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Mean Response Models of Repeated
Measurements in Presence of Varying

Effectiveness Onset

Ying Qing Chen and Su-Chun Cheng

Abstract

Repeated measurements are often collected over time to evaluate treatment ef-
ficacy in clinical trials. Most of the statistical models of the repeated measure-
ments have been focusing on their mean response as function of time. These
models usually assume that the treatment has persistent effect of constant addi-
tivity or multiplicity on the mean response functions throughout the observation
period of time. In reality, however, such assumption may be confounded by the
potential existence of the so-called effectiveness action onset, although they are
often unobserved or difficult to obtain. Instead of including nonparametric time-
varying coefficients in the mean response models, we propose and study some
semiparametric mean response models to accommodate such effectiveness times.
Our methodologies will be demonstrated by a real randomised clinical trial data.



1 Introduction

In some randomised clinical trials, repeated measurements of same subject are collected over

time and compared to evaluate the efficacy of a new treatment. For example, a randomised

clinical trial was conducted to evaluate the treatment efficacy between Buprenorphine and

Methadone in reducing opiate use among a total of 162 addicts (Johnson, Jaffe and Fudala,

1992). In this trial, the repeated measurements of whether or not a subject failed a urine

test were collected at 3 visits per week over a 17 week period. Another example was a

randomised clinical trial to evaluate the treatment efficacy of memantine in the management

of painful peripheral neuropathy in diabetic patients. The weekly repeated measurements of

visual analog score (VAS) nocturnal pain intensity were collected over a 16-week follow-up

period. More examples can be found in Albert (1999) and the book by Diggle, et al. (2001).

Assume that (Y1, Y2, . . . , Ym) is the vector of the repeated measurements collected for

some subject. They can be considered as observations of an underlying random response

curve over time, {Y (t); t ≥ 0}, observed at the finite number of time points of (t1, t2, . . . , tm),

where Y (tj) = Yj , j = 1, 2 . . . ,m. In the statistical literature, the means of these response

curves as function of time have been studied in regression settings, and can be used to

evaluate the treatment efficacy in the randomised clinical trials. For example, one such

model was first proposed in Zeger and Diggle (1994) and later generalised in Lin and Ying

(2001),

E{Y (t) | Z(s); 0 ≤ s ≤ t} = µ(t) + βTZ(t), (1)

where Z(·) is the covariate vector, β ∈ Rp is the associated regression coefficient, µ(·) is

some unspecified function and ε(·) is zero-mean stationary Gaussian process. Here, T denotes

vector transpose. When Z(t) is the treatment indicator, the parameter β can be used to

characterise the treatment efficacy. The unspecified µ(t) in (1) would allow more flexibility

when the treatment efficacy parameter β is of major interest.

To explore the mean response curves in the memantine trial, for example, the lowess

curves of the VAS nocturnal pain intensity were plotted in Figure 1 for both the memantine

and the placebo groups. In appearance, the memantine shows treatment efficacy to lower

the average pain intensity curve consistently during the trial period. Further examination,

however, finds that the two curves are relatively close to each other at the beginning of drug

application and toward the trial completion as well. This might suggest that the treatment

does not have the constant effect of proportionality as needed in model (1). In fact, if the

primary endpoint is chosen to be the change from baseline during the 16-week period, most
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Fig. 1: Lowess curves of mean nocturnal pain intensity of memantine and control treatment

groups

of the test statistics would fail to show significant results of treatment efficacy. Even if the

robust estimation methods such as the Generalized Estimation Equations (GEE) are applied

to the all the collected repeated measurements, the estimated β̂ tends to have less power in

detecting the treatment efficacy due to misspecified mean response.

In reality, there may be some practical reasons that lead to the nonconstant treatment

effect as shown in Figure 1. Specifically in clinical drug development, it has long been

understood that for some drugs, there are usually three distinct periods of drug action

since the time of administration: pre-action onset, action onset, and post-action onset.

Accordingly, there may be a pair of time points, 0 ≤ U < V , such that he treatment is

usually only fully effective within the action onset time period of [U, V ], while not so for the

pre-action onset period of (0, U) or post-action period of (V,∞). Due to the heterogeneity

in human metabolism of drug compound, however, it is often difficult to determine or obtain

the [U, V ]’s without knowing the actual pharmaco-kinetic and pharmaco-dynamic profiles of

the compound for all the individuals in the trials. The patterns of nonconstant treatment

effect thus appears in the mean response curves by ignoring such [U, V ]’s. In practice, the U

and V are often called the treatment effectiveness lag time and saturation time, respectively.

As an alternative, it is mathematically convenient to extend mode1 (1) by including the

time-varying coefficients, β(t),

E{Y (t) | Z(s), 0 ≤ s ≤ t} = µ(t) + β(t)TZ(t), (2)
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similar to that in Hoover, et al. (1998). Various estimation methods, such as smoothing

splines and locally weighted polynomials in Hoover, et al. (1998), component-wise smoothing

spline in Chiang, Rice and Wu (2001) and basis function approximation in Huang, Wu

and Zhou (2002), can be adapted to estimate β(·). However, as an infinite-dimensional

parameter, β(·) itself usually lacks straightforward interpretation as treatment efficacy, and

as a result, limits its practical application to establish guidelines in drug approval for the

regulatory agencies or drug prescription for the clinical practitioners.

In this article, we will propose some new models based on model (1) to accommodate

(U, V ) and hence account for the unobserved treatment effectiveness lag and saturation times.

The extended models will be proposed in §2. The semiparametric inference procedures and

the associated statistical properties will be studied in §2.3. Further model extensions will be

in §3. Numerical studies are presented in §4. Some concluding remarks and discussion will

be in §5.

2 Methods

2.1 Models for bivariate action onset times

Suppose there are n subjects in a study. For the subject i, denote Ui and Vi the treatment

effectiveness lag and saturation times, respectively, where 0 ≤ Ui < Vi, i = 1, 2, . . . , n.

Let Wi = Vi − Ui, which is the length of time interval of the action onset. Consider the

bivariate vectors of (Ui,Wi) for the action onset times. Denote their joint density function

fU,W(u,w; θ). Since Ui and Wi reflect a human subject’s individual reaction to the treatment,

they are often neither identical nor independent among individuals.

To choose appropriate distributions for (U,W ), we consider the widely used shared

frailty models for the bivariate times of (U,W ). Assume γi is the frailty of the ith sub-

ject, i = 1, 2, . . . , n, following the distribution with density function of g(γ;α), where α

is the parameter. Conditional on γi, the hazard functions for Ui and Wi are γiλU(t) and

γiλW(t), respectively. Thus the bivariate survival function of (U,W ) is,

SU,W(u,w | γi) = pr{U > u,W > w | γi} = exp[−γi{ΛU(u) + ΛW(w)}],

where ΛU(t) =
∫ t

0
λU(s)ds and ΛW(t) =

∫ t

0
λW(s)ds, respectively. By integrating out the

γi’s, the marginal bivariate survival function for (U,W ) is SU,W(u,w) = E exp[−γi{ΛU(u) +

3
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ΛW(w)}], which is also the Laplace transform of γi’s distribution, L(·), at ΛU(u) + ΛW(w).

As a result,

fU,W(u,w) = λU(u)λW(w)L(2){ΛU(u) + ΛW(w)}.

With different choices of g(·), λU(·) and λW(·), fU,W(·, ·) embraces a variety of choices of

bivariate distributions for (U,W ).

One widely used family is the Clayton-Oakes model, or the Gamma frailty model (Clay-

ton, 1978; Oakes, 1989). In this model, γi are assumed to follow the Gamma density function,

g(γ;α) =
(γ/α2)

α1−1 exp (−γ/α2)

α2Γ(α1)
,

where Γ(γ) =
∫∞

0
sγ−1 exp(−s)ds. Therefore, the bivariate density function for (U,W ) is thus

α1(1+α1)α
−α1
2 λU(u)λW(w){α−1

2 +ΛU(u)+ΛW(w)}−α1−2. In practice, given the multiplicative

form of the γi on λU(·) and λW(·), it is usually sensible to further assume that α1 = 1/α2,

which leads to Eγi ≡ 1. For other families of bivariate distributions, such as the positive

stable frailty distributions, the book by Hougaard (2000, §7) offers a comprehensive account

on these distributions.

2.2 Mean response models with varying action onset

Suppose there is a finite upper time limit for the study, τ > 0, say. Let Yi(t) be the

underlying random response curve of the ith subject, observed at the set of time points of

(Ti1, Ti2, . . . , Ti,mi). The observed repeated measurements are denoted as (Yi1, Yi2, . . . , Yi,mi)

with Yij = Y (Tij). Let Z i(t) = (Qi(t)
T,Ri(t)

T)T be the associated covariates, which consists

of Qi(t) being the treatment assignment and Ri(t) the prognostic covariates to be adjusted.

In a two-arm randomised clinical trial, for instance, Qi(·) can be 1 if the subject is in

the treatment arm and 0 otherwise, while Ri(·) contains the concomitant risk factors or

confounding variables.

Based on the additive model of (1), we propose the following model:

E{Yi(t) | Z i(s), Ui,Wi; 0 ≤ s ≤ t} = µ(t) + βT

QQi(t)I(Ui ≤ t ≤ Ui +Wi) + βT

RRi(t), (3)

where I(·) is the indicator function, and β = (βT

Q,β
T

R)T are the parameters of the same dimen-

sions as (Qi(t)
T,Ri(t)

T)T, respectively. Conditional on (Ui,Wi), the mean response of the re-

peated measurements is µ(t) exp{βT

QQi(t)+βT

RRi(t)} on [Ui, Ui+Wi], and µ(t) exp{βT

RRi(t)}
otherwise. Thus the parameter βQ describes the differences in the mean responses due to

4
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the effect of Qi(t) during the action onset period. When Qi(t) is the treatment indicator, it

characterises the actual treatment effect on the individuals.

This model is in fact a changepoint model with two subject-specific changepoints at Ui

and Ui +Wi, respectively. Many changepoint models, however, focus on hypothesis testing

of the fixed changepoints in the analysis of time series, such as Wu, Woodroofe and Mentz

(2001). In the proposed model (3), not only does the different (Ui,Wi) reflect the actual

biological mechanism, but also allow further modelling in regression settings to estimate

the magnitude of the treatment effect. More straightforward algebra shows that the model

becomes

E{Yi(t)|Z i(s); 0 ≤ s ≤ t} = µ(t) + βT

QQi(t)H(t;θ) + βT

RRi(t), (4)

when marginalised over (Ui,Wi). Here H(t;θ) =
∫ t

0

∫∞
t−u

fU,W(u,w;θ)dwdu.

As seen in the marginal model of (4), the inclusion of the varying (Ui,Wi)’s induces

additional time-dependent structure upon βT

QQi(t), which is modified as βT

QQi(t)H(t). Two

perspectives can be applied to view H(t): (1) βQH(t), termed as “marginal treatment effi-

cacy,” is a special form of the time-varying β(t) in model (2); (2) the covariates Qi(t) are

“updated” by H(t) and replaced by Q∗
i (t) = Qi(t)H(t) in model (1). Nevertheless, the con-

stant parameter βQ itself maintains the appealing interpretation in treatment effect of action

onset. Furthermore, if the parameters in H(t) can be appropriately estimated, it will enable

us to estimate EUi and EWi, respectively, which may certainly yield valuable information

in predicting the timing of an individual’s action onset.

In fact, H(t) itself carries some interesting properties, such as:

1. 0 ≤ H(t) ≤ 1;

2. limt→0H(t) = limt→∞H(t) = 0;

3. H ′(t) =
∫ t

0
f(u, t−u)du−

∫∞
0
f(t, w)dw; H(2)(t) = f(t, 0)+

∫ t

0
∂f(u,w)/∂w|w=t−udu−∫∞

0
∂f(u,w)/∂u|u=tdw.

The first property mandates that the marginal treatment efficacy will be no larger than

the actual treatment efficacy βQ. The second property implies that the treatment efficacy

diminishes to null at the beginning of randomised trial for the short-term and also toward

the long-run, which echoes the observations of the possible treatment effectiveness lag and

saturation. The third property will allow us to calculate the time point when H(t) reaches

its peak, and the turning points as well when the overall trend of H(t) changes. In addition,

5
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the lag time of pre-onset action cannot be too long. There should exist at least one subject,

i∗ ∈ {1, 2, . . . , n}, such that pr{U∗
i ≤ τ} > 0; otherwise, H(t) ≡ 0 for any 0 ≤ t ≤ τ , which

would cause βQ to be nonidentifiable.

2.3 Inference procedures

Denote Ni(t) =
∑mi

j=1 I(Tij ≤ t) and assume that E{Ni(t)} = Ω(t) is unspecified. Let Ci be

the follow-up time and ∆i(t) = I(Ci ≥ t). Conditional on Z i(·), (Yi(·), Ci) are assumed to be

independent. The true parameters hereinafter are denoted as their respective counterparts

with the subscript “∗.” For instance, the true parameters for βQ and βR in (3) are βQ∗ and

βR∗, respectively. Consider the cumulative sum of the repeated measurements on residuals for

the ith subject, Xi(t) =
∫ t

0
{Yi(s)−νi(s)}dNi(s), where νi(t;β,θ) = βT

Q
Qi(t)H(t)+βT

R
Ri(t).

Then

E{dXi(t) | Z i(s), Ci; 0 ≤ s ≤ t,β∗,θ∗} = ∆i(t)dΩµ(t), (5)

where dΩµ(t) = µ(t)dΩ(t).

Let Mi(t) = Xi(t) −
∫ t

0
∆i(s)dΩµ(s). Then Mi(·;β∗,θ∗) are the zero-mean stochastic

processes. Similar to those in Lin and Ying (2001), the following estimating equations gen-

eralise the normal equations of the least-squares in the linear regression models to estimate

the parameters in the proposed model (4),

n∑

i=1

∫ τ

0

∆i(t)Ψ(t)ϕi(t)dMi(t) = 0, (6)

where Ψ(·) is the positive weight function which converges uniformly to a deterministic

function ψ(t) ∈ [0, τ ], and ϕi(t) are the smooth functions of the same dimensions as (βT,θT)T

such that ϕi(t) are measurable with respect to {Zi(s), Ci; 0 ≤ s ≤ t, i = 1, 2, . . . , n}. For

instance, ϕi(·) can be chosen as Z i(·) and some of its functionals.

In addition to the unknown parameters of β and θ in (6), the infinite-dimensional function

of Ωµ(·) is also unknown. An estimator of the Breslow-type, however, can be obtained for

Ωµ(·),

Ω̂µ(t) =

∫ t

0

∑n
i=1 dXi(s)∑n
i=1 ∆i(s)

,

which is unbiased to Ωµ(t). Let M̂i(t) = Xi(t) −
∫ t

0
∆i(s)dΩ̂µ(s). Replace the Mi(·)’s in (6)

and thus result in
∑n

i=1

∫ τ

0
∆i(t)Ψ(t)ϕi(t)dM̂i(t) = 0. Straightforward algebra further leads
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to

E(β,θ) =
n∑

i=1

∫ τ

0

∆i(t)Ψ(t) {ϕi(t) − ϕ̄(t)} dXi(t) = 0, (7)

where ϕ̄(t) =
∑n

i=1 ∆i(t)ϕi(t)/
∑n

i=1 ∆i(t). Assume that β̂ and θ̂ are the solutions in (7),

respectively.

Let ν ′
i(t) be the derivative of νi(t), i = 1, 2, . . . , n. Then −n−1E (β∗,θ∗) goes to

D = E

[∫ τ

0

∆1(t)ψ(t){ϕ1(t) − ϕ̄∗(t}ν ′
1(t)

TdΩ(t)

]
,

where ϕ̄∗(t) is the limit of ϕ̄(t) almost surely, as n → ∞. When fU,W(u,w) degenerates to

1 at (u,w) = (0,∞) and 0 otherwise, and ϕi(·) are chosen to be Z i(·), the proposed model

(4) becomes the model (1) and D reduces to the nonsingular matrix of D̃ in Lin and Ying

(2000). In general, when the elements in ϕi(·) are not linearly related, D is nonsingular.

Thus under mild conditions, the solutions to E(β,θ) = 0 are strongly consistent as n→ ∞
as shown in the Appendix. If the total variation of ϕi(·), i = 1, 2, . . . , n, are bounded, it is

true that

n−1/2E(β∗,θ∗) l n−1/2
n∑

i=1

∫ τ

0

∆i(t)ψ(t){ϕi(t) − ϕ̄∗(t)}dMi(t;β∗,θ∗).

By the Central Limit Theorem, it is shown in the Appendix that n−1/2E(β∗,θ∗) is asymp-

totically normal with mean zero and the variance-covariance matrix,

Σ = E

[∫ τ

0

∆1(t)ψ(t){ϕ1(t)− ϕ̄∗(t)}dM1(t)

]⊗2

,

where a⊗2 denotes aaT. In addition, a Taylor’s expansion of E(β̂, θ̂) at (β∗,θ∗) yields that

n1/2(β̂T − βT

∗ , θ̂
T − θT

∗)
T is asymptotically equivalent to {−E ′(β∗,θ∗)/n}−1 · n−1/2E(β∗,θ∗).

As shown in the Appendix, β̂ and θ̂ are consistent, and

n1/2

(
β̂ − β∗

θ̂ − θ∗

)
→ N(0,D−1ΣD−1)

in distribution in a neighbourhood of (β∗,θ∗), where D and Σ can be approximated by their

empirical counterparts,

D̂ = n−1
n∑

i=1

∫ τ

0

∆i(t)Ψ(t){ϕi(t) − ϕ̄(t)}ν′
i(t)

TdNi(t), and

Σ̂ = n−1

n∑

i=1

[∫ τ

0

∆i(t)Ψ(t){ϕi(t) − ϕ̄(t; β̂, θ̂)}dM̂i(t; β̂, θ̂)

]⊗2

,

7
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respectively.

The estimating equations used in the weighted estimating equations of (7) are somewhat

ad hoc, although the estimators defined in the equations carry the appealing statistical prop-

erties such as consistency and asymptotic normality. It is desirable to choose an optimal

weight function to minimize the variance among the estimators. When there is no vary-

ing action onset and the variance-covariance structure are identical among subjects, it is

straightforward with an application of Cauchy-Schwarz inequality to see that such choice is

1/var{Y (t)− ν(t)}, which is the essentially the diagonal elements in the variance-covariance

matrix of Y (·), as indicated in Lin and Ying (2001). Since the inclusion of the varying

action onset only modifies the mean structure marginally, it does not introduce additional

variability on Y (·), so the optimal choice of ψ(·) would improve the efficiency. However,

as pointed out in the comments following Lin and Ying (2001) by Wang and Wang (2001),

the efficiency should be further improved if the weight function can be selected among the

bivariate functions of Φ(s, t) to account for the covariance of (Y (s), Y (t)) for different s > 0

and t > 0.

To estimate the baseline µ(·), it is natural to consider the estimator of

µ̃(t) = Ȳ (t)− ν̄(t; β̂, θ̂),

where Ȳ (t) =
∑n

i=1 ∆i(t)Yi(t)/
∑n

i=1 ∆i(t) and ν̄(t;β,θ) =
∑n

i=1 ∆i(t)νi(t;β,θ)/
∑n

i=1 ∆i(t),

respectively. This is the pointwise average of Yi(t) − νi(t) when ∆i(t) = 1, i.e., the subjects

are still “at risk.” When the observation times are observed in a continuous time scale, some

smoothing technique has to be implemented to obtain a reasonable estimate. In Lin and

Ying (2001), a simple singleton nearest neighbour smoother was used. This approach may

not be the most efficient. But it has advantage “in non-linear, non-Gaussian situations”

without constructing explicit smoothers (Rice, 2003). To improve efficiency, however, more

sophisticated smoothing techniques such as the one by Capra and Müller (1997) can be can

be adapted to estimate µ(·). Specifically, consider the time interval [0, τ ] is partitioned into

L consecutive equidistant intervals: (tl−1, tl), with l = 1, 2 . . . , L → ∞ and t0 = 0. Assume

the smoothing parameter h such that h→ 0 and n∗h→ 0, as n∗ → 0, where n∗ is the total

number of observation time points. Then a smoothed estimate of µ̃(·) is

µ̂(t) = arg min
a0,a1

[
L∑

l=1

K

(
t− tl
h

)
{µ̃(tl) − a0 − a1(tl − t)}2

]
.

Here K(s) = 1 − s2, if |s| ≤ 1, and 0 otherwise. Other smoothers including higher-order

kernel smoothers or local fitting with high-order polynomials can be also used under the

8
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necessary conditions of linearity, consistency and consistency with needed rate in Capra and

Müller (1997).

3 Extensions

3.1 Multiplicative mean response models

In addition to the additive model in (1), there is also a parallel multiplicative model proposed

in the literature (Cheng and Wei, 2000),

E{Yi(t) | Z i(s); 0 ≤ s ≤ t} = µ(t) exp{βTZ i(t)}, (8)

to analyze the repeated measurements. This model is equivalent to the additive model when

the response curves are properly transformed, for instance, if the Y (t) in model (8) is log-

transformed. However, the Cheng-Wei model also assumes constant treatment effect and

may not be appropriate in presence of the action onset times. To include the varying action

onset, we propose the following model:

E{Yi(t) | Z i(s), Ui,Wi; 0 ≤ s ≤ t} = µ(t) exp{βT

QQi(t)I(Ui ≤ t ≤ Ui +Wi) + βT

RRi(t)}. (9)

The marginalised version of this model is thus

E{Yi(t) | Z i(s); 0 ≤ s ≤ t} = µ(t) exp{βT

RRi(t)}
[
exp{βT

QQi(t)}H(t;θ) + {1 −H(t;θ)}
]
.

(10)

Apparently, exp{βT

Q
Qi(t)}H(t)+{1−H(t)}, which is a weight average of exp{βT

Q
Qi(t)} and

1, would approach to 1 as t goes to 0 or ∞. When Qi(·) is the treatment indicator, this

property should better characterise the observed response curves in presence of the potential

action onset. Unlike the additive model (4), however, the marginalised multiplicative model

does not maintain the linear structure on βQ, which may add complexity in estimation.

To estimate the parameters (β,θ) in model (9), consider Xi(t) =
∫ t

0
Yi(s)dNi(s). Since

E{dXi(t)|Zi(s), Ci; 0 ≤ s ≤ t,β∗,θ∗} = ∆i(t) exp{ρi(t;β∗,θ∗)}dΩµ(t),

where ρi(t;β,θ) = βT

R
Ri(t) + log[exp{βT

Q
Qi(t)}H(t;θ) + {1 − H(t;θ)}], then Mρ,i(t) =

Xi(t) −
∫ t

0
∆i(s) exp{ρi(s)}dΩµ(s) are the zero-mean stochastic processes. The following

estimating equations can thus be used

E2(β,θ) =

n∑

i=1

∫ τ

0

∆i(t)Ψ(t)
{
ϕi(t) − ϕ̄ρ(t;β,θ)

}
dXi(t) = 0,

9
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where ϕ̄ρ(t;β,θ) =
∑n

i=1 ∆i(t) exp{ρi(t;β,θ)}ϕi(t)/
∑n

i=1 ∆i(t) exp{ρi(t;β,θ)}. Again, de-

note (β̂, θ̂) the solutions to E2(β,θ) = 0. Then the similar techniques applied in the additive

model lead to the large-sample properties of consistency as well as asymptotic normality,

n1/2

(
β̂ − β∗

θ̂ − θ∗

)
→ N(0,D−1

ρ ΣρD
−1
ρ ) (11)

in distribution, where

Dρ = −E
[∫ τ

0

∆1(t)ψ(t) exp{ρ1(t)}ϕ̄′
ρ(t)dΩµ(t)

]

Σρ = E

[∫ τ

0

∆1(t)ψ(t)
{
ϕi(t)− ϕ̄ρ(t;β,θ)

}
dMρ,1(t)

]⊗2

.

Here, Dρ and Σρ can be estimated by their empirical counterparts respectively.

3.2 Covariate-dependent observation times

Usually in a well-designed randomised clinical trial, the repeated measurements are supposed

to collect at a pre-determined or fixed set of time points to avoid potential bias or missing in

the data set. In reality, however, they may be actually observed at varying sets of time points

for different individuals, which may be further affected by the subjects’ covariates (Sun and

Wei, 2000; Lin and Ying, 2000). In the statistical literature, when the mean functions of the

counting processes are different, the following model are usually used,

E{Ni(t) | Z i(s); 0 ≤ s ≤ t} = η(t) exp{κTZ i(t)}, (12)

where κ is parameter and η(·) is unspecified baseline function, as in Pepe and Cai (1993)

and Lawless and Nadeau (1995). Hence, the following estimating equations can be used to

estimate κ,

EN(κ) =
n∑

i=1

∫ τ

0

{Z i(t)− Z̄(t;κ)}dNi(t) = 0,

where Z i(t) =
∑n

i=1 ∆i(t) exp{κTZi(t)}Zi(t)/
∑n

i=1 ∆i(t) exp{κTZ i(t)}, by differentiating

the log of partial likelihood function of

n∑

i=1

∫ τ

0

{
κTZ i(t) − log

[
n∑

k=1

∆k(t) exp{κTZ i(t)}
]}

dNi(t)

with respect to κ. Moreover, since now

E{dXi(t) | Z i(s), Ci; 0 ≤ s ≤ t,β∗,θ∗,κ∗} = ∆i(t) exp{κT

∗Zi(t)}dΩµ,η(t),

10
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where dΩµ,η(t) = η(t)dΩµ(t), the following estimating equations can be similarly established

for (βT,θT,κT)T as in (7),

E1(β,θ,κ) =
n∑

i=1

∫ τ

0

∆i(t)Ψ(t) {ϕi(t) − ϕ̄1(t)} dXi(t) = 0,

where ϕ̄1(t) =
∑n

i=1 ∆i(t) exp{κTZ i(t)}ϕi(t)/
∑n

i=1 ∆i(t) exp{κTZ i(t)}. Denote (β̂, θ̂, κ̂)

the solutions such that EN(κ̂) = E1(β̂, θ̂, κ̂) = 0. Then following the arguments in Sun and

Wei (2000), it is true that they are consist and have the asymptotic normality as,

n1/2

(
β̂ − β∗

θ̂ − θ∗

)
l n1/2

(
D−1

1 (β∗,θ∗,κ∗),−D−1
N (κ∗)

)
(

E1(β∗,θ∗,κ∗)

EN(κ∗)

)
, (13)

where D1 = − limn→∞ n−1E ′
1 and DN = − limn→∞ n−1E ′

N. Hence, by the normal approxima-

tion of (E1, EN) as shown the Appendix, the asymptotic variance of (13) can be estimated by

(D̂−1
1 ,−D̂−1

0 )Σ̂1(D̂
−1
1 ,−D̂−1

N )T, where D̂N, D̂1 and Σ̂1 are their respective empirical estimates.

3.3 Isotonic regression of mean response models

In either the additive model (1) or the multiplicative model (8), the mean of the baseline

response curves are assumed to be arbitrarily unspecified. In the randomised trials, for

instance, this means that the mean response curves of the subjects in the control group is

completely unspecified. The overall trend on the lowess curve of the pain intensity score over

time for the control group, however, may suggest that there is a pattern of the curve as a

monotonically decreasing function of time. This is usually not surprising especially in the

drug trials, when most of the pre-clinical stability studies showing the effectiveness of the

drug compound with decreasing drug potency over time (Chen, et al, 2003). Therefore it is

reasonable to extend the model (4) to the following one,

E{Yi(t) | Zi(s); 0 ≤ s ≤ t} = µ(t) + βT

QQi(t)H(t;θ) + βT

RRi(t), (14)

with µ(·) ∈ M, where M is the set of all the monotonic functions. In the memantine trial,

M should include all the monotonically non-decreasing functions. Denote the set by M−.

When there is no covariate information included in (14), the regression model reduces to

a simple isotonic estimation problem. That is, we need to find µ(·) ∈ M− such that

µ−(·) = arg min
µ∈M−

n∑

i=1

‖Yi − µ‖2
,

11
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with the norm ‖ · ‖ defined as in Rice and Silverman (1991). Thus the computational algo-

rithms, such as the most widely used Pooled Adjacent Violators Algorithm or the Minimum

Lower Set Algorithm, can be used (Robertson, Wright and Dykstra, 1988). When the covari-

ate information is included as proposed in the model, we can adapt the back-fitting algorithm

as in Zeger and Diggle (1994) to obtain the final estimates of the baseline function µ· and

the parameters.

Algorithm.

1. Consider (β̂[k], θ̂[k]) are obtained in the kth iterative step, k = 1, 2, . . ., where β̂[0] =

θ̂[0] = 0. Use one of the aforementioned algorithm to compute µ−
[k+1](·) ∈ M such that

µ−
[k+1](·) = arg min

µ∈M−

n∑

i=1

∥∥Y[k],i − µ
∥∥2
,

where Y[k],i(t) = Yi(t) − {βT

Q,[k]Qi(t)H(t;θ[k]) + βT

R,[k]Ri(t)};

2. Given µ−
[k+1](·), obtain (β̂[k+1], θ̂[k+1]) by minimizing

n∑

i=1

∫ τ

0

Φ(t)[Yi(t) − {µ−
[k+1](t) + βT

Q
Qi(t)H(t;θ) + βT

R
Ri(t)}]2dNi(t).

In fact, the proposed isotonic regression model belongs to a more general additive isotonic

model (Bacchetti, 1989),

E{Yi(t) | Zi(s); 0 ≤ s ≤ t} =
P∑

l=1

µl(t) + βT

Q
Qi(t)H(t;θ) + βT

R
Ri(t),

where (µ1, µ2, . . . , µP ) are the P -dimensional isotonic function vector. When there is no

covariate information involved, the backfitting algorithm by Hastie and Tibshirani (1990) can

be used with the Pooled Adjacent Violators Algorithm to individual µi iteratively. When the

covariate information is included, it is straightforward to further extend the above algorithm

for the estimation in this model. To avoid complicated variance calculation of the estimators,

the computer-intensive methods such as bootstrapping (Efron and Tibshirani, 1994) can be

used.

12
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Fig. 2: Density function and survival function of the bivariate action onset

4 Examples

4.1 Distributions of bivariate action onset times

As proposed in §2.1, the bivariate action onset times can be modelled by the Gamma frailty

model. To gain some concrete sense about this family of the distributions and their ultimate

impact on the mean response curve, we choose some examples from this family of distri-

butions. One special choice is to use the Weibull forms for λU(·) and λW(·),i.e., λUωt
ω−1

and λWωt
ω−1, respectively, where ω is parameter. Thus, the bivariate density function and

survival function of (U,W ) becomes

fU,W(u,w; θ) = α(1 + α)α−αλUλWu
ωwω(α−1 + λUu

ω + λWw
ω)−α−2,

and

SU,W(u,w; θ) = {1 + (λUu
ω + λWw

ω)/α}−α,

where θ = (αT, ω, λU, λW)T. This is the generalised Pareto power distribution, also called

the bivariate Burr distribution. When ω = 1, the marginal distributions of (U,W ) become

exponential. The bivariate density and survival functions are demonstrated in Figure 2 when

λU = λW = ω = 1 and α = 0.5.

The impact of inclusion of varying action onset on the mean response model is in fact

reflected by the shape of the function of H(t), as demonstrated in model (4). The function

of H(t) under the mentioned distributions of (U,W ) are plotted in Figure 3 under three

situations of λW = 0.5, 1.0 and 1.5, represent relatively shorter/longer period of time of the

action onset. It is not surprising to see that all the curves appear to be tied down toward

0 at both ends of 0 and ∞ with a peak in the middle. This means that the treatment

may be observed to take effect gradually from the beginning, reach the peak efficacy and

13
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Fig. 3: The functions of H(t) in model (4)

then dampen as time goes on. More interestingly, as λW increases, the time period of

action onset becomes shorter, and the curves appears to have uniformly lower efficacy, i.e.,

H(t;λW = 1.5) ≤ H(t;λW = 1.0) ≤ H(t;λW = 0.5).

4.2 Simulations

Moderate simulations are conducted mainly to demonstrate the validity of the estimation pro-

cedures. According to our models, there are three steps to simulate the data sets: (1) varying

effectiveness times (ui, wi). These bivariate times are simulated following the Gamma frailty

model. The ultimate density function used for the bivariate times is 0.75
√

2uw(u+w+2)−2.5;

(2) observation times (ti1, ti2, . . . , ti,mi). The observations time are simulated according to a

random effect Poisson process with intensity rate following Gamma (1,0.5). The total time

period of observation following uniform distribution with mean of 20, which yields about

11 observation times per subject; (3) repeated responses (y(ti1), y(ti2), . . . , y(ti,mi)). The

repeated responses are simulated according to the following model:

yij(tij) = µ(tij) + βQQI(ui < tij < ui + wi) + βRR(tij) + ε(tij).

HereQ is the treatment indicator of Bernoulli random variable with the success probability of

50%, R(t) are standard normal, ε(t) is Gaussian process with cov{ε(s), ε(t)} = exp(−|s− t|)

14
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Table 1: Summary of simulation results. Each entry is the estimated bias with 95% empirical

coverage probabilities in brackets

(βQ*,βR*) = (1, 0) (βQ*,βR*) = (0, 0) (βQ*,βR*) = (0, 1)

n µ(t) βQ βR βQ βR βQ βR

50
√
t -0.027 -0.007 0.004 -0.007 0.005 -0.008

(0.960) (0.945) (0.960) (0.947) (0.916) (0.969)

50 sin(2πt) -0.004 -0.004 -0.002 0.002 -0.003 -0.015

(0.940) (0.944) (0.952) (0.926) (0.943) (0.972)

100
√
t 0.002 -0.006 -0.014 0.014 -0.010 0.002

(0.943) (0.956) (0.941) (0.946) (0.967) (0.941)

100 sin(2πt) 0.004 -0.014 0.008 0.013 -0.002 0.010

(0.938) (0.952) (0.941) (0.932) (0.946) (0.950)

200
√
t 0.004 -0.004 -0.006 0.008 0.001 0.010

(0.939) (0.943) (0.946) (0.949) (0.953) (0.941)

200 sin(2πt) -0.014 0.011 -0.001 0.003 -0.003 0.011

(0.940) (0.958) (0.964) (0.971) (0.927) (0.943)

and µ(t) = t1/2 and sin(2πt), respectively. The true values of (βR, βQ) are (0,0), (0,1) and

(1,0), respectively. The simulation results are summarised in Table 1. For each entry in the

table, 1,000 replicates are simulated to estimate the bias and empirical coverage probability.

The bias is defined as the difference between the sample mean of the estimates over the 1,000

replicated data sets and its true value. The empirical coverage probability is the percentage

of Wald-type 95% confidence intervals that include the true parameters. It is evident that

the estimators are virtually unbiased and the nominal confidence intervals carry reasonable

coverages.

4.3 A real randomised clinical trial

The chronic pain due to damaged peripheral nerves is one of the leading complications of

diabetic patients. Among the 10.3 million patients diagnosed with diabetes in the United

States, more than 60% of them suffer some form of damaged nerves, which may lead to

more than 1 million neuropathic pain cases. The basic function of Memantine is to restore

of the function of damaged nerve cells and block the excitation of N-methyl-D-aspartate

(NMDA) receptors. It was shown to be effective in reducing pain responses in rodent and
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Table 2: Parameter estimates in model (4) with/without effectiveness onset: Cov., covariates;

Est., parameter estimates; s.e., standard errors; CI, confidence interval. The reference groups

for Gender, Analgesic usage and Treatment are male, no use and placebo, respectively.

Without varying onset With varying onset

Cov. Est. s.e. 95% CI Estimate s.e. 95% CI

Gender 1.851 1.306 (-0.708,4.410) -1.756 2.038 (-5.750,2.238)

Age 0.045 0.066 (-0.084,0.174) 0.116 0.103 (-0.086,0.318)

Analgesic usage 1.043 1.311 (-1.527,3.613) -1.578 2.045 (-5.586,2.430)

Days -0.070 0.009 (-0.088,-0.052) -0.039 0.010 (-0.235,-0.019)

Treatment -1.118 1.273 (-1.377,1.377) -4.433 1.986 (-8.326,-0.540)

primate chronic pain model (Seltzer, et al., 1991). Clinical trials on human subjects have

been conducted to evaluate the efficacy of memantine and its dose-response with relatively

sample sizes, for example, in Sang, et al. (2002). A randomised clinical trial of larger scale

was conducted to evaluate its efficacy in the treatment of diabetic patients with painful

peripheral neuropathy. This is a 16-week, randomised, double-blinded placebo-controlled

trial with a total of 420 dibetic patients. The primary efficacy outcomes are the repeated

measurements of VAS nocturnal pain intensity measured weekly. When the primary endpoint

is the change in the intensity scores from the baseline in 16 weeks, it is found that neither

the usual approach of ANOVA nor the ANCOVA would yield significant reduction in the

recorded pain intensities.

A closer examination of the graph of pain intensity scores shows that the memantine

reduces the pain intensity gradually till around 20 days. Then the reduction stays stable

through the most of the rest of trial period. The control group, however, seems to have a

sudden declining pain intensity around the end of the trial, and thus the difference between

the two groups diminishes. This might be the cause for the aforementioned ANOVA or AN-

COVA approaches with less power to detect the overall differences. To actually implement

our models (4) for the dependent variable of repeated measurements on the pain intensity

scores, five covariates are selected: treatment indicator for Q(t), and gender, age, concomi-

tant analgesic usage and days since randomization for R(t). The estimates are listed in

Table 2 for the varying effectiveness onset being included and not.

As show in the table, the covariates of gender, age and analgesic usage are both not

significant in the two models, while the time trend for the days since randomisation is sig-

nificant in both models. However, the treatment appears not significant when the varying
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effectiveness onset is not included, but significant otherwise. When the magnitude of esti-

mates are examined, it is found that the treatment would have more impact in reducing the

intensity scores with varying effectiveness onset. It is on average reduced about 4.5 consid-

ering the varying effectiveness onset in contrast to 1.1 not considering. But interestingly,

the time effect appears less impact with varying effectiveness onset, it changes from 0.07 to

0.04 reduction per day. Another notable observation is that, the gender effect has different

direction by comparing two models, although they are not significant. This lead to the con-

jecture that the varying effectiveness onset may be gender-specific, which still needs to be

confirmed with larger sample size and further modelling of effectiveness onset on gender.

5 Discussion

The phenomenon of treatment efficacy gradually improving as time progresses has been

studied in the statistical literature. For instance, Zucker and Lakatos (1990) coined the term

of “treatment effectiveness lag” to characterise the slow onset of a treatment efficacy, and

Chen, et al. (2002) developed regression tools to account for such treatment effectiveness

lags in time-to-event data analysis. The phenomenon of saturation of treatment efficacy

is, however, less explored in statistical literature, although it has been long recognised in

physics. For example, in Beiser (1984), a decaying process was described by an exponential

curve within a small time interval for the number of atoms emitted by Uranium, based

on the quantum mechnical laws. But this process of decaying is eventually moderated

by other factors to terminate the decaying trend but reach the stable saturation, which

would otherwise violate the laws of energy or space constraints. These same laws apply

to the saturation phenomenon in human metabolism and drug compound mechanism. The

proposed model in this article to include varying action onset does not intend to specify

any individual action onset time on the repeated measurements, but is able to describe the

average effect of such action onset marginally.

Mathematically, the marginalised model (4) is in fact a time-varying coefficient model.

Because it is based on the possible biological mechanisms, it has more direct interpretation

on the parameters in the model, if compared with an arbitrary descriptive time-varying

coefficient. The introduction of varying treatment effectiveness action onset is also equivalent

to most of the smoothing techniques applied in the nonparametric estimation approaches:

the distribution assumption on the unobserved varying action onset and its marginalisation

essentially smoothes the differences in mean response between the action onset and otherwise.
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The estimation approaches in this article following the counting processes formulation in

analysis of repeated measurements by Cheng and Wei (2000), Sun and Wei (2000), Lin and

Ying (2001) and others. This formulation is simple and does not require smoothing, with

room for significant improvement in efficiency. In Lin and Ying (2001), an estimate of the

baseline function was introduced to improve the efficiency by minimizing the variance of the

proposed estimating equations. It is still ad hoc and unknown whether or not the efficiency

reaches the semiparametric efficiency bound. Although there are other approaches that do

not need smoothing yet may have better efficient estimation, for instance, the difference-

based method by Yatchew (1997) for the partial linear models with less loss of efficiency,

more future work in the semiparametric model efficiency framework of Bickel, et al. (1993)

and van der Laan and Robins (2002) are needed. Along with the efficiency calculation, the

technical development of asymptotic theory for the smoothing baseline estimators in §2 and

the isotonic regression algorithms in §3 will be addressed in separate manuscripts, given the

interest of these theory development beyond the scope of the current manuscript.

Appendix A: Asymptotics

A.1. Weak of Convergence of n−1/2E(·; β∗, θ∗)

Our proof follows an extension of the Appendix 2 in Cheng and Wei (2000). Denote B(t) =∑n
i=1

∫ t

0
∆i(s)Φ(s)dMi(s) and Bϕ(t) =

∑n
i=1

∫ t

0
∆i(s)Φ(s)ϕ(s)dMi(s). Then E(β∗,θ∗) =

Bϕ(τ ) −
∫ τ

0
ϕ̄(t)dB(t). For any t > 0, B(t) and Bϕ(t) are the sums of independently and

identically distributed zero-mean terms. By the Central Limit Theorem, n−1/2(B(t),Bϕ(t))

converges in distribution to a zero-mean Gaussian process, (W(t),Wϕ(t)), say.

Assume that ϕi(·), i = 1, 2, . . . , n, are of bounded variation. Moreover, without loss of

generality, ϕi(·) are assumed to be non-negative. Then the individual terms of B(·) and

Bϕ(·) can be written as sums of monotone functions in t and hence “manageable.” Thus

n−1/2(B(t),Bϕ(t)) converges weakly to (W,Wϕ), as n→ ∞ (Pollard, 1990, p. 38 and p.53).

By the strong embedding theorem in Shorack and Wellner (1986, p. 47), there exists an in-

duced probability space such that (n−1/2B(t), n−1/2Bϕ(t), n−1
∑n

i=1 ∆i(t), n
−1
∑n

i=1 ∆i(t)ϕi(t))

converges almost surely. By the Lemma 8.2.3 in Chow and Teicher (1988, p.265) coupled

with the Helly’s theorem in Serfling (1980, p.352), it is true that

n−1/2

∫ t

0

n∑n
i=1 ∆i(s)

dB(s) →
∫ t

0

1

E∆1(s)
dW(s) and n−1/2

∫ t

0

ϕ̄(s)dB(s) →
∫ t

0

ϕ̄∗(s)dW(s)
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almost surely and uniformly in t. The weak convergence of n−1/2E(β∗,θ∗) thus follows in the

original probability space, due to their convergence almost surely to Wϕ(τ )−
∫ τ

0
ϕ̄∗(s)dW(s)

in the induced probability. The calculation of the variance-covariance matrix of Σ is straight-

forward.

A.2. Asymptotic variance of n−1/2(E1(β∗, θ∗, κ∗)
T, EN(κ∗)

T)T

The asymptotic normality of the joint distribution of n−1/2(E1(β∗,θ∗,κ∗)
T, EN(κ∗)

T)T can be

similarly established following the arguments in Lin and Wei (1989) and Sun and Wei (2000).

To calculate its associated asymptotic variance, it is noted that

n−1/2EN(κ∗) = n−1/2

n∑

i=1

∫ τ

0

{
Z i(t)− Z̄(t;κ)

}
dMN,i(t),

whereMN,i(t) = Ni(t)−
∫ t

0
∆i(s) exp{κTZ i(s)}dΩ(s). Let ei = E

∫ τ

0

{
Z i(t) − Z̄(t;κ)

}
dMN,i(t)

and its empirical estimates as êi, respectively. Thus the variance-covariance matrix of

n−1/2(E1(β∗,θ∗,κ∗)
T, EN(κ∗)

T)T can be approximated by

Σ̂1 =

(
n−1

∑n
i=1 ε̂iε̂

T

i n−1
∑n

i=1 ε̂iê
T

i

n−1
∑n

i=1 êiε̂
T

i n−1
∑n

i=1 êiê
T

i

)
,

where ε̂i =
∫ τ

0
∆i(t)Φ(t){ϕi(t) − ϕ̄1(t)} exp{κ̂TZ i(t)}dΩ̂µ,η(t) and

Ω̂µ,η(t) =

∫ t

0

∑n
i=1 dXi(s)∑n

i=1 ∆i(t) exp{κ̂TZ i(s)}
.
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