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Analyzing Sequentially Randomized Trials
Based on Causal Effect Models for Realistic

Individualized Treatment Rules

Oliver Bembom and Mark J. van der Laan

Abstract

In this paper, we argue that causal effect models for realistic individualized treat-
ment rules represent an attractive tool for analyzing sequentially randomized tri-
als. Unlike a number of methods proposed previously, this approach does not rely
on the assumption that intermediate outcomes are discrete or that models for the
distributions of these intermediate outcomes given the observed past are correctly
specified. In addition, it generalizes the methodology for performing pairwise
comparisons between individualized treatment rules by allowing the user to posit
a marginal structural model for all candidate treatment rules simultaneously. If
only a small number of candidate treatment rules are under consideration, a non-
parametric marginal structural can be used to conveniently carry out all of the pair-
wise comparisons of interest in a single step. An appropriately chosen marginal
structural model becomes particularly useful, however, as the number of candidate
treatment rules increases, in which case an approach based on individual pairwise
comparisons would be likely to suffer from too much sampling variability to pro-
vide an informative answer. In addition, such causal effect models represent an
interesting alternative to methods previously proposed for selecting an optimal in-
dividualized treatment rule in that they give the user a sense of how the optimal
outcome is estimated to change in the neighborhood of the identified optimum. We
discuss an inverse-probability-of-treatment-weighted (IPTW) estimator for these
causal effect models that is straightforward to implement using standard statis-
tical software and develop an approach for constructing valid asymptotic confi-
dence intervals based on the influence curve of this estimator. The methodology
is illustrated in two simulation studies that are intended to mimic an HIV/AIDS
trial.



1 Introduction

The treatment and management of most chronic or relapsing diseases requires an adaptive strategy that
repeatedly adjusts a patient’s treatment in response to the observed course of illness. In cancer chemother-
apy, for instance, physicians often have available a number of possible treatment options that vary widely,
however, in their effectiveness for different patients. After observing a patient’s response to the first course
of chemotherapy, a physician has to decide whether the selected treatment is effective for this patient or
whether the patient should be switched to a new treatment. In the management of HIV/AIDS, physicians
likewise have a growing number of treatment options to choose from. In this case, however, the effectiveness
of a selected treatment is also likely to change over time for a given patient: While the virus infecting the
patient may be initially susceptible to the treatment, it may acquire drug resistance mutations over time
that render the treatment ineffective.

In such cases, candidate adaptive strategies, also referred to as dynamic or indivualized treatment rules,
are based on a number of different decisions: Which treatment should be used to initially treat a patient?
Which treatment should the patient be switched to if the first-line treatment fails? Given an observed
intermediate outcome such as change in tumor size or CD4 count, what threshold should be used to decide
that the current treatment is failing?

In recent years, sequentially randomized trials have been proposed as a means for investigating such
questions (Thall et al., 2000; Lavori and Dawson, 2000, 2004; Murphy, 2005). Conventional randomized
trials that randomize patients once to a candidate treatment that is then intended to be followed for the
duration of the trial are aimed at comparing static treatment regimens, i.e. regimens that do not change
in response to a patient’s observed course of illness. Sequentially randomized trials, in contrast, repeatedly
re-randomize patients to a set of eligible treatment options over the course of the trial and are specifically
aimed at comparing individualized treatment rules. Since the randomization probabilities are allowed to
depend on a subject’s history of response to treatment, subjects that have responded poorly to their current
treatment can be assigned a low probability of being randomized to the same treatment again. Such a
design can thus also be hoped to reduce the high rates of drop-out and patient non-compliance that plague
conventional trials (Lavori and Dawson, 2000).

A number of sequentially randomized trials are currently being conducted or have already been completed.
These include the CATIE trial for atypical antipsychotic medications in patients with Alzheimer’s disease
(Schneider et al., 2006), the CATIE trial for antipsychotic medications in patients with schizophrenia (Swartz
et al., 2007), the STAR*D trial for the treatment of depression (Rush and Fava, 2003; Lavori et al., 2001),
and phase II trials for prostate cancer chemotherapy drugs at the MD Anderson Cancer Center (Thall et al.,
2000). Most of these trials are exploratory in the sense that they are aimed at developing promising candidate
individualized rules that can then be studied in more detail in confirmatory trials.

Statisticians have begun to develop methods for comparing a small number of candidate individualized
treatment rules (Thall et al., 2000; Lavori and Dawson, 2000, 2004; Murphy et al., 2001; Hernan et al., 2006).
In many cases, however, the collection of candidate treatment rules is sizeable, as, for instance, in the case of
threshold switching rules that switch a patient to a new treatment if an observed intermediate outcome such
as the change in CD4 count falls below a certain threshold θ. In such cases, a comparison of all candidate
treatment rules based on these methods becomes either infeasible or yields highly variable results that are
unlikely to provide an informative answer.

van der Laan and Petersen (2007) recently proposed a methodology for comparing individualized treat-
ment rules that addresses this problem by relying on a marginal structural model (MSM). While the authors
present their methodology in the context of analyzing observational data, we will argue here that this ap-
proach provides a particularly attractive tool for analyzing sequentially randomized trials. Apart from the
ability to parsimoniously contrast a large number of candidate individualized treatment rules, we will high-
light a number of other advantages over previously proposed methods. These include the reliance on a
minimum number of modelling assumptions, the ease of implementation using standard statistical software,
and the ability to gain a sense of how candidate treatment rules in the neighborhood of an identified optimal
rule compare to that optimal rule. Thus an analysis based on this approach might, for instance, allow an
investigator to conclude that, while an optimal rule would switch patients to a salvage regimen if their CD4
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count drops by more than 50 cells/µl, there is little evidence that rules based on thresholds between 10 and
90 cells/µl would yield significantly worse results.

van der Laan and Petersen (2007) propose to use the bootstrap for obtaining confidence intervals and
p-values for their parameter estimates. We here show that, in the context of sequentially randomized trials,
valid asymptotic confidence intervals and p-values can in fact be obtained in closed form based on the influence
curve of the proposed estimator. Avoidance of the often computationally intensive bootstrap should further
add to the appeal of this methodology. In addition, we illustrate in the context of the threshold switching
problem that it is often possible to obtain confidence intervals not only for the expected outcome under the
optimal switching threshold, but also for the optimal threshold itself. Such confidence intervals would give
the investigator a sense of how precisely the optimal threshold can be estimated based on the available data,
a feature that is not provided by previously proposed methods.

The remainder of this article is organized as follows. After reviewing the counterfactual framework for
causal inference in the next section, we provide a more detailed comparison of previously proposed methods
for analyzing sequentially randomized to that developed in van der Laan and Petersen (2007). Section 4
then describes in detail how to perform estimation based on this latter approach. We next illustrate the
methodology in the context of two simulation studies that are meant to mimic a sequentially randomized
HIV/AIDS trial. In section 6, we close with a discussion of a number of potential extensions to the method-
ology presented here.

2 Counterfactual framework for causal inference

In this section, we review the counterfactual framework for causal inference that forms the basis for most
of the approaches proposed for comparing individualized treatment rules. We use the notation introduced
by Murphy et al. (2001). Suppose that for each subject a total of k treatment assignments A1, A2, . . . , Ak

are made. For the sake of simplicity, we assume that only a finite number of possible treatment options
are available. Let S1 denote information available on the subject at baseline that could be used to assign
treatment A1; for 1 < j ≤ k, Sj denotes an intermediate outcome measured at time point j. The observed
data structure on a given subject thus consists of

O = (S1, A1, S2, A2, . . . , Sk, Ak, Sk+1). (1)

We use the notation S̄(j) = (S1, . . . , Sj) to signify information available through time point j; in particular,
we use S̄ = S̄k+1 to denote the entire history of S. The outcome of interest is given by Y = u(S̄, Ā) for
some known real-value summary function u. Y might for example be the difference between the CD4 count
measured at the end of the trial and that measured at baseline. The observed data now consist of n i.i.d.
copies O.

The counterfactual framework for causal inference was first introduced by Neyman (1923), extended
to causal effects of time-dependent treatments by Rubin (1978), and then further extended to a formal
theory of causal inference for direct and indirect effects of time-dependent treatments from experimental
and observational longitudinal studies by Robins (1986, 1987). Within this framework, the observed data
structure O is viewed as a censored version of a hypothetical full data structure X = (S̄(ā) : ā ∈ A) that
contains the outcome process S̄(ā) we would have observed on this subject had she been assigned the static
treatment regimen ā for all ā in the collection A of possible static treatment regimens. The consistency
assumption O = (Ā, S̄(Ā)) states that the observed data consist of the observed treatment process Ā along
with the counterfactual outcome process S̄(Ā) corresponding to that treatment. The distribution P0 of the
observed data O can thus be indexed by the distribution FX of the full data structure X and the conditional
distribution g(· | X) = P (Ā = · | X) of the treatment assignment given the full data; g is commonly referred
to as the treatment mechanism.

As defined in Robins (1986), an individualized treatment rule d is a sequence of decision rules d =
(d1, . . . , dk) that for each time point j map the available information (S̄j , Āj−1) into a treatment option
aj . As with static treatment regimens, we use the notation S̄(d) to denote the outcome process we would
have observed on the subject had she followed the individualized rule d, i.e. S̄(d) = S̄(ā) where ā = (a1 =
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d(S1), a2 = d(S̄2(a1), a1), . . .). We can now compare two candidate individualized treatment rules d1 and
d2 on the basis of the mean outcomes E[Y (d1)] and E[Y (d2)] for the two hypothetical scenarios that all
subjects in the target population were to follow rules d1 and d2, respectively.

Note that parameters of this type are defined as parameters of the full data distribution FX . Apart from
the consistency assumption, two additional assumptions are generally required in the counterfactual frame-
work for causal inference in order to identify such parameters on the basis of the observed data distribution
P0. The Sequential Randomization assumption states that treatment assignment at time j is independent
of the full data X given the information (Āj−1, S̄j) available just prior to this treatment assignment. The
Experimental Treatment Assignment (ETA) assumption states that all candidate individualized treatment
rules under consideration are realistic in the sense that all subjects have positive probability of following any
one of them. Since the treatment assignment probabilities are under the control of the investigator, these
two assumptions are in general trivially satisfied, as long as some care is taken to define the collection of
candidate treatment rules in agreement with the design of the trial. A protocol, for example, that stipulates
that any subject with a drop in CD4 count of 50 cells/µl or greater cannot be assigned to their current
treatment again does not allow the investigator to study an individualized rule that requires some subjects
with a drop in CD4 count of 60 cells/µl to continue on their current treatment. Such a rule would not be
realistic given the design of the trial.

3 Comparison with other approaches

The notion of realistic individualized treatment rules was first introduced by Robins (1986) in the context of
a study aiming to estimate the effect of workplace exposure to chemicals. Since subjects that are unable to
come work on a given day cannot be exposed to these chemicals, static treatment rules that assign a fixed
exposure level to all subjects cannot be identified from such a study, making it necessary to focus instead on
realistic individualized treatment rules.

In recent years, a number of methods have been proposed for estimating the mean counterfactual outcome
E[Y (d)] corresponding to a given individualized treatment rule d. Lavori and Dawson (2000) consider a
sequentially randomized trial aimed at finding an optimal criterion for switching patients who fail on a first
anti-depressive drug to a second drug. The intermediate outcome Sj records the number of time periods
through time point j during which symptoms of depression were present. The candidate treatment rules
under consideration switch a patient to the new drug once Sj reaches a threshold θ. The authors propose
to estimate E[Y (d)] by imputing the full data structure X for each subject. For a subject that reaches an
intermediate score of Sj = s and then remains on her current treatment, for instance, the future outcome
process for the rule θ = s is unobserved, but can be imputed by sampling from the outcome processes of
subjects who did switch at time j and who had the same intermediate score of Sj = s. This approach yields
a valid estimate of E[Y (d)] without any additional assumptions only as long as the number of values that the
intermediate outcome Sj can take on is small compared to the number of subjects. If Sj records a subject’s
CD4 count, for instance, it will be very unlikely that the data set contains subjects who switched at time
point j and who had the exact same CD4 count Sj as the subject who did not switch at j.

In essence, this imputation approach relies on estimating the distributions P (Sj | S̄j−1, Āj), j ≤ k. If
Sj can take on only a fairly small number of values, such estimates can be obtained non-parametrically, i.e.
in the absence of any modeling assumptions. In general, however, modeling assumptions cannot be avoided
in order to obtain useful estimates. One might, for example, have to assume that the CD4 count at time
point l follows a normal distribution with a given mean that is a particular function of past CD4 counts and
treatment assignments. The estimates of E[Y (d)] provided by this imputation approach, however, are now
only valid if these models are correctly specified.

Lavori and Dawson (2004) propose to estimate E[Y (d)] by G-computation (Robins, 1989b), an approach
that uses an estimate of the distributions P (Sj | S̄j−1, Āj), j ≤ k, in order to generate a large number of
realizations of Y (d) for each subject that can then be averaged to obtain the expected outcome for this
subject under rule d. An estimate of E[Y (d)] is then obtained by averaging these expected outcomes over
all subjects in the study. Thall et al. (2000) propose a similar approach for studying switching rules in
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the context of cancer chemotherapy rules. G-computation is very similar to the imputation methodology
proposed by Lavori and Dawson (2000) in that both approaches yield a valid estimate of E[Y (d)] only if Sj

is discrete or if our modeling assumptions on P (Sj | S̄j−1, Āj) are correct.
Murphy et al. (2001) propose inverse-probability-of-treatment-weighted (IPTW) as well as double robust

estimating functions for estimating the parameter β in the model E[Y (d) | V ] = m(V | β). Here V is a
subset of the baseline covariates S1 so that the mean counterfactual outcome under the rule d is allowed to
be different for different values of V . An investigator might, for example, be interested in understanding how
the mean counterfactual outcome under rule d changes as a function of age at baseline. IPTW estimators
are based on the idea of weighting each subject by the inverse of the probability of following her observed
treatment in order to generate a new sample in which treatment assignment is independent of any charac-
teristics that are predictive of the outcome (Robins and Rotnizky, 1992; Robins, 1993). In an observational
setting, the treatment mechanism P (Aj | S̄j , Āj−1), j ≤ k has to be estimated in order to obtain the desired
weights, with valid estimates of the parameter of interest depending on correct specification of the models
used for this purpose. In a randomized trial, however, the treatment assignment probabilities are known
to the investigator so that valid estimates of E[Y (d)] or E[Y (d) | V ], for instance, can always be obtained,
without requiring that Sj consists of a single discrete covariate. This increased flexibility and robustness
should in general make IPTW estimators a more appealing choice in the context of randomized trials than
methods based on estimating P (Sj | S̄j−1, Āj) such as those proposed by Lavori and Dawson (2000, 2004);
Thall et al. (2000). The double robust estimating functions proposed by Murphy et al. (2001) can provide
an increase in efficiency, but offer the same robustness properties as the IPTW estimating functions in the
context of a randomized trial.

Two candidate individualized treatment rules d1 and d2 can be compared on the basis of their estimated
mean counterfactual outcomes E[Y (d1)] and E[Y (d2)]. Murphy (2005) develops a test statistic based on the
IPTW estimator for testing the hypothesis that these two counterfactual means are equal. Hernan et al.
(2006) give a review of this approach in the survival setting. If more than two candidate individualized
treatment rules are under consideration, we can select an optimal rule by performing a series of pairwise
comparisons to an appropriately chosen reference rule. This approach becomes problematic, however, if the
number of candidate treatment rules to compare is sizeable. Consider, for instance, the threshold switching
problem introduced above in which we consider rules that switch a patient to a new treatment option once her
CD4 count has dropped by at least some value θ. In principle, the parameter θ indexing this set of candidate
rules is continuous so that we will be comparing an infinite number of individualized treatment rules. But even
if we restrict ourselves by, for instance, only considering rules indexed by θ ∈ {−200,−195, . . . ,−10,−5, 0},
the sampling variability of the resulting estimates is likely to be too large to arrive at an informative answer.
In such cases, it would generally be necessary to rely on modeling assumptions about how the the expected
mean counterfactual outcome E[Y (d)] changes as function of θ.

van der Laan and Petersen (2007) recently introduced a class of causal effect models that allow the
investigator to do just that. These models are of the form

E[Y (d) | V ] = m(d, V | β), (2)

for some parameterization (d, V ) → m(d, V | β) indexed by a Euclidean parameter β. They thus model
the conditional mean counterfactual outcome E[Y (d) | V ] for all candidate rules d simultaneously. We note
that the corresponding estimators were also developed independently by Orellana et al. (2007). In working
with these models, we may follow one of two different approaches. First, we may be willing to assume that
the true data-generating distribution actually satisfies this model. In that case, the parameter of interest
is given by β in (2). If one believes, however, that such a model is unrealistic, it is more honest to view
m(d, V | β) as a working model that is only used to define a smooth version of E[Y (d) | V ]. This can be done
by defining the parameter of interest as the projection of the true conditional mean function E[Y (d) | V ]
onto the working model:

βh(FX) ≡ arg min
β

∑
d,V

h(d, V )
[
EFX

(Yd | V )−m(d, V | β)
]2

, (3)
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where h(d, V ) is a user-supplied weight function (Neugebauer and van der Laan, 2007).
We note that the pair-wise comparison approach proposed by Murphy (2005) and Hernan et al. (2006)

for the case of a relatively small number of candidate rules {d0, d1, . . . , dp} represents a special case of this
methodology that can be accommodated by employing a non-parametric model of the form

m(d, V | β) = β0 + β1I(d = d1) + . . .+ βpI(d = dp), (4)

where d0 is taken as the reference rule. The parameter βj then gives the difference E[Y (dj)]− E[Y (d0)].
We also note that the causal effect models introduced in van der Laan and Petersen (2007) represent

an interesting alternative to methods currently used for selecting an optimal individualized treatment rule.
Murphy (2003) and Robins (2003) propose a dynamic programming approach to this problem that is based on
structural nested models (Robins, 1989a, 1994, 1997, 1999). This approach selects an optimal treatment rule
and gives an estimate of the expected counterfactual outcome corresponding to that rule, but it does not give
the user a sense for how this expected counterfactual outcome changes in the neighborhood of the selected
rule. In the context of selecting a switching threshold, for instance, we would not know if increasing the
selected threshold by say 10 cells/µl would be estimated to result in a 1% or a 50% reduction in the expected
outcome. The causal effect models discussed here, however, allow us to examine the expected outcome
corresponding to any candidate treatment rule, not just the one selected as the optimal rule. Identifying the
optimal individualized treatment rule can be a very ambitious task. Often it seems more realistic to identify
a range of plausible treatment rules that are estimated to yield favorable outcomes along with a sense for
the outcome varies over that range.

van der Laan and Petersen (2007) develop IPTW and double robust estimating functions for estimating
parameters of interest defined based on such models. As pointed out before, IPTW estimators represent an
appealing option in the context of randomized trials, with double robust estimators affording no extra gain
in robustness in this case. Compared to double robust estimators, they offer the advantage of being fairly
straightforward to implement using standard statistical software. In the following section, we review the
IPTW estimating functions and describe how they can be implemented in practice. In addition, we develop
a method for obtaining inference for the IPTW estimator in closed form based on its influence curve.

4 Estimation

Since the parameter of interest is a parameter of the data-generating distribution FX of the full data structure,
we can apply the general estimating function methodology of Robins and Rotnizky (1992) and van der Laan
and Robins (2003) to obtain the class of IPTW and double robust estimating functions. In order to obtain
the class of IPTW estimating functions which we will focus on here, two steps are required. First, we need
to find the class of full-data estimating functions, i.e. the class of estimating functions we would use if we in
fact observed the full data structure X on each subject. Second, we need to map these estimating functions
into estimating functions of the observed data structure O that have the property that their conditional
expectation given X gives back the class of full-data estimating functions.

Let A∗ denote the set of candidate individualized treatment rules. If we assume model (2), the class of
full-data estimating functions is then given by the usual class of estimating functions for repeated measures
regression: { ∑

d∈A∗

h(d, V )
∂

∂β
m(d, V | β)

[
Yd −m(d, V | β)

]
: h

}
. (5)

If we instead define the parameter of interest as in (3), the single full-data estimating function is given by∑
d∈A∗

h(d, V )
∂

∂β
m(d, V | β)

[
Yd −m(d, V | β)

]
. (6)

A given full-data estimating function can now be mapped into the following IPTW observed-data estimating
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function whose conditional expectation given X equals the original full-data estimating function:

Dh,IPTW (O | g0, β0) =
∑

d∈A∗

I(Ā = d(L̄))
g0(Ā | X)

h(d, V )
∂

∂β
m(d, V | β)

[
Y −m(d, V | β)

]
, (7)

where g0(ā | X) ≡ P (Ā = ā | X) denotes the known treatment mechanism. Commonly an estimate of
P (Ā = ā | V ) is used for the factor h(d, V ) in IPTW estimating functions in order to obtain so-called
stabilized weights (e.g., Hernan et al., 2000), but this can generally be avoided in randomized trials if the
investigator ensures that treatment assignment probabilities that are bounded away from zero. In that case,
one can simply use h(d, V ) = 1.

The corresponding IPTW estimator βIPTW
n is defined as the solution of the estimating equation

0 =
1
n

n∑
i=1

∑
d∈A∗

I(Āi = d(L̄i))
g0(Āi | Xi)

h(d, Vi)
∂

∂β
m(d, V | β)

[
Yi −m(d, Vi | β)

]
. (8)

Since this solution is equivalent to

βIPTW
n = arg min

β

n∑
i=1

∑
d∈A∗

I(Āi = d(L̄i))
g0(Āi | Xi)

h(d, Vi)
[
Yi −m(d, Vi | β)

]2

, (9)

βIPTW
n can be obtained by creating a new data set that for each subject contains one line for each candidate

treatment regimen d ∈ A∗ and then regressing these derived observations on the model m(d, V | β) using
weights h(d, Vi)/g0(Āi | Xi). Apart from the first step, this estimator therefore requires the same amount of
programming as the IPTW estimator introduced by Murphy (2003).

van der Laan and Petersen (2007) suggest using the bootstrap to obtain confidence intervals and p-values
for the estimates provided by this IPTW estimator. Since the treatment mechanism is known in randomized
trials, however, we can also base inference in a straightforward manner on an asymptotic normal distribution
that can be derived based on the influence curve of the estimator. Recall that the estimator βIPTW

n is
asymptotically linear with influence curve ICIPTW (O | g0, β) if we can write

√
n(βIPTW

n − β0) =
1√
n

n∑
i=1

ICIPTW (Oi | g0, β0) + op(1). (10)

This implies in particular that √
n(βIPTW

n − β0) ⇒ N(0,Σ2) (11)

with Σ2 = V ar(ICIPTW (O | g0, β0)). In order to base inference on this limiting distribution, we need to
obtain an estimate of the variance Σ2 of the influence curve of the estimator.

Since βIPTW
n is defined as the solution of an estimating equation derived from an estimating function

that lies in the orthogonal complement of the nuisance tangent space, its influence curve is given by an
appropriately standardized version of the estimating function itself (Bickel et al., 1993):

ICIPTW (O | g0, β0) = −c−1DIPTW (O | g0, β0), (12)

where, as elaborated in section A of the appendix, the standardizing constant −c−1 is defined by

c =
∂

∂βT
EDIPTW (O | g0, β)

∣∣∣
β=β0

= −EV

{ ∑
d∈A∗

h(d, V )
∂

∂β
m(d, V | β)

∣∣∣∣
β=β0

∂

∂βT
m(d, V | β)

∣∣∣∣
β=β0

}
. (13)
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An estimate cn of c can be obtained by replacing the expectation over V by the empirical mean over the
sample:

cn = − 1
n

n∑
i=1

{ ∑
d∈A∗

h(d, Vi)
∂

∂β
m(d, Vi | β)

∣∣∣∣
β=β0

∂

∂βT
m(d, Vi | β)

∣∣∣∣
β=β0

}
. (14)

In the case of a linear marginal structural model, for instance, with m(d, V | β) = Zdβ for a p-dimensional
column vector β and a p-dimensional row vector Zd, we have that

cn = − 1
n

n∑
i=1

{ ∑
d∈A∗

h(d, Vi)ZT
d,iZd,i

}
. (15)

If we let Z denote the design matrix corresponding to the model m(d, V | β) obtained by stacking the row
vectors Zd,i and we use h(d, V ) = 1, cn can thus be obtained as

cn = − 1
n
ZT Z. (16)

An estimate Σ2
n of Σ2 can then be obtained as the sample variance of ICIPTW

n (O | g0, βn) = −c−1
n DIPTW (O |

g0, β
IPTW
n ). An asymptotic 95% confidence interval for βj , for example, can now be constructed as

βIPTW
j,n ± 1.96

√
Σ2

n(j, j)
n

, (17)

where Σ2
n(j, j) is the entry in cell (j, j) of Σ2

n.
Even though the true treatment mechanism g0 is known to the investigator, one may want to consider

obtaining an estimate gn of g0 from the sample and substituting gn for g0 in the estimator (8). Since the true
treatment mechanism is known, it is straightforward to obtain an estimate gn that is consistent, guaranteeing
that the resulting estimator still provides a valid estimate of β. At the same time, however, it is known that
an estimator based on gn can be more efficient than an estimator based on g0 (van der Laan and Robins,
2003). While this seems somewhat counter-intuitive at first, one can think of the estimator based on gn as
adjusting for empirical confounding that is caused by any chance imbalance between treatment groups in a
covariate that has an independent effect on the outcome.

The influence curve for the estimator based on gn is given by (12) minus its projection on the tangent
space corresponding to the model for the treatment mechanism. If that model is non-parametric, the influence
curve of the resulting IPTW estimator is equal to the efficient influence curve, making the estimator in fact
efficient (van der Laan and Robins, 2003). In that case, the efficient influence curve, derived in van der
Laan and Petersen (2007) can be used for inference. If the model for the treatment mechanism is not non-
parametric, however, the projection of the influence curve (12) onto the scores of that model must be worked
out by hand. In practice, it may be more reasonable to be somewhat conservative and base inference for an
inefficient estimator based on gn on the influence curve (12). Alternatively, one may use the bootstrap for
inference.

5 Simulation studies

We now present two simulation studies that illustrate the methodology described in this article. These
simulation studies are intended to mimic a sequentially randomized trial that studies the effect of four
candidate drugs on the change in CD4 count relative to baseline among HIV-positive patients. The observed
data on each patient consist of O = (S1, A1, S2, A2, S3), where Sj denotes the CD4 count measured at time
point j and Aj denotes the treatment assigned at time point j. The outcome of interest is given by the
change in CD4 count relative to baseline observed at the end of the study, Y ≡ S3 − S1.

In both simulation studies, we are interested in comparing indivualized treatment rules that start a
patient on some drug a1 and then switch her to drug a2 if we decide that she is not responding well enough
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to a1. Specifically, we consider rules that switch a patient to a new drug if the change in CD4 count S2−S1

observed between the first two time points falls below some threshold θ. In the first simulation study, θ
is assumed to be known ahead of time so that we are tasked with comparing the twelve switching rules
{d(a1, a2) : a1 6= a2} obtained by selecting a initial treatment option and a drug to switch to if that first
option fails. The second simulation study mimics a trial that is aimed at finding not only the best choices
for a1 and a2, but also for the switching threshold θ. The candidate treatment rules d(a1, a2, θ) in this
more ambitious trial are thus indexed by three parameters. Apart from the treatment mechanism, the two
simulation studies agree in the following setup.

The expected response of a given patient to a candidate drug l depends on whether the virus infecting
the patient is susceptible or resistant to that drug. We use Ul = 1 and Ul = 0 to denote susceptibility and
resistance to drug l, respectively. For the sake of simplicity, Ul is assumed to remain constant over the course
of the trial. A patient is susceptible to drug one with probability P (U1 = 1) = 0.7. Drugs one and two
are assumed to work according to a similar mechanism so that resistance to drug two is highly correlated
to resistance to drug one. In particular, we assume that a patient who is susceptible to drug one is also
susceptible to drug two with probability P (U2 = 1 | U1 = 1) = 0.9 and that a patient who is resistant to
drug one is also resistant to drug two with probability P (U2 = 0 | U1 = 0) = 0.95. Drugs three and four
are assumed to represent a second mechanistic class so that U3 and U4 are generated in the same manner
as U1 and U2, but independent of these first two susceptibility scores. Note that U = (U1, U2, U3, U4) is not
observed by the investigator.

Baseline CD4 counts S1 are generated from a uniform distribution over the interval from 200 to 800. The
CD4 count between two time points j and j + 1 is assumed to drop by an average of β0 = −40 cells/µl if
the patient is untreated or treated with a drug to which the virus is resistant to. If the patient is treated
with drug one and the virus is susceptible to drug one, the CD4 count is assumed to increase by an average
of 10 cells/µl between two time points, corresponding to an effect of γ1 = 50 for drug one. The effects of
the remaining three drugs are assumed to be γ2 = 60, γ3 = 50, and γ4 = 40, respectively. Specifically, a
patient’s CD4 count at time j + 1 is generated from a N(µj , σ

2) distribution, where σ2 = 100 and

µj = Sj + γ0 + γ1U1I(Aj = 1) + γ2U2I(Aj = 2) +
γ3U3I(Aj = 3) + γ4U4I(Aj = 4). (18)

5.1 Example 1: Switching rules

In this simulation, we assume that the switching threshold θ is fixed ahead of time at some value θ0. Based
on expert opinion, one may, for example, believe that patients with changes in CD4 counts below θ0 = −40
should always be switched to one of the remaining treatment options. At baseline, patients are randomized
to the four candidate drugs with equal probability, i.e. P (A1 = a1) = 0.25 for a1 = 1, 2, 3, 4. At j = 2,
patients whose change in CD4 is greater than or equal to θ0 are kept on their current drug; patients with a
change in CD4 below θ0 are re-randomized to the remaining three drugs with equal probability:

P (A2 = a2 | S2, A1, S1) =


1/3 if S2 − S1 < θ0 and a2 6= A1

0 if S2 − S1 < θ0 and a2 = A1

1 if S2 − S1 ≥ θ0 and a2 = A1

0 if S2 − S1 ≥ θ0 and a2 6= A1

(19)

Such “play-the-winner-and-drop-the-loser” treatment strategies reflect typical medical practice and represent
an appealing option for randomizing treatments in sequentially randomized trials (Thall et al., 2000).

We will analyze the data simulated in this fashion based on the marginal structural model

E[Yd(a1,a2)] = β0 + β13I(a1 = 1, a2 = 3) + β14I(a1 = 1, a2 = 4) + . . .+ β43I(a1 = 4, a2 = 3) (20)

where the rule d(1, 2) is taken as a reference and βij gives the change in mean counterfactual outcome for
rule d(i, j) relative to this reference. The hypothesis of equal mean counterfactual outcomes for the two

8

http://biostats.bepress.com/ucbbiostat/paper216



rules d(1, 2) and d(2, 3), for instance, thus corresponds to the hypothesis β23 = 0. Note that this marginal
structural model makes no additional assumptions on the data-generating distribution. Using a model of
the form (20) is thus in fact just a convenient way of carrying out the whole pair-wise comparison approach
suggested by Murphy (2005) and Hernan et al. (2006) in a single step.

Table 1: Summary of example 1.

β0 β13 β14 β21 β23 β24 β31 β32 β34 β41 β42 β43

Consistency
1) Truth -9.1 4.4 3.3 13.4 17.8 16.7 4.4 5.4 -0.3 -10.0 -8.9 -14.4
2) IPTW Limit -9.1 4.4 3.3 13.4 17.8 16.7 4.4 5.4 -0.3 -10.0 -8.9 -14.4

MSE for g0
3) n = 250 62 136 142 217 193 190 180 173 193 163 160 178
4) n = 1000 16 96 97 119 113 116 105 103 110 101 100 106
5) n = 5000 3 87 86 92 91 90 88 88 89 88 89 89

MSE for gn

6) n = 250 45 95 96 174 163 164 153 153 162 144 142 153
7) n = 1000 10 85 86 107 105 105 98 98 99 96 96 96
8) n = 5000 2 83 83 88 88 87 86 86 86 87 87 87

Coverage for g0
9) n = 250 0.90 0.91 0.91 0.94 0.94 0.94 0.93 0.93 0.94 0.92 0.92 0.93
10) n = 1000 0.94 0.95 0.94 0.94 0.95 0.95 0.94 0.95 0.95 0.95 0.94 0.94
11) n = 5000 0.95 0.95 0.95 0.95 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95

Coverage for gn

12) n = 250 0.94 0.94 0.95 0.97 0.97 0.97 0.96 0.95 0.97 0.95 0.95 0.96
13) n = 1000 0.98 1.00 1.00 0.99 0.98 0.98 0.98 0.98 0.99 0.98 0.98 0.99
14) n = 5000 0.99 1.00 1.00 0.99 0.98 0.98 0.98 0.99 0.99 0.98 0.98 0.98

Table 1 summarizes the results of this simulation study. The true values of the parameter (β0, . . . , β43)
can be obtained by Monte-Carlo simulation. The first row of table 1 shows hat the mean counterfactual
outcome for the reference rule d(1, 2) is given by -9.1. If we choose a2 = 3 instead of a2 = 2 as the salvage
drug, the mean counterfactual outcome is increased by β13 = 4.4. Even though drug two is more effective
than drug three for a patient whose virus is susceptible (γ2 = 60 vs. γ3 = 50), cross-resistance between drugs
one and two makes drug three a better salvage drug for patients who failed on drug one. Similarly both
drugs three and four represent better salvage options than drug one for patients who failed on drug two. A
sequentially randomized trial of this kind thus allows us to identify the optimal salvage treatment for each
first-line drug. In addition, we are able to identify the rule d(2, 3) as the overall optimal rule with a mean
counterfactual outcome of 8.7.

We consider both the IPTW estimator based on the true treatment mechanism g0 and that based on
an estimated treatment mechanism gn. Here gn is obtained as follows: For a1 = 1, 2, 3, 4, we estimate
P (A1 = a1) by the empirical proportion of subjects assigned to a1. Likewise, we estimate P (A2 = a2 |
S2 = s2, A1 = a1, S1 = s1) by the empirical proportion of subjects assigned to a2 among those subjects with
A1 = a1 and S2 − S1 ≥ θ0 or S2 − S1 < θ0 depending on whether s2 − s1 ≥ θ0 or s2 − s1 < θ0. To confirm
that these two IPTW estimators are consistent, we examine their asymptotic limit by applying them to a
data set consisting of 1,000,000 observations. As n → ∞, gn → g0 so that the two estimators based on g0
and gn are identical in the limit. Row 2 of table 1 shows that they are in fact consistent.

To get a sense of the sampling variability of the two estimators, we computed mean-squared-errors (MSE)
for a number of different sample sizes. Rows 3-8 of table 1 show that the parameter β0 can be estimated
with considerably greater precision than the remaining parameters. This makes sense since β0 represents the
mean counterfactual outcome for the rule d(1, 2) while the remaining parameters represent contrasts between
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the other candidate rules and that reference rule. A comparison of the variance of the two estimators (data
not shown) indicates that the IPTW estimator based on gn achieves a roughly 40 to 60% greater efficiency
than the estimator based on g0. As explained in section 4, this somewhat counter-intuitive results agrees
well with general theoretical considerations laid out in van der Laan and Robins (2003), for example.

We also computed estimated coverage probabilities for asymptotic 95% confidence intervals constructed
based on the influence curve (12) as described in section 4. Rows 9-11 of table 1 show that the confidence
intervals for the estimator based on g0 have coverage probabilities close to 0.95 even for the fairly small sample
size of 250, with further improvements seen as n is increased. Rows 12-14 show that confidence intervals for
the IPTW estimator using gn based on the influence curve (12) are in fact somewhat conservative.

Another criterion for assessing how well the optimal rule can be estimated based on a sample of n
observations consists of the mean counterfactual outcome we would expect to see if the selected rule were
applied to the entire target population. Specifically, since the true mean counterfactual outcome for each
of the twelve rules is known, we can use the IPTW estimator to select a rule for each of a large number of
simulated data sets and then simply take the average of the true mean counterfactual outcomes corresponding
to the selected rules. Since the IPTW estimator will not always select the true optimal rule, this average
counterfactual outcome will tend to be somewhat lower than the mean counterfactual outcome of 8.7 for the
true optimal rule. As sample size increases, however, the IPTW estimator should have an increasingly better
probability of selecting the true optimal rule so that we would expect the average counterfactual outcome
to improve as sample size increases. If the true treatment mechanism g0 is used, sample sizes of n = 250,
1000, and 5000 in fact yield expected counterfactual outcomes of 5.7, 7.9, and 8.4, respectively. Using an
estimated treatment mechanism gn for the same sample sizes yields expected counterfactual outcomes of 6.1,
8.4, and 8.7. Recall that the mean counterfactual outcome for the reference rule d(1, 2) is -9.1. A strategy
that selects an optimal rule based on the IPTW estimator can thus yield favorable results for even fairly
small sample sizes. As sample size increases, the performance of this strategy begins to approach that of the
true optimal rule.

5.2 Example 2: Threshold switching rules

The“play-the-winner-drop-the-loser”design used in example 1 allows us to compare individualized treatment
rules d(a1, a2) indexed by an initial treatment choice a1 and a salvage choice a2. It does not allow us to
consider rules d(a1, a2, θ) that switch patients to a2 if S2 − S1 < θ for a value of θ other than θ0. In the
context of the proposed design, such rules are not realistic since subjects with S2 − S1 < θ0 are always re-
randomized to the remaining three drugs and will thus never follow a rule d(a1, a2, θ) for θ > θ0. Similarly,
subjects with S2 − S1 > θ0 are always kept on their initial treatment a1 and will thus never follow a rule
d(a1, a2, θ) for θ < θ0.

In order to compare rules d(a1, a2, θ) for values of θ other than a given θ0, we can use the following
modified version of the design described in example 1. Suppose we can agree on a lower bound θ below
which we would consider it unethical to keep patients on their initial treatment. Patients with S2 − S1 < θ
will thus have to be randomized to the remaining treatment options as in the sequentially randomized trial
described earlier. Unlike before, however, patients with acceptable intermediate outcomes S2 − S1 ≥ θ are
not kept on their initial treatment, but are once again randomized to the four candidate drugs:

P (A2 = a2 | S2, A1, S1) =


0 if S2 − S1 < θ and a2 = A1

1 if S2 − S1 < θ and a2 6= A1

0.25 if S2 − S1 ≥ θ for a2 = 1, 2, 3, 4.
(21)

Within this design, all patients have a positive probability of following any individualized treatment rule
d(a1, a2, θ) for θ ≥ θ. Rules with θ < θ remain unrealistic and can thus not be identified based on this
design. In the simulation study presented in this section, we use θ = −50. Apart from the modified
treatment mechanism, the data are generated as in example 1.

For very small values of θ, a rule d(a1, a2, θ) will keep all patients on their initial treatment a1, corre-
sponding the static treatment regimen (a1, a1); for very large value of θ, such a rule will switch all patients to
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a2, corresponding to the static treatment regimen (a1, a2). Unless one of the drugs a1 and a2 is far superior
to the other, both of these static rules can be expected to result in a worse mean counterfactual outcome
than a dynamic rule that keeps patients responding well to a1 on a1 while switching those who respond
poorly to a2. We would therefore expect the function θ → E[Y (d(a1, a2, θ))] to first increase to a maximum
M(a1, a2) at some value θ = m(a1, a2) before decreasing again. Over a moderate range of candidate values,
say −50 ≤ θ ≤ 20, this function might thus be reasonably well approximated by a quadratic polynomial.
Based on this consideration, we will posit the marginal structural model

E[Yd(a1,a2,θ)] = I(a1 = 1, a2 = 2)
[
β12,0 + β12,1θ + β12,2θ

2
]

+

I(a1 = 1, a2 = 3)
[
β13,0 + β13,1θ + β13,2θ

2
]

+

. . .+ I(a1 = 4, a2 = 3)
[
β43,0 + β43,1θ + β43,2θ

2
]

(22)

that, for each a1, a2, approximates θ → EYd(a1,a2,θ) by a separate quadratic polynomial. As candidate values
for θ we consider the set Θ = {−50,−49, . . . , 19, 20}, resulting in a total of 852 candidate individualized
treatment rules.

Figure 1 shows the true dependence of E[Y (d(a1, a2, θ))] on θ along with the projection of that function
on the quadratic model (22), illustrating that the quadratic model fits the data very well. The true optimal
rule, given by d(2, 3,−16), achieves a mean counterfactual outcome of 14.3. Within model (22), the optimal
rule is given by d(2, 3,−13), with a corresponding mean counterfactual outcome of 15.5. Recall that the
optimal rule d(2, 3) in example 1, based on a switching threshold of θ0 = −40 achieves a mean counterfactual
outcome of 8.7, illustrating that the performance of this rule can be improved somewhat by using a more
aggressive threshold. As argued earlier, the causal effect models considered here have the advantage of giving
the user a sense of how the mean counterfactual outcome changes in the neighborhood of the selected optimal
rule. In this case, we see that a fairly wide range of values for θ in d(2, 3, θ) achieves mean counterfactual
outcomes close to the optimal value. Rules d(2, 3, θ) for θ between -31 and 8, for instance, all give mean
counterfactual outcomes above 12.

We again consider both the IPTW estimator based on the true treatment mechanism g0 and that based
on an estimated treatment mechanism gn, where gn is obtained in a similar fashion as in example 1. Figure
1 also shows the asymptotic limit of these two estimators to confirm that they are in fact consistent.

Table 2 shows the MSE for estimating the optimal threshold m(a1, a2) ≡ arg maxθ∈ΘE[Y (d(a1, a2, θ))]
for a range of different sample sizes. As we might expect, m(a1, a2) is hard to estimate precisely if the
function θ → E[Y (d(a1, a2, θ))] is relatively flat over the range of candidate values for θ, as illustrated, for
instance, by the rules d(1, 2, θ) and d(2, 1, θ). If the maximum is more pronounced, however, as seen, for
example, in the rules d(2, 3, θ) or d(3, 1, θ), m(a1, a2) can be estimated with considerably greater precision.
Table 3 shows the MSE for estimating the corresponding optimal mean counterfactual outcome M(a1, a2) ≡
maxθ∈ΘE[Y (d(a1, a2, θ))]. Both in estimating m(a1, a2) and M(a1, a2), the IPTW estimator based on gn

tends to achieve gains in efficiency on the order of 10 to 40% relative to the estimator based on the true g0
(variance data not shown).

In selecting an optimal value for θ, it would be helpful to have a sense of the sampling variability in
our estimate of the function θ → E[Y (d(a1, a2, θ))]. For this purpose, we may use the limiting distribution
derived in section 4 to construct a simultaneous confidence band for this function (see section B in the
appendix). These confidence bands are constructed in such a way that in a large number of repetitions of the
trial, the true function θ → E[Y (d(a1, a2, θ))] should be entirely contained in 95% of all confidence bands.
Note the difference between these simultaneous confidence bands and point-wise confidence bands that are
constructed in such a way that in a large number of repetitions of the trial, E[Y (d(a1, a2, θ))] for any one
fixed θ should be contained in 95% of the corresponding confidence intervals. Figure 2 shows an example
of the simultaneous confidence bands we constructed for a sample of size n = 1000. Note that even at
this fairly large sample size, the confidence bands are still quite wide, illustrating that selecting the optimal
rule is indeed an ambitious task. As mentioned previously, tackling this problem based on the the causal
effect models discussed here rather than the approach introduced by Murphy (2003) has the advantage of
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Figure 1: True dependence of E[Y (d(a1, a2, θ))] on θ (solid green line) along with the projection of that
function on the quadratic model (22) (dashed green line). The dashed blue line gives the asymptotic limit
of the IPTW estimator.
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Table 2: MSE for estimating the optimal threshold m(a1, a2).

g0 gn

n = 250 n = 1000 n = 5000 n = 250 n = 1000 n = 5000
d(1, 2, θ) 1562 1027 195 1665 1048 186
d(1, 3, θ) 311 70 15 261 50 15
d(1, 4, θ) 296 103 31 247 78 29
d(2, 1, θ) 651 513 318 642 486 250
d(2, 3, θ) 316 85 12 268 62 11
d(2, 4, θ) 404 157 48 368 127 44
d(3, 1, θ) 327 78 12 287 58 11
d(3, 2, θ) 398 101 9 361 71 9
d(3, 4, θ) 504 317 163 450 270 118
d(4, 1, θ) 549 262 128 484 206 122
d(4, 2, θ) 732 343 238 741 339 239
d(4, 3, θ) 1108 537 22 1255 582 20

Table 3: MSE for estimating the optimal mean counterfactual outcome M(a1, a2).

g0 gn

n = 250 n = 1000 n = 5000 n = 250 n = 1000 n = 5000
d(1, 2, θ) 123 28 6 123 26 6
d(1, 3, θ) 78 20 4 68 14 3
d(1, 4, θ) 89 23 5 73 15 3
d(2, 1, θ) 188 46 9 170 33 6
d(2, 3, θ) 124 32 6 103 20 4
d(2, 4, θ) 142 33 7 120 22 4
d(3, 1, θ) 82 20 4 71 14 3
d(3, 2, θ) 74 18 4 67 14 3
d(3, 4, θ) 135 31 6 126 23 4
d(4, 1, θ) 52 12 2 50 10 2
d(4, 2, θ) 66 15 3 68 14 3
d(4, 3, θ) 86 23 5 87 21 5
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at least giving the user a better sense of the uncertainty involved in this task. Table 4 summarizes the
estimated coverage probabilities of such simultaneous confidence intervals for different sample sizes, showing
that reasonable coverage is achieved for sample sizes of n = 1000 and greater.

Table 4: Estimated coverage probabilities of simultaneous 95% confidence bands.

g0 gn

n = 250 n = 1000 n = 5000 n = 250 n = 1000 n = 5000
d(1, 2, θ) 0.84 0.93 0.95 0.87 0.96 0.97
d(1, 3, θ) 0.83 0.91 0.93 0.86 0.94 0.96
d(1, 4, θ) 0.83 0.92 0.93 0.87 0.96 0.96
d(2, 1, θ) 0.85 0.92 0.94 0.88 0.96 0.97
d(2, 3, θ) 0.84 0.91 0.94 0.86 0.95 0.97
d(2, 4, θ) 0.83 0.92 0.93 0.87 0.96 0.97
d(3, 1, θ) 0.82 0.93 0.93 0.85 0.95 0.96
d(3, 2, θ) 0.82 0.92 0.94 0.84 0.94 0.96
d(3, 4, θ) 0.84 0.92 0.94 0.86 0.96 0.97
d(4, 1, θ) 0.82 0.92 0.94 0.86 0.95 0.96
d(4, 2, θ) 0.82 0.92 0.95 0.84 0.94 0.96
d(4, 3, θ) 0.84 0.93 0.94 0.87 0.96 0.97

Another way of getting a sense of the sampling variability of our estimates would be to construct con-
fidence intervals for m(a1, a2) and M(a1, a2). Given the parametric model (22), this is possible if the
polynomial βa1a2,0 + βa1a2,1θ + βa1a2,2θ

2 attains a maximum in the interval (minΘ,max Θ). In that case,
this maximum can be found as an explicit function of the parameters βa1a2,0, βa1a2,1, and βa1a2,2 by setting
the first derivative of the polynomial equal to zero. Specifically, this yields the parameters

m̃(a1, a2) =
βa1a2,1

2βa1a2,2
(23)

and

M̃(a1, a2) = βa1a2,0 −
β2

a1a2,1

2βa1a2,2
+
βa1a2,1

2
. (24)

Confidence intervals for m̃(a1, a2) and M̃(a1, a2) can now be obtained in a straightforward way by applying
the δ-method (see section C of the appendix). If the polynomial βa1a2,0 +βa1a2,1θ+βa1a2,2θ

2 does not attain
a maximum in the interval (minΘ,max Θ), the point (m̃(a1, a2), M̃(a1, a2)) corresponds either to a global
maximum outside of that interval or to a minimum of the polynomial. Even in the former case, a confidence
interval for m̃(a1, a2) and M̃(a1, a2) would not be of too much interest since it would be based entirely on
extrapolation. In practice, it is therefore necessary to ensure that the estimated optimal threshold m̃(a1, a2)
lies between the smallest and the largest candidate value for θ before interpreting confidence intervals obtained
in this fashion. Tables 5 and 6 summarize the estimated coverage probabilities for such 95% confidence
intervals, where we have suppressed the results for (a1 = 1, a2 = 2) and (a1 = 4, a2 = 3) since those two
polynomials do not attain a maximum in the interval (−50, 20). Unless the function θ → E[Y (d(a1, a2, θ))] is
quite flat, as, for instance, in the case of the rules d(2, 1, θ) and d(3, 4, θ), confidence intervals for m̃(a1, a2) are
estimated to achieve coverage probabilities close to the nominal 0.95 level even at a sample size of n = 250.
The coverage probability of confidence intervals for M̃(a1, a2) is estimated to be somewhat worse at n = 250,
with reasonable coverage achieved, however, for sample sizes of n = 1000 and greater.

As in example 1, we can assess how well the optimal rule can be estimated based on the mean counterfac-
tual outcome we would expect to see if the selected rule were applied to the entire target population. If the
true treatment mechanism g0 is used, sample sizes of n = 250, 1000, and 5000 yield expected counterfactual
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Figure 2: IPTW estimate of the function θ → E[Y (d(a1, a2, θ))] derived from a sample of n = 1000 subjects
(solid blue line) along with simultaneous 95% confidence bands (dashed blue lines). The solid green line
shows the true function θ → E[Y (d(a1, a2, θ))].
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Table 5: Estimated coverage probabilities of 95% confidence intervals for m̃(a1, a2).

g0 gn

n = 250 n = 1000 n = 5000 n = 250 n = 1000 n = 5000
d(1, 2, θ) — — — — — —
d(1, 3, θ) 0.95 0.97 0.96 0.96 0.97 0.96
d(1, 4, θ) 0.93 0.95 0.97 0.94 0.96 0.97
d(2, 1, θ) 0.85 0.89 0.91 0.87 0.90 0.92
d(2, 3, θ) 0.94 0.96 0.98 0.95 0.97 0.98
d(2, 4, θ) 0.91 0.95 0.98 0.93 0.96 0.99
d(3, 1, θ) 0.96 0.96 0.96 0.96 0.96 0.96
d(3, 2, θ) 0.98 0.99 0.95 0.98 0.99 0.96
d(3, 4, θ) 0.89 0.90 0.94 0.89 0.92 0.95
d(4, 1, θ) 0.99 0.99 0.96 0.99 0.99 0.96
d(4, 2, θ) 0.94 0.94 0.97 0.96 0.97 0.98
d(4, 3, θ) — — — — — —

Table 6: Estimated coverage probabilities of 95% confidence intervals for M̃(a1, a2).

g0 gn

n = 250 n = 1000 n = 5000 n = 250 n = 1000 n = 5000
d(1, 2, θ) — — — — — —
d(1, 3, θ) 0.90 0.92 0.94 0.91 0.96 0.98
d(1, 4, θ) 0.90 0.93 0.94 0.92 0.96 0.97
d(2, 1, θ) 0.92 0.94 0.95 0.93 0.98 0.99
d(2, 3, θ) 0.89 0.92 0.94 0.90 0.96 0.98
d(2, 4, θ) 0.88 0.93 0.93 0.90 0.96 0.97
d(3, 1, θ) 0.89 0.93 0.95 0.90 0.97 0.98
d(3, 2, θ) 0.89 0.94 0.94 0.90 0.96 0.98
d(3, 4, θ) 0.91 0.95 0.94 0.92 0.98 0.98
d(4, 1, θ) 0.90 0.94 0.96 0.92 0.97 0.98
d(4, 2, θ) 0.92 0.96 0.96 0.93 0.98 0.97
d(4, 3, θ) — — — — — —
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outcomes of 8.0, 12.0, and 13.5, respectively. Using an estimated treatment mechanism gn for the same
sample sizes yields expected counterfactual outcomes of 8.4, 12.7, and 13.6. Recall that the optimal rules in
examples 1 and 2 achieve mean counterfactual outcomes of 8.7 and 14.3, respectively. A strategy based on
an estimated optimal rule thus again succeeds quite well, even for moderate sample sizes.

6 Discussion

In this paper, we argue that IPTW estimators for the causal effect models for realistic individualized treat-
ment rules introduced by van der Laan and Petersen (2007) represent an attractive tool for analyzing sequen-
tially randomized trials. Unlike a number of methods proposed previously, this approach does not rely on the
assumption that intermediate outcomes Sj are discrete or that models for the distributions P (Sj | S̄j−1, Āj),
j ≤ k, are correctly specified (Lavori and Dawson, 2000, 2004; Thall et al., 2000). In addition, it generalizes
the methodology introduced by Murphy et al. (2001) by allowing the user to posit a marginal structural
model for the mean counterfactual outcome corresponding to all candidate treatment rules simultaneously
rather than requiring the user to perform a number of pairwise comparisons. Example 1 illustrates that,
if only a small number of candidate treatment rules are under consideration, a non-parametric marginal
structural can be used to conveniently carry out all of the pairwise comparisons of interest in a single step.
Example 2 shows that an appropriately chosen marginal structural model becomes particularly useful as
the number of candidate treatment rules increases. In this case, an approach based on individual pairwise
comparisons would be likely to suffer from too much sampling variability to provide an informative answer.
Furthermore, the causal effect models discussed here represent an interesting alternative to methods proposed
by Murphy (2003) for selecting an optimal individualized treatment rule in that they give the user a sense
of how the optimal outcome is estimated to change in the neighborhood of the identified optimum. In our
second simulation study, for instance, we are able to construct confidence intervals not only for the optimal
mean counterfactual outcome, as would have been possible with the methodology developed by Murphy
(2003), but also for the optimal switching threshold θ itself. The IPTW estimators discussed in this article
are straightforward to implement using standard statistical software by simply creating a derived data set
that imitates the unobserved full data structure and then performing a weighted regression.

In addition, we present an approach for constructing valid asymptotic confidence intervals based on the
influence curve of the IPTW estimator. Previously, such confidence intervals had only been developed for
the pairwise comparisons of two treatment rules that are mutually exclusive in the sense that no subject can
simultaneously follow both rules (Murphy, 2005). Other methods for comparing individualized treatment
rules rely on resampling-based approaches for inference. Lavori and Dawson (2000), for instance, rely on
multiple imputation (Rubin and Shenker, 1991), while Lavori and Dawson (2004) and van der Laan and
Petersen (2007) recommend using the bootstrap. Our simulation studies illustrate that the asymptotic
confidence intervals proposed here lead to valid inference even for fairly moderate sample sizes.

A number of possible extensions of the methodology discussed in this article exist. First, van der Laan
and Petersen (2007) show how the IPTW estimating function can be made more efficient by subtracting its
projection onto the nuisance tangent space corresponding to the treatment mechanism under the random-
ization assumption P (Aj = aj | X) = P (Aj = aj | S̄j , Āj−1). van der Laan and Rubin (2006) recently
introduced a targeted maximum likelihood methodology that could also be used to obtain a more efficient
double robust estimator. While such estimators are not as straightforward to implement as the IPTW esti-
mator, they may offer considerable gains in efficiency, especially if the investigator has measured covariates
other than the treatment itself that are highly predictive of the outcome (Moore and van der Laan, 2007).

In some cases, it may be difficult to specify an appropriate marginal structural model solely based on
a priori considerations as those in example 2. Since a mis-specified model can lead to strongly biased
results, one may want to employ the general loss-based estimation methodology developed by van der Laan
and Dudoit (2003) to select between different candidate models. Wang et al. (2007) have implemented
this approach for selecting an appropriate marginal structural model for static treatment regimens in the
point-treatment scenario.

As shown in van der Laan and Petersen (2007), the framework introduced in section 2 can easily be
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extended to accommodate the case that individual subjects are followed up at a random number of time
points. This would, for instance, be the case in a trial in which the outcome of interest is survival. The same
set-up could be applied to the sequentially randomized trial design proposed by Thall et al. (2000) in which
the treatment of a patient is terminated once they have responded well or poorly to two successive rounds
of treatment with the same drug.

The approach discussed in this paper could also be used in the biased-coin adaptive within-subject
(BCAWS) design introduced by Lavori and Dawson (2000) that makes re-randomization probabilities at time
j dependent on the observed history S̄j . This allows patients with comparatively poor intermediate outcomes
to be preferentially assigned to new treatment options while still keeping a treatment rule identifiable that
would require the patient to continue on the current treatment. In this context, we note that the investigator
will want to ensure that the resulting randomization probabilities are bounded away from zero as it is known
that IPTW estimators become biased in finite samples if treatment assignment probabilities are too close to
zero (Neugebauer and van der Laan, 2005). Such a practical violation of the ETA assumption can in general
be avoided by making sure that all treatment assignment probabilities are greater than 0.05, for instance.

Other scenarios for sequentially randomized trials in which causal effect models for realistic individualized
treatment rules might be useful include trials in which patients are initially assigned to a particular dose
of a candidate drug, but are then moved to a higher dose of that same drug if they show no evidence for
a response and are moved to a lower dose once they experience side effects. The Systolic Hypertension in
the Elderly Program is an example of a randomized trial that examined such treatment rules (Kostis et al.,
1997).

Lastly, we note that the methodology proposed by van der Laan and Petersen (2007) also has many
applications in the observational setting, in which treatment assignment is not under the control of the
investigator. In this context, however, additional assumptions are needed to ensure consistency of the IPTW
estimator discussed here yields consistent estimates of causal effects. In particular, it is necessary to assume
that all important confounders of the relationship between treatment and the outcome of interest have been
measured and that one is able to specify a correct model for the unknown treatment mechanism.
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A Normalization constant in the IPTW influence curve
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B Simultaneous confidence bands

For a given a1, a2, we have that
√
n(βIPTW

n (a1, a2)− β0(a1, a2)) ⇒ N(0,Σ2(a1, a2)), (26)

where β(a1, a2) ≡ (βa1a2,0, βa1a2,1, βa1a2,2)T and Σ2(a1, a2) is the 3×3 matrix containing the corresponding el-
ements of Σ2. Let π = (π1 = E[Y (d(a1, a2,−50))], π2 = E[Y (d(a1, a2,−49))], . . . , π71 = E[Y (d(a1, a2,−20))])T .
Then, letting

B =


1 −50 2500
1 −49 2401
...

...
...

1 20 400

 , (27)

we have that
π = Bβ(a1, a2), (28)
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so that √
n(πn − π0) ⇒ N(0,Σ2

π(a1, a2)), (29)

where Σ2
π(a1, a2) = BΣ2(a1, a2)BT . We would like to find a constant a such that

P

(
πj,0 ∈

(
πj,n ± a

σπ(a1, a2)(j, j)√
n

)
∀ j

)
→ 0.95, (30)

where σπ(a1, a2)(j, j) =
√

Σ2
π(a1, a2)(j, j). Since this is equivalent to

P

(
max

j

∣∣∣∣√n(πj,n − πj,0)
σπ(a1, a2)(j, j)

∣∣∣∣ < a

)
→ 0.95, (31)

a can be found as follows. Let ρ(a1, a2) denote the correlation matrix corresponding to Σ2
π(a1, a2). Simulate

a large number of realizations Z = (Z1, . . . , Z71)T ∼ N(0, ρ(a1, a2)). For each Z, let MZ = maxj |Zj | denote
the largest absolute value of any of its components. Then a can be selected as the 95th quantile of the
simulated values MZ .

C Inference for m̃(a1, a2) and M̃(a1, a2)

For a given a1, a2, consider the maps

φa1a2 : β → φa1a2(β) ≡ βa1a2,1

2βa1a2,2
(32)

and

ψa1a2 : β → ψa1a2(β) ≡ βa1a2,0 −
β2

a1a2,1

2βa1a2,2
+
βa1a2,1

2
. (33)

If βa1a2,2 < 0, then φa1a2 maps β into the value m̃(a1, a2) that maximizes

β → E[Y (d(a1, a2, θ)) | β] = βa1a2,0 + βa1a2,1θ + βa1a2,2θ
2, (34)

and ψa1a2 maps β into the corresponding maximum value M̃(a1, a2) = E[Y (d(a1, a2, θ)) | β = m̃(a1, a2)].
Since √

n(βIPTW
n − β1) ⇒ N(0,Σ2), (35)

it follows by the δ-method that
√
n(m̃n(a1, a2)− m̃0(a1, a2)) ⇒ N(0, φ̇T Σ2φ̇) (36)

and √
n(M̃n(a1, a2)− M̃0(a1, a2)) ⇒ N(0, ψ̇T Σ2ψ̇), (37)

where φ̇ and ψ̇ are the gradients of φ and ψ, respectively. In particular, we have that

φ̇a1a2 =

 0
−1/βa1a2,2

βa1a2,1/2β2
a1a2,2

 (38)

and

ψ̇a1a2 =
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2
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 (39)
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