor molecular subtype — FWER-controlling single-step maxT MTP.
Plot of F -statistics and corresponding cut-offs for the ten genes with the smallest
adjusted p-values, based on the FWER-controlling bootstrap-based single-step
maxT procedure (plot method, which=6).

subjects, adjusting for sex. Note that most of the code below is concerned
with extracting the (censored) time to relapse outcome and covariates from
slots of the exprSet instance ALL.

> cr.ind <- (Bpheno$remission == "CR")

> cr.pheno <- Bpheno[cr.ind, ]

> times <- strptime(cr.pheno$"date last seen", "%m/%d/%Y") - strptime(cr.pheno$date.cr,

+ "%m/%d/%Y")

> time.ind <- !is.na(times)

> times <- times[time.ind]

> cens <- ((1:length(times)) %in% grep("CR", cr.pheno[time.ind,

+ "f.u"]))

> rel.times <- Surv(times, !cens)

> patients <- (1:ncol(BX))[cr.ind][time.ind]

> relX <- BX[, patients]

> relZ <- Bpheno[patients, ]

> cox.boot <- MTP(X = relX, Y = rel.times, Z = relZ, Z.incl = "sex",

+ Z.test = NULL, test = "coxph.YvsXZ", B = 100, get.cr = TRUE,

+ seed = seed)
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For control of the FWER at nominal level α = 0.05, the bootstrap-based
single-step maxT procedure identifies 1 genes whose expression measures
are significantly associated with time to relapse. Using the function mget,
we examine the names of these genes.

> cox.diff <- cox.boot@adjp <= 0.05

> sum(cox.diff)

[1] 1

> cox.AffyID <- geneNames(filtALL)[cox.diff]

> mget(cox.AffyID, env = hgu95av2GENENAME)

$"33232_at"
[1] "cysteine-rich protein 1 (intestinal)"

Figure 7 is a plot of the Cox regression coefficient estimates (circles)
and corresponding confidence regions (text indicating the level) for the five
genes with the smallest adjusted p-values. The plot illustrates that the level
α = 0.05 confidence regions corresponding to the significant gene does not
include the null value ψ0 = 0 for the Cox regression parameters (red line).
The confidence regions for the next four genes, do include 0.

> plot(cox.boot, which = 5, top = 5, sub.caption = NULL)

> abline(h = 0, col = "red")

0.5 Discussion

The multtest package implements resampling-based multiple testing proce-
dures that can be applied to a broad range of testing problems in biomedical
and genomic data analysis. Ongoing efforts involve expanding the class of
MTPs implemented in multtest, enhancing software design and the user in-
terface, and increasing computational efficiency. Specifically, regarding the
offering of MTPs, we envisage the following new developments.

• Expanding the class of available tests, by adding test statistic clo-
sures for tests of correlations, quantiles, and parameters in generalized
linear models (e.g., logistic regression).

• Expanding the class of resampling-based estimators for the test
statistics null distribution (e.g., parametric bootstrap, Bayesian
bootstrap), possibly using a function closure approach.

• Providing parameter confidence regions and test statistic cut-offs for
other Type I error rates than the FWER.

• Implementing the new augmentation multiple testing procedures pro-
posed in Dudoit et al. [2004] and Dudoit and van der Laan [2004],
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Figure 7. Time to relapse — FWER-controlling single-step maxT MTP. Plot of
Cox regression coefficient estimates and corresponding confidence intervals for the
fifteen genes with the smallest adjusted p-values, based on the FWER-controlling
bootstrap-based single-step maxT procedure (plot method, which=5).

for controlling tail probabilities Pr(g(Vn, Rn) > q) for an arbitrary
function g(Vn, Rn) of the numbers of false positives Vn and rejected
hypotheses Rn.

Efforts regarding software design and the user interface include the
following.

• Providing a formula interface for a symbolic description of the tests
to be performed (cf. model specification in lm).

• Providing an update method for objects of class MTP, to facili-
tate the reuse of available estimates of the null distribution when
implementing new MTPs.

• Extending the MTP class to keep track of results for several MTPs.
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Table 1. Multiple hypothesis testing flowchart.

Provide dataset
MTP arguments: X, W, Y, Z, Z.incl, and Z.test

⇓
Define parameters of interest, ψ(m)

⇓
Define null and alternative hypotheses, H0(m) and H1(m)

⇓
Specify test statistics, Tn(m)

MTP arguments: test, robust, standardize, alternative, and psi0
⇓

Estimate test statistics null distribution, Q0n

MTP arguments: nulldist and B
⇓

Select Type I error rate, θ(FVn,Rn
)

MTP arguments: typeone and alpha (and also k and q)
⇓

Apply MTP
MTP argument: method

FWER Pr(Vn > 0) Single-step maxT procedure (Procedure 2)
Single-step minP procedure (Procedure 3)
Step-down maxT procedure (Procedure 4)
Step-down minP procedure (Procedure 5)

gFWER Pr(Vn > k) Single-step T (k + 1) procedure (Procedure 2)
Single-step P (k + 1) procedure (Procedure 3)
Augmentation procedure (Procedure 6)

TPPFP Pr(Vn/Rn > q) Augmentation procedure (Procedure 7)
General θ(FVn

) Single-step common-cut-off procedure (Procedure 2)
Single-step common-quantile procedure (Procedure 3)

⇓
Summarize results

adjusted p-values, rejection regions, and confidence regions
MTP arguments: get.adjp, get.cutoff, and get.cr
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Table 2. Type I and Type II errors in multiple hypothesis testing.

Null hypotheses
not rejected rejected

true |Rc
n ∩H0| Vn = |Rn ∩H0| h0 = |H0|

(Type I errors)
Null hypotheses

false Un = |Rc
n ∩H1| |Rn ∩H1| h1 = |H1|

(Type II errors)

M −Rn Rn = |Rn| M
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