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Permutation-based Pathway Testing using the
Super Learner Algorithm

Paul Chaffee, Alan E. Hubbard, and Mark L. van der Laan

Abstract

Many diseases and other important phenotypic outcomes are the result of a combi-
nation of factors. For example, expression levels of genes have been used as input
to various statistical methods for predicting phenotypic outcomes. One particular
popular variety is the so-called gene set enrichment analysis (GSEA). This paper
discusses an augmentation to an existing strategy to estimate the significance of
an associations between a disease outcome and a predetermined combination of
biological factors, based on a specific data adaptive regression method (the “Su-
per Learner,” van der Laan et al., 2007). The procedure uses an aggressive search
procedure, potentially resulting in final models that imply associations that would
not be discovered using non data-adaptive procedures (e.g., multiple linear re-
gression). A test statistic derived from the ”fit” of the Super Learner model to
the original data is compared to the permutation distribution of the same statis-
tic, the latter being generated by permuting the outcome labels with respect to
the covariate vectors. This comparison is the basis for rejection criteria for the
null hypothesis of no association between a set of biological factors (e.g., gene
expression levels) and binary phenotypic outcomes. We include simulations that
compare the statistical power of the test derived from the Super Learner method
with that of other methods for two different data generating distributions.



Introduction

Background

Many diseases and other important types of phenotypic outcomes are caused
by a number of factors working in concert. A general example of this is the
way a set of genes, each of which performs a similar biological function, or
which are involved in the same type of biological function, are thought to be
the basis for specific diseases. In these cases it may be that no single gene
in a particular set of genes is statistically significant between the different
outcome groups, yet the set of genes of which it is a member, taken as a
whole, is significant. More specifically, certain cancers may be the result of
the accumulation of mutations in various genes, or the complex interaction
of these mutations rather than mutations in a single gene.

What is desired then is a statistical approach that is capable of uncovering a
gene set-wide association with an outcome, even if no particular gene alone in
the set is marginally associated. The approach should be capable of detecting
interactions and other complicated relationships. This paper is an extension
of existing techniques to achieve this goal, the main difference from earlier
work being the algorithm used to derive a test statistic for association.

Existing Procedures

Consider a set of observations O consisting of outcomes Y and covariates
X. That is, each individual observation Oi consists of (Xi, Yi), i = 1, 2, ..., n,
where Xi is a vector of covariates of dimension p. Thus X is an n x p
matrix and Y is an n x 1 vector of outcomes. In this paper we focus on
binary outcomes Y , but the discussion easily extends to generally discrete
or continuous Y . The procedure easily accommodates situations in which
p is much greater than n, which is often the case when X consists of gene
expression data.

We seek to detect a statistically significant association between factors X
and outcomes Y . Our null hypothesis is simply

Y ⊥ X (1)
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There are already well known methods for detecting such an association, for
example, multiple testing and Gene Set Enrichment Analysis (GSEA), which
we describe below.

Permutation Test
Our goal is to construct a powerful test derived from a test statistic
based on the fit of a model of E(Y |X), and a robust method of assessing
the significance of this test statistic. Birkner et al. (2005) describe a
method for testing the association of a biological pathway with observed
(phenotypic) outcomes using data-adaptive regression (DAR) and a
permutation-based null distribution. Here a pathway is defined as “a
subset of biologically relevant factors grouped by some a priori set of
characteristics, e.g., common function.” A typical situation that meets
this definition is a set (or sets) of genes thought to be associated with a
common function. We have in mind a situation in which a specific set
of genes or factors has been pre-identified as possibly being associated
with the outcome of interest, and the researcher seeks to find statistical
significance for this specific set alone.

The method of Birkner et al. was a generalization and extension of
earlier methods, proposed separately by Goeman et al. (2004) and
implemented in the R programming language as globaltest(), and by
Ruczinski et al. (2003), in the development of their logic regression al-
gorithm. The approach of Goeman, et al., referred to as “a global test
for a group of genes,” gives a p-value for each group of genes specified
by the user. They model the way Y depends on X according to the
framework of the generalized linear model of McCullagh and Nelder
(1989), of which logistic regression is a special case. For a pre-specified
group of genes, the association is modeled with the gene expression
values as main terms:

E (Yi|βi, Xi) = h−1

(
α +

p∑
j=1

βjxij

)
(2)

Here xij is the jth explanatory variable (e.g., a gene expression value)
for the ith observation and h is the link function, which for binary out-
comes would typically be the logit function. The βj are p unknown

2

http://biostats.bepress.com/ucbbiostat/paper263



coefficients to be determined. The null hypothesis of no association be-
tween Y and X corresponds to the case β1 = β2 = ... = βp = 0. If the
number of observations, n, is sufficiently large compared to p, standard
regression techniques apply, and the test of no association reduces to
a standard likelihood ratio test. However, when p approaches n, it is
not valid to rely on the asymptotic distribution of the likelihood ratio
statistic for hypothesis testing. The authors deal with these cases by
making the assumption that the βj are from a common distribution
with mean 0 and variance τ 2. Under these assumptions, the null hy-
pothesis becomes simply τ 2 = 0, and now this single parameter (rather
than p parameters) is a measure of the deviations from zero of the βj.

The authors propose a score test for τ 2 = 0. The test statistic for this
null hypothesis is found by taking the derivative of the log likelihood
of Y |X with respect to τ 2 at τ 2 = 0, and dividing it by its standard
deviation. Under the null hypothesis, this statistic is asymptotically
normally distributed. However, as they note, for small samples, p-
values computed from this statistic may be incorrect. Their solution
in these cases is to apply the permutation test and compare the test
statistic to its permuted null distribution.

A similar idea—based on a very different model for Y |X (logic regression)—
was also described by Ruczinski et al. (2003). Logic regression is an
algorithm that constructs a model whose terms are Boolean combina-
tions of binary covariates. Note that even if the covariates are, as in
our case, gene expression measures, they can easily be converted into
binary variables by, e.g., assigning the value 1 to all genes whose ex-
pression measure is greater than or equal to some specified value, and
0 to all others. Again, as in our procedure, the authors find the “best
scoring model” generated by applying their algorithm to a set of data
consisting of gene expression measures. They then compare that score
with the scores of the models built from the data with outcomes per-
muted, which they call “The Null Model Test.” This test is exactly
analogous to our procedure here.

Multiple Testing
One of the earliest approaches to address the null (1) was to test each
factor separately for association with the outcome, and then adjust the
type I error rate “accumulated” for the number of such tests performed.

3
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There are various ways of adjusting the type I error rate, but we will
refer to such tests generically as “multiple testing” (MT), with an as-
sociated Family-wise Error Rate (FWER). For example, suppose one
performs K hypothesis tests on a set of data, one test of association
between each of the factors and the outcome (this implies K factors),
and of the K tests the null hypothesis is rejected R times. Of those R
times, let us call the random variable that is the number of incorrect
rejections (i.e., the number of times the null is rejected when it is in
fact true) RF . We define FWER as

FWER = P (RF ≥ 1| Global Null)

Thus FWER is the probability of one or more false rejections of the K
tests, i.e., the probability of at least one occurrence of a type I error.
The usual type I rate of 0.05 translates to FWER ≤ 0.05 for K tests.
For our comparisons we used the basic Bonferroni correction for mul-
tiple testing (amongst the most conservative of the FWER correction
methods), α∗ = 1 − (1 − α)1/K .

= α/K for small α, where α is the
FWER achieved for K individual tests each of which rejects at level
α∗.

In our simulations we performed a separate t-test for each of the p co-
variates in the simulated data. Thus for p covariates, p t-tests were
performed, and if the t statistic computed for one or more of the tests
corresponded to a p-value ≤ 0.05/p, the null hypothesis of no associa-
tion between the covariates and outcomes was rejected.

We also report on the performance of MT based on a permutation test,
details of which are presented in the Simulations section below.

GSEA
The original GSEA methodology was not developed to determine the
significance of a particular pathway considered by itself, which is our
main interest here. Rather, the method was meant to determine the
significance of the association of phenotype with a particular pathway
or gene set with respect to other gene sets in a genome-wide analysis
(Subramanian et al., 2005). However, later versions of GSEA (Jiang
and Gentleman, 2007) expanded upon the initial methods and provide
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a means for testing the null hypothesis of our analysis, and we include
one such method for comparison here. Jiang and Gentleman (2007)
consider a variety of tests (t-test, log rank test, etc.) and associated test
statistics, as well as various parameters of their empirical distributions
(mean, median, etc.) for a particular group of genes. The analysis we
ran chose the average p-value of the genes in the group and compared
this with the associated permutation distribution. The p-value for each
gene in the group was based on a t-test, as in our MT procedure. The
overall p-value associated with this version of the GSEA analysis will
thus always be greater than or equal to our version of permutation-
based MT testing as described above.

Thus we don’t expect this method to have high power for the kind of
data and hypothesis we’re considering here–i.e., the significance of the
association of one gene set without regard to the significance of other
gene sets in the genome. We nevertheless include it here because of its
general relevance in detecting associations between pre-specified sets of
genes and phenotypic outcomes.

Method

Our method is to use a much more general machine learning approach to
search a large model space to obtain a data-adaptive model for E(Y |X).
The larger the space searched, the greater the likelihood of obtaining the
correct model, though searching very large model spaces comes at the cost
of computing time and estimation variability in small sample sizes. Our
procedure relies on the Super Learner algorithm (van der Laan et al., 2007)
which itself combines a variety of data-adaptive regression or classification
algorithms into one model, effectively drawing on the strength of this library
of candidate learners. The Super Learner synthesizes these various candidate
learners by weighting the models built by each in a final larger model. The
procedure is described in more detail below.

In our procedure, a test statistic, W ∗, is generated based on the fit of the
model constructed by the Super Learner algorithm to the data. The original
outcome vector Y is then permuted with respect to X, and for each permuta-
tion, the Super Learner does its best to model the resulting empirical density,
from which the test statistic corresponding to that particular permutation is
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computed, just as with the original data. The significance of the association
of Y with X using this method is determined from comparing the value of
W ∗ with the distribution of permuted test statistics, the latter being the
approximate null distribution for W ; it is only an approximation because the
number of permutations typically done is not exhaustive. In principle, one
can generate as many permutations as the size of the sample allows, which is
astronomical for sample sizes greater than about 35. Naturally, computing
time puts a practical limit on this as well.

As mentioned above, this method is an extension of the method originally
set forth in Ruczinski et al. (2003), and expanded upon and generalized by
Birkner et al. (2005). In both latter cases a single data-adaptive regression
algorithm was fed the data and the test statistic W ∗ was generated based on
the outcome of that algorithm alone. Our method is different in its applica-
tion of the Super Learner as the data adaptive algorithm. The permutation
aspect of the procedure is the same as what has been proposed in these earlier
works.

For this discussion, consider data concerning a particular pathway for a set of
observations of size n, and p is the number of variables in the pathway. The
ith row of X is the set of values these variables take for the ith observation.
Suppose also that we have a binary vector of outcomes Y of length n, the ith

element of which is the outcome associated with the ith observation.

If we believed the mean of Y |X were accurately described by (2) with h
being the logit function, then the pathway test would consist in conducting
the procedure à la Goeman et al., as previously described.

The application of the above pathway test is severely limited. Since the
model does not even include interaction terms, if the true data generating
distribution has weak linear term dependence, but strong associations with
multiplicative interaction terms, this test has a poor chance of picking up
the association. If one chooses to include interaction terms, the model can
become large very rapidly, especially with 10 or more covariates. In any
case, the model will certainly be wrong and therefore a data-adaptive model-
building method will have a better chance of fitting the data.

The idea in data-adaptive pathway testing is, first, to apply a data-adaptive
regression (DAR) algorithm such as Random Forests (Breiman, 2001), or
Logic Regression (Ruczinski et al., 2003) to the data in order to estimate a
model, and to generate a test statistic, W ∗, which is large when the loss (as
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measured by, e.g., log likelihood) for the model is low. Candidate test statis-
tics are, for example, RSS (for linear models), the likelihood ratio statistic (lo-
gistic models), and pseudo R-squared for binary prediction algorithms, such
as Random Forests. Next, an empirical null distribution for this test statistic
is generated by randomly permuting Y with respect to X (say Z times). Let
Y (z) be the zth permuted outcome vector where z ∈ Z = {1, 2, ..., Z}. For
each z ∈ Z , the DAR algorithm is run on (Y (z), X) and the corresponding
test statistic Wz is calculated. The pathway test p-value, ppw is then esti-
mated from the proportion of test statistics Wz generated from the permuted
cases that are greater than W ∗:

ppw =
1

Z

Z∑
z=1

I(Wz > W ∗) (3)

Here I stands for the indicator variable. Simulations done by Birkner et al.
(2005) using POLYCLASS (Kooperberg et al., 1997) as the DAR algorithm
indicate that tests based on these algorithms and the permutation test can
have much greater power than main-terms logistic regression, Bonferroni-
adjusted multiple testing and several other algorithms when the true data
generating distribution included interaction or non-linear terms. Conversely,
when the true model is simple and thus the simpler approaches contain the
true model, these procedures based on data-adaptive algorithms still main-
tain relatively good power.

The null hypothesis for the pathway test (1), as mentioned earlier, is very
general. We expect the value of Wz to be low on average for the permuted
cases, since they are cases in which, by definition, Y (z) is independent of X.
Therefore, models generated for those cases should not be able to consistently
predict Y

(z)
i from Xi, and such models will tend to generate a small Wz.

On the other hand, if the DAR algorithm is able to discover a model that
has good success in predicting Y from X in the original, unpermuted data,
then W ∗ is likely to be high relative to the Wz, and ppw is likely to be low.
Thus the selection of the particular form of the DAR is the cornerstone of
the procedure, and it’s worth the effort to obtain the best model-building
algorithm one can in order to get the most out of the test. Since the true
model is never known, flexibility in terms of modeling a variety of data-
generating distributions is crucial. This translates to searching the largest
possible set of data-generating distributions.
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The Super Learner (van der Laan et al., 2007) is a data-adaptive meta
learner that employs multiple sub-learners (the authors refer to them as
“candidate learners”) and combines them in a final model. This is accom-
plished as follows. Suppose one had in hand m favored DAR algorithms,
say DAR1, DAR2, ..., DARm. Figure 1 is a schematic representation of the
process, described below.

Step 0. Run each DAR separately on the entire data set to obtain a model
from each.

Step 1. Split the data into V blocks.

Step 2. Run each DAR separately on the training set of each block.

Step 3. For each DAR, use the model it builds on the training set of each
block to predict the outcomes for the validation set of that block. Re-
peating this V times then gives a vector of predicted outcomes, Ŷ , for
each DAR. This yields an n x m matrix of predicted outcomes, which
becomes the new design matrix.

Step 4. Regress these predicted values on the true outcomes to obtain a
final “output model” which in this case consists of m covariates, each
corresponding to its associated DAR. In essence, we now have a model
which consists of weighted values assigned to each DAR, which are
retained for the final step. (If one is only interested in uncovering
association between X and Y , as in our case, one can simply compute
the deviance of this model, which is then equivalent to W ∗.)

Step 5. Combine step 0. with the covariates obtained in step 4. The
final overall model thus contains the sub models built by each DAR
from the entire dataset, each multiplied by its corresponding coefficient
determined in step 4.

There is no theoretical upper limit to the number of algorithms the Super
Learner can incorporate, though obviously computing time considerations
place a practical upper limit on that number. Further, the larger the li-
brary of learners, the larger n needs to be for the procedure to be effective.
In our simulations, only four algorithms were used (see the simulation sec-
tion), though at present versions of the Super Learner that contain close to
100 candidate learners have been coded (Polley, 2009). The authors of the
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Figure 1: Schematic representation of the Super Learner algorithm (courtesy Polley,
2009). Specific algorithms are denoted in the figure. In the text we refer to the library of
learners more generally as “DAR1, DAR2, ..., DARm.”

9
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Super Learner have emphasized the prudence of including learners that are
disparate in their model-building procedures. For example including only
learners that build polynomial base functions would not be as flexible as a
library consisting of one such DAR, another that uses CART, another for
logic regression, etc.

For our purposes, the form of the Super Learner output model is inconse-
quential. What matters is the magnitude of the test statistic computed from
it using the original data compared to the distribution of the permuted-data
test statistics. For this reason, we use only steps 1 - 4 of the Super Learner
schema described above. Steps 0 and 5 are required for cases in which pre-
diction of outcomes for a new Xi is desired, which is not relevant for our
study. The power of the test is directly related to the expected value of W ∗

when an association is present.

In our case the outcomes are binary, so it was natural to use the logit link
function for the Super Learner output model, though other link functions
are also suitable, since prediction was not our aim. Indeed we also ran
simulations with an ordinary linear model as the link function for the final
Super Learner model; the results were nearly identical to those when the link
function was the logit function. As with linear models, logistic regression
lends itself well to a simple likelihood ratio test, in which the test statistic
is the null deviance minus the actual deviance of the output model. This is
equivalent to the likelihood ratio statistic.

van der Laan et al. (2007) prove that the Super Learner performs as well as
the ‘oracle’ candidate learner in terms of expected risk difference between the
truth and the selector, “up to a typically second order term.” In our case,
this translates, asymptotically, to producing a test statistic that approaches
what would be produced by the oracle learner. The oracle learner is defined
as “the estimator, among the [m] learners considered, which minimizes risk
under the true data-generating distribution.” Therefore, the Super Learner
is arguably the most adaptive and flexible algorithm one can construct, since
any algorithm that putatively performs better for a given data-generating
distribution can simply be subsumed by the Super Learner, thus increasing
the likelihood that the oracle estimator is incorporated within it.
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Simulations

Data was simulated in order to compare the Super Learner pathway test to 1)
multiple testing based on a t-statistic, 2) results from the GSEA package in
R (the specific method for which is described above) 3) a pathway test using
a logistic model that included only main terms, and 4) a pathway test using
Random Forests as the single DAR algorithm. The comparison was in terms
of the number of times the null hypothesis of no association was rejected
when in fact an association was present. Simulations were also performed
with no X − Y association to establish that the type I error rate was indeed
controlled at the desired level (0.05 in our tests).

Since the motivation of the Super Learner Pathway Test is to be able to
pick up subtle and/or complex associations between the genetic factors and
the outcome, we sought a data-generating distribution that was expected
to be difficult for the competing methods to detect. One such distribution
contained interaction terms and relatively weak linear main terms. For these
simulations the rows ofX (i.e., the covariates) were drawn from a multivariate
normal with mean 0, and covariance Σ with

Σ =

 a11 . . . a1p
...

. . .
...

ap1 . . . app

where aij = 36 for i = j and aij = 1.8 for i 6= j

This corresponds to a constant off-diagonal correlation of 0.05. Outcome
values for the ith “observation” were generated in two steps. First a deter-
ministic value for the ith observation, y∗i , was generated according to

y∗i = (1 + exp (− [f(Xi)]))
−1 (4)

where f(Xi) is a function of the covariates. For one set of simulations, we
made this function more complex and, we expected, less apt to be discovered
by most of the comparison methods. This function was

f(Xi) =
1

3xi1

+ (0.25)
x2

i3

xi2

+ (4.2)
xi1

xi3

(5)

For the other set of simulations, we made f(Xi) such that we expected all
the methods to be able to detect the association, namely,
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f(Xi) = xi1 + (2.3)xi5 + (3.22)xi6 + (0.5)xi9 (6)

In each case xij is the value of the jth covariate for the ith person. Next,
random error was introduced into the values generated above by creating
binary random variables yi according to

yi =

{
1 with prob y∗i
0 with prob 1− y∗i ,

(7)

i.e., yi ∼ Ber(y∗i ). Run time considerations for our simulations forced us to
limit n and p to 10 covariates and 150 observations, respectively, though one
would like to observe cases in which p ≥ 100 since pathways can consist of
hundreds or thousands of genes.

We ran one set of 500 simulated data sets for each of the two different data
generating distributions above. Rejection of the null for each simulated data
set was determined for each of the competing methods as follows.

i) Multiple Testing
1. For each simulated data set a t-test was performed separately for each
“gene.” The lowest p-value amongst the 10 was recorded, and if

10 ∗min {pk : k} ≤ α = 0.05, k = 1, 2, ..., 10

then MT rejected the null for that data set, where pk is the p-value associated
with the kth gene.

2. We also computed an MT statistic based on a permutation test with
Z = 1500 permutations. In this case, we compared the largest absolute value
of the t-statistic of the p covariates for the original data with the permutation
distribution of the corresponding statistic. In other words, let

t∗ = max
{
|t∗1|, |t∗2|, ..., |t∗p|

}
where t∗k is the t-statistic computed for the kth covariate of the unpermuted
data. If t(z) denotes the analogous t-statistic for the zth permutation, then
the MT permutation test statistic yields a p-value

pMT =
1

Z

Z∑
z=1

I(t(z) > t∗)

12
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ii) Permutation Test using Main Terms Logistic Regression
This test involved performing a pathway test using a main terms logistic
regression model as the source of the relevant test statistic. Note that this
test becomes untenable as the number of covariates increases. If there are
100 genes in a particular pathway of interest, then this test requires the
specification of a one hundred-term logistic model. And, of course, as p
approaches n, the variance of the coefficients increases dramatically. For
each simulated data set, a logistic regression model was fit that included
each of the main gene terms, but no interaction terms. That is, coefficients
βj were determined from specifying the following model in the glm function
of R:

E[Y |X] =
[
1 + exp

(
−
[
α + Σ10

j=1βjXj

])]−1

For each simulation, the likelihood ratio statistic, LR = 2[logL1− logL0] was
calculated, where L1 is the likelihood of the model selected and L0 is that
for the null (intercept only) model. Next, Z = 1500 permutations of the
Y vector with respect to the covariate matrix were performed. The above
logistic model was fit for each Y (z) in place of Y and the corresponding LRz

was calculated. The proportion of these statistics greater than LR∗ (the LR
for the unpermuted, original data) was computed (as in eq. 3) , which is
the p-value for the logistic regression method for that data set. A p-value
≤ α = 0.05 was again grounds for rejection.

iii) Random Forests
Random Forests (Breiman, 2001) is a classification and regression algorithm
that “grows” multiple classification trees instead of just one tree, as in stan-
dard classification and regression. It is implemented in the R programming
language in the randomForest package. Each tree in the forest is grown from
a bootstrap sample of the original data. A random subset of the variables
(covariates) of size m << p is also selected at each tree node (the default
number of variables is

√
p), and the best split of these m variables is used to

split the node. Outcome prediction based on a new covariate vector X∗ is
obtained by putting the X∗ down each tree in the forest that was grown from
the data. Assume there are K trees in the forest grown from a particular
data set. Each tree gives a classification prediction (i.e., a ŷ∗k) based on the
new X∗, and the predicted class for a given tree counts as that tree’s “vote”
for the outcome class. The final prediction of the outcome for X∗ is the class
that received the most votes from the forest.

13
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Upon obtaining a regression model using the Random Forests algorithm (i.e.,
a forest), we used it to generate the vector of fitted values, Ŷ , as explained
above. There are various test statistics that are appropriate for determining
the model fit for binary outcomes. We chose an “Adjusted count R-squared”
statistic, which is a type of so-called pseudo R-squared statistic (Hardin and
Hilbe, 2007). This particular version of pseudo R-squared is sensitive to
the number of correct observations, but penalizes blanket guesses that, e.g.,
simply predict each outcome to be the most frequent observation. Concern
regarding the latter arises when one considers the following type of algorithm.
Suppose the proposed rule is simply to determine the most common 1/0
outcome, and then to predict every outcome to be that value. This algorithm
always gets at least half of the outcomes correct, but it clearly cannot yield
anything informative about the relationship between X and Y since the
prediction method has no dependence whatsoever on the explanatory factors,
X. The adjusted count statistic adjusts for this scenario, being defined as:

R2 ≡ nc − nf

n− nf

Here, nc is the number of correct predictions, nc =
∑n

i=1 I(yi = ŷi), where ŷi

is the predicted value for observation i; and nf is the number of outcomes of
the most frequent type, i.e., nf = max {

∑n
i=1 I(yi = 1),

∑n
i=1 I(yi = 0)}. If∑n

i=1 I(yi = 1) =
∑n

i=1 I(yi = 0), then nf = n/2. Note that, assuming 1 < n
and n/2 ≤ nf < n, the range of the R2 statistic is

1− n < R2 < 1

Though the R2 statistic can theoretically attain values as low as 1 − n, ap-
plying it to Random Forests in our permutation simulations always produced
a range of R2 values between -1 and 1, and typically well away from even
those extremes. This is because the range of values of nf was always well
below its possible extreme value, n. Indeed, as long as nf ≈ n/2, the range
will be exactly as observed. Moreover, though the R2 statistic is the ratio of
two random variables, our simulations show its null distribution to be very
close to Normal.

The p-value associated with the Random Forests pathway test was computed
analogously as for the other permutation-based methods but with R2 as the
test statistic.
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(iv) Super Learner
Running the Super Learner on the data entailed, first, that a “library” of
learners is chosen, and for each learner, a prediction vector is generated
according to step 2 of the Super Learner schema explained in the previous
section. In our tests we chose the number of folds, V = 2 strictly on the
basis of run-time considerations. In these simulations the library consisted of
only four candidate learners, 1) L2 penalized logistic regression with stepwise
variable selection, described in Park and Hastie (2007) (available in R as
package stepPlr), 2) Logic Regression, described in Ruczinski et al. (2003) (R
package LogicReg) 3) Main terms logistic regression, as described in ii) above,
and 4) R Part, which is a classification and regression algorithm available as
package rpart in R (see, e.g., Brieman et al., 1984). For the logic regression
algorithm, the multivariate normal covariate values generated according to
(4) were converted to binary values. For each covariate, the average value
across all observations for that covariate served as the dividing point for re-
assigning each observed value a 0 or 1 (0 if less than the mean, 1 otherwise).

After each learner in the library selects a model, the final step is to regress
the outcomes Y on the predictions of these learners (recall that steps 0 and
5 of the Super Learner schema are omitted in our procedure). This final
regression yields a deviance that we used to generate the Super Learner test
statistic, W , which is equivalent to the likelihood ratio statistic. Note that
this statistic does not follow a Chi Square distribution because the DAR
algorithms in the library are likely to specify different models for different
sets of data. The deviance statistic’s following a Chi Square distribution in
standard model fitting is based on the relevant model’s being static, and not
dependent on the data, which is contrary to the very nature of DARs. Pre-
liminary simulations suggest however that the statistic may follow a Gamma
distribution whose parameters are functions of the number of algorithms used
in the Super Learner library (which corresponds to the number of terms in
the Super Learner regression model). If it can be established that the null
distribution of W is indeed gamma with known parameters, performing per-
mutations to determine the null will of course be unnecessary. However,
the empirical observation that the permutation distribution of deviance is
gamma-distributed needs to be theoretically verified.

As in all the permutation-based pathway tests mentioned above, a p-value
is obtained from comparing the test statistic of the unpermuted data, W ∗,
with the distribution of permuted test statistic values, Wz, as in (3).
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Results

When an association exists, the rejection rate of the tests is their respec-
tive power. The first set of simulations was generated according to (4), (5)
and (7), and thus represents a case in which we expect most of the com-
parison methods to have relatively low power. Table 1 lists the number of
rejections out of 500 independent data simulations for each method, and the
corresponding power.

Method Rejections Power
MT, Bonferroni 158 0.316

MT, permutation test 162 0.324
Logistic Regression, main terms 138 0.276

Random Forests 421 0.842
GSEA 75 0.15

Super Learner 457 0.914

Table 1: Number of rejections and corresponding power of the various methods (500
simulations). Data generation based on functions (4), (5) and (7)

As we expected, the Super Learner pathway test out-performs logistic re-
gression by a wide margin, since the latter model included only main effect
terms. See figures 2 and 3 for typical distributions. MT also compares rel-
atively poorly. Random Forests, on the other hand, does a much better job
than the latter two methods, though still falls short of the Super Learner.
Random Forests could, of course, be incorporated into the library of the
Super Learner algorithm, a fact which serves to underscore again the main
strength of this method.

It is noteworthy that in 301 of the 500 simulations, W ∗ was far greater than
any Wz. In these cases the p-values computed were exactly 0, which is of
course an artifact of our method of determining p-values based on a discrete
distribution of 1500 permutations. It would be more accurate to say that the
true p-values in these cases were less than 1500−1(≈ 6.7 ·10−4). Nevertheless,
judging from the value of W ∗ with respect to the distribution Wz in these
cases, the p-value would likely be very much less than this for much larger
values of Z, probably on the order of 1/Z. (See figure 2.)

We also simulated data according to (6) and (7), i.e., in which the data
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Figure 2: Typical permutation distribution of the Super Learner test statistic and value
of W ∗ when an association is present. Data simulated according to (5) and (7).

Figure 3: Typical permutation distribution of the deviance for the logistic regression
model and value of LR∗ when an association is present. Data simulated according to (5)
and (7).
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Method Rejections Power
MT, Bonferroni 500 1.0

MT, permutation test 500 1.0
Logistic Regression, main terms 499 0.998

Random Forests 500 1.0
GSEA 500 1.0

Super Learner 496 0.992

Table 2: Number of rejections and corresponding power of the various methods (500
simulations). Data generation based on functions (4) and (5)

generating distribution involved only linear terms. Table 2 gives the results
of these simulations. Under these circumstances we expect the existing tests
to perform very well, and perhaps better than the Super Learner method,
since the latter is predicted to perform only asymptotically as well as the
oracle model, which is in fact included amongst the four learners.

Clearly every method performed well (some flawlessly) for a strong main
terms effect data generating function, with the Super Learner lagging just
slightly. One issue is that the Super Learner must determine the form of the
best model from the data, rather than benefiting from having the correct
model pre-specified, though this is true of Random Forests as well. Even
though the correct model is included in the Super Learner’s library, we still
expect it to be slightly out-performed by a pathway test that uses the correct
model alone. This is because the Super Learner is expected to perform only
asymptotically as well as the oracle estimator. But since in all cases of interest
involving real data one never knows the true model, this simulation shows
that even when a linear terms logistic model has the unrealistic benefit of
being handed data generated according to its specific form, it performs only
negligibly better than the Super Learner. This is very strong evidence of the
Super Learner’s adaptive capacity, and that the price this adaptability pays
in its ability to correctly reject the null is minimal. The important point is
that the Super Learner performs well under a wide range of possible data
generating distributions, but the other methods have limited effectiveness
except in simple cases, like main term only effects.
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Discussion

Of particular interest in the analysis is the degradation in terms of power
of the various methods when the associations involve other than linear main
effects.

Note that multiple testing as utilized here is incapable of distinguishing cases
in which a single gene in the pre-specified gene set is significant from cases in
which many or all genes in a particular gene set are significant. Worse, MT
will tend to miss altogether cases in which multiple genes are associated with
the outcome but all per-gene effects are small. This is a serious drawback in
pathway testing, since we seek a method that is capable of detecting precisely
such cases.

The version of GSEA we used suffers from a similar problem, though there
are other GSEA tests that do not. Indeed, GSEA was developed, in part,
to detect the cases that concern us here, namely, cases in which though no
particular gene in a pathway has a particularly strong association with the
outcome variable, the pathway taken as a whole is significant. However, all of
the latter GSEA methods that we are aware of focus on situations in which
more than one gene set is involved in the analysis, and one seeks to find
which of these gene sets is significant, or most significant. This is not the
scenario of interest in the present study.

Parametric Estimation of the Distribution of W

In the course of examining the null-distribution of W we noticed that the
density appeared approximately Gamma (see fig. 2). More convincing evi-
dence for this conjecture was obtained by applying the method of moments to
estimate the parameters of a Gamma, and then computing the Kilmogorov-
Smirnov goodness-of-fit statistic for the comparison of the resulting fitted
Gamma with the null W. For example, the p-value associated with the K-S
statistic from the data for figure 2 was 0.43. It’s important to note that the
K-S goodness of fit critical values are not strictly valid when the parameters
of the fitted distribution are derived from the data to which the test is being
applied, as we do here. Nevertheless, we think this statistic is a reasonable
measure of the goodness of fit, especially when used in conjunction with a
measure of fit we’ve devised (see below), as long as the computed p-value is
not used as a strict cut-off criterion.
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If it is known that the null distribution of W is truly Gamma, then the num-
ber of permutations required to get an acceptably accurate p-value for the
original W-statistic (i.e., W ∗) reduces to the number required to get a cor-
respondingly accurate estimate of the parameters for a Gamma distribution
fitted to the permutation distribution of W. (We refer to such a Gamma

distribution as F̂G.) The hope is that this number of permutations is far less
than that needed using the null distribution of W itself, and computing time
would thereby be greatly reduced.

We know of no theory that predicts the distribution of W should be Gamma,
but we have found that the parameters of F̂G are functions of various aspects
of the Super Learner, and of the marginal distributions of Y and X. As table
3 shows, the parameters of F̂G, and the goodness of fit are both sensitive
to 1) the number of cross-validation folds employed in the Super Learner 2)
the number of learners in the Super Learner library, and 3) the marginal
distributions of Y and X. (The parameters are certain to be functions also
of the specific learners in the Super Learner library as well, since different
algorithms have different levels of success in predicting Y from X.)

While this shows that the prospect of finding a single Gamma distribution
that approximates well FW for a fixed set of learners in the Super Learner is
probably hopeless, the benefit in computing time is still good cause to pursue
model fitting.

C-Statistic
In simulating the various distributions of Y and X, we discovered that the K-S
statistic was often sensitive to differences between FW and the corresponding
F̂G that would not be significant for the question of interest here. The K-S
statistic, defined as

Dn = sup
x

[Fn(x)− F (x)]

for some distribution F is somewhat sensitive to differences close to the
center of the distributions being compared, and differences there may not
be of consequence if one is interested in, for example, the 95th quantile, as
we are here. We therefore devised a GoF statistic that is less sensitive to
the differences that K-S is, though it is more sensitive to individual large
discrepancies (for example, in the extreme right tail). We call this statistic
the C − statistic and compute it as
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Figure 4: Comparison of densities and Q-Q plots for F̂G using method of moments
and that of the permutation distribution of W (5,000 permutations) for various numbers
of learners in the Super Learner, various numbers of cross-validation folds, and different
marginal distributions of X. Three scenarios are represented: Top Low K-S p-value but
high C-statistic p-value (2 learners, 6 X-validation folds, X∼ Normal with mean 0 and no
correlation); Middle: High K-S p-value, low C p-value (5 learners, 4 X-validation folds,
X∼ Normal with mean 0 and no correlation); Bottom: Low K-S and C p-value, (2 learners,
8 X-validation folds, X∼ Normal with mean 0 and high correlation).
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X ∼ N(0,Σ1)
Folds Shape Parameter GoF p-val (K-S) GoF p-val (C)

3 Learners 5 Learners 3 Learners 5 Learners 3 Learners 5 Learners
4 a = 2.1 a = 2.98 0.70 0.33 0.40 0.25
8 a = 3.1 a = 3.4 0.0037 0.11 0.025 .023

X ∼ N(0,Σ2)
3 Learners 5 Learners 3 Learners 5 Learners 3 Learners 5 Learners

4 a = 1.89 a = 2.89 0.13 0.24 0.039 0.069
8 a = 2.23 a = 3.20 0.094 0.42 0.096 0.0178

X ∼ Bernoulli
4 Learners 5 Learners 4 Learners 5 Learners 4 Learners 5 Learners

10 a = 1.71 a = 2.12 0.017 0.023 0.078 0.052

Table 3: Gamma shape parameter and goodness of fit p-values based on two different
statistics. Sample size = 500, number of permutations = 5000, binary outcomes and
X generated according to 1) a mean-0 Normal distribution with high correlation between
covariates, 2) a mean-0 Normal distribution with low correlation between covariates and 3)
a binary version of the covariates where the value for observation j’s ith covariate xij , was
computed as I(xij ≥ xi·/n). Low C-statistic p-values generally signify large discrepancies
in the extreme order statistics.

C∗ =
1

Z

Z∑
i=1

[
W(i) − F̂−1

G

(
i

Z + 1

)]2

(8)

where W(i) is the ith order statistic (i = 1, 2, ..., Z) of the empirical null W

distribution and F̂−1
G

(
i

Z+1

)
is the i/(Z + 1)th quantile from a Gamma distri-

bution with parameters fitted from the data. The asterisk here indicates the
computation is for the original, unpermuted data. Parameters were fitted
both using method of moments (MOM) and maximum likelihood estimation
(MLE), and MOM was generally superior based on both goodness of fit mea-
sures. C∗ is thus the average squared difference between these two statistics.
One can also think of it as the average squared vertical deviation from the
line of slope 1 in a q-q plot of the W distribution vs that of F̂G. Like a resid-
ual, C∗ is not robust to outliers, but is less sensitive to accumulations of small
deviations from the slope-1 q-q line than is the K-S statistic. The p-value
associated with C∗ is obtained by comparing it to a monte carlo distribu-

22

http://biostats.bepress.com/ucbbiostat/paper263



tion of the same statistic but with W(i) replaced by the corresponding order
statistic from a set of Z randomly generated Gamma random variables using
the same fitted gamma parameters as F̂G. That is, the statistic generated
above, C∗, is compared to a monte carlo-generated distribution of

C =
1

Z

Z∑
i=1

[
Q(i) − F̂−1

G

(
i

Z + 1

)]2

(9)

where Q(i) is the ith order statistic of a set of n i.i.d. G(a, b) random variables,
where a and b are again the Gamma parameters fitted from the data, i.e.,
the parameters of F̂G. One then gets values C1, C2, ...CK and the p-value
associated with C∗ is estimated as

p̂C∗ =
1

K

K∑
k=1

I (Ck > C∗)

.
We ran K = 5000 sets of draws of size Z from F̂G for each estimate of pC∗

for each simulation shown in table 3. (Note that even for a fixed value of
C∗, p̂C∗ is a random variable with SE proportional to 1/

√
K.) As mentioned

above, the C-statistic is sensitive to outliers, and thus if there are a few of
these in the extremes of the tails, but the fit of the Gamma to the null of W
is otherwise good, the few outliers can be removed to get a better assessment
of the goodness of fit.

Rather than tinkering with outliers, a better method of assessing the good-
ness of fit of the Gamma near a specific point in the distribution (for ex-
ample near F−1(0.95)) using the C-statistic is to systematically down-weight
the differences in order statistics that are far from the point of interest. For
example, if one is using α′ = 0.05 as a GoF cutoff p-value, then one would
down-weight differences in the empirical and fitted Gamma distributions that
are far from F−1(0.95). The resulting p-value will then be relatively insensi-
tive to all differences sufficiently far from the region of interest, and so this
modified statistic now only measures goodness of fit close to this region. We
achieve this by multiplying the summands in (8) and (9) by a kernel function.
For example, (8) becomes

C∗ =
1

Z

Z∑
i=1

[
W(i) − F̂−1

G

(
i

Z + 1

)]2

∗K(i, α)
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where K(i, α) can be any of a number of common kernel functions, and α is
the cutoff p-value of interest. An example of a Gaussian kernel function in
this context with scale (2α)2 is

K(i, α) = exp

[
−
(

i
Z+1
− (1− α)

)2
(2α)2

]
The magnitude of down weighting as i/(Z + 1) moves away from the point
of interest, (1 − α), is adjusted with the scale term, i.e., the kernel band-
width. The p-value obtained with this technique is somewhat sensitive to
the choice of scale: setting the scale term too low will target the cutoff point
too narrowly, over-stressing the importance of the subjective choice of cutoff,
α. At the other extreme, setting the scale too high will include regions of the
distributions being compared that are far from the point of interest, and may
thus include irrelevant discrepancies, which of course defeats the purpose of
the kernel modification.

With the scale term set to α = 0.05, even the extreme right order statistics get
a non-zero weight (≈ 0.4), and we thus consider this a somewhat conservative

bandwidth. In our simulations, the difference between Wi and F̂−1
G

(
i

Z+1

)
was typically very small in the region of interest ( i

Z+1
≈ 0.95). The modified

version of the C-statistic using a kernel thus gave high goodness of fit p-
values for most of the scenarios explored (see Table 4). We found that for
all simulations the bandwidth could be adjusted downward such that C∗

became significant (at level α′ = 0.05) for the 0.95 quantile of the permutation
distribution. Of course, as with all selection criteria, the bandwidth of the
kernel function must be chosen before performing the model fitting procedure.

The utility of the C-statistic is that one might well reject a best-fit Gamma
distribution based on the K-S statistic alone when in fact the fit is rather good
in the region of interest. We therefore recommend accepting the plausibility
of a particular Gamma fit if either statistic is significant, or if the kernel-
modified C∗ is significant. The K-S and unmodified C-statistic give overall
GoF, while the modified C-statistic gives a targeted GoF for near the cutoff
region.

Figure 5 shows the type I error rate associated with using a Gamma ap-
proximation at various numbers of permutations, compared to that of the
raw permutation distribution (FW ) for Z = 10,000 permutations. The data
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X ∼ N(0,Σ1)
Folds C Modified C

3 Learners 5 Learners 3 Learners 5 Learners
4 0.40 0.25 0.46 0.23
8 0.025 0.023 0.068 0.067

X ∼ N(0,Σ2)
3 Learners 5 Learners 3 Learners 5 Learners

4 0.039 0.069 0.060 0.12
8 0.096 0.0178 0.15 0.02

X ∼ Bernoulli
4 Learners 5 Learners 4 Learners 5 Learners

10 0.078 0.052 0.19 0.09

Table 4: Goodness of fit p-values from the C-statistic and modified C-statistic for the
same simulation scenarios as table 3. The p-value is greater for the modified C for every
case but one, indicating that the Gamma fit in the region of interest (0.95 quantile) is
better than the overall fit in these cases. Note that for some of the simulations the p-value
is significant (assuming a cutoff of α′ = 0.05) for the modified C but not for the unmodified
version.

simulated were from the worst case scenario of table 3 (high correlation be-
tween covariates), in the sense that the Gamma fit was the poorest for any of
the categories of data we simulated. It thus represents a worst case scenario
for a Gamma-fitting procedure. Error rates were computed for the various
subsamples of FW by finding the fraction of the ordered subsample to the
right of F−1

W (0.95) where FW was the permutation (i.e. null) distribution.
F−1

W (0.95) was considered the “true” 95th quantile for the given simulated
data set (even though FW , as we use the term here, is, of course, an empirical
estimation of the true null distribution of W). In other words, for subsample
s, the estimated error rate based on a Gamma fit for that subsample is given
by

1− FW

(
F̂−1

sG
(0.95)

)
(10)

where Fs is just the distribution function of subsample s and F̂sG
is the

Gamma distribution whose parameters were estimated from s. Similarly,
using the ordered subsample without fitting a Gamma to it, the error rate
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is given by 1− FW

(
F−1

S (0.95)
)
, where Fs is just the distribution function of

the subsample.

Figure 5 shows the distributions of (10) for each of 5000 sets of subsamples,
each of which includes various subsample sizes. Each of the subsamples was
cumulative in the following sense. First, a subsample of 50 permutations was
drawn from the original 10,000 permutations. Then an additional 50 were
drawn from the remaining 9950 permutations to give a subsample of 100,
and so on up to a subsample size of 2000. Thus the 5000 sets of subsam-
ples mentioned above consisted of 5000 independent sets of values at each
subsample size, gathered in the manner just described.

The figure suggests the Gamma-based error estimates are very slightly biased
at larger subsample sizes compared to those based on the ordered subsample
itself, but the Gamma-based variances of the estimates are also lower. This
is also noticeable in Figure 6, which shows box plots of the distribution of
estimates of the 95th quantile for 5000 independent sets of subsamples of
the original 10,000 permutations. The variance of F̂−1(0.95) at each sub-
sample size is clearly lower for the Gamma-fitted estimates than for the raw
subsamples themselves.

The lower variance for the Gamma-fitted estimates leads to a lower MSE,
and therefore beats the raw permutation estimates at the various subsample
sizes. The real question is what an acceptable trade off is between number of
permutations and variance in the expected error rate. We have no definitive
answer for this question, but it seems a permutation sample of between 500
and 1000 would correspond to an acceptable error rate error.

To summarize, a recommended procedure for using Gamma-fitting to esti-
mate the p-value of W ∗ is as follows.

1. Select the data-adaptive algorithms that are to be used in the Super
Learner and obtain W ∗ from the original data.

2. Permute the data as described in the Simulations section, Z = 500 to
1000 times.

3. Run the Super Learner on each permutation to obtain Wz and record
it.

4. With FW now in hand, use method of moments (or MLE) to estimate

the parameters of F̂G. Compute K-S and C p-values. If any of the
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Figure 5: Estimated type I error rates from 5000 sets of subsamples of the original 10,000
permutations. Subsample sizes were 50, 100, 200, 500, 1000 and 2000. The simulated data
had high correlation between covariates, and the data here is for 3 learners and 8 cross-
validation folds.
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Figure 6: Distribution of 0.95 quantiles from 5000 sets of subsamples of the original
10,000 permutations for a simulation with high correlation between covariates. Subsample
sizes were 50, 100, 200, 500, 1000 and 2000. The data here is again for 3 learners and 8
cross-validation folds. The red line represents the “true” 95th quantile obtained from the
permutation distribution, FW .
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methods (K-S, C or kernel-modified C) produces a p-value ≥ 0.05 -
0.1, consider the fit good, go to the next step. Otherwise stick with
raw permutation distribution with ≥ 3000 permutations, and reject the
null if ppw ≤ α.

5. Reject the null if W ∗ > F̂−1
G (1− α).

Note that if many data sets are to be tested for the global null mentioned in
the introduction, and all have the same type of distribution of marginal X and
marginal Y, then one could perform the procedure above with a very large
number of permutations (say, Z = 10,000) on one data set, and thereby get

a much better sense of the goodness of fit of F̂G, and a better approximation
to the true FG (if the null distribution of W truly is Gamma).

Conclusions

The results show that aggressive data-adaptive regression techniques can be
used to generate powerful tests of association when the relationship between
covariates and binary outcomes is subtle. Arguably, the most adaptive of
all possible data adaptive algorithms for this purpose when the true data
generating distribution is unknown is the Super Learner.

We expect the Super Learner algorithm to perform ever better as more algo-
rithms are included in its library. The number of learners can be polynomial
in sample size. Thus for sample sizes greater than 100, the number of learn-
ers one could potential include is enormous. In the simulations here, many
more learners could have been included, but the computation time was too
great given that we needed to simulate 500 or more data sets.

In practice, we believe it is reasonable to perform model fitting (specifically,
Gamma) to the permutation distribution for a small number of permutations,
on the order of 500 - 1000, when the data is of the type assumed in our
simulations, and with up to five learners in the Super Learner. If the Gamma
fit is good according to the criteria discussed in the previous section, it is
reasonable to compare W ∗ to the fitted Gamma for null hypothesis rejection.

Though we have focused on binary outcomes, the method can easily be ex-
tended to categorical and continuous outcomes. One would of course want
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to ensure that the Super Learner library includes algorithms that are appro-
priate for those outcomes.
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