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Analysis of Longitudinal Marginal Structural
Models

Jennifer F. Bryan, Zhuo Yu, and Mark J. van der Laan

Abstract

In this article we construct and study estimators of the causal effect of a time-
dependent treatment on survival in longitudinal studies. We employ a particular
marginal structural model (MSM), and follow a general methodology for con-
structing estimating functions in censored data models. The inverse probabil-
ity of treatment weighted (IPTW) estimator is used as an initial estimator and
the corresponding treatment-orthogonalized, one-step estimator is consistent and
asymptotically linear when the treatment mechanism is consistently estimated.
We extend these methods to handle informative censoring. A simulation study
demonstrates that the the treatment-orthogonalized, one-step estimator is superior
to the IPTW estimator in terms of efficiency. The proposed methodology is em-
ployed to estimate the causal effect of exercise on mortality in a longitudinal study
of seniors in Sonoma County.



1 Introduction

The methods developed in this article make it possible to estimate the causal effect of a time-varying
treatment on an outcome process, even in the presence time-dependent confounders and censoring.
We rely on the abstract concept of counterfactual outcomes [Rubin, 1976] to define this causal effect,
which we present briefly here and more formally in an explicitly longitudinal setting in section 1.1.

Let the set of possible treatments be denoted by A. When subjected to the same treatment
a ∈ A, the outcome of interest for a population of exchangeable subjects, denoted Ya, has some
particular marginal distribution. Such an outcome Ya is a ’counterfactual’ in the sense that, for
any given subject, we assume its existence, even if the subject actually receives a different treatment.
Differences in the marginal distributions of counterfactual outcomes, e.g. FYa

versus FYa′
for a, a′ ∈ A,

are precisely what we mean by the causal effect of one treatment versus another. For example, if such
a difference implies that treatment a induces a median survival time of 15 months, whereas treatment
a′ induces a median survival time of 21 months, this describes a positive causal effect of treatment
a′ on median survival, relative to treatment a. We have just described the use of marginal structural
models [Robins, 2000] for the purposes of causal inference. That is, the causal effect of treatment is
defined to be the structural differences in marginal counterfactual distributions induced by different
treatments.

In real life, of course, each subject can only receive one treatment. On a randomly drawn subject,
we observe the treatment A ∈ A, the outcome Y = YA, and possibly baseline covariates W . Therefore,
we regard the observed data as an incomplete observation of a subject’s ’full data’ (Ya : a ∈ A,W ),
i.e. the data we would observe under every possible treatment. Consequently, we approach the causal
inference problem as if it were a censored or missing data problem. The causal effect of treatment
A = a is defined as the effect of a on the distribution of Ya, possibly adjusted for selected baseline
covariates V ⊂W . One says that the treatment A is randomized w.r.t W if the probability of A = a

given the full data (Ya : a ∈ A,W ), the so-called propensity score, only depends on W . In other words,
the treatment assignment is only based on the observed covariates W . This randomization assumption
is necessary to be able to identify the causal effect of A on the outcome Y . Under this assumption,
we can exploit the theory of estimating functions in censored data models in order to estimate the
marginal counterfactual distributions and, thereby, the causal effect of treatment. A locally optimal
doubly robust method for estimation of the causal effect of a time-independent treatment in a marginal
structural semiparametric model is given in Robins [1999]. Rosenbaum and Rubin [1983, 1985] and
Rosenbaum [1987, 1988, 1995, 1996] propose to estimate causal effects by stratification on an estimate
of the propensity score. A general presentation of the use of censored data methods to perform causal
inference is given in van der Laan and Robins [To appear in 2002].

1.1 Longitudinal marginal structural models

The theory of counterfactual causal inference in longitudinal studies is first laid out in Robins [1986,
1987, 1989, 1997]. Let time t take values in τ = [0, T ], where T is possibly infinite. For a time-
dependent process t → Z(t), we denote its sample path up to time t∗ with Z̄(t∗) = {Z(t) : t ≤ t∗}
and its complete sample path by Z̄ = Z̄(T ) = {Z(t) : t ∈ τ}. In this paper, we will work with finite T

and divide τ = [0, T ] into K intervals of equal length. Therefore, time is discrete and takes values in
τ = {t0, t1, . . . , tK−1, tK = T}. For any time-dependent process, we may use the abbreviated notation
Zk and Z̄k in place of Z(tk) and Z̄(tk).

Let t → A(t) be a time-dependent treatment process and let A be the set of possible sample
paths of Ā, where we assume that A is finite. Let Yā(tk) be the counterfactual outcome process under
treatment ā and let Lā(tk) be the corresponding covariate process. For each possible treatment regime
ā, we define X̄ā(tk) as the data one would observe on the subject up to time tk, if the subject were to
follow treatment regime ā. Note that this only depends on the treatment history prior to time tk, i.e.
X̄ā(tk) = X̄āk−1

(tk). The complete sample path X̄ā is a counterfactual and is comprised of the paths
of the outcome process Ȳā, the covariate process L̄ā, and baseline covariates W . The full data for a
subject is the collection of counterfactuals generated by allowing treatment to range over the entire
space A, e.g.:

X = (Ȳā, L̄ā,W : ā ∈ A)

1
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The observed data is given by
O = (Ā, X̄Ā) = (Ā, ȲĀ, L̄Ā,W ).

We see that the observed data are only those elements of the full data corresponding to the actual
observed treatment Ā.

Consider a study designed to determine the causal effect of a time-dependent treatment on survival
or, alternatively, the hazard of mortality. Let Sā be a counterfactual survival time and let Yā(tk) =
I(Sā ≤ tk) be a counting process that indicates for death prior to time tk, where Yā(t0) is 0 for all ā ∈ A
by definition. The survival time can be recovered from the path Ȳā, up to the resolution permitted
by discrete time. A subject’s record continues until failure. Recall that V ⊂ W is a selected subset
of the baseline covariates for which want to adjust. We can assume a marginal structural intensity
model for the process Yā(·):

E(dYā(tk)|Ȳā(tk−1), V ) = λ(tk, āk−1, Ȳā(tk−1), V |α),

where λ(tk, āk−1, Ȳā(tk−1), V |α) is a known function, up to a p-dimensional parameter α. Typically,
λ(·|α) is the product of an indicator that the subject is at risk for the event of interest and a logistic
function:

λ(tk, āk−1, Ȳā(tk−1), V |α) = I(Yā(tk−1) = 0)× π(tk, āk−1, V |α), (1)

where π(tk, āk−1, V |α) might be something like logit−1 (α0 + α1tk + α2ak−1 + α3V ). Our goal is to
estimate α based on n i.i.d. copies (O1, O2, . . . , On) of O.

All timepoints tk are not created equal, in terms of the actions taken and the information collected.
Continuing the above example, the potential failure times tk will be called monitoring times. The
interval length tk − tk−1 will generally be quite small and corresponds to the resolution with which
we record survival time, for example, up to the month of death. At a given subset of the monitoring
times, which we call the measuring times, we observe the covariate process Lk. These measuring times
generally coincide with a regular assessment such as a medical check-up. Typically, the treatment Ak

can change at these measuring times, but one can also imagine situations in which the treatment
changes at even fewer time points. We call these treatment times, which are a subset of the measuring
times, which are a subset of the monitoring times. Schematically, at a time tk which is a monitoring,
measuring, and treatment time, here is what happens for a subject:

1. Determine the outcome Yk, i.e. confirm that subject survived the interval (tk−1, tk).

2. Measure the covariate Lk.

3. Fix (or at least record) the treatment Ak.

In order to identify causal effects, we must assume that the probability of a particular treatment de-
cision at a treatment time tk only depends on the observed history (Āk−1, Yk, Lk,W ) = (Āk−1, X̄Ā(tk))
of the subject. This assumption is called the sequential randomization assumption (SRA). To formally
define the SRA, we recall the full data for a subject: X = (X̄ā : ā ∈ A). The treatment mechanism
satisfies SRA if

g(Ā|X) = g(A0|X)

K−1∏

k=1

g(Ak|Āk−1, X)

= g(A0|X̄Ā(t0))
K−1∏

k=1

g(Ak|Āk−1, X̄Ā(tk))

(2)

In other words, conditional on the observed past, the treatment decision at time tk is independent
of the full set of counterfactual data X [Robins, 1997]. This assumption is also referred to as the
assumption of no unmeasured confounders.

It is important to point out why conventional approaches will not produce valid results from
this data structure. The most common method for handling confounders is to adjust for them or,
in other words, to include all confounders in the regression model. In a point-treatment study, the

2
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resulting regression coefficient for the treatment does indeed have a causal interpretation. However,
in a longitudinal study where the treatment changes over time – possibly in response to observed
confounders, which are also affected by past treatment – such a regression will produce a biased
estimate of the causal treatment effect [Robins et al., 2000], even if the assumption of no unmeasured
confounders holds and the regression model is correctly specified. Another reason to look beyond the
usual approach is the need to describe treatment effects for large diverse populations, for example,
in policy-making. We may be truly interested the marginal effect of treatment on a population, as
opposed to the treatment effect conditional on the values of certain covariates.

In section 2 we provide two ways to estimate α from the observed data O = (Ā, X̄Ā). First,
the inverse-probability-of-treatment (IPTW) estimator of Robins et al. [2000] is presented. Second,
a more efficient and more robust estimator, the ’treatment-orthogonalized’ IPTW estimator (TO),
is presented. We implement this as a one-step estimator, using the IPTW estimator as the initial
estimator. For both the IPTW and TO estimators, we provide confidence intervals for α. In section
3 we extend the approach to handle informative censoring.

In order to compare the practical performance of the estimators under consideration, we present
the results of a simulation study in section 4. We note that the one-step TO estimator can be far
more efficient than the IPTW estimator. Finally, in section 5, we apply the extended methodology to
estimate the causal effect of exercise on mortality in a longitudinal study of seniors in Sonoma County.

2 Estimation and inference

2.1 IPTW estimator

In this section we describe the first of two estimators of α: the IPTW estimator. This estimator,
denoted α̂

iptw
n , forms the basis of the treatment-orthogonalized estimator described in section 2.2. An

IPTW estimator is obtained as the solution of an estimating equation and the relevant estimating
function results from the mapping of a full data estimating function into an observed data estimating
function. We refer to this mapping as the IPTW mapping from full data estimating functions to
observed data estimating functions. For details on this mapping and the fact that the corresponding
treatment-orthogonalized IPTW estimating functions comprise the class of all observed data estimat-
ing functions, and thus includes, in particular, the optimal estimating function, we refer the reader to
van der Laan and Robins [To appear in 2002].

Let h(·) be any function of time, the selected baseline covariates V , and the observed history of the
treatment and outcome processes; a typical choice of h would be the score function from the marginal
structural model. For every h, we can define an IPTW estimating function ICiptw(O|g,α, h):

ICiptw(O|g,α, h) =
∑

k

sw(tk)× h(tk, Āk, Ȳk, V )× εĀ(α)

=
∑

k

( k∏

j=0

g(Aj |Āj−1, V )

g(Aj |Āj−1, X̄Ā(tj))

)
× h(tk, Āk, Ȳk, V )× εĀ(α).

(3)

This has the familiar form of an estimating function, namely, a product of a residual and some function
of the data. However in this case, we additionally have stabilized weights sw(tk) that capture the
probability of the observed treatment given the past. In practical terms, any IPTW-type estimator
works by upweighting (downweighting) subjects that, given their covariate values, have received an
unusual (typical) treatment. This is achieved through the use of weights inversely proportional to
the probability of the observed treatment, given the covariate. The stabilized weights sw(tk) in (3)
[Robins, 1998] include a numerator term that, in the absence of time-dependent confounding, will
equal the denominator and will produce an unweighted estimating function. However, in the presence
of confounding, stabilized weights increase the efficiency and robustness of the IPTW estimator α̂iptw

n .
It is important that the denominator of sw(tk) be non-neglible for all treatment actions and for all
possible histories. In practice, this often implies that the dimension of the treatment space must
be modest. Using gn to denote an estimator of the treatment mechanism, we obtain the following

3
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estimating equation
n∑

i=1

ICiptw(Oi|gn, α̂
iptw
n , h) = 0.

The solution of this equation, α̂iptw
n , is the IPTW estimator.

Let us consider the marginal structural logistic model (1). We will make the usual choice for h,
namely:

h(tk, Āk, Ȳk, V ) =
d

dα
logitπ(tk, Āk, V |α) (4)

Standard software can be employed to solve the weighted estimating equation implied by (4). Practical
details for implementing this are provided in section 4.2.

2.2 Treatment-orthogonalized IPTW estimator

In this section we provide a second estimator of α, namely, the treatment-orthogonalized (TO) esti-
mator. This estimator, denoted α̂

to
n , builds upon the IPTW estimator, but is more efficient. This

is the benefit of constructing an estimating function that is orthogonal to the nuisance tangent space
TSRA. Recall the treatment mechanism given in equation (2), which satisfies the SRA. Under SRA,
the observed data likelihood factorizes into terms arising from the distribution of the full data and
terms arising from the treatment mechanism. The nuisance tangent space TSRA is defined by the
nuisance scores obtained by varying the treatment mechanism g.

It will be convenient in this and later sections to define Fk = (Āk−1, X̄Ā(tk)); in words, Fk is
the observed past just prior to the treatment assignment Ak. The tangent space for the treatment
mechanism nuisance parameter at time tk, denoted TSRA,k, is the space of scores obtained by varying
g(Ak|Fk). This is the space of all functions of Ak and Fk that have conditional mean zero, given the
observed past Fk, i.e. for dk ranging over all functions of Ak and Fk we have that

TSRA,k = {dk(Ak,Fk)− E(d(Ak,Fk)|Fk)} .

The factorization of g(Ā|X) into time-specific terms implies that

TSRA = TSRA,0 ⊕ TSRA,1 ⊕ . . .⊕ TSRA,K−1

=

{∑

k

dk(Ak,Fk)− E(dk(Ak,Fk)|Fk)

}
.

If the time-specific treatment actions Ak take values 0 or 1, it can be shown that the difference
dk(Ak,Fk)− E(dk(Ak,Fk)|Fk) can be expressed as

dk(Ak,Fk)− E(dk(Ak,Fk)|Fk) = (dk(1,Fk)− dk(0,Fk)) (Ak − E(Ak|Fk))

= Hk(Fk)dMG(tk),

where Hk(Fk) = dk(1,Fk) − dk(0,Fk) and dMG(k) = Ak − E (Ak|Fk). Therefore, TSRA can be
expressed as

TSRA =

{∑

k

Hk(Fk)dMG(tk)

}
.

We obtain a TO estimating function from the IPTW estimating function ICiptw(O|g,α, h) by
subtracting its projection onto TSRA. The projection of ICiptw(O|g,α, h) onto TSRA is given by

ICSRA(O|g,Q) = ICSRA(O|g,Qα,h)

=
∑

k

E(ICiptw(O|g,α, h)|Ak,Fk)− E(ICiptw(O|g,α, h)|Fk)

=
∑

k

[
Q(Ak,Fk)−

∑

ak

Q(ak,Fk) g(ak|Fk)

]
,

4
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where Q(·) is the conditional expectation of the IPTW estimating function, given the past Ak and
Fk, and Qα,h(·) includes the causal parameter α and the function h. The TO estimating function
can now be written as

ICto(O|g,α, h,Q) = ICiptw(O|g,α, h)− ICSRA(O|g,Q).

We see the estimating function depends on the causal parameter α, the choice of h and two nuisance
parameters: the treatment mechanism g and the conditonal expectation Q. As described above, h

can be quite general, but a typical choice would be the score function, such as in equation (4). The
estimation of g has been discussed earlier and will be demonstrated in later sections. The estimation
of Q is generally carried out via regression and is demonstrated later. Assuming that Qn and gn are
estimators of Q and g, respectively, we define the TO estimator α̂to

n as the solution to the following
estimating equation

n∑

i=1

ICto(Oi|gn, α̂
to
n , h,Qn) = 0. (5)

If a
√
n-consistent initial estimator of α is available, there is an attractive alternative to solving

equation (5): one can construct a one-step estimator. The one-step estimator is asymptotically equiv-
alent to the actual solution of the estimating equation in the sense that both are asymptotically linear
with the same influence curve. A one-step estimator is obtained from a

√
n-consistent initial estima-

tor and an adjustment that comes from executing the first step of the Newton-Raphson algorithm
for solving (5). Concretely, the adjustment is the inverse of the derivative w.r.t. α of the estimating

equation (5), evaluated at the initial estimator. We use the IPTW estimator α̂iptw
n of section 2.1 as

the initial estimator. The one-step TO estimator, denoted α̂
to
n , is defined as

α̂
to
n = α̂

iptw
n +

1

n

∑

i

−c−1n ICto(Oi|gn, α̂
iptw
n , h,Qn), (6)

where

cn =
1

n

∑

i

d

dα
ICto(Oi|gn,α, h,Qn)|α=α̂iptw

n

or

cn =
1

n

∑

i

d

dα
ICiptw(Oi|gn,α, h)|

α=α̂iptw
n

.

In the case where the treatment Ak only takes on values of 0 and 1, the projection can be written
as

ICSRA(O|g,Q) =
∑

k

(Q(1,Fk)−Q(0,Fk)) dMg(k), (7)

where dMg(k) = Ak − E(Ak|Fk). Therefore, to actually compute the TO estimator, we will have to
estimate the expected value of ICiptw(O|g,α, h) given the observed past Fk and all possible current
treatment options: either Ak = 0 or Ak = 1. This is generally done through regression and, given
estimated parameters, we can estimate ICSRA for each subject using (7). In this manner we obtain

ÎCto and can compute the one-step TO estimator given in (6). Practical details are provided later
and an Splus example is given in the appendix.

In fact, we can actually use the estimating functions to evaluate the projection fit. The success
of the projection of the IPTW estimating function onto the nuisance tangent space determines the
performance gain of the TO estimator. By the definition of ICSRA, the following inner product must
be zero:

< ICSRA, ICiptw − ICSRA > = < ICSRA, ICto > = 0.

This suggests an empirical way to evaluate the quality of the projection. Let ÎCSRA and ÎCto be
estimates of the respective quantities. We can calculate ÎCSRA and ÎCto for each subject; both will

5
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be vectors of the same dimension as α. The empirical correlation of each component of ÎCSRA with
each component of ÎCto should be close to zero, if the projection was successful. We collect these
correlations in a square, nonsymmetric matrix ρ̂ in which the i, j-th element provides the correlation
of the i-th component of ÎCSRA and the j-th component of ÎCto.

2.3 Asymptotic performance

The TO estimator will remain unbiased even if the conditional expectation Q has been incorrectly
specified, as long as the treatment mechanism g has been been correctly specified. That is, even if
Qn → Q′ and Q′ 6= Q, the TO estimator is consistent when gn → g.

Under regularity conditions, assuming that Qn → Q′, and gn → g, the TO estimator α̂to
n , defined

in equation (5), is a regular asymptotically linear estimator with influence curve

IC(·) = −c−1 [ICto(·|g,α, h,Q′)−Π(ICto(·|g,α, h,Q′)|Tg] (8)

where Tg ⊂ TSRA is the tangent space for the treatment mechanism g under the assumed model for
g. For more details see van der Laan and Robins [To appear in 2002].

Since the TO estimator α̂to
n is asymptotically linear with influence curve given above, the asymp-

totic covariance matrix of α̂to
n can be estimated by

Σ̂ =
1

n

n∑

i=1

ÎC(Oi)
⊗2.

Since it is impractical to actually take the projection in equation (8), we can estimate the asymptotic
covariance matrix of α̂to

n conservatively by

Σ̂ =
1

n

n∑

i=1

ÎCto(Oi|gn, α̂
to
n , hn, Qn)

⊗2.

If Q′ = Q, then the two influence curves used in variance estimation agree.
The above variance estimates can be used to construct a 95% confidence interval for the j-th

component of α,

α̂
to
j ± 1.96

Σ̂jj√
n
.

3 Causal inference from censored data

Suppose that the survival time S is subject to right censoring, possibly informative, and that C is the
censoring time; that is, we observe

O = (R = S ∧ C, Āt(R), Ȳ (R), L̄(R),W ).

Here we use At(·) to denote the usual treatment process; the superscript t has been added to emphasize
the treatment action. We define a censoring process Ac(tk) = Ac

k = I(C ≤ tk) and the action process
A = (At, Ac) will now be defined more generally and refer to both treatment and censoring. That is,
instead of just making a treatment decision at time tk, we take an action that consists of (1) choosing
a treatment and (2) determining censorship status. If the censoring time is unobserved, i.e. if R = S,
then C =∞ by definition. The observed data can be represented by

O = (R = S ∧ C, Ā(R), X̄Āt(R)),

where X̄Āt(R) = (L̄Āt(R), ȲĀt(R),W ), S = SĀt , and Ā(R) = (Āt(R), Āc(R)). We assume that the
counterfactual response and covariate processes evolve independently of the censoring process. This
can be viewed as a general censored data structure where A is the censoring variable and the full data
is X = (Xāt : āt ∈ At). The sequential randomization assumption in this case is

g(Ak|Āk−1, X) = g(Ak|X̄Āt(tk), Āk−1)

6
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Thus, we have

g(Ā|X) = Πkg
(
Ak|X̄Āt(tk), Āk−1

)
= Πkg

(
Ac

k, A
t
k|X̄Āt(tk), Āk−1

)

= Πkg
(
Ac

k|X̄Āt(tk), Āk−1, A
t
k

)
×Πkg

(
At

k|X̄Āt(tk), Āk−1)
)
. (9)

We construct an inverse probability of action (IPAW) estimator as an extension of the IPTW esti-
mator constructed in section 2.1. We simply must extend the stabilized weights to include information
on the censoring process as well as the treatment process. The IPAW estimating function is given by

ICipaw(O|g,α, h) =
∑

k

sw(tk)× I(Ac
k = 0)× h(tk, Ā

t
k, Ȳk, V )× εĀt(α),

where the stabilized weight sw(tk) is now given by

sw(tk) =
g
(
Āt

k, Ā
c
k = 0|V

)

g
(
Āt

k, Ā
c
k = 0|X

)

=

∏k

j=0 g
(
Ac

j = 0|Āt
j , Ā

c
j−1 = 0, V

)
∏k

j=0 g
(
Ac

j = 0|X̄Āt(tj), Āt
j , Ā

c
j−1 = 0

)

×
∏k

j=0 g
(
At

j |Āt
j−1, Ā

c
j−1 = 0, V

)
∏k

j=0 g
(
At

j |X̄Āt(tj), Āt
j−1, Ā

c
j−1 = 0

) .

Once again, we can use standard models, such as logistic regression, for the censoring process Ac.
Given a choice of h, such as the usual choice, we can then solve the corresponding estimating equation
for α as in section 2. For example, we can use the S-plus function glm() with weights I(Ac

k = 0) sw(tk)
at time tk.

The action orthogonalized estimating function is constructed by subtracting from ICipaw its pro-
jection on the tangent space TSRA of the nonparametric model for g(Ā | X) defined by (9). Let
Fc

k = (X̄Āt(tk), Āk−1, A
t
k) and F t

k = (X̄Āt(tk), Āk−1). We have

ICSRA = Π(ICipaw|TSRA)

=
∑

k

(E (ICipaw|Fc
k, A

c
k)− E (ICipaw|Fc

k))

+
∑

k

(
E
(
ICipaw|F t

k, A
t
k

)
− E

(
ICipaw|F t

k

))

Note that the differences inside the above sums are zero when tk > C ∧ S and thus the summation
ranges from t0 to the last time tk that precedes both censoring C and death S. In the same manner
as we did for the TO estimating function, we can consider ICSRA(O|g,Q) as a function of the data
O, the action mechanism g and the conditional expectations Q = (Qc, Qt) of ICipaw(·|g,α, h,Q),
given Fc

k and F t
k, respectively. The action orthogonalized estimating function is now defined by

ICao(O|g,α, h,Q) = ICipaw(O|g,α, h)− ICSRA(O|g,Q).

4 Simulation Studies

In this section, we carry out a simulation study to compare various estimators of the causal parameter
α:

• The naive estimator, denoted α̃n, obtained by a conventional regression approach of modeling
the intensity conditional on the observed predictors, in this case the treatment history.

• The IPTW estimator α̂iptw
n of section 2.1, in which the naive estimating equation is weighted

according to estimated propensity scores, i.e. the probability of the observed treatment given
the past.

7
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• The one-step treatment-orthogonalized IPTW estimator α̂to
n of section 2.2.

The mean squared error (MSE) of the naive estimator α̃n is shown to be much greater than that
of the IPTW and TO estimators; this is not surprising given the known bias of the naive estimator.
Furthermore, the MSE of the IPTW estimator is shown to be much greater than that of the TO
estimator in the presence of severe confounding.

Section 4.1 describes the causal marginal structural model and the treatment mechanism we use
in the simulation study. Section 4.2 describes how we analyze the simulated data and thus includes
concrete details on implementing these estimators. Section 4.3 gives the data-generating parameter
values and all of the simulation results. Section 4.4 discusses the influence of censoring on the relative
efficiency of the IPTW and TO estimators.

4.1 Data generating model

We continue to work in a discrete time setting, with a finite number of monitoring times. We also use
the same survival counting process introduced earlier. The real-world example that loosely motivates
the data generating model is a study of survival in AIDS patients. At measuring times, which are a
subset of the monitoring times, we record a covariate process. The time-dependent covariate Lk is
real-valued and always positive; a good example would be viral load. We specify a covariate process
that grows linearly with time, with subject-specific slopes and intercepts that may be affected by
treatment.

At measuring times, we may change the treatment and this decision may be a function of the
covariate and treatment history of the subject. The treatment Ak takes on the values 0 and 1,
corresponding to ’off’ and ’on’ treatment, respectively; an appropriate example might be the initiation
of highly active anti-retroviral therapy (HAART). Once a subject is on treatment, s/he will remain
so until failure. And, of course, a subject will not be considered for treatment after failure. Given the
above considerations, we are left with a relatively small set of times at which treatment can change.
At a treatment time tk, the probability of initiating treatment is specified by the following logistic
intensity model:

E(dAk|L̄k, Āk−1) = I(Āk−1 = 0)× logit−1(θ0 + θ1tk + θ2Lk). (10)

Therefore partial likelihood estimation can be used to estimate θ, as was mentioned in section 2. If a
subject goes on treatment, the treatment initiation time is denoted t∗.

We now state the MSM and explain its motivation. In reality, the hazard obviously depends on
how sick a patient is at a given time and an effective treatment mitigates this. In our simple story,
this is captured by the covariate, e.g. viral load. The treatment effect might take the form of a one-
time reduction in Lk followed possibly by a period of no change, followed by resumed linear growth,
perhaps with a persistent change in the slope. One could even imagine that the one-time shift is
proportional to the current viral load. Therefore, the optimal treatment time is not apparent, in that
it may be possible to treat too early (implies a small one-time reduction in viral load) or too late
(too much cumulative time with a high viral load). In this situation, the following MSM arises. The
probability of failure in the upcoming interval is given by the intensity model

λ(tk, ā, Ȳā(tk−1)|α) = I
(
Ȳā(tk−1) = 0

)
× logit−1 (α0 + d1(tk)α1 + akα2 + d3(tk)α3) (11)

where d1(tk) = (1 − ak)tk + akt
∗ and d3(tk) = ak(tk − t∗). We see that the probability of failure

depends on the current treatment status ak and on either the study time elapsed tk (for subjects off
treatment) or the time since treatment initiation tk − t∗ (for subjects on treatment). If there is no
treatment effect, α2 = 0 and α1 = α3. All other things held equal, α2 < 0 corresponds to a positive
treatment effect, i.e. treatment causes a persistent decrease in the hazard. The case α3 < α1 also
corresponds to a positive treatment effect, i.e. treatment causes the hazard to grow more slowly as a
function of time. In a situation where α2 < 0, but α3 > α1, the effect of treatment is ambiguous. At
certain times, it is less hazardous to be on treatment, while at others, it is less hazardous to be off
treatment. In reality, the outcome of interest is survival time Sā and, therefore, the optimal treatment
regime is not immediately apparent. We note that a ’treatment regime’ in this setting is completely
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Figure 1: True survival curves for different treatment regimes.

specified by the treatment initiation time. Figure 1 depicts the counterfactual survival curves for
all possible treatments in the simulations described below and we see that, w.r.t median surival, the
optimal treatment initiation time is t5.

The only remaining detail is exactly how to induce confounding. There must be a variable that
affects both the treatment and outcome processes, but the distribution of the counterfactual survival
process is only specified as a function of treatment. Conceptually, for each subject, we would like to
have counterfactual outcomes for every possible path of the treatment process. We could then sequen-
tially generate a particular outcome of the covariate and treatment processes, extract the appropriate
counterfactual, and record it as the observed outcome. In practice, however, it is not computationally
feasible to generate the full data on each subject.

The solution is to realize that the conditional hazard from the MSM in equation (11) completely
determines the distribution function corresponding to any treatment path through the identity

Fā(t) = 1− Sā(t) = 1−
∏

k:tk≤t

(1− λā,k).

We can generate survival times with this distribution by applying the inverse of the CDF to random
uniform [0,1] deviates. Now imagine we draw an underlying health state U ∼ Unif [0, 1] for each
subject. By applying the appropriate inverse CDF to these health states, we can obtain that subject’s
counterfactual survival time under any treatment path. We accumulate a treatment history by se-
quentially generating covariate and treatment processes, constantly updating the cumulative hazard

9
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Figure 2: Illustration of confounding in a hazard MSM.

through the product of conditional hazard terms implied by the observed treatment. As soon as the
cumulative hazard exceeds U , the subject fails and we obtain the observed survival time.

Figure 2 illustrates this basic idea in a simpler point-treatment example. It is apparent that the
distribution of failure times for treatment 3 lies fully to the right of that for treatment 2 (and likewise
for treatment 1). However, the most robust subjects, e.g. those with values of U closer to 1 than
0, are preferentially assigned to the worst treatment, treatment 3. And so, from observed data, it
appears that treatment 1 induces survival times longer than those associated with treatment 2 (and
likewise for treatment 3).

Here is pseudo-code for simulating data for one subject in our longitudinal setting:

• Draw U from a uniform [0,1] distribution.

• Map U into a slope and intercept that describe the covariate process L(·).

• Loop through the tk while subject still alive:

– If tk is a potential treatment time, measure the covariate and make a treatment decision.
If tk is not a potential treatment time, copy the covariate and treatment process state at
tk−1 into tk.

– Using the MSM in equation (11), calculate the probability of surviving the interval (tk, tk+1)
and record it. Take the product of all such probabilities for tj : tj ≤ tk. If this product is
less than or equal to 1−U , then Y (tk) = 1 and the subject has failed. Otherwise, Y (tk) = 0
and the subject lives on.

4.2 Analysis of simulated data

First we describe the observed data structure. Each subject will exhibit an outcome of the survival
process Y that is a vector of zeros followed by exactly one one, i.e. something of the form (0, 0, ... , 1).
Of the same length as this vector, we will have the outcome of the covariate and treatment processes.
By concatenating this subject-specific data, we create a dataset from which to estimate the treatment
mechanism and the causal parameter α.

The IPTW estimator relies on solving weighted estimating equations, where the weights arise
from the treatment mechanism. Here we describe how to compute the estimated stabilized weights
ŝw(tk). Due to the curse of dimensionality, typically one cannot estimate g using the SRA alone;
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it is usually necessary to assume a lower dimensional parametric or semiparametric model for the
treatment mechanism. For example, we could assume a logistic model for the probability of treatment
given the observed past (or perhaps some portion thereof).

Since we have used a logistic model to generate the data in this simulation, we know that this
model will be correct. By using the treatment and covariate portion of the dataset described above,
we estimate the parameter θ of the treatment mechanism in equation (10) with ordinary logistic
regression. We treat each subject at each time tk as an observation. Denote the resulting estimator
θ̂. Let p̂ik be the implied estimated treatment probability at time tk given the history of subject i.
We also fit a second logistic regression model, but this time omitting Lk as a predictor. Denote the
resulting estimator θ̃ = (θ̃0, θ̃1, 0) and let p̃ik denote the associated estimated treatment probabilities.
The estimated stabilized weight ŝwi(tk) at time tk for subject i is given by the product

ŝwi(tk) =

k∏

j=0

p̃
Aij

ij (1− p̃ij)
1−Aij

p̂
Aij

ij (1− p̂ij)1−Aij

Note that in the absence of confounding, i.e. if the covariate L(·) does not affect treatment decisions,
the true stabilized weights are always one.

At this point we can calculate the IPTW estimator. We fit a logistic regression, using the outcomes
from all subjects, of Y on the predictors used in the MSM given in equation (11). For example, one
can use the Splus function glm and provide estimated weights ŝw(tk) through the weights argument;
Splus code for an example can be found in the appendix. We carry this out using no weights and
stabilized weights, which results in the naive estimator α̃n and the IPTW estimator α̂iptw

n respectively.
Both are estimators of the causal parameter α.

To calculate the TO estimator recall the special form of the projection (see equation (7)) when
the treatment process takes on the values zero or one:

ICSRA(O|g,Q) =
∑

k

(Q(1,Fk)−Q(0,Fk)) dMg(k), (12)

where dMg(k) = Ak − E(Ak|Fk) and Q(a,Fk) = E(ICiptw(O|g,α, h)|Ak = a,Fk). We estimate the

expectation Q(·) by regressing the estimated IPTW estimating function ICiptw(Oi|gn, α̂
iptw
n , h) on the

treatment and covariate histories Āk and L̄k. From the fitted regression and an estimated treatment
mechansim, we can compute the projection ÎCSRA given in (12) for each subject. We subtract this

from ÎCiptw to obtain ÎCto and use equation (6) to calculate the one-step TO estimator. Some Splus
code for an example is in the appendix and we discuss this in more detail for individual simulations.

4.3 Simulation results

In all of the simulations described below, the study time τ is the interval [0,40]. The monitoring times
are {t0 = 0, t1 = 1, . . . , t39 = 39}. We measure the covariate once in every five intervals, therefore
the measuring times are {t0, t5, . . . , t35}. The treatment times are t0 and t5, therefore the possible
treatment paths can be listed easily by considering the treatment actions a0 and a5:

A = {(a0, a5) : a0, a5 ∈ {0, 1}, a0 ≤ a5} = {(0, 0), (0, 1), (1, 1)}.

Here is the value of α, the parameter of the logistic MSM given in equation (11):

α0 α1 α2 α3

−3.04 0.175 −1.5 0.388

Recall that the counterfactual survival curves implied by α are given in figure 1.

4.3.1 Simulation 1

The main point of this simulation is to demonstrate the relative performance of the naive and IPTW
estimators under conditions ranging from no confounding to quite severe confounding. The presence
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and degree of confounding is completely determined by the parameter θ in model (10). No confounding
implies that the coefficient for Lk equals zero. The degree of confounding intensifies as that coefficient
is increased. In the case of severe confounding, the coefficient for time tk equals zero and that for the
covariate Lk does not; thus, all differences in the probability of initiating treatment are attributable
to differences in the observed covariate. Here are the four values of θ that we used, listed in increasing
order w.r.t confounding severity:

θ0 θ1 θ2
(Intercept) (Time) (Covariate)

θ(1) −0.58 0.08 0.00

θ(2) −0.71 0.06 0.01

θ(3) −0.85 0.03 0.03

θ(4) −0.99 0.00 0.04

The following table presents the average naive and IPTW estimates of α, under varying degrees of
confounding. As a reference, the first row contains the true data-generating value of α. Recall that
θ(1) corresponds to no confounding and that θ(4) corresponds to severe confounding.

Naive estimator IPTW estimator
α0 α1 α2 α3 α0 α1 α2 α3

Truth −3.04 0.175 −1.5 0.388 −3.04 0.175 −1.5 0.388

θ(1) −3.037 0.177 −1.494 0.388 −3.031 0.176 −1.498 0.388

θ(2) −3.003 0.179 −1.602 0.391 −3.039 0.176 −1.487 0.386

θ(3) −2.990 0.183 −1.722 0.401 −3.059 0.179 −1.511 0.391

θ(4) −2.943 0.185 −1.918 0.413 −3.063 0.177 −1.543 0.397

We see that the average IPTW estimate is close to the corresponding true value, even in the presence
of confounding, whereas the average naive estimate drifts away from the truth as the confounding
increases. This is especially pronounced for α2, which is arguably the coefficient most directly respon-
sible for the treatment effect. In figure 3 we display the relative efficiency of the estimators for α2;
qualitatively similar results are obtained for the remaining components of α. The total bar length
reflects mean squared error and we see that MSE for the naive estimator is always greater than for the
IPTW. Notice this is true even in the case of no confounding, e.g. θ1, which is an illustration of the
efficiency gain from weighted estimators even in the absence of confounding. The difference in MSE
becomes more dramatic as the confounding becomes more severe and this is driven by the increasing
bias of the naive estimator.

4.3.2 Simulation 2

In this simulation, we introduce the TO estimator and compare the performance of all three estimators
discussed in this paper. We consider only one value of the treatment mechanism parameter θ: namely,
θ = (θ0, θ1, θ2) = (−0.8, 0, 0.04). Since θ2 does not equal zero, we see that confounding is present.

At this point, we provide more details on the regression used to estimate Q(Ak,Fk), which is the
conditional expectation of the IPTW estimating function ICiptw(O|g,α, h), given the past Ak and Fk.
This is the greatest challenge in calculating the TO estimator. In this simulation ICiptw(O|g,α, h) is
a four dimensional vector, since α is four dimensional, and it is a subject-specific variable. Whenever
we require ICiptw(O|g,α, h) for each subject observation, such as in the regressions described below,
the subject-specific vector is replicated. For concreteness, we concentrate on the first component of
α the approach to the other three components is identical. In panel (a) of figure 4 we use one of

the simulated datasets to present a typical scatterplot of the first component of ÎCiptw versus Lk for
all observations contributed by subjects when they are off treatment. Panel (b) of figure 4 presents
observations from time 0 among treated subjects and panel (c) presents the same from time 1. The
plot in panel (c) exhibits two distinct curves, corresponding to the subjects assigned to treatment
at time t0, i.e. t∗ = t0, and those assigned at time t5, i.e. t∗ = t5. Using data from off-treatment
subjects, we use linear regression to model the expectation of ICiptw(O|g,α, h) as a function of Lk
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Relative Efficiency for α2
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Figure 3: Relative efficiency of naive and IPTW estimators in Simulation 1.
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and L2
k, for times 0 and 5 separately. Among on-treatment observations – that is, those depicted in

panels (b) and (c) of figure 4 – it is clear that our model must include the treatment initiation time
t∗. In this case, we use linear regression to model the expectation of ICiptw(O|g,α, h) as a function
of Lk, L

2
k, t

∗, and t∗ × Lk for times 0 and 5 separately.
Figure 5 depicts the relative performance of the three estimators for α2 with respect to both bias

and variance. Note that α2 is our main parameter of interest since its value contributes heavily to
the causal effect of the treatment regime. As expected, we see the inferior performance of the naive
estimator, with respect to both bias and variance. When compared to the naive estimator, the IPTW
estimator has a relative efficiency of four. Furthermore, the TO estimator has a relative efficiency
of four, compared to the IPTW estimator. The advantages of the IPTW and TO estimators are
substantial, in terms of bias and variance.

Finally, we evaluate the projection fit through inspection of the empirical inner products between
elements of ÎCSRA and ÎCto, as described in section 2.2. The ρ̂ matrix is given below and we confirm
that all elements are indeed close to zero:

ρ̂ =




0.0459 0.0552 0.0453 0.0502
0.0447 0.0463 0.0328 0.0419
0.0673 0.0773 0.0543 0.0696
0.0787 0.0840 0.0586 0.0736




4.3.3 Simulation 3

The only difference between this simulation and the previous, described in section 4.3.2, is an additional
treatment time at t10 = 10. This has the effect of increasing the size of the treatment space A:

A = {(a0, a5, a10) : a0, a5, a10 ∈ {0, 1}, a0 ≤ a5 ≤ a10}
= {(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)}.

All of the estimators are implemented in the manner detailed in previous sections, except we perform
a pooled regression when estimating the projection, i.e. we do not fit separate models at different
times. The relative performance of the estimators is summarized in figure 6; the results are essentially
equivalent to those seen in the previous simulation. Likewise, the inner product matrix ρ̂ indicates an
acceptable projection fit.

ρ̂ =




0.0493 0.0586 0.0370 0.0528
0.0780 0.0703 0.0550 0.0632
0.0731 0.0768 0.0585 0.0721
0.0733 0.0822 0.0550 0.0769


 (13)

4.4 Influence of end-of-study censoring

In the above simulations, the end-of-study time is T = 40 and, as was our intention, all subjects
fail before this time in our simulated datasets. Since it is interesting to determine the effect of
noninformative censoring on the relative performance of the estimators, we re-examine the simulated
datasets and impose earlier end-of-study times, thereby creating censored observations. That is, we
redefine the outcome process as Yā(tk) = I(Sā ≤ tk, tk < T ). The following table gives the relative
efficiency w.r.t MSE of the IPTW estimator versus the naive estimator (columns 1 - 3) and that of
the TO estimator versus the IPTW estimator (columns 4 - 6) for different end-of-study times.

Naive vs IPTW IPTW vs TO
End-of-study time 7 10 40 7 10 40

α0 0.807 0.827 0.707 0.853 0.957 0.986
α1 0.903 0.738 0.657 0.904 0.935 0.825
α2 0.523 0.331 0.255 0.700 0.509 0.274
α3 0.959 0.952 0.737 0.953 0.738 0.633
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(a) ’No Treatment’ Observations (A=0) at times 0 and 5
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(b) ’Treatment’ Observations (A=1) at time 0
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(c) ’Treatment’ Observations (A=1) at time 5
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Figure 4: First component of ICiptw(O|g,α, h).
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Relative Efficiency for α
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Figure 5: Relative efficiency of all three estimators in Simulation 2.

16

http://biostats.bepress.com/ucbbiostat/paper120



Relative Efficiency for α
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Figure 6: Relative efficiency of all three estimators in Simulation 3.
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Figure 7: Overview of SPARCS timeline.

We see that, as the proportion of censored subjects decreases or, equivalently, as end-of-study
time grows later, the relative efficiencies become more dramatic. This can be seen in the general
downward trend of the three relative efficiencies reported for any component of α, for either estimator
comparison. The overall conclusion is that the performance gains for the IPTW and TO estimators
are largest in the absence of censoring, although they persist even in the presence of censoring.

5 Analysis of SPARCS data

Here we apply the methodology developed in previous sections to analyze data from a project entitled
“Study of Physical Performance and Age Related Changes in Sonomans” (SPARCS) [Tager et al.,
2000]. SPARCS is a community-based longitudinal study of physical activity and fitness in people at
least 55 years of age who live in Sonoma, California. One of the goals of SPARCS and the primary
goal of the current analysis is to estimate the causal effect of increased physical activity on survival.

5.1 Data structure

The subset of the data that we examine here was collected in the first three home evaluations of
female SPARCS participants (n = 1197), over the time period 5/1993 - 10/1999. We treat time as
discrete and divide the study time into 6 month intervals. This implies that the monitoring times are
given by τ = {t0, . . . , T = t10}; at all time points tk , we determine if the subject is alive. See figure
7 for a helpful picture. To simplify the analysis we proceed as if subjects were evaluated every 2.5
years; therefore, the measuring times are t0 = 0 years, t5 = 2.5 years, and t10 = 5 years (the actual
time spacing of evaluations ranged from 2 to 3 years). Also, recall that the treatment and covariate
processes are subject to change only at the measuring/treatment times t0, t5, and t10.

Our measure of physical activity is based on an activity score that is recorded for each subject
at each evaluation. The activity score takes values in the set {1, 2, 3, 4}, where 4 corresponds to the
highest level of activity. We define a time-dependent treatment process At

k that is an indicator for
an activity score of 3 or 4 during the interval (tk, tk+1), which implies that the subject is engaging in
moderately vigorous activity. Note that, although subjects are not being actively treated in any way,
we can simply handle a subject’s self-chosen activity level as an intervention whose efficacy we wish to
measure. Following the approach introduced in section 1.1, we also define a counting process Yk that
is an indicator for death in the interval (tk−1, tk). An uncensored subject’s survival time, denoted S

to distinguish it from the end-of-study time T , can be recovered from the history of this process Ȳ (T )
by noting the jump time, i.e. S = mink{tk : Yk > 0}.

At the initial evaluation, information on the the following baseline covariates is obtained: age
in years (age), indicator of activity decline in past 5 - 10 years, indicator of past habitual vigorous
activity, indicator of participation in high school sports. This collection of variables is referred to
collectively as W . At each evaluation, including the baseline evaluation, information on the following
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time-dependent covariates is obtained: indicator of a cardiovascular condition (card), indicator of
other health conditions, self-perception of health, NRB – a laboratory measure of performance in a
variety of everyday tasks, BMI – body mass index, indicator of current smoking status, indicator of
past smoking status. These variables will be referred to collectively as Lk.

It is reasonable to assume that the variables W and Lk can influence both the activity level and
the survival time. Therefore, we must regard W and Lk as potential confounders in our study of the
causal relationship between activity level and survival.

Two types of censoring are present in the data. The first type arises if a subject drops out of the
study, which affects 58 participants. We refer to the drop out time as D. The second type of censoring
arises if the subject survives the entire study time [0, T ]. Of the 1197 participants, 958 were alive at
their third and final evaluation. The remaining 181 subjects died during the study time. Each subject
accumulates a history until the earliest of these events: death S, end-of-study T , or drop-out D.

We use the following imputation procedure to address missing values: missing continuous covariates
are replaced by the mean of the nonmissing covariates for that subject at other time points. Missing
categorical covariates are set to the nonmissing value measured at a nearby timepoint. Subjects with
missing values for a covariate at all time points were excluded from the analysis.

5.2 Causal models

The full data for a subject includes the uncensored survival process (equivalent to the survival time
Sāt) for every possible treatment history and the corresponding covariate process:

X = (Sāt , āt(S), L̄āt(S),W : āt ∈ At)

In contrast, the observed data includes only the survival and covariate process corresponding to the
subject’s actual treatment history, possibly subject to censoring:

O = (R = S ∧ T ∧D, Āt(R), L̄(R),W ).

We consider two marginal structural models for the hazard of death as a function of time, the
activity level At(·), and, perhaps, two baseline covariates: cardiovascular condition (card) and age
(age). Since we are modeling hazard in a discrete time setting, we focus on the probability of a jump
in the survival process Yāt(·). Model 1 is given by

E
(
dYāt(tk)|Ȳāt(tk−1)

)
= I

(
Ȳāt(tk−1) = 0

)
×

logit−1
(
α0 + α1a

t(tk) + α2tk + α3 age+

α4 card+ α5(age× at(tk)) +

α6(age× tk) + α7(card× at(tk)) +

α8(card× tk) + α9(age× card)
)
.

A simpler alternative, Model 2, is given by

E
(
dYāt(tk)|Ȳāt(tk−1)

)
= I

(
Ȳāt(tk−1) = 0

)
×

logit−1
(
α0 + α1a

t(tk) + α2tk).

In order to form the weights necessary to use the observed data to estimate the causal parameter
α, from either Model 1 or 2, we must model the treatment mechanism. We assume the following
logistic regression model:

P (At(tk) = 1|Āt(tk−1), L̄(tk),W ) = λtk
(γ), (14)

where λtk
(γ) = logit−1

(
γ0 + γ1A

t(tk−1) + γ2tk + γT
3 Lk + γT

4 W )
)
. The usual partial mle γ can

be computed using standard software and we compute the treatment contribution to the estimated
weights as described before in section 4.2.

We do not assume that the drop-out time D is independent of survival, but we do assume in-
dependence conditional on the observed covariate history. Therefore, our weights will include the
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Table 1: Estimates of the causal parameter α in Model 1.

Naive IPAW TO
α̂0 −12.5435 −13.2424 (1.42) −12.9429 (1.40) Intercept
α̂1 0.6861 1.1873 (1.47) 0.8018 (1.43) Activity level
α̂2 −0.1163 −0.0618 (0.16) −0.0825 (0.15) Time
α̂3 0.1048 0.1132 (0.02) 0.1091 (0.02) Age at baseline
α̂4 4.8012 4.2989 (1.66) 4.4791 (1.69) Cardiovascular
α̂5 −0.0202 −0.0263 (0.02) −0.0204 (0.02) Age × activity
α̂6 0.0025 0.0017 (0.00) 0.0019 (0.00) Age × Time
α̂7 0.4386 0.6898 (0.37) 0.6885 (0.35) Cardio × activity
α̂8 0.0101 0.0191 (0.04) 0.0179 (0.04) Cardio × time
α̂9 −0.0535 −0.0488 (0.02) −0.0509 (0.02) Age × cardio

probability of not being censored due to dropout, in addition to the above probability on the treat-
ment mechanism. We define a drop-out censoring process Ac(tk) = I(D ∈ (tk, tk+1)). If the subject
drops out before death or end of the study, Āc = (0, . . . , 0, 1); otherwise Āc = (0, . . . , 0, 0). We assume
the following intensity model for the drop-out process:

E(dAc
k|L̄k,W, Āt

k, Ā
c
k−1) = I(Āc

k−1 = 0)× πtk
(β), (15)

where πk(β) = logit−1
(
β0 + β1A

t
k + β2tk + βT

3 Lk + βT
4 W

)
. Just as with the treatment process, we fit

the regression implied by (15). Denote the estimator by β̂ and the implied probability of dropout at
time tk for subject i by q̂ik. The same quantities, but based on a regression in which L̄k is omitted as
a predictor, are denoted by β̃ and q̃ik. The censoring contribution to the estimated stabilized weight
is then

k∏

j=0

(1− q̃ij)

(1− q̂ij)

The treatment contribution is calculated as it was earlier in the simulations and the estimated stabi-
lized weights are an element-wise product of treatment and censoring terms. Splus code for a related
example is in the appendix.

5.3 Results

Table 1 reports the Model 1 estimates ofα based on the naive (unweighted), IPAW, and TO estimators.
Estimated standard errors for the IPAW and TO estimators are reported in parentheses. In the context
of the MSM, the effect of physical activity on the hazard can be obtained from the coefficients of all
terms containing at(·). Specifically, let αact reflect the effect of activity on the linear predictor (i.e.
the logit of the probability of death); that is, in Model 1, αact(age, card) = α1 + α5 age + α7 card.
Due to the interaction terms, αact is a function of the baseline covariates age and card. We estimate
αact by substituting the relevant estimated coefficients. The standard error of α̂act can be recovered
from the estimated covariance matrices. Table 2 reports the estimated treatment effect of activity
α̂act for subjects of various ages and cardiovascular conditions based on the unweighted, IPAW, and
TO estimators.

Among patients without a history of cardiovascular problems, physical activity decreases the haz-
ard, with the effect size steadily increasing with the subject’s age at baseline. This trend is seen in
all three estimators, with statistical significance at the conventional 0.05 level for ages 70 and higher.
For patients that have had cardiovascular problems, the results are more ambiguous. The unweighted
estimator indicates that physical activity decreases the hazard, but the effects are much smaller than
for the first population. The positive relationship between baseline age and treatment effect also
remains. Both the IPAW and TO estimators weakly indicate that physical activity may increase the
hazard for patients younger than 75 at baseline. The treatment effect at ages 75 and 80 is positive,
but certainly does not approach statistical significance.
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Table 2: Estimates of treatment effect αact in Model 1

Age at baseline 60 65 70 75 80
Naive −0.5255 −0.6265 −0.7275 −0.8284 −0.9294
IPAW −0.3882 −0.5195 −0.6508 −0.7821 −0.9134

card = 0 (0.3794) (0.3073) (0.2514) (0.2243) (0.2362)
TO −0.4242 −0.5264 −0.6286 −0.7307 −0.8329

(0.3691) (0.2989) (0.2442) (0.2169) (0.2273)
Naive −0.0870 −0.1879 −0.2889 −0.3899 −0.4908
IPAW 0.3016 0.1703 0.0390 −0.0923 −0.2236

card = 1 (0.4007) (0.3416) (0.3021) (0.2900) (0.3088)
TO 0.2642 0.1621 0.0599 −0.0423 −0.1445

(0.3822) (0.3246) (0.2860) (0.2746) (0.2935)

Table 3: Estimates of α in Model 2.
Naive IPAW TO

α̂0 −4.4552 −4.8602 (0.1855) −4.8532 (0.1782)
α̂1 −1.0833 −0.4594 (0.1846) −0.4448 (0.1684)
α̂2 0.0755 0.0798 (0.0201) 0.0758 (0.0196)

Another way to summarize the treatment effect is to examine survival curves for different subpopu-
lations. In figure 8, we present survival curves for subjects of different baseline ages and cardiovascular
histories. All panels have the same color scheme, horizontal and vertical axes. Columns one and two
contain survival curves for subjects without a cardiovascular history, both for the unweighted and the
IPAW estimators. Columns three and four present the same information for patients with a cardio-
vascular history. In every case, survival curves corresponding to lack of activity (i.e. āt = (0, 0, 0))
and constant activity (i.e. āt = (1, 1, 1)) are drawn in red and green, respectively.

The main discordance between the two estimators is among younger patients with a history of
cardiovascular trouble. For ages 60, 65, and 70, the unweighted estimator indicates there is a small
benefit from increased activity, whereas the IPAW estimator indicates the effect is either absent or
detrimental. Given the weak statistical significance, it is fair to say that the scientific conclusions
would likely be very similar from either unweighted or weighted estimation of α, but that a causal
interpretation is justified only in the case of the latter.

The estimates of α for Model 2 are reported in table 3. In this model, we choose not to condition
on any baseline covariates; we want to state the effect of physical activity on survival for the entire
population. For all estimators, the relevant estimated coefficient, α̂1 is negative and, therefore, indi-
cates that activity decreases the hazard. However, the magnitude of this effect is markedly different
for the unweighted and weighted estimators. The unweighted estimator indicates a much larger benefit
than the weighted estimators. This is quite understandable when one considers the risk of using naive
estimators to draw causal inferences. In our setting, the risk is that those who opt for a more active
lifestyle are different from those who do not in a way that also affects survival. It is quite likely that
the people who are actually physically active are healthier across the board than those who do not
and that people are more active during periods of health. Therefore, the observed survival experience
for ’active intervals’ is quite likely to be more positive than it would be if all subjects – regardless of
current health status – engaged in activity. Through weighting, the IPAW and TO estimators partially
compensate for this and, indeed in this case, present a less dramatic estimate of the universal benefit
of physical activity. In fact, even in Model 1, the overall result is that the unweighted estimator
indicates a larger, more positive treatment effect than that found by weighted estimation.
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Figure 8: Survival curves for subjects aged 60 through 80 at baseline.
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6 Conclusion

This paper presents two estimators for the causal parameter in a longitudinal marginal structural
model: an IPTW or IPAW estimator and a treatment or action orthogonalized (one-step) estimator.
Through weighting and projection, these estimators allow causal inferences to be drawn from data
in which both treatment assignment and censoring may depend on past treatment, covariates, and
response, i.e. when conventional randomization and censoring assumptions are violated. We have
seen that, even in the absence of time-dependent confounding, the IPTW estimator is more efficient
than the naive estimator. We note also the substantial efficiency gain of the treatment and action
orthogonalized estimator, relative to the initial inverse-weighted estimator. Finally, the proposed
estimators are easily implemented with standard software tools, such as Splus or R.
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7 Appendix

Here we provide some Splus code to demonstrate the implementation of the proposed estimators with
existing software tools.

7.1 IPAW estimators

Assume mortality is a dataframe with the following variables:

• ID: subject identifier

• Time: k = 0, 1, . . . , as in tk

• BlCov: a baseline covariate, as in W

• LongCov: a time-dependent covariate, as in L(tk)

• Trt: a time-dependent treatment process, as in At
k

• PastTrt: same as Trt, but with one unit of time lag

• TrtRand: indicator for treatment time

• CenPro: indicator for censoring

• Outcome: indicator for failure

Here is what the mortality dataframe might look like for two subjects:

ID Time BlCov LongCov Trt PastTrt TrtRand CenPro Outcome

1 0 5 0.5 0 0 1 0 0

1 1 5 0.5 0 0 0 0 0

1 2 5 0.5 0 0 0 0 0

1 3 5 0.5 0 0 0 0 0

1 4 5 0.5 0 0 0 0 0

1 5 5 0.6 1 0 1 0 0

1 6 5 0.6 1 1 0 1 0

2 0 12 1.0 0 0 1 0 0

2 1 12 1.0 0 0 0 0 0

2 2 12 1.0 0 0 0 0 0

2 3 12 1.0 0 0 0 0 0

2 4 12 1.0 0 0 0 0 0

2 5 12 1.5 0 0 1 0 0

2 6 12 1.5 0 0 0 0 0
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2 7 12 1.5 0 0 0 0 0

2 8 12 1.5 0 0 0 0 0

2 9 12 1.5 0 0 0 0 1

Here is code to calculate the part of the stabilized weights arising from the treatment process:

treat.fit.big <-

glm(Trt ~ PastTrt + LongCov + Time + BlCov,

subset = (TrtRand == 1),

family = binomial, data = mortality)

treat.fit.small <- update(treat.fit.big, . ~ . ~ - LongCov)

treat.prob.big <- rep(1, dim(mortality)[1])

treat.prob.small <- rep(1, dim(mortality)[1])

treat.prob.big[mortality$TrtRand == 1] <-

ifelse(mortality$Trt[mortality$TrtRand == 1] == 0,

1 - predict(treat.fit.big, type = "response"),

predict(treat.fit.big, type = "response"))

treat.prob.small[mortality$TrtRand == 1] <-

ifelse(mortality$Trt[mortality$TrtRand == 1] == 0,

1 - predict(treat.fit.small, type = "response"),

predict(treat.fit.small, type = "response"))

treat.weights <-

unlist(tapply(treat.prob.small/treat.prob.big, mortality$ID,

cumprod))

Here is the code to calculate the part of the stabilized weights arising from the censoring process:

censor.fit <- glm(CenPro ~ LongCov + Time + BlCov + Trt,

family = binomial, data = mortality)

censor.fit.small <- update(censor.fit, . ~ . - LongCov)

censor.weights.0 <- # censor weights at each subject time

1-predict(censor.fit, type = "response")

censor.weights.0.small <-

1-predict(censor.fit.small, type = "response")

censor.weights <- # time dependent weights

unlist(tapply(censor.weights.0.small/censor.weights.0,

mortality$ID, cumprod))

Here is the code to calculate the IPAW estimator:

iptw.fit <- glm(Outcome ~ Trt + BlCov + Time, family = binomial,

weights = censor.weights * treat.weights,

data = mortality)

alpha.iptw <- iptw.fit$coef

7.2 TO estimators

To calculate a TO estimator, we must estimate the projection of ICiptw on TSRA. Therefore we will

need ÎCiptw for each subject; this is a vector of the same dimension as the causal parameter α, which
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is 4 in this example. We store these as row vectors in the matrix IcIptw, in which ÎCiptw is repeated
as necessary within subject to facilitate the regression. Here is an example,where design.matrix is
a num.of.subj × num.of.par matrix with one column for each covariate in the MSM:

# code to calculate IC_iptw

weights <- treat.weights * censor.weights

epsilon <- mortality$Outcome -

1/(1 + exp(-1 * as.vector(design.matrix %*% alpha.iptw)))

ic.iptw <- weights * design.matrix * epsilon

IcIptw <- array(0, c(num.of.obs, num.of.par))

IcIptw.subj <- array(0, c(num.of.subj, num.of.par))

for(j in 1: num.of.par){

IcIptw[, j] <- unlist(tapply(ic.iptw[, j], mortality$ID, rep.sum))

IcIptw.subj[, j] <- unlist(tapply(ic.iptw[, j], mortality$ID, sum))

}

rep.sum <- function(x){

rep(sum(x), length(x))

}

We also need to compute cn and here is an example:

# code to calculate c_n

der.expit <- function(x){

exp(x)/((1 + exp(x))^2)

}

temp1 <- der.expit(as.vector((design.matrix %*% alpha.iptw)) *

design.matrix

temp2 <- weights * design.matrix

c.n <- array(0, c(num.of.par, num.of.par))

for(id in 1: num.of.subj){

temp1.id <- temp1[mortality$ID = id, ]

temp2.id <- temp2[mortality$ID = id, ]

if(length(temp1.id) == num.of.par){ # if temp1.id is a vector

c.n.id <- t(temp2.id) %*% temp1.id

} else{

c.n.id <- temp2.id %*% t(temp1.id)

}

c.n <- c.n + c.n.id

}

c.n <- c.n/num.of.subj

The estimated projection will be a 4-dimensional vector, with one vector per subject. We can now
take this projection:

#Calculate the projection on Tangent space for censoring

proj.on.Tcar.1 <- array(0, c(num.of.subj, num.of.par)) # store the projection

covariates <- mortality[, c("Time", "Trt", "BlCov", "LongCov")]

glm.CenPro.fit <-

glm(CenPro ~ Time + Trt + BlCov + LongCov,

family = binomial, data = mortality)
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epsilon <-

mortality$CenPro-predict(glm.CenPro.fit, type = "response")

for(j in 1:num.of.par){

# We use linear model to regress IC_{iptw} on the past. But reader

# could do the regression more nonparametrically using gam

# regress IC_{iptw} on past conditioning on $A^c(t)=1$.

gam.fit.ic.iptw.1 <-

gam(IcIptw[, j] ~ Time + Trt + BlCov + LongCov,

subset = (CenPro == 1), data = mortality)

# regress IC_{iptw} on past conditioning on $A^c(t)=0$.

gam.fit.ic.iptw.2 <-

gam(IcIptw[, j] ~ Time + Trt + BlCov + LongCov,

subset = (CenPro == 0), data = mortality)

temp <- predict.gam(gam.fit.ic.iptw.1, covariates) -

predict.gam(gam.fit.ic.iptw.2, covariates)

# The projection calculation is based on (8) type of representation

proj.on.Tcar.1[, j] <- unlist(tapply(temp*epsilon, mortality$ID, sum))

}

# Calculate the projection on Tangent space for treatment

proj.on.Tcar.2 <- array(0, c(num.of.subj, num.of.par))

for(k in 1:num.of.par){

temp <- rep(0, num.of.obs)

gam.fit.ic.iptw.1 <- # Regress on (A_k, \mathcal{F}_k)

gam(IcIptw[, k] ~ Time + Trt + PastTrt + BlCov + LongCov,

subset = (TrtRand==1), data = mortality)

gam.fit.ic.iptw.2 <- # Regress on \mathcal{F}_k

gam(IcIptw[, k] ~ Time + PastTrt + BlCov + LongCov,

subset = (TrtRand == 1), data = mortality)

temp[mortality$TrtRand == 1] <-

predict.gam(gam.fit.ic.iptw.1) - predict.gam(gam.fit.ic.iptw.2)

proj.on.Tcar.2[, k] <- unlist(tapply(temp, mortality$ID, sum))

}

We can now calculate the TO estimator. Let IcIptw now refer to the collection of 4-dimensional

row vectors, each giving ÎCiptw for one subject.

ic.to <- -(IcIptw.subj - proj.on.Tcar.1 -

proj.on.Tcar.2) %*% solve(c.n) # c.n represents cn

mean.of.ic.to <- apply(ic.to, 2, mean)

alpha.to <- alpha.iptw + mean.of.ic.to # Calculate one step estimator

var.to <- var(ic.to)/num.of.subj # variance of TO estimator
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