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Doubly Robust Censoring Unbiased
Transformations

Daniel Rubin and Mark J. van der Laan

Abstract

We consider random design nonparametric regression when the response vari-
able is subject to right censoring. Following the work of Fan and Gijbels (1994),
a common approach to this problem is to apply what has been termed a censor-
ing unbiased transformation to the data to obtain surrogate responses, and then
enter these surrogate responses with covariate data into standard smoothing algo-
rithms. Existing censoring unbiased transformations generally depend on either
the conditional survival function of the response of interest, or that of the censor-
ing variable. We show that a mapping introduced in another statistical context is
in fact a censoring unbiased transformation with a beneficial double robustness
property, in that it can be used for nonparametric regression if either of these two
conditional distributions are estimated accurately. Advantages of using this trans-
formation for smoothing are illustrated in simulations and on the Stanford heart
transplant data. Additionally, we discuss how doubly robust censoring unbiased
transformations can be utilized for regression with missing data, in causal infer-
ence problems, or with current status data



1 Introduction

Random design nonparametric regression is a popular subject of study in the statistical

literature, because informally the regression function provides the best prediction of a

response given covariates. Nonparametric methods are often required because modern

datasets are complicated enough so that any assumed parametric or semiparametric

model would almost certainly be misspecified.

When the responses are subject to right censoring, additional complications arise in

most smoothing problems. Let X = (W,Y ) denote the possibly unavailable covariate

and response pair, and suppose our interest is in estimating the regression function

m(w) = E[Y |W = w], for the purpose of being able to predict response values at dif-

ferent vector-valued covariate levels. But instead of observing an i.i.d. sample {Xi}n
i=1,

assume that we only can observe each survival time Yi up to a random censoring time

Ci. Formally, consider observing an i.i.d. sample {Oi}n
i=1, where

O = (W, ∆ = 1(Y ≤ C), Ỹ = Y ∧ C),

and let F̄ (·|W ) and Ḡ(·|W ) denote the conditional survival functions of the desired

response Y and censoring time C given the covariates W . For convenience, we will

assume that the survival and censoring times are continuous random variables, although

this is unnecessary.

Throughout this work we will also make the standard assumption that the response

and censoring time are conditionally independent given the covariates W , or that

{Y ⊥ C|W}. (1)

In fact, the regression function m(W ) = E[Y |W ] is often unidentifiable from

such observed data. Consider the case of a censoring time corresponding to a study

endpoint, which the true response time Y may sometimes exceed. Nothing can be

known about the survival time distribution beyond this endpoint, and hence the re-

gression function will be unidentifiable. For regression to remain a worthwhile en-

deavor with right censored data, the response must often first be transformed. We

can consider truncating the responses at some value τ and estimating the regression

function w → E[Y ∧ τ |W = w]. The response is also often transformed to the log

scale, and in this case we would consider the parameter of interest to be the function
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w → E[log(Y )|W ]. To simplify notation, we will assume that such transformations

have already been incorporated into the response and censoring times Y and C, and

continue to let m(w) = E[Y |W = w] denote the desired regression function.

A popular approach to prediction with right censored data is to replace the possibly

unavailable responses {Yi}n
i=1 with surrogate values {Y ?(Oi)}n

i=1 using an appropriate

mapping Y ?(·) of the observed data, and then enter the imputed data {Wi, Y
?(Oi)}n

i=1

into standard smoothing algorithms. The key requirement is that imputation map-

ping Y ?(·) is approximately what Fan and Gijbels (1996) term a “censoring unbiased

transformation,” meaning that

E[Y ?(O)|W ] = E[Y |W ] = m(W ). (2)

The motivation behind such a requirement is that adaptive smoothing techniques would

ideally still be able to estimate the regression function with imputed response data

under (2), due to Y ?(O) having the correct conditional mean structure.

Unfortunately, censoring unbiased transformations generally depend on nuisance

parameters, and cannot be directly applied to the observed data. As will be discussed

in the following section, existing censoring unbiased transformations that have been

proposed for right censored data fall into two categories.

1. Transformations depending on the conditional survival function F̄ (·|W ), or a

functional of this conditional distribution. To apply such transformations, one

would first have to construct a preliminary estimate for the conditional distribu-

tion of the response Y given covariates W .

2. Transformations depending on the censoring mechanism, or the function Ḡ(·|W ).

Applying such transformations thus necessitates estimating this censoring mecha-

nism, which is not directly related to the parameter of interest m(W ) = E[Y |W ].

In this paper we propose using a doubly robust censoring unbiased transformation,

to be given in section 2.3. While this mapping has been introduced in statistical

contexts unrelated to nonparametric regression, we give the new result that it will

have the correct conditional mean structure as in (2) if at least one of the two nuisance

parameters F̄ (·|W ) or Ḡ(·|W ) is correctly specified. Hence, the doubly robust mapping

gives the data analyst two chances to form a valid censoring unbiased transformation,

and this property can be utilized to form enhanced smoothing procedures.
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We give an overview of existing censoring unbiased transformations and present the

doubly robust transformation in section 2. Advantages of the doubly robust procedure

are highlighted in simulations and with the Stanford heart transplant data in sections

3 and 4. Doubly robust censoring unbiased transformations can be utilized for more

general types of censored responses than arise in the right censored data structure,

and in section 5 we discuss the applicability of such imputation schemes to regression

problems with missing responses, in causal inference problems, and with current status

data. Proofs of formal statements concerning double robustness are given in Appendix

1, while double robustness in abstract censored data structures satisfying “coarsening

at random” is treated in Appendix II.

2 Censoring Unbiased Transformations

Our overview of censoring unbiased transformations in this section is partially adapted

from the discussion of Fan and Gijbels (1996).

2.1 The Buckley-James Transformation

One of the earliest censoring unbiased transformations was the Buckley-James (1979)

mapping, given by,

Y ?(O) = ∆Y + (1 − ∆)QF̄ (W,C), (3)

for

QF̄ (w, y) = E[Y |W = w, Y > y] =
1

F̄ (y|W = w)

∫ ∞

y

ydF (y|W = w). (4)

This transformation is the best predictor of the original response, in that it min-

imizes E|Y ?(O) − Y |2 among all censoring unbiased transformations Y ?(·), leading

Fan and Gijbels to note that it can be regarded as the “best restoration.” The nui-

sance parameter required to evaluate (3) is the function QF̄ (W, ·), which is in turn

a functional of the conditional survival function F̄ (·|W ) associated with the response

Y . The original proposal by Buckley and James for estimation of this nuisance pa-

rameter depended on strong assumptions, such as the linearity of the true regression

function m(w) = E[Y |W = w]. Fan and Gijbels (1994, 1996) considered more adap-

tive estimates of QF̄ , that corresponded to local average estimators and locally linear

estimators.
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2.2 Transformations Depending on the Censoring Mechanism

While the Buckley-James mapping given in (3) depends on F̄ (·|W ), other censoring

unbiased transformations have been proposed that instead depend only the censoring

mechanism. For example, Koul et al. (1981) considered the mapping

Y ?(O) =
Y ∆

Ḡ(Y |W )
, (5)

which has also been termed the inverse probability of censoring weighted (IPCW) map-

ping. To evaluate this transformation, one would first have to estimate the conditional

distribution of the censoring time given the covariates. It is frequently the case the

censoring time is completely independent of both the response time Y and covariates

W , as might be the case if censoring is caused by the end of a study. In this setting,

the conditional survival function Ḡ(·|W ) = Ḡ(·) could be estimated efficiently with the

Kaplan-Meier estimator

ˆ̄G(c) =
∏

{i: Ỹi≤c}

(
1 − 1

#{j : Ỹj ≥ Ỹi}

)1−∆i

. (6)

Zheng (1987) studied more general censoring unbiased transformations, which for non-

negative and continuous response and monitoring times took the form,

Y ?(O) =

∫ Ỹ

0

1

Ḡ(c|W )
dc +

∫ Ỹ

0

d(W, c)

Ḡ(c|W )
dḠ(c|W ) + (1 − ∆)d(W,C).

Fan and Gijbels (1994) considered this mapping with

d(w, c) =
αc

Ḡ(c|W = w)
,

for different choices of α. They noted that the IPCW transformation given in (5) cor-

responded to α = −1, while a transformation given by Leurgans (1987) corresponded

to α = 0. Fan and Gijbels proposed to instead apply the mapping with the data-

dependent choice of

α̂ = min
{i: ∆i=1}

∫ Yi

0
{Ḡ(c|Wi)}−1dc − Yi

Yi{Ḡ(Yi|Wi)}−1 −
∫ Yi

0
{Ḡ(c|Wi)}−1dc

,

after constructing an estimator of Ḡ(·|W ).
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2.3 A Doubly Robust Censoring Unbiased Transformation

The censoring unbiased transformations considered in sections 2.1 and 2.2 respectively

depend on the nuisance parameters F̄ (·|W ) and Ḡ(·|W ). Simulations in the follow-

ing section will show that a poor preliminary estimator for F̄ (·|W ) can degrade the

performance of regression based on the Buckley-James transformation, while a poor

preliminary estimator for Ḡ(·|W ) can degrade the performance of regression based on

the transformations given in section 2.2.

In fact, it is possible to construct a censoring unbiased transformation Y ?(O) that

will have the correct conditional mean structure if either F̄ (·|W ) and Ḡ(·|W ) is well

approximated. This “doubly robust” transformation provides a clear advantage over

the existing procedures described in sections 2.1 and 2.2, because with such a transfor-

mation one only needs to solve at least one of two function approximation problems.

For QF̄ (·, ·) defined as in (4), we propose using the censoring unbiased transformation

given by,

Y ?(O) = Y ?
F̄ ,Ḡ(O)

=
Y ∆

Ḡ(Y |W )
+

QF̄ (W,C)(1− ∆)

Ḡ(C|W )
−
∫ Ỹ

−∞

QF̄ (W, c)

Ḡ2(c|W )
dG(c|W ), (7)

possessing the double robustness property formalized in the following theorem. The

theorem is proven in Appendix I.

Theorem 1. Suppose the conditional independence assumption (1) holds, that Y and C

are continuous random variables, and that the conditional distribution of {C|W} has a

conditional density g(·|W ). Assume that Y ≤ τ < ∞ for some τ and that F̄1(τ |W ) = 0

with probability one for some conditional survival function F̄1(·|W ). Suppose further

that Ḡ1(τ |W ) ≥ ε > 0 for some ε and conditional survival function Ḡ1(·|W ), with

corresponding conditional density g1(·|W ). Assume that g1(·|W = w) is absolutely

continuous with respect to g(·|W = w) for all w. We will use the convention that

QF̄1
(w, y) is set to zero if F̄1(y|W = w) = 0. Then,

E[Y ?
F̄1 ,Ḡ1

(O)|W ] = E[Y |W ] if either F̄ (·|W ) = F̄1(·|W ) or Ḡ(·|W ) = Ḡ1(·|W ). (8)

The statistical literature concerning double robustness is primarily related to esti-

mation in semiparametric models, and is discussed in great detail in van der Laan and
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Robins (2003). In fact, the doubly robust mapping (7) can be seen as a special case of

the doubly robust mappings in chapter 3 of this work, where doubly robust mappings

are used to construct estimating equations for regular parameters with censored data.

Theorem 2.1 of van der Laan and Robins implies the weaker form of (8) that

E[Y ?
F̄1 ,Ḡ1

(O)] = E[Y ] if F̄ (·|W ) = F̄1(·|W ) or Ḡ(·|W ) = Ḡ1(·|W ). (9)

Later work by van der Laan and Dudoit (2003) used the property (9) for doubly ro-

bust model selection with censored data, and for constructing M -estimates of irregular

parameters. The novelty in our work lies in the result that the doubly robust map-

ping Y ?
F̄1 ,Ḡ1

(O) not only has the correct mean if one of F̄1(·|W ) or Ḡ1(·|W ) is correctly

specified as in (9), but also the correct conditional mean given observed covariates

as in (2), along with the realization that this property of being a censoring unbiased

transformation is precisely what is needed for nonparametric regression.

One can verify that the Buckley James transformation of (3) corresponds to using

the function Ḡ(·|W ) = 1 in the doubly robust mapping (7). Such a Ḡ(·|W ) gives the

interpretation of the censoring time being a point mass at +∞, but the transformation

will remain a censoring unbiased transformation if F̄ (·|W ) is correctly specified. The

IPCW mapping of (5) corresponds to using the function QF̄ (w, c) = 0 in (7). Such

an F̄ (·|W ) gives the interpretation of the response time being a point mass at −∞,

but the mapping will again remain a censoring unbiased transformation if Ḡ(·|W ) is

correctly specified.

3 Simulations

We assessed the quality of the doubly robust transformation through simulations, and

compared its performance to that of the Buckley-James transformation (3) and the

IPCW transformation (5).

Implementing the regression procedures based on these transformations required

estimates of the function Q(w, y) = E[Y |W = w, Y > y], the censoring mecha-

nism Ḡ(·|W ), and choosing a smoothing procedure to use with the imputed data

{Wi, Y
?(Oi)}n

i=1. For the smoothing procedure, we used the smooth.spline() function

in the R language, which fit a cubic smoothing spline to the imputed responses. In all

simulations we fit the censoring mechanism through the Kaplan-Meier estimator (6),

6
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which has been the standard recommendation in the statistical literature related to

censoring unbiased transformations.

We fit Q(·, ·) through a nearest neighbor estimate that was similar to that proposed

by Fan and Gijbels (1994, 1996). We estimated Q(w, y) by taking the mean of the k

uncensored responses greater than y, whose covariate value W was closest to w. If less

than k such responses were available, we took the average of these responses. If no such

responses were available, we estimated Q(w, y) by y itself. Like Fan and Gijbels, we

chose the number of nearest neighbors k by implementing the Buckley-James transfor-

mation for each k ≤ n−1
2

to form imputed data {Wi, Y
?
k (Oi)}n

i=1, evaluated the squared

error leave-one-out cross-validation criterion for the smooth.spline() regression fit to

this data, and selected the k minimizing this criterion.

Our first set of simulations demonstrated that regression based on the doubly robust

censoring unbiased transformation could indeed adapt to the shape of a regression

curve, if given sufficient data. For univariate covariates W , errors ε, and censoring

times C generated independently, we generated n = 200 observations O through the

following mechanism.

W ∼ U(0, 1)

ε ∼ 2(Beta(4, 4) − 1

2
)

C ∼ exponential(
1

2
) − 1

Y = m(W ) + ε

O = (W, ∆ = 1(Y ≤ C), Ỹ = Y ∧ C) (10)

We generated such data using four choices for the regression function m, corresponding

to linear, quadratic, sigmoidal, and oscillating functions. For such data, the censoring

times were indeed independent of the covariates and response times, so we expected

the Kaplan-Meier estimator to be a good fit. We also expected no problems with the fit

for Q, as nearest neighbor methods typically do not break down with univariate data.

For the four choices of regression function m(W ), 52%, 44%, 51%, and 52% of the

responses were censored. The results are displayed in Figure 1, and show the doubly

robust procedure could accurately approximate these four smooth curves.

In a second set of simulations, we compared the doubly robust transformation with

the Buckley-James and IPCW transformations. We generated n = 200 replicates of O

7
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according to the following mechanism, where the true regression function was simply

the identity function m(W ) = W .

W ∼ U(0, 1)

ε ∼ 2(Beta(4, 4) − 1

2
)

{C|W ≤ 1

2
} = +∞ (meaning no censoring)

{C|W >
1

2
} ∼ exponential(1) − 1

Y = W + ε

O = (W, ∆ = 1(Y ≤ C), Ỹ = Y ∧ C). (11)

The censoring mechanism here depended on the covariates, as censoring never occured

if the covariate W did not exceed 1
2
. Hence, the assumptions for the Kaplan-Meier

estimate of Ḡ(·|W ) were violated. In this simulation, 38% of the responses were cen-

sored. From the results in the top row of Figure 2, we see that the regressions using

the Buckley-James and doubly robust transformations accurately fit the regression line,

while the IPCW estimator behaved erratically.

In a final set of simulations, we considered covariates not only consisting of the

univariate W , but also of a {0, 1} random variable V . We generated n = 400 replicates

as follows, where again the regression function E[Y |W ] = m(W ) = W was simply the

identity function.

W ∼ U(0, 1)

V ∼ Bernoulli(
1

2
)

ε ∼ 2(Beta(4, 4) − 1

2
)

{C|V = 0} = +∞ (meaning no censoring)

{C|V = 1} ∼ exponential(
1

3
) − 2

Y = W + 2(V − 1

2
) + ε

O = (W, V, ∆ = 1(Y ≤ C), Ỹ = Y ∧ C) (12)

We considered correctly modeling the censoring mechanism, so that we set Ḡ = 1 for

all observations with V = 0 in the IPCW and doubly robust transformations, while

using the Kaplan-Meier estimator for observations with V = 1. In practice, one would

8
http://biostats.bepress.com/ucbbiostat/paper208



expect to notice with n = 400 data points if censoring never occured at a certain

level of a binary covariate, so such a fit might be fairly realistic. However, we did not

correctly model the nuisance parameter Q(w, y) = E[Y |W,Y > y], because we fit the

function while ignoring the covariate V . We imagine that such an estimate could also be

fairly common in practice, because if a univariate smoother was desired for a specific

covariate, one might be reluctant to adjust for additional covariates. The problem

with ignoring V in the fit of Q was that the conditional independence assumption

{Y ⊥ C|W} did not hold, but rather the conditional independence {Y ⊥ C|W,V }.
This was due to the event {V = 1} being associated with both large Y values and

small censoring times. Under this censoring mechanism, 32% of the responses were

censored. The results displayed in the bottom row of Figure 2 show that the IPCW

and doubly robust mappings led to fairly accurate fits of the regression line, while the

Buckley-James transformation led to a severe underestimate of this line.

Therefore, simulated data from the mechanisms in (11) and (12) show that a mis-

specified censoring mechanism Ḡ(·|W ) can degrade the performance of the IPCW trans-

formation, while a misspecified QF̄ (W, ·)) can degrade the Buckley-James transforma-

tion. In colloquial jargon, the Buckley-James and IPCW transformations put all of

their eggs in one basket. The doubly robust transformation can be applied when-

ever either of the Buckley-James or IPCW function approximation problems has been

solved, even if the data analyst is not sure which of Ḡ(·|W ) or QF̄ (W, ·) has been

well-approximated, and is in this sense a superior censoring unbiased transformation.

9
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Figure 1: Doubly robust fits of four regression functions, for data generated as in (10).
Black lines indicate the regression function, and red lines indicate the fit.
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4 Stanford Heart Transplant Data

We applied censoring unbiased transformations to the Stanford heart transplant data,

which has been studied by Miller and Halpern (1982), Doksum and Yandell (1982), and

Fan and Gijbels (1994), and is somewhat of a benchmark dataset for right censored

regression methods. In this study, patients receiving a heart transplant were followed

until either death or a single study endpoint. Among other covariates, the age of

each patient at transplantation was recorded, and there appears to have been medical

interest in determining how heart transplantation risk was associated with age. For

comparison with previous analyses, we considered the dataset to consist of only the 157

patients for which there was information on the tissue type, 55 of whom had censored

survival times, and we used the log10(days) time scale for the survival and censoring

times.

While Miller and Halpern and Doksum and Yandell considered linear and quadratic

fits of E[log10(Days of Survival)|Age] based on various regression models, Fan and Gi-

jbels attempted to fit this function through adaptive smoothing. After fitting the

Buckley-James nuisance parameter QF̄ (Age, ·) with a local averaging estimator, and

then applying a local linear smoother to estimate the regression function from the

transformed data, Fan and Gijbels concluded that their fitted curve

...reflects the fact that for earlier age, the log-survival time is nearly inde-

pendent of age, but at later age it decreases linearly with aging.

From the smoothed curve, they suggested the relationship

E[log10(Days of survival)|Age in years] = 2.74 − 0.078(Age − 48)+, (13)

which is shown in the top left panel of Figure 3. Commenting on the utility of smoothing

methods for censored data, in comparison to the linear and quadratic fits that had been

implemented previously for the Stanford heart data, Fan and Gijbels concluded about

(13) that

...such a relation appears to be new. The result supports our intuition

and moreover, gives a deeper insight into the heart transplantation risk at

various ages. In comparison with previous studies by, for example, Miller

and Halpern (1982) and Doksum and Yandell (1982), our analysis gives a

more precise description of the data structure.

11
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In analyzing this heart transplantation data, we considered slightly modifying the

parameter of interest to the function

E[log10(Days of survival) ∧ τ |Age in years], (14)

for τ = 3.26. As a practical matter, we simply truncated the 21 values of log10(Ỹ )

exceeding τ to τ , set the censoring indicator ∆ to one for these observations, and

then attempted to estimate the regression function as if the original observations had

been this transformed data. Our motivation was the fact that a regression function

with right censored data can only be estimated when the response time is sufficiently

small so that given any covariate values, the response has a nontrivial chance of being

uncensored. The Kaplan-Meier fit for the censoring time distribution suggested this did

not hold, as the fit gave extremely small values of ˆ̄G(Ỹi) for some observed data points,

and zero for one data point. The level τ = 3.26 in (14) corresponded to truncating

survival at the five year mark, and the refit Kaplan-Meier curve gave values of ˆ̄G(Ỹi) no

smaller than 0.40 for all observed data points. Truncation as in (14) is a useful tactic

in many applied regression problems with right censored data, because it allows us to

handle identifiability problems, while retaining an interpretable parameter of interest.

We first estimated the regression function (14) with the Buckley-James transforma-

tion, estimating the nuisance parameter QF̄ (Age, ·) with the nearest neighbor method

described in the previous section. The cross-validation method previously described

selected k = 6 nearest neighbors to use for this nuisance parameter estimate. After

obtaining the resulting imputed response values, we again used the smooth.spline()

procedure to estimate the regression function. The resulting curve fit is displayed in

the top right panel of Figure 3. Notice that the fit closely resembles the suggested

relationship of Fan and Gijbels, in that the curve is roughly constant (very slightly in-

creasing) until between the ages of 40 and 50, when it begins to decrease linearly. Our

Buckley-James fit appears slightly smaller than the Fan and Gijbels piecewise linear

function, possibly due to our truncation scheme.

We next applied the IPCW censoring unbiased transformation to the Stanford

heart transplant data. We used the Kaplan-Meier estimator (6) to fit the censoring

mechanism Ḡ(·|Age), which ignored the age values and fit a marginal survival function.

Using the smooth.spline() once more with the transformed responses, we obtained an

estimate of the regression function (14). The resulting fit is presented in the bottom
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left panel of Figure 3, and appears very different from Fan and Gijbels’ suggested

relationship, or our regression fit based on the Buckley-James transformation. In fact,

using the IPCW transformation would have led us to the counterintuitive conclusion

that a patient’s expected log survival time actually slightly increases with age.

Thus, two popular censoring unbiased transformations led to contradictory inter-

pretations of how heart transplantation risk was associated with age. The two transfor-

mations respectively depended on accurate estimation of the conditional distributions

of the survival and censoring times, given age. On the surface, it does not appear either

of these function approximation problems should have been difficult to solve. Nearest

neighbor methods are generally reliable in low dimensions, and we had no particular

reason to distrust our estimate of Q(Age, ·). Because censoring was caused by the end

of the study, domain knowledge also suggested that the censoring time distribution did

not depend on the age of the subject, and hence that the Kaplan-Meier estimator of

the censoring mechanism should have been reliable. Indeed, one can verify that a Cox

model for the censoring distribution does not show any significance for age.

Because the doubly robust mapping was immune to misspecification of one of

QF̄ (Age, ·) or Ḡ(·|Age), it served as a data analytic tool to resolve the inconsistencies

stemming from the currently used censoring unbiased transformations. That is, if either

the Buckley-James or IPCW fits were accurate, we would have expected the doubly

robust fit to also be accurate. Again using the nearest neighbor fit for QF̄ (Age, ·), the

Kaplan-Meier estimator Ḡ(·|Age), and the smooth.spline() function with the trans-

formed responses, we fit the doubly robust estimator to the heart transplant data. The

resulting curve in the bottom right panel of Figure 3 in fact looks almost identical

to the curve based on the Buckley-James transformation. This seems to support the

conclusion that QF̄ (Age, ·) and not Ḡ(·|Age) has been well approximated, and give

further credence to the relationship between transplantation risk and age suggested by

Fan and Gijbels.

Of course, both QF̄ (Age, ·) and Ḡ(·|Age) could have been misspecified, and factors

other than misspecification of the nuisance parameters in a censoring unbiased trans-

formation can also contribute to inaccurate regression fits. Such factors might include

violations of the i.i.d. assumption or the conditional independence assumption (1), or

the regression function m(Age) being complex and difficult to estimate even with full

and uncensored covariate and response data {Agei,Survival Timei}n
i=1.
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Figure 3: Smoothed Stanford heart transplant data using different censoring unbiased
transformations. Open circles represent uncensored observations, while solid circles
represent censored observations.
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5 Additional Censored Data Structures

Doubly robust procedures can be implemented when the censoring mechanism does not

necessarily correspond to right censoring. In this section, we discuss how to form doubly

robust mappings when attempting to perform regression with a missing response, in

causal inference problems, or with current status data, and highlight the advantages

over existing approaches. An abstract treatment of how to construct doubly robust

mappings for general censored data structures is differed to Appendix II.

5.1 Regression with a Missing Response

Consider the situation where the possibly unavailable full covariate and response data

is given by X = (W,Y ) with an interest in prediction of Y from W , but now where

the response values can be missing. In this case, the observed data is given by

O = (W,∆,∆Y ), (15)

for ∆ ∈ {0, 1} an indicator of whether the response is available. Further assume that,

π(W ) ≡ P (∆ = 1|W ) = P (C = 1|X) (16)

π(W ) ≥ ε with probability one, for some ε > 0, (17)

so that {Y ⊥ ∆|W} and the probability of missingness given the covariates W is

bounded away from one. Two common approaches to handling missing responses are

as follows.

1. Performing a complete case analysis, or fitting the regression function by ignor-

ing the observations with a missing response. This is justified because by (16),

Q(W ) ≡ E[Y |W,∆ = 1] = E[Y |W ] = m(W ). The only loss relative to full data

methods is a reduced sample size.

2. Methods based on the propensity scores {π(Wi)}n
i=1. Specifically, we can impute

the inverse probability of missingness weighted (IPMW) responses Y ?(O) = Y ∆
π(W )

to form a new set of responses {Y ?(Oi)}n
i=1 and then apply standard smoothing

algorithms. In fact, one can verify that E[Y ?(O)|W ] = E[Y |W ] = m(W ), making

the IPMW mapping a valid imputation target. While the resulting regression fit

will be based on all n observations, π(·) will have to be estimated. Often the
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assumption of missingness completely at random is made, meaning that π(W ) is

a constant function of W , which can be estimated by the proportion of {∆i}n
i=1

equal to one. More generally, π can estimated from binary regression applied to

{Wi,∆i}n
i=1.

Methods 1 and 2 therefore respectively depend on estimating the full data parameter

Q from a reduced sample size, or the missingness mechanism π. In fact, we can instead

target the doubly robust censoring unbiased transformation

Y ?(O) = Y ?
Q, π(O)

=
Y ∆

π(W )
− ∆

π(W )
Q(W ) + Q(W ), (18)

with estimates for both Q and π, having the correct conditional mean if either Q or

π is correctly specified. The result is formalized in the following theorem, proven in

Appendix I.

Theorem 2. Let Q1 be an alternative function of W and π1 be an alternative con-

ditional distribution of ∆ given W . Suppose (16) holds, that (17) holds for π1, and

that Y and Q1(W ) are integrable. Then E[Y ?
Q1, π1

(O)|W ] = E[Y |W ] = m(W ) if either

Q(·) = Q1(·) or π(·) = π1(·).

Consequently, the doubly robust imputation scheme can be thought of as a way to

combine two natural approaches to handling missing data, so that the overall smoothing

procedure should perform well if at least one of the two original schemes was successful.

5.2 Causal Inference in a Point Treatment Study

For C a finite set, let {Yc : c ∈ C} denote a set of responses for a subject, and as

before let W denote the subject’s covariates. Suppose the interest is in estimating the

regression function m(V ) = E[Y |V ] for

Y ≡
∑

c ∈ C

bcYc (19)

a known linear combination of the responses, and V a subset of the covariates W . Such

a formulation could allow us to estimate the regression function associated with each of

the responses, or with contrasts of these responses. However, suppose that instead of

observing the full covariate and multiple response data X = (W, {Yc : c ∈ C}), we only
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observe the covariates W and a single random response in {Yc : c ∈ C}. That is, let C

denote a random variable taking values in C, and consider observing i.i.d. replicates of

O = (W,C, YC).

Such a scenario might arise in a medical study where W are baseline covariates

collected about each subject, C represents the finite set of treatment options, C denotes

the treatment administered to the subject, and Yc corresponds to the counterfactual

outcome that would have been recorded had the subject’s treatment been set to level

c ∈ C. If a new patient arrives after the study is completed, and only a subset V of

the covariates represented by W can be measured for that patient, one would want to

know which treatment to give the patient. Interest might then lie in predicting each

potential treatment outcome Yc, or more generally a linear combination as in (19).

For regression to be possible, we will suppose that {Yc : c ∈ C} is conditionally

independent of C given W . In the causal inference literature, this is often termed the

assumption of no unmeasured confounding. Such an assumption cannot be checked

from the data, and is often controversial for observational studies. We feel obligated to

stress that the regression methodology we will introduce depends on this assumption

of no unmeasured confounding, which must be verified in a case by case basis from

domain knowledge before blindly applying the imputation procedures.

Following the introduction of marginal structural models by Robins (1997), a typical

approach to estimation of m(V ) = E[Y |V ] would rely on a semiparametric model.

That is, one would specify a functional form m(V ) = m(V |β) parameterized by some

unknown vector-valued β, and then attempt to estimate β from the observed data. As

reviewed in the manuscript of van der Laan and Robins (2003), estimation approaches

typically fall into one of the following three categories.

1. Methods dependent on estimating the function

Q : (w, c) → E[YC|W = w,C = c]. (20)

We can fit Q from the data because YC , W and C are observed for each subject,

so we can simply regress YC on the (W,C) pair.

2. Methods dependent on correctly specifying the function

g : (c, w) → P (C = c|W = w). (21)
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This function gives the conditional probabilities of treatment given the baseline

covariates, and can be fit through a polychotomous regression on {Wi, Ci}n
i=1. As

in the previous example of performing regression with a missing response, the

values g(C|W ) are termed propensity scores for each subject.

3. Doubly robust methods allowing one to estimate either the full data parameter

Q or the propensity scores g(C|W ).

Indeed, we can form a doubly robust censoring unbiased transformation,

Y ?
Q,g(O) =

∑

c ∈ C

bc{
Yc1(C = c)

g(c|W )
− 1(C = c)

g(c|W )
Q(W, c) + Q(W, c)}, (22)

which is a valid imputation target if either Q or g is correctly specified, as formalized

in the following theorem.

Theorem 3. Let Q1 be an alternative function of (W,C) and g1(·|W ) an alternative

conditional probability mass function for {C|W}. Suppose that for bc 6= 0, Yc and

Q1(W, c) are integrable and that g(c|W ) is bounded away from zero with probability

one. Then under no unmeasured confounding, as discussed previously,

E[Y ?
Q1,g1

(O)|V ] = E[Y |V ] = m(V )

if either Q(W, ·) = Q1(W, ·) or g(·|W ) = g1(·|W ).

Thus, the nuisance parameters Q and g necessary for performing doubly robust

semiparametric estimation of the regression function m(V ) are exactly those needed

for doubly robust imputation in the nonparametric regression problem. For a suffi-

ciently large sample size n, the estimated {Y ?
Q,g(Oi)}n

i=1 with covariates {Vi}n
i=1 could

be entered into a vast array of available software or “black boxes” designed for the

nonparametric regression problem, such as decision trees, neural networks, MARS, etc.

Such a procedure would ameliorate the complication of finding a clever semiparametric

parameterization for E[Y |V ] = m(V |β), and could lead to more adaptive methods for

drawing causal inferences.

5.3 Prediction with Current Status Data

Once more, let X = (W,Y ) denote the possibly unavailable covariate and response

data, and consider estimating the regression function m(W ) = E[Y |W ]. Current
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status data can arise in cross sectional studies, where it is only known whether the

survival time Y exceeds a single random monitoring time C. Formally, let F̄ (·|W )

denote the conditional survival function of Y given covariates W , let Ḡ(·|W ) denote

the conditional survival function of the monitoring time C given W , and consider

observing

O = (W,C,∆ = 1(Y ≤ C),

assuming that {Y ⊥ C|W}. It is easy to see that without additional assumptions

the regression function could be unidentifiable from such a data structure. If C were

always a constant value, there would be no method to estimate the regression function

from knowledge of whether the survival time exceeded this constant value. Indeed, we

will often have to work with an interval truncated survival time for regression to be

possible, and consider the parameter of interest to be

E[Y ′|W ] = E[a1(Y < a) + Y 1(a ≤ Y ≤ b) + b1(Y > b)|W ].

It is our experience that the regression function w → E[Y ′|W = w] remains a worth-

while object of study in applied problems, so long as [a, b] is a moderately wide interval.

To simplify notation, will we assume that a ≤ Y ≤ b with probability one, which can

always be achieved through truncation.

The conditional survival function F̄ (·|W ) can then be identified by the data gener-

ating distribution for O through the relationship,

F̄ (y|W = w) = P (∆ = 0|W = w,C = c).

This suggests that one could estimate F̄ (·|W ), and hence the regression function

m(W ) =
∫ b

a
ydF (y|W ), by fitting a binary regression of {∆i}n

i=1 on {Wi, Ci}n
i=1. Spe-

cial care must be taken to ensure that the resulting conditional survival function cor-

responds to a proper conditional distribution. In fact, a variety of parametric, semi-

parametric, and nonparametric estimators have been proposed for current status that

operate in this manner. In particular, Shiboski (1998) has suggested an elegant regres-

sion model for current status data using a combination of generalized additive modeling

and isotonic regression.

However, such direct estimators of F̄ (·|W ) “ignore” the censoring mechanism g(·|W ),

as do all estimators based on maximizing a likelihood for the observed data. If this
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conditional density were known, we could simply impute responses

Y ?(O) = 1(a ≤ C ≤ b)
1 −∆

g(C|W )
+ a, (23)

and observe that E[Y ?(O)|W ] = E[Y |W ] = m(W ), making for a valid imputation

target. With current status data, we might expect the study designers to have quite a

bit of distributional information concerning the monitoring time C, because presumably

they would have a say in when to monitor their subjects. Partial knowledge toward this

end might enable us to fit the conditional density g(·|Z) from the {Zi, Ci}n
i=1 data. For

example, if we guessed that the monitoring time C was independent of the covariates

Z, we could estimate g through univariate density estimation.

In fact, a preliminary estimator of the conditional survival function F̄ (·|W ) can

be combined with a preliminary estimator of the monitoring time conditional density

g(·|W ) to form a doubly robust censoring unbiased transformation, which will be a

valid imputation target if at least one of F̄ or g is correctly specified. The formal result

is given as follows, and proven in Appendix I.

Theorem 4. Suppose the conditional independence {Y ⊥ C|W}, and that a ≤ Y ≤ b

with probability one. Let F̄1 denote a conditional survival function such that F̄1(a|W ) =

1 and F̄1(b|W ) = 0 with probability one. Assume that C is a continuous monitoring

time with conditional density g(·|W ), and let g1(·|W ) be another conditional density

bounded away from zero on [a, b]. Then for,

Y ?(O) = Y ?
F̄1,g(O)

= 1(a ≤ C ≤ b)
1 − ∆

g(C|W )
− 1(a ≤ C ≤ b)

F̄1(C|W )

g(C|W )
+ (

∫ b

a

F̄1(y|W )dy + a).

we have that E[Y ?
F̄1,g

(O)|W ] = E[Y |W ] = m(W ) if either F̄ (·|W ) = F̄1(·|W ) or

g(·|W ) = g1(·|W ) on [a, b].

6 Concluding Remarks

We have introduced a general strategy for performing nonparametric regression from

censored data, with the appealing property of double robustness. We conclude with

several pieces of advice for anyone contemplating implementing our method in an actual

data analysis.
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• The doubly robust mappings given in this work generally depend on inverse

weighting by quantities related to the censoring mechanism, such as the factors

Ḡ(·|W ), π(W ), g(·|W ), and g(C|W ) in the survival analysis, missing data, causal

inference, and current status data examples given previously. Anytime we divide

by an estimated probability or quantity between zero and one, we must make

sure that the estimate is bounded away from zero for the procedure to retain

stability.

• For regression to remain a worthwhile task with censored data, the parameter

of interest must sometimes be transformed, as discussed in the survival analysis

and current status examples.

• The imputation technique given for prediction with right censored data (as well

as for the other data structures discussed in section 5) should not necessarily be

thought of as an “off the shelf” method when performing regression. Rather, we

have presented an attractive censoring unbiased transformation Y ?
F̄ ,Ḡ

(O), but one

must accurately approximate at least one of the F̄ (·|W ) and Ḡ(·|W ) components

of this doubly robust mapping. Of course, the performance of the imputation

method will depend on the performance of the statistician in estimating these

two nuisance parameters.
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Appendix I: Proofs of Theorems 1-4

We here prove Theorems 1-4, which state the double robustness of the proposed map-

pings for the right censored, missing response, point treatment, and current status data

structures. Although these results can also be derived as corrollaries of Theorem 5 (to

be given in Appendix II), where doubly robust mappings are defined for general cen-

sored data structures, it is perhaps easier and more illuminating to furnish direct proofs.

Proof of Theorem 1. Recall that we use the convention that Q(W, c) = 1
F̄1(c|W )

∫∞
c

ydF1(y|W )

is zero if F̄1(c|W ) = 0. This and the theorem assumptions ensure that the resulting

conditional expectations below are well defined and finite. We write,

Y ?(O) = Y ?
F̄ ,Ḡ(O)

=
Y ∆

Ḡ(Y |W )
+

QF̄ (W,C)(1− ∆)

Ḡ(C|W )
−
∫ Ỹ

−∞

QF̄ (W, c)

Ḡ2(c|W )
dG(c|W )

= T1 + T2 − T3.

First observe that,

E[T1|W ] = E[
Y ∆

Ḡ1(Y |W )
|W ]

= E[E[
Y ∆

Ḡ1(Y |W )
|W,Y ]|W ]

= E[
Y

Ḡ1(Y |W )
P (∆ = 1|W,Y )|W ]

= E[
Y

Ḡ1(Y |W )
Ḡ(Y |W )|W ]

=

∫ τ

−∞
y

Ḡ(y|W )

Ḡ1(y|W )
dF (y|W ). (24)

22
http://biostats.bepress.com/ucbbiostat/paper208



Next note that,

E[T2|W ] = E[
Q1(W,C)(1 −∆)

Ḡ1(C|W )
|W ]

= E[E[
Q1(W,C)(1− ∆)

Ḡ1(C|W )
|W,C]|W ]

= E[
Q1(W,C)

Ḡ1(C|W )
P (∆ = 0|W,C)|W ]

= E[
Q1(W,C)

Ḡ1(C|W )
F̄ (C|W )|W ]

= E[
F̄ (C|W )

F̄1(C|W )

∫ τ

C

ydF1(y|W )Ḡ−1
1 (C|W )|W ]

=

∫ ∞

−∞

F̄ (c|W )

F̄1(c|W )
Ḡ−1

1 (c|W ){
∫ τ

c

ydF1(y|W )}dG(c|W )

=

∫ ∞

−∞

∫ ∞

−∞
{ F̄ (c|W )

F̄1(c|W )
Ḡ−1

1 (c|W )1(y < τ )1(y > c)y}dF1(y|W )dG(c|W )

=

∫ ∞

−∞
1(y < τ )y{

∫ ∞

−∞
1(c < y)

F̄ (c|W )

F̄1(c|W )
Ḡ−1

1 (c|W )dG(c|W )}dF1(y|W )

=

∫ τ

−∞
y{
∫ y

−∞

F̄ (c|W )

F̄1(c|W )
Ḡ−1

1 (c|W )dG(c|W )}dF1(y|W ). (25)
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Finally, observe that,

E[T3|W ] = E[

∫ min(Y,C)

−∞

Q1(W, c)

Ḡ2
1(c|W )

dG1(c|W )|W ]

= E[

∫ ∞

−∞
1(Y > c)1(C > c)

Q1(W, c)

Ḡ2
1(c|W )

dG1(c|W )|W ]

=

∫ ∞

−∞
P (Y > c,C > c|W )

Q1(W, c)

Ḡ2
1(c|W )

dG1(c|W )

=

∫ ∞

−∞
P (Y > c|W )P (C > c|W )

Q1(W, c)

Ḡ2
1(c|W )

dG1(c|W ) as {Y ⊥ C|W}

=

∫ ∞

−∞
F̄ (c|W )Ḡ(c|W )

Q1(W, c)

Ḡ2
1(c|W )

dG1(c|W )

=

∫ ∞

−∞

Ḡ(c|W )

Ḡ2
1(c|W )

{ F̄ (c|W )

F̄1(c|W )

∫ τ

c

ydF1(y|W )}dG1(c|W )

=

∫ ∞

−∞

∫ ∞

−∞
{ Ḡ(c|W )

Ḡ2
1(c|W )

{ F̄ (c|W )

F̄1(c|W )
1(y < τ )1(y > c)y}dF1(y|W )dG1(c|W )

=

∫ ∞

−∞
1(y < τ )y{

∫ ∞

−∞
1(y > c)

Ḡ(c|W )

Ḡ2
1(c|W )

F̄ (c|W )

F̄1(c|W )
dG1(c|W )}dF1(y|W )

=

∫ τ

−∞
y{
∫ y

−∞

F̄ (c|W )

F̄1(c|W )

Ḡ(c|W )

Ḡ2
1(c|W )

dG1(c|W )}dF1(y|W )

=

∫ τ

−∞
y{
∫ y

−∞

F̄ (c|W )

F̄1(c|W )

Ḡ(c|W )

Ḡ2
1(c|W )

dG1

dG
(c|W )dG(c|W )}dF1(y|W ). (26)

Further, note from elementary calculus that for c < τ (so the demoninator is nonzero),

d

dc
{ Ḡ

Ḡ1

(c|W )} = −{ 1

Ḡ1(c|W )
− Ḡ(c|W )

Ḡ2
1(c|W )

g1(c|W )

g(c|W )
}g(c|W ). (27)
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Thus, combining (24), (25), (26), and (27), we see that,

E[Y ?(O)|W ] = E[T1 + T2 − T3|W ]

= E[T1|W ] + E[T2|W ]− E[T3|W ]

=

∫ τ

−∞
y

Ḡ(y|W )

Ḡ1(y|W )
dF (y|W )

+

∫ τ

−∞
y{
∫ y

−∞

F̄ (c|W )

F̄1(c|W )
Ḡ−1

1 (c|W )dG(c|W )}dF1(y|W )

−
∫ τ

−∞
y{
∫ y

−∞

F̄ (c|W )

F̄1(c|W )

Ḡ(c|W )

Ḡ2
1(c|W )

dG1

dG
(c|W )dG(c|W )}dF1(y|W )

=

∫ τ

−∞
y

Ḡ(y|W )

Ḡ1(y|W )
dF (y|W )

+

∫ τ

−∞
y{
∫ y

−∞

F̄ (c|W )

F̄1(c|W )
[

1

Ḡ1(c|W )
− Ḡ(c|W )

Ḡ2
1(c|W )

dG1

dG
(c|W )]dG(c|W )}dF1(y|W )

=

∫ τ

−∞
y

Ḡ(y|W )

Ḡ1(y|W )
dF (y|W )

−
∫ τ

−∞
y{
∫ y

−∞

F̄ (c|W )

F̄1(c|W )
[
d

dc

Ḡ(c|W )

Ḡ1(c|W )
]dc}dF1(y|W ). (28)

If G = G1, then d
dc

Ḡ(c|W )

Ḡ1(c|W )
= 0, so the second term in (28) vanishes, and we are left

with

E[Y ?(O)|W ] =

∫ τ

−∞
y
Ḡ(y|W )

Ḡ(y|W )
dF (y|W ) =

∫ τ

−∞
ydF (y|W ) = E[Y |W ] = m(W ).

If F = F1, then (28) becomes

E[Y ?(O)|W ] =

∫ τ

−∞
y

Ḡ(y|W )

Ḡ1(y|W )
dF (y|W )−

∫ ∞

−∞
y{
∫ y

−∞

d

dc

Ḡ(c|W )

Ḡ1(c|W )
dc}dF (y|W )

=

∫ τ

−∞
y{ Ḡ(y|W )

Ḡ1(y|W )
−
∫ y

−∞

d

dc

Ḡ(c|W )

Ḡ1(c|W )
dc}dF (y|W )

=

∫ τ

−∞
y{ Ḡ(y|W )

Ḡ1(y|W )
− [

Ḡ(y|W )

Ḡ1(y|W )
− Ḡ(−∞|W )

Ḡ1(−∞|W )
]}dF (y|W )

=

∫ τ

−∞
y{ Ḡ(y|W )

Ḡ1(y|W )
− Ḡ(y|W )

Ḡ1(y|W )
+

1

1
}dF (y|W )

=

∫ τ

−∞
ydF (y|W )

= E[Y |W ]

= m(W ).

This proves the desired result. �
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Proof of Theorem 2. The theorem assumptions on Y , π1 and Q1 ensure that the

conditional expectations given below are well defined and finite. We write,

Y ?(O) = Y ?
Q, π(O)

=
Y ∆

π(W )
− ∆

π(W )
Q(W ) + Q(W ) (29)

= T1 − T2 + T3.

Note that,

E[T1|W ] = E[
Y ∆

π1(W )
|W ] = E[E[

Y ∆

π1(W )
|W,Y ]|W ] = E[

Y

π1(W )
P (∆ = 1|W,Y )|W ]

= E[
Y

π1(W )
P (∆ = 1|W )|W ] as {Y ⊥ ∆|W}

= E[Y
π

π1

(W )|W ] =
π

π1

(W )E[Y |W ]

=
π

π1
(W )E[Y |W,∆ = 1] as {Y ⊥ ∆|W}

=
π

π1
(W )Q(W ).

Additionally,

E[T2|W ] = E[
∆

π1(W )
Q1(W )|W ] =

Q1(W )

π1(W )
P (∆ = 1|W ) =

π

π1

(W )Q1(W ), (30)

and,

E[T3|W ] = E[Q1(W )|W ] = Q1(W ).

Therefore,

E[Y ?(O)|W ] = E[T1 − T2 + T3|W ] = E[T1|W ]− E[T2|W ] + E[T3|W ]

=
π

π1
(W )(Q(W )− Q1(W )) + Q1(W ).

From this it is immediate that E[Y ?(O)|W ] = Q(W ) = E[Y |W ] = m(W ) if either

Q = Q1 or π = π1. This complete the proof. �

Proof of Theorem 3. We will sketch the proof, because the double robustness can

easily be seen to follow from the double robustness in the missing response problem

given in Theorem 2. Note that for any fixed c ∈ C such that bc 6= 0, we could have fur-

ther censored the observed data O = (W,C, YC) into O = (W, 1(C = c), 1(C = c)Yc). If

the goal were to estimate E[Yc|W ], this would be exactly the missing response problem
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considered previously, with 1(C = c) and g(c|W ) playing the roles of ∆ and π(W ). Note

that the doubly robust mapping would then be Yc1(C=c)
g(c|W )

− 1(C=c)
g(c|W )

Q1(W, c)+Q1(W, c), and

it follows from Theorem 2 for missing data problem that this would have conditional

mean equal to E[Yc|W ] if either Q = Q1 or g = g1, under the theorem assumptions. As

each term of the linear combination comprising Y ?(O) thus has the “correct” condi-

tional mean given W if Q = Q1 or g = g1, it follows that E[Y ?(O)|W ] = E[Y |W ], and

that as σ(V ) ⊂ σ(W ), E[Y ?(O)|V ] = E[E[Y ?(O)|W ]|V ] = E[E[Y |W ]|V ] = E[Y |V ].

This proves the desired result. �

Proof of Theorem 4. The theorem assumptions on Y and g1 on [a, b] ensure that

the conditional expectations given below are well defined and finite. We write,

Y ?(O) = Y ?
F̄1 ,g(O)

= 1(a ≤ C ≤ b)
1 −∆

g(C|W )
− 1(a ≤ C ≤ b)

F̄1(C|W )

g(C|W )
+ (

∫ b

a

F̄1(y|W )dy + a)

= T1 − T2 + T3.

First observe that,

E[T1|W ] = E[1(a ≤ C ≤ b)
1 − ∆

g1(C|W )
|W ] = E[1(a ≤ C ≤ b)

1(Y > C)

g1(C|W )
|W ]

= E[E[1(a ≤ C ≤ b)
1(Y > C)

g1(C|W )
|W,Y ]|W ] = E[

∫ b

a

1(Y > c)
g

g1

(c|W )dc|W ]

=

∫ b

a

P (T > c|W )
g

g1

(c|W )dc =

∫ b

a

F̄
g

g1

(c|W )dc.

Also,

E[T2|W ] = E[1(a ≤ C ≤ b)
F̄1(C|W )

g1(C|W )
|W ] =

∫ b

a

F̄1
g

g1
(c|W )dc.

Therefore, recalling that T3 ≡
∫ b

a
F̄1(c|W )dc + a, it follows that

E[Y ?(O)|W ] = E[T1|W ]− E[T2|W ] + E[T3|W ] =

∫ b

a

{ g

g1

(F̄ − F̄1) + F̄1}(c|W )dc + a.

It is immediate that the integrand of the first term is F̄ (c|W ) if either F̄ = F̄1 or

g = g1, and hence that E[Y ?(O)|W ] =
∫ b

a
F̄ (y|W )dy + a. Recalling from elementary

probability that this is equal to
∫ b

a
ydF (y|W ) as Y ≥ a, we thus have proved the desired

double robustness. �
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Appendix II: General Censored Data Structures

We now describe doubly robust mappings for general censored data structures, having

the appropriate conditional mean if at least one of the full data distribution or censoring

mechanism is correctly specified. There is a specific construction for the double robust

mapping based on the data generating distribution provided in van der Laan and Robins

(2003), so that no cleverness is required when confronted with forms of censored data

not considered in this paper. For instance, regression could be desired for responses

that are both right censored and subject to missingness. Once more, what is new here

is the robustness result for the conditional mean instead of unconditional mean, and

the application of this fact to regression problems. The development in this appendix

will be purposefully abstract, with the view that the technique could be applied when

wanting to perform regression under virtually any type of censoring.

Consider the triplet of random variables (X,C,O) defined on a probability space

(Ω,F , µ), and taking values in X × C × O. Here X will denote the full data, or

random variable we would have observed had there been no censoring. In the regression

context, this will typically mean that σ(W,Y ) ⊂ σ(X), for Y a real-valued response,

W a vector-valued set of covariates, and σ(·) denoting the sigma field generated by a

random variable. Our interest will be in forming rules to predict the response Y from

the covariates W , and hence in the regression function

m : w → E[Y |W = w].

Here C represents a censoring variable that determines how much of the full data we

can actually observe. The observed data is defined by O ≡ Φ(X,C), for Φ a known

measurable mapping of the full data and censoring variable. It is this data structure

O that is assumed available to the statistician, based on i.i.d. copies {Oi}n
i=1. We will

assume that the covariates are uncensored and available from the observed data when

estimating the desired regression function, meaning that σ(W ) ⊂ σ(O). Let F denote

the distribution of the full data X, and P denote the distribution of the observed data

O. Further, we will assume a regular conditional distribution G for the distribution

of O given X, and recall that the regular conditional distribution will always exist

when (X,O) is defined on a nice measurable space. It is clear that the distribution

P is determined by the pair (F,G), so we will write O ∼ P = PF,G to denote the

distribution of the observed data.
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For the regression function to even be identifiable from the distribution P of the

observed data O, we will generally need the assumption of coarsening at random. This

notion was introduced for discrete random variables in Heitjan and Rubin (1991) and

generalized in Gill et al. (1997). Our definition in this section is based on the latter

reference, to which we refer for a more detailed discussion. For o ∈ O, we let α(o)

denote the restricted support of X implied by O being a coarsening of X. That is, we

define

α(o) ≡ {x ∈ X : o = Φ(x, c) for some c ∈ C}

and assume

(x, o) → I(x ∈ α(o)) is jointly measurable in (x, o).

We then say that the regular conditional distribution GO|X of O given X satisfies

coarsening at random if a version of G can be chosen so that for F -almost all x, x′ ∈ X

GO|X=x(do) = GO|X=x′(do) on {o : x ∈ α(o)} ∩ {o : x′ ∈ α(o)}.

In words, this means that the conditional distribution of the observed data O given

the full data value X = x does not depend on the specific x ∈ X , other than the

requirement imposed by O being a coarsening of X. Unfortunately, there is generally

never a way to examine the validity of the coarsening at random assumption in any

practical problem.

Several further definitions are needed before presenting our imputation method.

Consider the Hilbert spaces L2(F ) and L2(PF,G) consisting of all measurable real-

valued square integrable functions of X and O respectively, endowed with the inner

products

< s1(X), s2(X) >L2(F ) = EF [s1(X)s2(X)] (31)

< h1(O), h2(O) >L2(PF,G) = EF,G[h1(O)h2(O)]. (32)

We define the score operator lF,G : L2(F ) → L2(PF,G) as

lF,G(s(X)) = EF,G[s(X)|O].

Its adjoint lTG : L2(PF,G) → L2(F ) is given by

lTG(h(O)) = EG[h(O)|X].
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Finally, we define the information operator IF,G : L2(F ) → L2(F ) as the composition

IF,G = lTG ◦ lF,G.

Recalling that Y is the full data response variable, we will make the experimental

censoring assumption that there exists a unique (up to null sets) element I−1(Y ) ∈
L2(F ) such that I ◦ I−1(Y ) = Y almost surely.

Sufficient conditions for this experimental censoring assumption are shown through

the proof of Lemma 3.3 in van der Laan (1998). Specifically, if ‖h‖L2(F ) > 0 implies

‖lF,G(h)‖L2(PF,G) > 0 then the information operator is one-to-one. If there exists an

ε > 0 such that ‖lF,G(h)‖L2(PF,G) ≥ ε‖h‖L2(F ) then the information operator is onto.

Hence, these two conditions together imply the experimental censoring assumption,

and the inverse of the information operator is given by the Neumann series

I−1
F,G =

∞∑

i=0

(J − IF,G)i,

for J the identity mapping. Whenever σ(∆X) ⊂ σ(O) for ∆ ∈ {0, 1}, it follows

immediately from this result that the experimental censoring assumption holds if there

is an ε > 0 such that

PF,G(∆ = 1|X) ≥ ε > 0 a.s.

In words, this is a simple condition to check when the coarsening mechanism allows for

the entire full data structure X to be part of the observed data, as was the case for sev-

eral important examples described previously (such as regression with a right censored

or missing response, but not the point treatment or current status data problems).

The doubly robust mapping can now be defined as,

Y ?
F,G(O) ≡ lF,G ◦ I−1

F,G(Y ) ∈ L2(PF,G). (33)

It generally holds that,

EF,G[Y ?
F1,G1

(O)|W ] = EF [Y |W ] = m(W ) if either F = F1 or G = G1.

The result is stated formally in the following theorem.

Theorem 5. Let PF,G and PF1 ,G1 denote two distributions for the observed data O, so

that each satisfy coarsening at random and PF1 ,G1 satisfies the experimental censoring
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assumption. Suppose that G1(·|X) satisfies G(·|X = x) << G1(·|X = x) for F1-almost

all x ∈ X , so we can define the Radon-Nikodym derivative dG
dG1

(·|X = x) ∈ L2(PF1 ,G1)

for F1-almost all x ∈ X .

Then EF,G[Y ?
F1,G1

|W ] = EF [Y |W ] ≡ m(W ) a.s. if either F = F1 or G = G1.

The proof is given below. A weaker unconditional version of this result, showing that

EF,G[Y ?
F1,G1

] = EF [Y ], is given in Theorem 2.1 of van der Laan and Robins (2003).

Proof of Theorem 5. Note that the experimental censoring assumption is only needed

to ensure that the doubly robust mapping Y ?
F1 ,G1

(O) is well defined as in (33). We first

prove the theorem for G = G1. We use the definition that lTG(s(O)) ≡ EG[s(O)|X] for

s(O) ∈ L2(PF1 ,G), the definition of the information operator as the adjoint lTG composed

with the score operator lF1,G, and the definition of Y ?
F1 ,G in (33). Recalling that Y ?

F1 ,G

is a function Y ?
F1,G1

(O) of the observed data O, we first notice that

EF1 ,G[Y ?
F1 ,G|X] = EG[Y ?

F1,G(O)|X]

= lTG(Y ?
F1 ,G(O))

= lTG ◦ lF1,G ◦ I−1
F1,G(Y )

= IF1,G ◦ I−1
F1 ,G(Y )

= Y .

As σ(W ) ⊂ σ(X), we conclude by conditioning on the full data X that,

EF,G[Y ?
F1 ,G|W ] = EF,G[EG[Y ?

F1 ,G|X]|W ]

= EF,G[Y |W ]

= EF [Y |W ]

= m(W ).

This completes the proof for the case of G = G1. We now consider the case of

F = F1. Define conditional inner products on L2(F ) and L2(PF,G1) by

< s1, s2 >X ,W ≡ EF [s1(X)s2(X)|W ]

< h1, h2 >O,W ≡ EF,G1 [h1(O)h2(O)|W ]
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Because of the inclusions σ(W ) ⊂ σ(X) and σ(W ) ⊂ σ(O), elementary manipulations

yield that,

< h(O), lF,G1(s) >O,W = EF,G1 [h(O)EF,G1 [s(X)|O]|W ]

= EF,G1 [EF,G1 [h(O)s(X)|O,W ]|W ]

= EF,G1 [h(O)s(X)|W ]

= EF,G1 [EF,G1 [s(X)h(O)|X,W ]|W ]

= EF,G1 [EF,G1 [s(X)h(O)|X]|W ]

= EF,G1 [s(X)EF,G1 [h(O)|X]|W ]

= EF,G1 [s(X)EG1 [h(O)|X]|W ]

= EF,G1 [s(X)lTG1
(h)|W ]

= EF [s(X)lTG1
(h)|W ]

= < lTG1
(h), s(X) >X ,W (34)

Consequently, we note that if

h(O) ∈ TCAR ≡ {h : EG1 [h(O)|X] = 0} ⊂ L2(PF,G1),

then (34) implies that,

EF,G1 [h(O)Y ?
F,G1

(O)|W ] = < h(O), Y ?
F,G1

(O) >O,W

= < h(O), lF,G1 ◦ I−1
F,G1

(Y ) >O,W

= < lTG1
◦ h(O), I−1

F,G1
(Y ) >X ,W

= < EG1 [h(O)|X], I−1
F,G1

(Y ) >X ,W

= < 0, I−1
F,G1

(Y ) >X ,W

= 0. (35)

In fact dG
dG1

(O|X) − 1 belongs to TCAR because formula (8) in Gill et al. (1997)

shows that the Radon-Nikodym derivative dG
dG1

(O|X) can be written as a function of O

when both PF,G and PF,G1 satisfy coarsening at random as is assumed in the theorem

statement, and for F -almost all x ∈ X ,

EF,G1 [
dG

dG1
(O|X)|X = x] =

∫

O

dG

dG1
(o|x)dG1(o|x) =

∫

O
dG(o|x) = 1.
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Thus, (35) implies that,

EF,G1 [(
dG1

dG
(O|X) − 1)Y ?

F,G1
(O)|W ] = 0,

which together with the implication of (34) that EF,G1 [Y
?
F,G1

|W ] = m(W ) finally gives

m(W ) = EF,G1 [Y
?
F,G1

(O)|W ]

= EF,G1 [Y
?
F,G1

(O)
dG

dG1

(O|X)|W ]

= EF,G1 [EG1 [Y
?
F,G1

(O)
dG

dG1
(O|X)|X]|W ]

=

∫

X
{
∫

O
Y ?

F,G1
(O)

dG

dG1
(o|x)dG1(o|x)}dF (x|W )

=

∫

X
{
∫

O
Y ?

F,G1
(o)dG(o|x)}dF (x|W )

= EF,G[Y ?
F,G1

(O)|W ]

This completes the proof for the case of F = F1, and hence of the desired result. �
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