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Regression Analysis of a Disease Onset
Distribution Using Diagnosis Data

Jessica G. Young, Nicholas P. Jewell, and Steven J. Samuels

Abstract

We consider methods for estimating the effect of a covariate on a disease onset
distribution when the observed data structure consists of right-censored data on
diagnosis times and current status data on onset times amongst individuals who
have not yet been diagnosed. Dunson and Baird (2001) approached this problem
using maximum likelihood, under the assumption that the ratio of the diagnosis
and onset distributions is monotonic non-decreasing. As an alternative, we pro-
pose a two-step estimator, an extension of the approach of van der Laan, Jewell
and Petersen (1997) in the single sample setting, that is computationally much
simpler and requires no assumptions on this ratio. A simulation study is per-
formed comparing estimates obtained from these two approaches, as well as that
from a standard current status analysis that ignores diagnosis data. Results indi-
cate that the Dunson and Baird estimator outperforms the two-step estimator when
the monotonicity assumption holds, but the reverse is true when the assumption
fails. The simple current status estimator loses only a small amount of precision
in comparison to the two-step procedure but requires monitoring time informa-
tion for all individuals. In the data that motivated this work, a study of uterine
fibroids and chemical exposure to dioxin, the monotonicity assumption is seen to
fail. Here, the two-step and current status estimators both show no significant as-
sociation between the level of dioxin exposure and the hazard for onset of uterine
fibroids; the two-step estimator of the relative hazard associated with increasing
levels of exposure has the least estimated variance amongst the three estimators
considered.



1 Introduction

There are many applications in epidemiology where the research question of interest involves

the effect of some exposure on time to onset of a given disease. For example, consider data

collected from the Seveso Women’s Health Study (SWHS), where researchers were interested

in estimating the effect of dioxin exposure on time to onset (age) of uterine fibroids in women

living in Seveso, Italy during a chemical explosion in 1976. As the exact age of onset is

unobservable for this disease, study data consisted of right-censored data on age of diagnosis

of fibroids collected via questionnaire in 1996. In addition, uterine ultrasounds were given at

this time to assess the presence or absence of a fibroid for individuals with no prior diagnosis.

Assuming the disease under study is irreversible and is detectable during a preclinical

latency phase, we can define this observed data structure more generally as n independent

copies of

{C ∧ T2,∆1 = I(T1 < C), ∆2 = I(T2 < C), Z}, (1)

where T1 is time to disease onset, T2 is time to diagnosis, C is a random screening time

assumed independent of (T1,T2) and Z is a k-dimensional set of fixed covariates. Further

define F1 and F2, and S1 and S2, as the distribution functions and survival functions for T1

and T2, respectively.

Based on this observed data structure, three types of observations are possible:

(i) Both onset and diagnosis have occurred prior to the screening, and the time of diag-

nosis is known exactly (T1 < T2 < C,∆1 = ∆2 = 1);

(ii) Onset, but not diagnosis, has occurred prior to the screening (T1 < C < T2,∆1 =

1,∆2 = 0);

Hosted by The Berkeley Electronic Press



(iii) Neither onset nor diagnosis has occurred prior to screening (C < T1 < T2,∆1 =

∆2 = 0).

Based on n independent copies of the observations (1), we can write the log likelihood of

the data, conditional on C and Z, as follows

l(F1, F2|C,Z) =
n∑

i=1

δ2i log f2(t2i|zi) + δ1i(1 − δ2i) log{S2(ci|zi) − S1(ci|zi)}

+ (1 − δ1i) log S1(ci|zi), (2)

where δ1i, δ2i, t2i, zi, and ci are the ith observed values of ∆1, ∆2, T2, Z and C, respectively.

As the likelihood only involves the marginal distributions of T1 and T2, given Z, these

are the only identifiable aspects of the conditional joint distribution, F , of (T1, T2). In

addition, the implicit constraint underlying the likelihood (2), that pr(T1 < T2|Z) = 1,

translates simply to the explicit constraint on the marginals that F1(t|Z) > F2(t|Z) for any

Z. This follows since for any pair of marginals (F1, F2) with F1 > F2, there exists a bivariate

distribution with F1 and F2 as marginals and pr(T1 < T2) = 1. In the following, we thus

consider regression models based solely on the marginal distributions F1 and F2.

Our primary interest is in how the covariates Z affect the distribution of T1. The meth-

ods we present can be extended to a variety of regression models, but here we focus on a

proportional hazards model for T1 and, specifically, the relative hazard coefficients φ in

S1(t|Z) = S01(t)
exp(φZ). (3)

Many authors have discussed nonparametric estimation of F1 in the absence of covariates

with this data structure (van der Laan et al, 1997; Turnbull and Mitchell, 1984; Kodell, Shaw

and Johnson, 1982; Dinse and Lagakos, 1982). Dunson and Baird (2001) specifically address

estimation of φ, based on the model (3), with an application to US national data on the pre-

menopausal incidence of uterine fibroids. Defining Q(t|Z) = pr(T2 < t|T1 < t, Z), equivalent
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to the ratio of the distribution functions F2(t|Z)
F1(t|Z)

(and, thus, F2(t|Z) = Q(t|Z)F1(t|Z)), they

reparametrized the likelihood such that (2) becomes

l(F1, Q|C,Z) =
n∑

i=1

δ2i log{Q(t2i|zi)f1(t2i|zi) + q(t2i|zi)F1(t2i|zi)}

+ δ1i(1 − δ2i) log F1(ci|zi) + δ1i(1 − δ2i) log{1 − Q(ci|zi)}

+ (1 − δ1i) log S1(ci|zi), (4)

where q(t|z) is the derivative of Q(t|z) with respect to t, with the constraint that Q(t|Z)F1(t|Z)

is a distribution function for all Z. They avoided this active constraint by assuming Q(t|Z)

itself is a distribution function, finally modeling both Q(t|Z) and F1(t|Z) as proportional

odds models.

Dunson and Baird approached maximum likelihood estimation of regression parameters of

the proportional odds model for F1 and Q by flexibly parametrizing both S01(t) = 1−F01(t) ≡
1 − F1(t|Z = 0) and Q∗

0(t) = 1 − Q(t|Z = 0). Specifically, F01(t)
1−F01(t)

and Q0(t)
1−Q0(t)

(i.e., the

baseline odds functions) were both modeled as piecewise linear with nine breakpoints and

parametrized in terms of the slopes of this piecewise linear function. To ensure the required

monotonicity, the slopes were constrained to be non-negative.

The Dunson and Baird approach guarantees estimates of F1 and F2 with the desired

stochastic ordering and, in theory, gives an efficient estimate of φ if both regression models

and the assumption regarding Q(t|Z) are correct. However, in practice the high-dimensional

estimation is computationally intensive and the theoretical properties of the resulting esti-

mators come into question when the dimension of Z is even moderate because of the large

number of necessary parameters used for the baseline survival functions. Further, their ap-

proach requires the assumption of non-decreasing Q. Dunson and Baird argue in support of

the assumption of non-decreasing F2(t|Z)
F1(t|Z)

for most chronic diseases, with t representing age,

by claiming that “the proportion of diseased individuals that have been diagnosed is unlikely

3
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to decrease with age”. However, there are many situations where this assumption may not

hold over the entire ranges of t and Z ; fortunately, we show below that the adequacy of the

assumption can be examined using the available data.

Dunson and Baird note that their methods can be extended to proportional hazards for

F1, and for Q. When using the Dunson and Baird approach, we assume such proportional

hazards models throughout, namely, for F1 = 1−S1 the model given in (3), and for Q∗ = 1−Q

the model

Q∗(t|Z) = Q∗
0(t)

exp(ψZ). (5)

Approaches for estimating φ in the context of the observed data structure (1) without

restrictive assumptions on parameters of little interest such as Q are desirable. Ideally, φ

would be estimated in this regression setting with a full (semiparametric) maximum likeli-

hood estimator based on the likelihood (2) with appropriate specification of the marginal

distribution functions, as was done in the nonparametric single sample setting by Turnbull

and Mitchell (1984). However, in the regression setting it is difficult to describe an appro-

priate joint distribution for T1 and T2 that yields appropriate marginal regression models of

interest, such as (3), and simultaneously satisfies the ordering constraint F1(t|Z) > F2(t|Z)

for all t, Z over the full range of possible regression coefficients. In addition, specification of a

joint distribution may require description of the unidentifiable dependence structure between

T1 and T2. Finally, even if this issue is ignored, there are substantial computational issues

involved in maximizing (2) over a very high dimensional parameter space, assuming that the

baseline components of the marginal regression models are described nonparametrically.

The constraint, F1(t|Z) > F2(t|Z) for all t, Z, links estimation of F1(t|Z) and F2(t|Z) so

that separate maximizations of (2) with regard to F1(t|Z) and F2(t|Z) risk the possibility

of obtaining estimates with F1(t|Z) < F2(t|Z) for some t, Z. However, if estimation of

4
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these distributions is not of primary interest, one might consider approaches that avoid full

maximum likelihood estimation to focus more directly on the parameter of interest, φ, and

make use of existing algorithms to make computation much simpler in practice. In §2 we

propose such an approach, extending the two-step approach for estimation of F1 proposed

by van der Laan et al. (1997) for the single sample case to the semi-parametric regression

setting.

Intuitively, the observed data structure (1), which contains observed values of T2 in

addition to coarsened or current status data (Jewell and van der Laan, 2004) on T1, would

provide more exact information about T1 than pure current status data alone. One might

assume, in turn, that this would allow for more efficient estimation of φ. van der Laan et

al. (1997) showed that in the fully nonparametric single sample setting, estimators of S1(t)

based solely on current status data on T1, ignoring information on T2, are often less efficient

than alternatives. Note that in addition to ignoring information on T2, pure current status

data differs from (1) in that C must be observed for all n individuals, not only for those

with T2 > C. When this is the case, straightforward methods and algorithms for obtaining

an estimator of φ are well established (Shiboski, 1998).

In §3, we describe a simulation study comparing the performance of estimators of φ based

on the Dunson and Baird, two-step and pure current status approaches. In §4, we apply

these approaches to the SWHS noted above.

2 Two-step approach for the estimation of φ

The following is a modification of the approach proposed by van der Laan et al. (1997)

in the nonparametric single sample setting to the semi-parametric regression setting. The

approach avoids the pitfalls of high-dimensional full maximum likelihood and the restrictive

5
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assumptions of Dunson and Baird (2001). Moreover, it can be easily applied using existing

algorithms for proportional hazards regression analysis of right-censored and current status

data.

The two-steps of the estimation algorithm can be stated as follows (note proportional

hazards is assumed here for simplicity but this assumption is not necessary):

(i) Use the data, {ci ∧ t2i, δ2i, zi : i = 1, . . . n}, to estimate S2(ci|zi) using standard

proportional hazards regression methodology;

(ii) Estimate the parameter of primary interest φ in S1(t|Z), arising from the proportional

hazards model (3), using the data, {ci, δ1i, zi : i = 1, . . . n} only for those individuals for whom

δ2i = 0; this is achieved by modifying an algorithm for proportional hazards regression for

standard current status data and applying it to the constructed outcome S2(C|Z)(1 − ∆1)

(based on the first step) and covariates Z.

The rest of this section motivates this approach and describes the proposed algorithm in

more detail.

As noted by van der Laan et al. (1997), R(c) = S1(c)
S2(c)

= E{1 − ∆1|C,Z, T2 > C}. It

follows that

S1(C|Z) = E{S2(C|Z)(1 − ∆1)|C,Z, T2 > C}.

This suggests that to estimate S1, we perform a monotonic regression of S2(C|Z)(1−∆1) on C

and Z, amongst individuals with T2 > C (that is, ∆2 = 0). Specifically, the proportional haz-

ards model (3) for S1(t|Z) leads to a generalized additive regression model for the unobserved

random variable d1 = S2(C|Z)(1 − ∆1) with the log{− log(.)} link function for the mean,

and regression function Λ(C) + φZ, where Λ is an arbitrary increasing function, determined

by the baseline survivor function, S01(t), with the property that Λ(C) → ∞ as C → ∞ and
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Λ(C) → −∞ as C → 0. This follows since log{− log[E(d1|C,Z)]} = log{− log[S01(C)]}+φZ.

Although d1 is not observed, it can be estimated using Ŝ2(ci|zi)(1−δ1i), for the ith individual

with δ2i = 0, using an estimator for Ŝ2(ci|zi). Many flexible models for S2(t|Z) could be

considered, but here, for simplicity, we assume a proportional hazards model for T2; that is,

S2(t|Z) = S02(t)
exp(βZ), (6)

with estimators of S02 and β easily obtained by standard methods for right-censored data

(Cox, 1972). Note that alternative regression models for T1 and Z to proportional hazards

can be accommodated in this algorithm by merely choosing a different link function in the

generalized additive model for d1.

Note, for fixed C,Z,

var{S2(C|Z)(1 − ∆1)|C,Z, T2 > C} = S2
2(C|Z)var(1 − ∆1|C,Z, T2 > C)

= S2
2(C|Z)R(C|Z){1 − R(C|Z)}. (7)

This suggests weighting the regression fit of Ŝ2(C|Z)(1 − ∆1) on C and Z with weights

inversely proportional to S2
2(C|Z)R(C|Z){1 − R(C|Z)}. These weights require knowledge

of R(C|Z) and thus S1(C|Z), and so must be iteratively updated along with estimation of

S1(C|Z), described in additional detail below. A simpler weighting scheme employs S2
2(C|Z)

instead of (7), as in van der Laan et al. (1997) in the single sample setting, although this

choice of weights may cause some loss in precision in the semi-parametric setting.

Once an estimate of S2(C|Z) is obtained, the regression coefficients φ, as well as Λ(C),

can be estimated by modifying Shiboski’s (1998) algorithm for regression with current status

data. The modified algorithm is applied to the log{− log(.)} regression of d̂1 on C and Z as

noted (that is additive in C and Z, monotonic in C and linear in Z). The reader is referred

to Shiboski (1998) for a detailed description of this algorithm, which is equivalent to the

7
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‘local scoring’ procedure used to estimate generalized additive models (Hastie and Tibshirani,

1990). However, briefly, the algorithm consists of an outer loop where an adjusted dependent

variable and weight are calculated based on the mean (µ) of the random variable of interest

and an associated link function. In the case of proportional hazards, the appropriate link

function is log{− log(1−µ)}. This outer loop is followed by an inner backfitting loop, which

alternates between estimating φ via weighted least squares and estimating Λ(C) via the

weighted ‘Pool Adjacent Violators Algorithm’ (Barlow et al., 1972).

Only minor modifications of Shiboski’s (1998) algorithm are necessary to implement the

two-step approach. These include: (i) the data to be passed to the former is a simple

current status observation (e.g. δ1) which has mean µ|Z = F1(c|Z), whereas data to be

passed to the latter is of the form Ŝ2(c|z)(1− δ1), which, as shown above, has (approximate)

mean µ|Z = S1(c|Z); (ii) the appropriate link function in the proportional hazards case for

the latter is, therefore, no longer log{− log(1 − µ)} but, log{− log(µ)} which, accordingly,

modifies the weights in the outer loop of the ‘local scoring’ procedure; (iii) these weights

are further modified to accommodate the fact that the variance of the data is not that of a

simple current status observation (e.g. var(∆1) = F1(C){1−F1(C)}), but rather that shown

in (7); and (iv) the original algorithm is equivalent to maximizing the likelihood for standard

current status data, whereas the latter involves only minimizing a weighted squared error -

thus convergence criteria are modified from being based on changes in the deviance in the

former to changes in the parameters themselves in the latter.

It is expected that the two-step estimator of φ may lose some efficiency over maximizing

the full likelihood jointly as in Dunson and Baird (2001) when their monotonicity assumption

regarding Q(t|Z) is correct. However, when this assumption does not hold, the full likelihood

approach is likely to result in biased effect estimators. To check the monotonicity assumption,

Q(t|Z) can be plotted from the estimates of F1 and F2 provided by the two-step approach.

8

http://biostats.bepress.com/ucbbiostat/paper218



A potential disadvantage of the two-step approach is that the constraint Ŝ1(t|Z) < Ŝ2(t|Z)

might be violated for some t and Z; however, this may be less likely to occur than in the

case of the pure current status approach to estimating Ŝ1 since the constructed observations

Ŝ2(ci|zi)(1− δ1i) in the regression model for S1(t|Z) are always less than or equal to Ŝ2(t|Z).

If the monitoring time C is observed for all individuals, it is known that the estimator

of φ in (3) is asymptotically Normal when maximum likelihood estimation is based on pure

current status data on T1 (Huang, 1996). Huang (1996) discusses methods for estimation

of the limiting variance. In addition, the associated estimator of (the nuisance parameter)

S01 is consistent, but converges only at rate n−1/3 as compared to the standard n−1/2 rate.

In principal, the Dunson and Baird (2001) maximum likelihood estimator follows standard

theory, although variance estimation is complicated by the high-dimensional form of the

parametrization, and the dependency on the monotonic assumption regarding Q. Dunson

and Baird (2001) suggest the use of profile likelihood confidence intervals to deal with the

first of these issues.

Asymptotic theory regarding the two-step estimator of φ remains to be fully articulated,

although the work of van der Laan et al. (1997) strongly suggests that the estimator con-

verges at rate n−1/2 and is asymptotically Normal assuming that, as the sample size increases,

monitoring times are selected to allow the standard estimator of S2(c|z) to converge consis-

tently at rate n−1/2. Formal proofs of such asymptotic results for semiparametric regression

models with current status data are complicated by the non-standard rate of convergence

of estimators of the nuisance parameter, S01, as noted above. However, general techniques

based on locally efficient estimating equations with incomplete data (van der Laan and

Robins, 2003) support the validity of this conjecture—see also Andrews, van der Laan and

Robins (2005). Note that, in the case where the distribution of F2 is entirely supported at

∞ (or practically, at large values), the two-step and the current status estimators coincide

9
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since all data is then of the current status form—in this case, the asymptotic results for the

two-step estimator therefore follow immediately from Huang (1996).

Despite this support for the standard convergence of the two-step estimator of φ, its

influence curve is unlikely to provide the basis for an effective ‘plug-in’ estimator of its vari-

ance as demonstrated in a related current status data estimation problem (Jewell, van der

Laan and Lei, 2005). However, in the context of bivariate current status data, Jewell et al.

(2005) note that the simple bootstrap provides a potential way of obtaining an estimate of

the variance of smooth functional estimators and is more sensitive to second-order asymp-

totic properties. Note that Ma and Kosorok (2005) suggest the possible use of a weighted

bootstrap in this kind of problem with non-standard rates of convergence for estimators of

the nuisance parameters, and provide a theoretical justification. The weighted bootstrap

has also been used by Ma and Kosorok (2006) and Strawderman (2006) in other similar

applications. An alternative approach, that may be less computationally intensive, involves

sampling from the posterior of the profile likelihood for φ (Lee, Kosorok and Fine, 2005).

We evaluate the accuracy of the simple and weighted bootstrap approaches to estimating

the variance of the two-step estimator of φ in §3.

3 Simulations

In this section, we compare estimates of the regression coefficient φ of the marginal pro-

portional hazards model (3) for S1 based on the Dunson and Baird, two-step and current

status methods. For simplicity, we focus on the case of a single covariate Z. Data were

simulated corresponding to the observed data structure (1), as opposed to using an assumed

joint distribution for (T1,T2), as it is difficult to formulate a joint distribution function that

integrates to (3) and (6) for all Z. Specifically, for the ith observation, the covariate value zi

10
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was first generated from a Uniform{0, 1}; the outcome t2i was then simulated based on the

model (6), for specific choices of S02 and β, and corresponding ci generated independently

from a fixed monitoring time distribution. The observed value of δ2i follows from comparison

of t2i and ci. For specified values of S01 and φ, each δ1i was generated from a Bernoulli(p),

where p = 1 − S1(ci|zi)
S2(ci|zi)

, amongst observations with δ2i = 0 only; here S1(c|Z) is determined

by (3).

Four simulations were performed with the following specifications: for simulations 1 and

2, the baseline distributions, S01 and S02 were defined such that 0.014T1 ∼ Weibull(2.0, 2.5)

and 0.014T2 ∼ Weibull(1.99, 4.5). For simulations 3 and 4, the baseline distributions were

modified so that T1 ∼ Weibull(−10.2, 2.5) and T2 ∼ Weibull(−10.3, 2.4). In all cases, C was

generated independently from a Uniform(20, 60) distribution; this range for C was motivated

by the age range of screening times in the SWHS data (see §4). The individual simulations

differed based on the population values of φ and β: the coefficients were selected to be

φ = β = −0.4 for simulations 1 and 3, and φ = β = 0 for simulations 2 and 4.

Note that the simplicity of the factor Z allows all these choices of S01, S02, φ, β, so that

the ordering constraint F1(t|Z) > F2(t|Z) is satisfied for t ∈ (20, 60). On the other hand,

the simulation parameters lead to differing shapes for the function Q(t|Z) for Z ∈ {0, 1} and

over this range of t. Specifically, Q(t|Z) is monotonic non-decreasing in both simulations 1

and 2, but is non-monotonic for simulations 3 and 4, thus violating the Dunson and Baird

(2001) assumption. In the latter two scenarios the shape of Q(t|Z = 0) is approximately

quadratic, dropping from a value close to 0.68 at t = 20 to a minimum of 0.665 around

t = 32, and then rising to approximately 0.72 at t = 60.

The pure current status estimator of φ was obtained using the regression techniques for

current status data described in Shiboski (1998) using an R package provided by the author.

11

Hosted by The Berkeley Electronic Press



The estimator of φ based on the Dunson and Baird approach was obtained as described

in their paper (Dunson and Baird, 2001) with the slight modification of using proportional

hazards models in place of proportional odds models for F1(t|Z) and Q(t|Z). This involved

assuming piecewise linear models for − log S01(t) and − log Q∗
0(t) (i.e. the baseline cumulative

hazards), both with nine breakpoints at t ∈ {7, 14, 21, 28, 35, 42, 49, 56, 63}.

Five hundred simulations, each based on sample size n = 500, were evaluated under the

four simulation scenarios. Table 1 presents a comparison of the three estimation procedures

in terms of bias, variance and mean squared error. Note that a relative efficiency of less

than one in Table 1 reflects superior performance of the two-step estimator in the relevant

comparison, and vice-versa. To give a general impression of the simulated data, the fraction

of observations with ∆2 = 1 is approximately 41%, 45%, 19%, and 22% for simulations 1,2,

3, and 4, respectively; amongst those individuals with ∆2 = 0, the fraction with ∆1 = 1

is 48%, 54%, 11%, and 13%, for simulations 1,2,3, and 4, respectively. TABLE 1 ABOUT

HERE

When Q is monotonic non-decreasing, the Dunson and Baird (2001) estimator slightly

outperforms the other two estimators as might be expected since it is intended to be full

maximum likelihood. Notably, the method does not seem affected by the fact that, in the

simulated data, the regression model we used for Q is not correct. On the other hand, when

Q is non-monotonic, the Dunson and Baird (2001) estimator suffers from considerable bias.

Even from these limited simulations, the validity of the assumption on Q seems to be crucial

in recommending use of this estimator.

The two-step and current status estimators are essentially equivalent when Q is decreas-

ing, with a moderate advantage for the two-step method when this assumption is violated.

The fact that the two-step estimator is not universally superior is somewhat counter-intuitive

12
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given that the current status method ignores data on T2. This result, however, is in line with

those of van der Laan and Jewell (2003) for smooth functionals in the absence of covariates.

Recall that the current status method is only feasible when monitoring times are observed

for all subjects.

Table 2 presents, for each of the four simulations, the variance of φ̂, along with the

median of the simple and weighted bootstrapped estimates of this variance across the 500

simulations. The simple bootstrap variance estimates are based on 500 replicates of simple,

unweighted, samples of size n (with replacement). The weighted bootstrapped estimates are

also based on 500 replicates with weights selected from a unit exponential distribution for

each replicate (see Ma and Kosorok (2005) for details). In all four simulations, the median

of the variance estimators for both the simple and weighted bootstrap is close to the actual

variance; however the simple bootstrap appears to perform better in practice. TABLE 2

ABOUT HERE

In the simulations of Table 1, the form of S2(t|Z) was correctly modeled in the imple-

mentation of both the two-step and current status approaches. The simpler current status

approach requires no assumptions about the distribution of T2 and is, thus, robust against

misspecification of S2. In the case of the two-step method, any parametric or semi-parametric

model can be used to estimate S2(t|Z) in practice (not just proportional hazards). Further,

data adaptive methods provide another approach to avoiding misspecification of this nui-

sance parameter. To assess the robustness of the two-step method against misspecification

of S2, simulations 1 through 4 were repeated with the true S2 depending not only on Z

but also on another covariate, W . Thus, instead of (6), the correct form of S2 in this case

is S
exp(βZ+γW )
02 . The two-step method was then applied to this alternative simulated data

including only Z in the estimation of S2 and erroneously omitting the important covariate,

W (generated from a Uniform{0, 1}). As shown in Table 3, misspecification of S2 in this

13
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scenario does not substantially alter the properties of the two-step estimator of φ compared

with those when S2 is correctly specified (see Table 1). TABLE 3 ABOUT HERE

4 Application

To present an application of the three methods compared in §3, we estimated the effect

of exposure to the compound 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on time to onset

of uterine fibroids—non-cancerous tumors of the uterus often associated with reproductive

dysfunction—based on data from the Seveso Women’s Health Study (SWHS). SWHS is

a retrospective cohort study of women living in Seveso, Italy as of July 10, 1976, when

a chemical explosion exposed residents to the highest known levels of TCDD in a human

population (Eskenazi et al., 2000).

Study participants had their serum TCDD levels ascertained soon after the explosion and

were then followed up approximately twenty years later, when they were given an in-depth

interview regarding their medical history, including any history of a fibroids diagnosis. At

this same time, participants were offered ultrasounds to detect sub-clinical onset of uterine

fibroids. Using the notation in (1), C here represents the age at ultrasound/interview, T2

the age at fibroids diagnosis based on interview/medical records, T1 the age at fibroids

onset (always unobserved), ∆1 the indicator of whether a fibroid was found at ultrasound,

and ∆2 the indicator of whether any history of a fibroids diagnosis was reported in the

interview/medical records. Z is defined as the log10 serum TCDD level collected following

the explosion. The analysis consisted of 956 women between 0 and 40 years of age at the time

of the explosion, with no prior diagnosis of fibroids at this time. A more detailed description

of the study procedures, including a more in-depth data analysis, is presented in Eskenazi

et al. (2007).
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A disadvantage of these data is that ∆1 is missing in a substantial proportion of the

sample. Specifically, 209 women with no prior diagnosis of fibroids (∆2 = 0) were not offered

or refused an ultrasound, and thus were missing the current status indicator, ∆1. How these

observations were dealt with in estimating S1(t|Z) in the analyses described below varies

by approach. In analyses based on the Dunson and Baird (2001) method, this issue was

addressed in the manner described in their paper by adding an additional term, S2(ci|zi), to

the likelihood (4) for the ith individual missing current status data and no prior diagnosis of

fibroids. For the two-step approach, these 209 observations were included in the estimation

of S2(t|Z) in step 1, but necessarily excluded from step 2, which requires knowledge of ∆1.

Finally, as these incomplete observations only contain information on T2, they are entirely

excluded from the pure current status approach, which does not use T2 data at all.

Of the 956 women in the total analysis sample, 763 (80%) had not been diagnosed with

fibroids by their screening age, ci. Of these 763 observations, 554 additionally had non-

missing values for ∆1; of these, 58 (10.5%) had fibroids detected at ultrasound (∆1 = 1).

Therefore, step 1 of the two-step analysis is based on all 956 observations, while step 2

is based on this subgroup of 554 with ∆2 = 0 and nonmissing ∆1. The screening ages,

C, ranged from 20 to 60 years and TCDD levels (original scale) ranged between 2.5 and

56000.0 parts per trillion (ppt). Note that the observed distribution of (∆1,∆2) most closely

resembles simulations 3 and 4 of §3.

Table 4 presents estimates of φ based on the Dunson and Baird (2001), current status and

two-step approaches. Note that we have a value of C for all individuals, whether or not T2 is

observed, allowing us to implement the current status method. In the two-step and current

status approaches, proportional hazards models were assumed for S1(t|Z) and S2(t|Z) as in

(3) and (6), respectively. In the Dunson and Baird (2001) approach, this assumption was

made for S1(t|Z) and Q∗(t|Z) as in (3) and (5), respectively; S01 and Q∗
0 were estimated as
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described in §3. The confidence interval for the two-step estimator is based on 500 simple

bootstrap replicates; for the current status approach the analogous interval is obtained from

known asymptotic theory for a coefficient estimator in a proportional hazards model based

on current status data (Huang, 1996); finally, for the Dunson and Baird (2001) estimator,

the interval is an (asymptotic) likelihood ratio interval, based on the profile likelihood for φ.

TABLE 4 ABOUT HERE

The three estimates of φ are qualitatively similar, all reflecting little evidence of a change

in risk for fibroids associated with increases in serum TCDD levels. The Dunson and Baird

estimator is the largest in magnitude, whereas the two-step estimator has the smallest esti-

mate of variability.

Figure 1 displays an estimate of Q(t|z = 0) obtained from the SWHS data. This estimate

was obtained from estimates of the baseline survival functions S02 and S01 using the two-

step method, which, in turn, provide estimates of F02 and F01 and, thus, their ratio. The

plot in Figure 1 displays the estimated ratio Q̂(t|z = 0) at times given by the values of C

observed in the data. Analogous plots at z ∈ {z0.25, z0.50, z0.75} were nearly identical to that

at baseline (z = 0) and thus are not displayed. The plot in Figure 1 suggests the assumption

of monotonicity of Q is violated in the SWHS data. Given the preliminary interpretation

of the simulation results in §3, this lack of monotonicity suggests that the Dunson and

Baird estimate in Table 1 may suffer from bias, and supports the observed precision increase

enjoyed by the two-step estimator in comparison with the simpler current status approach.

FIGURE 1 ABOUT HERE

As can be seen in Figure 1, at some values of t, the estimate Q̂(t|z = 0) slightly exceeds

1 (approximately from age 25 to 32), reflecting that the estimated marginal distribution

functions F̂1(t) > F̂2 over this age range, violating the stochastic ordering of T1 and T2. It
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is clearer from Figure 2 just how minor this ordering violation is. This shows that estimates

of F1(t) are just barely less than those of F2(t) for t between 25 and 32 years. If interest

focuses entirely on estimated regression coefficients (and this is measured far more precisely

than the underlying distribution functions), then this minor violation in ordering is not a

major issue. FIGURE 2 ABOUT HERE

5 Discussion

Our findings indicate that, in addition to its advantage of being computationally much

simpler, the two-step estimator is a better choice than the approach suggested by Dunson

and Baird (2001) when the monotonicity of Q(t|Z) is in doubt; further the two-step approach

simultaneously provides estimates of the marginal distribution functions for T1 and T2 that

can be directly examined to assess the shape of Q(t|Z). A potential disadvantage of the two-

step estimator is that it does not always yield estimated onset and diagnosis distribution

functions that satisfy the assumed stochastic ordering for all values of t, Z. However, the

ordering violation in the application to the SWHS data is slight and occurs in distribution

function estimators that are converging very slowly; thus, this issue has very little practical

implication, particularly when interest is focused on estimation of regression coefficients. We

note again that a complete asymptotic theory for the two-step estimator, with an appropriate

estimator of asymptotic variance, remains to be established.

Based on our simulation study, the estimate of φ based on the two-step approach only

moderately outperforms that of the simple current status estimator. Considering the sim-

plicity of estimation of the latter, and its associated well-understood asymptotic behavior,

the simple current status approach remains an attractive technique in comparison to more

complicated alternatives when C is observed for all subjects. However, in many applications,
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C is only observed for individuals for whom T2 is censored; in such cases, the simple current

status estimator cannot be applied and the two-step procedure is generally to be preferred

over the Dunson and Baird (2001) estimator, as discussed above.

Finally, as mentioned in §4, the way missing current status data is handled across the

three approaches differs slightly, and comparisons in performance may subsequently be af-

fected. As noted by Dunson and Baird (2001), methods that incorporate data on T2 (e.g.

their approach and the two-step) in such instances would, in theory, have an advantage over

the simple current status approach in situations where current status missingness depends

on diagnostic history.

Supplementary Materials R code for implementing the two-step method is available

under the Paper Information link at the Biometrics website http://www.tibs.org/biometrics.
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Table 1: Properties of two-step, current status (CS), and Dunson and Baird

(DB) estimators of φ and relative efficiency (RE) with two-step always in

the numerator, based on ratios of mean squared error (MSE), for n = 500
based on 500 replicates in each of four simulations.

sim φ Q method E(φ̂) var(φ̂) MSE(φ̂) RE
1 -0.4 monotonic 2-step -0.4285 0.0195 0.0203 1

CS -0.4300 0.0193 0.0202 1.006
DB -0.4012 0.0164 0.0164 1.240

2 0.0 monotonic 2-step -0.0016 0.0196 0.0197 1
CS -0.0020 0.0202 0.0202 0.972
DB -0.0030 0.0174 0.0174 1.129

3 -0.4 non-monotonic 2-step -0.4038 0.0302 0.0302 1
CS -0.4219 0.0327 0.0332 0.909
DB -0.5175 0.0265 0.0403 0.750

4 0.0 non-monotonic 2-step -0.0115 0.0243 0.0244 1
CS -0.0074 0.0285 0.0285 0.856
DB -0.2244 0.0232 0.0735 0.332
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Table 2: Variance of the two-step estimator of φ, median of the simple boot-

strapped estimates of this variance (varbs) and weighted bootstrapped es-

timates of this variance (varbsw) based on 500 replicates in each of four

simulations.

sim var(φ̂) median{varbs(φ̂)} median{varbsw(φ̂)}
1 0.0195 0.0199 0.0181

2 0.0196 0.0205 0.0189

3 0.0302 0.0294 0.0289

4 0.0244 0.0233 0.0226
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Table 3: Properties of two-step estimator of φ when true survival function

for T2 is misspecified. True form is S2(t|Z,W ) = S
exp(βZ+γW )
02 , where γ = −3.0.

Estimation erroneously excludes W in estimation of S2.

sim φ E(φ̂) var(φ̂) MSE(φ̂)
1 -0.4 -0.4195 0.0211 0.0215

2 0.0 0.0062 0.0200 0.0201

3 -0.4 -0.4056 0.0334 0.0334

4 0.0 0.0130 0.0290 0.0292
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Table 4: Estimate of φ and 95% confidence interval based on the two-step,

current status (CS) and Dunson and Baird (DB) approaches.

Method φ̂ 95% confidence interval
2-step −0.07 (−0.26, 0.10)

CS −0.11 (−0.36, 0.13)
DB −0.18 (−0.43, 0.07)
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Figure 1: Q̂(t|z = 0) estimated using two-step approach for SWHS data; z =
log10(TCDD). The time scale t is age in years.

http://biostats.bepress.com/ucbbiostat/paper218



20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

F̂1(t|z=0)
F̂2(t|z=0)

Figure 2: F̂1(t|z = 0) and F̂2(t|z = 0) estimated using two-step approach for

SWHS data; z = log10(TCDD). The time scale t is age in years.
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