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Resampling Based Multiple Testing Procedure
Controlling Tail Probability of the Proportion

of False Positives

Mark J. van der Laan, Merrill D. Birkner, and Alan E. Hubbard

Abstract

Simultaneously testing a collection of null hypotheses about a data generating
distribution based on a sample of independent and identically distributed obser-
vations is a fundamental and important statistical problem involving many ap-
plications. In this article we propose a new resampling based multiple testing
procedure asymptotically controlling the probability that the proportion of false
positives among the set of rejections exceeds q at level alpha, where q and al-
pha are user supplied numbers. The procedure involves 1) specifying a condi-
tional distribution for a guessed set of true null hypotheses, given the data, which
asymptotically is degenerate at the true set of null hypotheses, and 2) specifying
a generally valid null distribution for the vector of test-statistics proposed in Pol-
lard and van der Laan (2003), and generalized in our subsequent articles Dudoit
et al. (2004), van der Laan et al. (2004a) and van der Laan et al. (2004b). We
establish the finite sample rational behind our proposal, and prove that this new
multiple testing procedure asymptotically controls the wished tail probability for
the proportion of false positives under general data generating distributions. In
addition, we provide simulation studies establishing that this method is generally
more powerful in finite samples than our previously proposed augmentation mul-
tiple testing procedure (van der Laan et al. (2004b)) and competing procedures
from the literature. Finally, we illustrate our methodology with a data analysis.



1 Introduction

Recent technological developments in biological research, for instance ge-
nomics and proteomics, have created new statistical challenges by providing
simultaneously thousands of biological measurements (e.g., gene expressions)
on the same experimental unit. Typically, the collection of these measure-
ments is made to determine, for example, which genes of the thousands of
candidates are associated with some other, often phenotypic, characteristic
(e.g., disease status). This has lead to the problem of properly accounting
for simultaneously testing a large number of null hypotheses when making
inferences about the tests for which the null is rejected. Multiple testing is a
subfield of statistics concerned with proposing decision procedures involving
a rejection or acceptance decision for each null hypothesis. Multiple testing
procedures are used to control various parameters of either the distribution of
the number of false rejections or the proportion of false rejections, and these
are often referred to as different varieties of Type-I error rates. In addition,
among such procedures controlling a particular Type-I error rate, one aims
to find a procedure which has maximal power in the sense that it finds more
of the true positives than competing procedures.

One such Type-I error rate is the probability of the proportion of false
positives among the rejections exceeding a user supplied q (e.g., 0.05). We
will refer to this Type-I error as TPPFP(q) which stands for Tail Probability
of the Proportion of False Positives at a user defined level q. For example,
one might wish to use a multiple testing procedure which satisfies that the
proportion of false positives among the rejections is larger than 0.05 with
probability α = 0.05 (in this case, q = α = 0.05). A popular error rate to
control in large multiple testing problems is the false discovery rate (FDR)
by using, for instance, the Benjamini-Hochberg method. The FDR is defined
as the expectation of the proportion of false positives among the rejections.
Contrary to a multiple testing procedure controlling the TPPFP(q), a proce-
dure controlling the FDR provides no probabilistic bound that the proportion
of false positives is smaller than some cut-off (e.g., 0.05). In this paper, we
propose a new method for estimating the TPPFP for specific decisions rules
that is asymptotically sharp, but also behaves better and less conservatively
than existing methods in finite samples.

Existing TPPFP multiple testing procedures include marginal step-down
procedures of Lehmann and Romano (2003), the inversion method of Gen-
ovese and Wasserman (2003a,b) for independent test statistics and its con-
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servative version for general dependence structures. These multiple testing
procedures are based only on marginal p-values and thereby either rely on
1) assumptions concerning the joint distribution of the test statistics, such
as, independence, specific dependence structure (e.g., positive regression de-
pendence, ergodic dependence), and 2) err on the conservative side by using
a Bonferroni- type of adjustment. In previous work (van der Laan et al.
(2004b), we showed that any single-step or stepwise procedure (asymptoti-
cally) controlling the family wise error can be straightforwardly augmented
to (asymptotically) control the TPPFP, for general data generating distribu-
tions, and hence, arbitrary dependence structures among the test statistics.
Specifically, given an initial set of rejections of size r0 corresponding with
a multiple testing procedure controlling the family wise error rate, FWER
(FWER is the probability of at least one Type-I error), at level α, one simply
adds the next � q

1−q
r0� most significant tests to the rejection set to control

TPPFP(q) at level α. This corresponds to adding rejections to r0, which
are counted as false positives, until the ratio of false positives to total rejec-
tions is equal to q. In Dudoit et al. (2004a) we review the above mentioned
procedures and compare our augmentation method with the Lehmann and
Romano (2003) marginal p-value methods in an extensive simulation study.

In van der Laan et al. (2004b) it is shown that this simple augmenta-
tion method controls the TPPFP(q), and, if the FWER-procedure is also
asymptotically sharp, then this augmentation procedure is also asymptoti-
cally sharp at fixed alternatives. That is, in the latter case it asymptotically
controls the proportion of false positives exactly at q with probability exactly
equal to α. The main problem occurs in finite samples where this procedure
can be too conservative by counting every addition to the FWER-procedure
as a false positive. Though, the augmentation procedure compared favorably
to the marginal p-value methods referenced above in our finite sample sim-
ulations, and theoretically outperforms these methods asymptotically under
dependence, our simulations clearly suggested that all methods are conserva-
tive in finite samples. Specifically, we found that the augmentation method
becomes more conservative as the number of tests increases, which is partic-
ularly important in large genomic datasets where there are small numbers of
biological replicates but thousands of genes and thus thousands of tests. In
this paper, we propose a new multiple testing method controlling TPPFP(q),
still asymptotically valid for general data generating distributions (as the
augmentation method), but less conservative in finite samples. Our new
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proposal involves specifying 1) a conditional distribution for a guessed set
of true null hypotheses, given the data, which asymptotically is degenerate
at the true set of null hypotheses, and 2) a generally valid null distribution
for the vector of test-statistics proposed in Pollard and van der Laan (2003),
and generalized in our subsequent article Dudoit et al. (2004b); van der Laan
et al. (2004a,b).

Regarding 1), we provide an explicit proposal of a distribution of a guessed
sets of null hypotheses based on Bernoulli draws with probability being the
posterior probability of a null hypothesis being true, given the value of its
test-statistic, which is based on the model assuming that the test-statistics
are i.i.d. from a mixture of a null density and an alternative density (as
in Efron et al. (2001a,b)). Regarding 2), a generally valid null distribution,
avoiding the need for the subset-pivotality condition, was originally proposed
in Pollard and van der Laan (2003) for tests concerning (general) real valued
parameters, and generalized to general hypotheses in our subsequent arti-
cles Dudoit et al. (2004b), van der Laan et al. (2004a), van der Laan et al.
(2004b). That is, we choose as null distribution, the null-value shifted true
distribution of the test-statistics (e.g., centered t-statistic), which conserves
the covariance structure of the test-statistics, and thereby guarantees that
the number of false rejections under the true distribution is dominated by
the number of false rejections under our null distribution. The latter null
distribution is naturally estimated with the model based or nonparametric
bootstrap. Given a draw of the set of null hypotheses, we draw a new vector
of test-statistics by replacing the subvector of test-statistics corresponding
with the null hypotheses by a draw of the null distribution, but leaving the
remaining test-statistics identical to the observed test-statistics. For each
cut-off level, we can now evaluate the proportion of false positives among the
set of rejections for this given guessed set of null hypotheses. By randomly
sampling sets of null hypotheses and test-statistics from the null distribution,
we obtain a distribution of proportion of false positives at any cut-off level.
Finally, we fine-tune the cut-off level so that the exceedance probability at q
equals α.

In the next section we will describe our method in detail, provide its
finite sample rational, and establish the wished formal asymptotic result. In
Section 3 we carry out simulation studies comparing this new method to
our existing augmentation method based on augmenting a resampling based
multiple testing procedure controlling the family wise error rate (FWER),
where both methods rely on the same null distribution of the test-statistics
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(making them nicely comparable). In Section 4 we present a data analysis,
and we conclude with a summary.

2 Rational and Method

Throughout this section we will let Tn = (Tn(1), . . . , Tn(m)) be a vector of
test-statistics with unknown distribution Qn corresponding with a set of null
hypotheses H01, . . . , H0m such that large values of Tn(j) provide statistical
evidence that the null hypothesis H0j is false, and n indicates the sample size.
Here Tn is a test-statistic vector based on a sample of n i.i.d. X1, . . . , Xn

with a common distribution P so that the distribution Qn = Qn(P ) of Tn is
identified by the data generating distribution P . In addition, H0j : P ∈ Mj

states that P is an element of a set of probability distributions Mj for a
certain hypothesized subset Mj of data generating distributions. We will
also let S0 ≡ {j : H0j is true} be the set of true null hypotheses.

It will be assumed that there exists a vector of null-values (θ0(j) : j =
1, . . . , m) such that lim supn→∞ ETn(j) ≤ θ0(j) for j ∈ S0. This allows
us to specify the generally asymptotically valid null distribution (Tn(j) −
ETn(j) + θ0(j) : j = 1, . . . , m) for the vector of test-statistics, proposed in
Pollard and van der Laan (2003), and generalized in Dudoit et al. (2004b).
As detailed in these articles, this distribution can be naturally estimated with
the bootstrap. This null-value shifted null distribution is an asymptotically
valid null distribution in the sense that the distribution of the subvector
(Tn(j) : j ∈ S0) is asymptotically dominated by the distribution of the null-
value shifted (Tn(j) − ETn(j) + θ0(j) : j ∈ S0) so that probabilistic control
of the number of rejections under this null distribution implies the wished
asymptotic probabilistic control of the number of false rejections under the
true data generating distribution. The null distribution should also be scaled
at a null-value (upper bound under the null hypothesis) for the variance under
the null hypotheses, in the case that the variance of the null-valued centered
test-statistics converges to infinity (Dudoit et al., 2004b).

A possibly data dependent cut-off vector cn = (cn(1), . . . , cn(m)), specifies
a multiple testing procedure (i.e., a set of rejections) given by

Sn ≡ {j : Tn(j) > cn(j)} ⊂ {1, . . . , m}.
For simplicity, we will focus on common cut-off vectors, which are appropriate
if the test-statistics Tn(j) have a common marginal distribution, j = 1, . . . , m,
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or at least a common marginal variance. Given user supplied numbers q, α ∈
(0, 1), our goal is to construct a multiple testing procedure such that

Pr

(∑m
j=1 I(Tn(j) > cn(j), j ∈ S0)∑m

j=1 I(Tn(j) > cn(j))
> q

)
≤ α. (1)

We make the convention that 0/0 = 0.
That is, we are interested in controlling the probability that the propor-

tion of false positives (Type I errors) to total rejections is greater than a level
q, at a level α. In order to explicitly understand the challenge, we consider
the common cut-off:

c(Qn,S0 | q, α) ≡ inf{c : F̄Vn(c)/Rn(c)(q) ≤ α},

where

Vn(c) = Vn(c | S0) =
m∑

j=1

I(Tn(j) > c, j ∈ S0),

Rn(c) ≡
m∑

j=1

I(Tn(j) > c),

are the number of false rejections and number of rejections, respectively.
Given a random variable X, F̄X(x) ≡ P (X > x) denotes the survivor func-
tion of the random variable X. Clearly, the multiple testing procedure cor-
responding with cut-off c(Qn,S0 | q, α) satisfies (1).

This representation c(Qn,S0 | q, α) as the optimal cut-off in terms of the
unknown distribution of Tn and the set of true null hypotheses inspires our
approach proposed in this article. In the next two subsections we present this
approach, and present the corresponding finite sample rational, respectively.

2.1 The Proposed Multiple Testing Procedure

Before presenting the finite and asymptotic rational of our procedure, we
will outline the actual steps of the proposed technique. Recall that the
observed data is n i.i.d. copies X1, ..., Xn of a random variable X, and Tn =
(Tn(1), . . . , Tn(m)) denotes the vector of test-statistics corresponding with m
null hypotheses.
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Our method for choosing c involves controlling the tail probability of a
random variable r̃n(c) defined as

r̃n(c) =

∑
j I(T̃n(j) > c, j ∈ S0n)∑

j I(T̃n(j) > c, j ∈ S0n) +
∑

j I(Tn(j) > c, j �∈ S0n)
.

This random variable represents a guessed proportion of false positives among
rejections, defined by drawing a random set S0n which represents a guess of
the set of true null hypotheses S0 and a draw T̃n from a null distribution
for the test-statistic vector. The distribution of S0n and null distribution
of T̃n are chosen so that r̃n(c) asymptotically dominates in distribution the

true proportion of false positives, Vn(c)
Vn(c)+Sn(c)

. By selecting a conservative
finite sample distribution of S0n, it is expected to also dominate this true
proportion of false positives in finite samples. We expand on this in the next
subsection.

Firstly, we describe the null distribution of T̃n. T̃n is computed by draw-
ing a bootstrap sample X#

1 , . . . , X#
n from the empirical distribution Pn the

original sample X1, ..., Xn, or from a model based estimate P̃n of P , and
subsequently calculating the test statistics based on this bootstrap sample.
This will be repeated B∗ times and will result in an m × B∗ matrix of test-
statistic vectors, representing a draw from the test-statistic vector under the
empirical distribution Pn (or the model based estimate P̃n). Subsequently, we
compute the row means E[T#

n (j)] (conditional on Pn) of the matrix, and the
matrix is shifted (centered) by the respective means so that the row means
after this shift are equal to the null-value θ0(j). This matrix represents a
sample of B∗ draws from a null distribution Q0,n (Pollard and van der Laan,
2003; Dudoit et al., 2004b). Each row of this matrix will specify a draw of
T̃n = (T̃n(j) : j = 1, . . . , m). One can also scale the columns so that the
row-variances equal a null value.

Secondly, we will define the distribution of our guessed set of null hy-
potheses S0n, and describe how this random set is drawn. This random set
is defined by drawing a null or alternative status for each of the test statis-
tics. The working model for defining the distribution of the guessed set S̃0n

will assume Tn(j) ∼ p0f0 + (1 − p0)f1, a mixture of a null density f0 and
alternative density f1. Let B(j) represent the underlying Bernoulli random
variable, such that f0 ∼ (Tn(j)|B(j) = 0), is the density of Tn(j) if H0(j) is
true, and f1 ∼ (Tn(j)|B(j) = 1) is the density of Tn(j) if H0(j) is false.

Under this working model, the posterior probability defined as the prob-

http://biostats.bepress.com/ucbbiostat/paper172



ability that Tn(j) came from a true H0j, given its observed value Tn(j), can
now be calculated:

P (B(j) = 0|Tn(j)) = p0
f0(Tn(j))

f(Tn(j))

We will use this posterior probability as the Bernoulli probability on H0j

being true, given the test statistic, where we have to specify or estimate
p0, f0 and f . Since f0 plays the roll of the density of test-statistics under the
null hypothesis, in some situations f0 is simply known: e.g., f0 ∼ N(0, 1).
However, in cases where the marginal distribution of Tn(j) is not known if
H0j is true, one can use a kernel density (density() in R with a given kernel
and bandwidth) on the mean centered elements in the matrix representing
B draws of T̃n. The elements from this matrix are pooled into a vector of
length m∗B∗ in the kernel density function. In order to estimate the density
f , we can again apply a kernel smoother on the bootstrapped test statistics,
before they are mean centered. Again, the elements of the matrix are pooled
into a vector of length m ∗ B∗ in the kernel density function.

Finally, p0 represents the proportion of null hypotheses | S0 | /m and
typically the user might use a conservative p∗0 for this true proportion of null
hypotheses. We use the most conservative prior, p∗0 = 1, throughout this
paper. Now, given Tn, we can define the random set

S0n = {j : C(j) = 1}, C(j) ∼ Bernoulli

(
min

(
1, p∗0

f0(Tn(j))

f(Tn(j))

))
.

Given the data X1, . . . , Xn (i.e., Pn), S0n and T̃n are drawn independently.
We will now draw (S0n, (T̃n(j)) B∗ times, and each time calculate the

corresponding realization of r̃n(c), where Tn is fixed at the true original test
statistics (at each realization of S0n, in order to calculate r̃n(c), we need∑

j �∈S̃0n
I(Tn(j) > c)). This provides us with a sample of B∗ realizations

of (r̃b
n(c) : c ≥ 0), b = 1, . . . , B∗, conditional on the data Pn (and thus,

conditional on Tn as well).
The cut-off c is set so that the tail probability, at a user supplied level q,

of the random variable, r̃n(c), equals α. To do so, we will then choose c such
that average over B∗ draws of both T̃n(j) and S0n(j) equals α.

Specifically, we set

cn = inf

{
c :

1

B∗

B∗∑
b=1

I(r̃b
n(c) > q) ≤ α

}
.
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This finishes the description of our procedure. Finally, at a fixed data
generating distribution, typically the distribution of S0n converges to the
constant set S0 for n converging to infinity. Given p∗0 = 1, the estimated

posterior probability as pn(j) ≡ min
(

f0(Tn(j))
fn(Tn(j))

, 1
)
. Two conditions guarantee

this convergence.

1. Given Tn(j) is distributed as f0 or is dominated by f0, if j ∈ S0 im-
plies that f1n(Tn(j))/f0(Tn(j)) →P 0 as n → ∞ (which one typically
expects, since the alternative density f1n will be shifted towards +∞),
then

pn(j) = min

(
f0(Tn(j))

p0f0(Tn(j)) + (1 − p0)f1n(Tn(j))
, 1

)
→P min

(
1

p0

, 1

)
= 1

as n → ∞.

2. If j �∈ S0 implies that f0(Tn(j))/f1(Tn(j)) →P 0 as n → ∞, then

pn(j) = min

(
f0(Tn(j))

p0f0(Tn(j)) + (1 − p0)f1n(Tn(j))
, 1

)
→P 0.

as n → ∞.

2.2 Finite sample rational of our proposal.

In this section we provide a semi-formal finite sample rational of our proposal,
and in the next section we will prove the asymptotic validity of our method.
Firstly, we will point out that if one is able to provide a conservative guess
for the set of true null hypotheses (that is, this guessed set contains the set of
true null hypotheses), then it follows that one can simply choose the cut-off
so that the corresponding guessed actual proportion of false positives equals
q. However, this method will be extremely sensitive to the set of guessed
null hypotheses not containing any true positives. To reduce this sensitivity,
our method replaces the test-statistics corresponding with the guessed null
hypotheses by a random draw of test-statistics from a null distribution with
the correct covariance structure (which is the same as the true covariance
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structure), and replaces the single guess of the set of true null hypotheses
by a random guess from a distribution which is asymptotically degenerate at
the set of true null hypotheses. This yields a random guessed proportion of
false positives, and we in turn choose the cut-off so that it’s survivor function
at q, conditional on the data, equals α.

Given a vector of test-statistics Tn, the guessed proportion of false posi-
tives corresponding with a guessed set s̃0 ⊂ {1, . . . , m} of true null hypotheses
and cut-off c is given by ∑

j I(Tn(j) > c, j ∈ s̃0)∑
j I(Tn(j) > c, j ∈ s̃0) +

∑
j I(Tn(j) > c, j �∈ s̃0)

.

Since the function x → x
x+c

is monotone increasing (and convex), it follows
that, if our set of guessed true null hypotheses contains the set of true null
hypotheses, i.e., s̃0 ⊃ S0, then∑

j I(Tn(j) > c, j ∈ s̃0)∑
j I(Tn(j) > c, j ∈ s̃0) +

∑
j I(Tn(j) > c, j �∈ s̃0)

≥
∑

j I(Tn(j) > c, j ∈ S0)∑
j I(Tn(j) > c, j ∈ S0) +

∑
j I(Tn(j) > c, j �∈ S0)

.

That is, if s̃0 ⊃ S0, and we simply choose the cut-off such that the propor-
tion of test-statistics Tn(j) with j ∈ s̃0 among the rejections equals q, then
the proportion of actual false positives among the rejections is smaller or
equal than q. We do not recommend this approach since it will be extremely
sensitive to s̃0 containing all of the true null hypotheses S0, due to the fact
that if j ∈ s̃0 while j �∈ S0, the cut-off chosen will be too large. Thus, our
proposal involves 1) replacing the observed test-statistics (Tn(j) : j ∈ s̃0)
by a random draw (T̃n(j) : j ∈ s̃0) from our null distribution, which has
asymptotically the same distribution up until a simple shift, 2) replacing the
fixed s̃0 by a random draw S0n independent of T̃n, given the data Pn, from a
conservatively chosen distribution which is asymptotically degenerate at S0,
and 3) controlling the tail probability at q over the distribution of (S0n, T̃n),
conditional on Pn.

As discussed above, one can create a random vector T̃n, representing a
draw from the null-value shifted bootstrap distribution of Tn, such that the
distribution of

∑
j I(T̃n(j) > c, j ∈ S0), given the original sample Pn, asymp-

totically dominates the distribution of
∑

j I(Tn(j) > c, j ∈ S0) (Dudoit et al.,
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2004b). Such a result can be derived by establishing the limit distribution of
the bootstrap distribution of T̃n, given Pn, which typically simply corresponds
with proving asymptotic validity of the bootstrap. Though such results es-
tablish asymptotic domination, in practice these distributions typically also
provide finite sample domination, due to the fact that θ0(j) provides an
upper-bound for the mean of the test-statistics under a true null hypotheses
H0j.

Note that such a limit distribution implies that T̃n is asymptotically in-
dependent of Pn, and thus, T̃n is asymptotically independent of Tn. As a
consequence, the conditional distribution of

∑
j I(T̃n(j) > c, j ∈ S0), given∑

j I(Tn(j) > c, j �∈ S0), asymptotically dominates the marginal distribution
of
∑

j I(Tn(j) > c, j ∈ S0), even at local alternatives.

Given this substitution of (T̃n(j) : j ∈ s̃0) for (Tn(j) : j ∈ s̃0), we obtain

the random variable
∑

j I(T̃n(j)>c,j∈s̃0)∑
j I(T̃n(j)>c,j∈s̃0)+

∑
j I(Tn(j)>c,j �∈s̃0)

. If s̃0 ⊃ S0, then∑
j I(T̃n(j) > c, j ∈ s̃0)∑

j I(T̃n(j) > c, j ∈ s̃0) +
∑

j I(Tn(j) > c, j �∈ s̃0)

≥
∑

j I(T̃n(j) > c, j ∈ S0)∑
j I(T̃n(j) > c, j ∈ S0) +

∑
j I(Tn(j) > c, j �∈ s̃0)

≥
∑

j I(T̃n(j) > c, j ∈ S0)∑
j I(T̃n(j) > c, j ∈ S0) +

∑
j I(Tn(j) > c, j �∈ S0)

Recall that our goal is to dominate the latter random variable with T̃n(j)
replaced by Tn(j). Now, we can use the fact that if a random variable X dominates
a random variable Y stochastically, (X ≥P Y ), in the sense that P (X ≤ x) ≤
P (Y ≤ x) for all x, then for a fixed constant a X

X+a dominates the random variable
Y

Y +a , where a is Sn(c) =
∑

j I(Tn(j) > c, j �∈ S0), X is Ṽn(c) =
∑

j I(T̃n(j) > c, j ∈
S0), and Y is the non-conditional number of false positives V ∗

n (c) =
∑

j I(Tn(j) >
c, j ∈ S0). Here V ∗

n (c) is a random variable with the same marginal distribution
as Vn(c), but V ∗

n (c) is independent of Sn(c).
To summarize: If s̃0 ⊃ S0, Ṽn(c) dominates Vn(c) for all c in distribution

(marginally), and T̃n is independent of Tn, then
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∑
j I(T̃n(j) > c, j ∈ s̃0)∑

j I(T̃n(j) > c, j ∈ s̃0) +
∑

j I(Tn(j) > c, j �∈ s̃0)

≥
∑

j I(T̃n(j) > c, j ∈ S0)∑
j I(T̃n(j) > c, j ∈ S0) +

∑
j I(Tn(j) > c, j �∈ s̃0)

≥
∑

j I(T̃n(j) > c, j ∈ S0)∑
j I(T̃n(j) > c, j ∈ S0) +

∑
j I(Tn(j) > c, j �∈ S0)

≥P
V ∗

n (c)
Vn ∗ (c) + Sn(c)

, conditional on Sn(c)

Again, recall that we are aiming to stochastically dominate the random vari-
able Vn(c)

Vn(c)+Sn(c) . Thus, if Vn(c) is independent of Sn(c) so that (V ∗
n (c), Sn(c))

equals in distribution (Vn(c), Sn(c)), then we would be dominating the wished
Vn(c)

Vn(c)+Sn(c) . Thus, in that case, choosing c such that the conditional tail probabil-

ity of
∑

j I(T̃n(j)>c,j∈s̃0)∑
j I(T̃n(j)>c,j∈s̃0)+

∑
j I(Tn(j)>c,j �∈s̃0)

, given Pn (i.e., Tn), at q equals α would

yield a cut-off larger than or equal to the optimal cut-off c(Qn,S0 | q, α), and
thereby a multiple testing procedure controlling TPPFP (q) at level α.

The assumption that Vn(c) is independent of Sn(c) is sufficient, but not nec-
essary to obtain the wished stochastic domination. In addition, at a fixed data
generating distribution, Sn(c) converges to the constant | Sc

0 | so that this inde-
pendence condition is asymptotically empty. It is interesting to note that this
independence assumption was also used in the proof of Lehmann and Romano
(2003) to establish the wished control of TPPFP (q) for their procedure based on
marginal p-values.

Though this multiple testing procedure has a finite sample rational under the
assumption that Vn(c) is independent of Sn(c) (for all c), which is asymptotically
an empty condition at a fixed data generating distribution, it still relies on a
guessed set s̃0 containing the set of true null hypotheses S0. Therefore, in our
proposed method we simply select c such that the tail probability of∑

j I(T̃n(j) > c, j ∈ S0n)∑
j I(T̃n(j) > c, j ∈ S0n) +

∑
j I(Tn(j) > c, j �∈ S0n)

at q equals α, where S0n is a random set drawn (independently from T̃n) from a
probability distribution estimated from the data (i.e., Pn) and which is asymptoti-
cally degenerate at the true S0. If S0n follows a conservatively chosen distribution
in the sense that S0n is typically larger (e.g., its average contains S0) than S0 (but
still asymptotically consistent for S0), one would expect that the finite sample ra-
tional for a fixed s̃0 ⊃ S0 above is still approximately true, while our approach will
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now be more robust (i.e., less variable) in finite samples than an approach based
on a single guess s̃0.

2.3 Formal asymptotic validity.

Though the above rational provides the finite sample heuristic behind our method,
the following theorem formally establishes the asymptotic validity of our method
at a fixed data generating distribution, under general conditions.

Theorem 1 Define

r̃n(c) ≡
∑

j I(T̃n(j) > c, j ∈ S0n)∑
j I(T̃n(j) > c, j ∈ S̃0n) +

∑
j I(Tn(j) > c, j �∈ S0n)

.

Let T̃n be independent of S0n, given Pn, and let Q̃n, G0n denote the conditional
distributions of T̃n and S0n, given Pn, respectively. Let

cn = c(G0n, Q̃n, Pn | q, α) ≡ inf{c : F̄r̃n(c)|Pn
(q) ≤ α},

where the notation c(G0n, Q̃n, Pn | q, α) expresses the dependence of this cut-off
on the distribution G0n of S0n, given Pn, the distribution Q̃n of T̃n, given Pn,
the actual sample identified by Pn (i.e., the values of the test-statistics Tn), and
the user supplied (α, q). In addition, F̄X1|X2

(q) ≡ P (X1 > q | X2) denotes the
conditional survivor function.

Suppose that

1. G0n converges to the degenerate distribution which puts probability 1 on the
constant set S0 for n converging to infinity.

2. Let
c̃n ≡ inf{c : F̄Ṽn(c)/(Ṽn(c)+|Sc

0|)|Pn
(q) ≤ α},

where Ṽn(c) ≡ ∑m
j=1 I(T̃n(j) > c, j ∈ S0). It is assumed that there exists a

τ so that lim supn→∞ c̃n ≤ τ , and

m∑
j=1

I(Tn(j) > τ, j �∈ S0)− | Sc
0 |→ 0

for n converging to infinity, for almost every (Pn : n ≥ 1).

3. For almost every (Pn : n ≥ 1), for each x ∈ {1, . . . ,m}, we have

lim sup
n→∞

sup
c∈[0,τ ]

F̄Ṽn(c)|Pn
(x) − F̄Vn(c)(x) ≤ 0.
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4. Given (Pn : n ≥ 1), if c̃n is a sequence so that

lim sup
n→∞

F̄r̃n(c̃n)|Pn
(q) ≤ α,

then lim supn→∞ cn − c̃n ≤ 0.

5. If c̃n is a sequence so that for almost every (Pn : n ≥ 1), lim supn→∞ cn−c̃n ≤
0, then

lim sup
n→∞

FVn(c̃n)/Vn(c̃n)+Sn(c̃n)(q) − FVn(cn)/Vn(cn)+Sn(cn)(q) ≥ 0.

Then,
lim sup

n→∞
F̄Vn(cn)/Rn(cn)(q) ≤ α, (2)

where Vn(cn) =
∑m

j=1 I(Tn(j) > cn, j ∈ S0), and Rn(cn) =
∑m

j=1 I(Tn(j) > cn).

Discussion of conditions. Condition 1) states that our random guess of S0

should be asymptotically on target, and, as noted above, our actual finite sam-
ple distribution of this random guess will be chosen conservatively. Condition 2)
naturally holds at a fixed data generating distribution since it states that the test-
statistics corresponding with false null hypotheses asymptotically separate from
the test-statistics corresponding with the true null hypotheses. Condition 3) states
that the number of false rejections under our chosen null distribution asymptoti-
cally dominates the number of false rejections under the true distribution. The last
two conditions 4) and 5) are very mild regularity conditions avoiding situations in
which the tail-probability of the proportion of false positives is not affected by a
change in the cut-off.

Proof. Firstly, by condition 1) and 2), it follows that, given almost every
(Pn : n ≥ 1), (r̃n(c) : c ∈ [0, τ ]) equals with probability tending to 1

(r̃∗n(c) : c ∈ [0, τ ]) ≡
( ∑

j I(T̃n(j) > c, j ∈ S0)∑
j I(T̃n(j) > c, j ∈ S0)+ | Sc

0 | : c ∈ [0, τ ]

)

=

(
Ṽn(c)

Ṽn(c)+ | Sc
0 | : c ∈ [0, τ ]

)
.

As a consequence, the difference between the cumulative survivor function of
r̃n(c) at q, given Pn, and the cumulative survivor function of r̃∗n(c) at q, given Pn,
converges to zero uniformly in c ∈ [0, τ ]. Note that, given (Pn : n ≥ 1), c̃n is a fixed
sequence, and, by assumption, there exists a N so that for n > N , c̃n ∈ [0, τ ]. As a
consequence, it follows that the survivor function of r̃∗n(c̃n), given Pn, at q, which
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equals a number smaller or equal than α, minus the conditional survivor function
of r̃n(c̃n), given Pn, at q converges to zero. Thus, given almost every (Pn : n ≥ 1),
the limsup of the conditional survivor function of r̃n(c̃n), given Pn, at q, converges
to a number smaller or equal than α. By assumption 4), this implies, in particular,
that, given almost every (Pn : n ≥ 1), lim supn→∞ cn − c̃n ≤ 0, which we will need
later.

Now, we note that for all c ∈ [0, τ ]

P

(
Ṽn(c)

Ṽn(c)+ | Sc
0 | > q | Pn

)
= P

(
Ṽn(c) >

q | Sc
0 |

1 − q
| Pn

)
.

By condition 3), the latter conditional probability, given Pn, is asymptotically
larger than the marginal probability

P

(
Vn(c) >

q | Sc
0 |

1 − q

)
= P

(
Vn(c)

Vn(c)+ | Sc
0 | > q

)
,

uniformly in c ∈ [0, τ ]. However, by condition 1), the latter probability is asymp-
totically the same as P

(
Vn(c)

Vn(c)+Sn(c) > q
)
, uniformly in c ∈ [0, τ ]. This proves that,

for almost every (Pn : n ≥ 1),

lim sup
n→∞

sup
c∈[0,τ ]

{
P

(
Vn(c)

Vn(c) + Sn(c)
> q

)
− P (r̃n(c) > q | Pn)

}
≤ 0.

Since c̃n ∈ [0, τ ] for n large enough, and P (r̃n(c̃n) > q | Pn) ≤ α asymptotically,
it follows now that, for almost every (Pn : n ≥ 1),

lim sup
n→∞

P

(
Vn(c̃n)

Vn(c̃n) + Sn(c̃n)
> q

)
≤ α. (3)

Finally, since, for almost every (Pn : n ≥ 1), lim supn→∞ cn − c̃n ≤ 0 (shown
above), condition 5) teaches us that (3) implies that we also have

lim sup
n→∞

P

(
Vn(cn)

Vn(cn) + Sn(cn)
> q

)
≤ α.

This completes the proof. �

3 Simulations

The simulation study compares the procedure outlined above with the augmen-
tation procedure of FWER adjusted p-values presented in van der Laan et al.
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(2004b). Recall that, given the data Pn, the implementation of our multiple test-
ing procedure involves simulating

r̃n(c) =

∑
j I(T̃n(j) > c, j ∈ S0n)∑

j I(T̃n(j) > c, j ∈ S0n) +
∑

j I(Tn(j) > c, j �∈ S̃0n)

Recall also that we identify such a random set S̃0n with a random vector
(C(1), ..., C(m)) of Bernoulli indicators C(j) drawn independently from a Bernoulli
distribution with probability 1 − min

(
1, f0n(Tn(j))

fn(Tn(j))

)
, where f0n and fn are kernel

density estimators described in Section 2.1. The reader will be referred back to
Section 2.1 to show that this posterior probability is asymptotically degenerate at
S0. We will now define several aspects of the simulation of the data.

3.1 Data

The data are n i.i.d. normally distributed vectors Xi ∼ N(Ψ(P ), Σ(P )), i =
1, . . . , n, where ψ = (ψ(j) : j = 1, . . . ,m) = Ψ(P ) = EP [X] and σ = (σ(j, j′) :
j, j′ = 1, . . . ,m) = Σ(P ) = CovP [X] denote, the m-dimensional mean vector and
m × m covariance matrix.

3.2 Null hypotheses

The null hypotheses of interest concern the m components of the mean vector ψ.
That is, we are interested in two-sided tests of the m null hypotheses H0(j) =
I
(
ψ(j) = ψ0(j)

)
vs. the alternative hypotheses H1(j) = I

(
ψ(j) �= ψ0(j)

)
, j =

1, . . . ,m. We will set the null values equal to zero, i.e., ψ0(j) ≡ 0.

3.3 Test statistics

In the known variance case, one can test the null hypotheses using simple t-
statistics. We will rewrite the test-statistics and define the respective shift below:

Tn(j) ≡ √
n

ψn(j) − ψ0(j)
σ(j)

,

where ψn(j) =
∑

i
Xi(j)

n denote the empirical means for the m components of X.
For our case, the test statistics Tn(j) can be rewritten in terms of random variables
(Zn) and shift parameters (dn):
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Tn(j) =
√

nψn(j)−ψ(j)
σ(j) +

√
nψ(j)−ψ0(j)

σ(j) = Zn(j) + dn(j),

where Zn ∼ N(0, Σ∗(P )) and σ∗ = Σ∗(P ) = Cor[X].

Therefore the test statistics Tn have an m–variate Gaussian distribution with
mean vector the shift vector dn and covariance matrix σ∗: Tn ∼ N(dn, σ∗). Note
that dn(j) = 0 if the null hypothesis H0(j) is true. Various values of the shift dn(j)
corresponds to different combinations of sample size n, mean ψ(j), and variance
σ2(j).

3.4 Simulation parameters

In our simulations we can simulate the test statistics Tn directly from the m–
variate Gaussian distribution Tn ∼ N(dn, σ∗), where the parameter of interest is
now the shift vector dn, with jth component equal to zero under the corresponding
null hypothesis.

The following model parameters where used in the simulation.

• Number of hypotheses, m:

The following two values were considered for the total number of hypotheses,
m = 24 and m = 400.

• Proportion of true null hypotheses, h0/m:

50% of true null hypotheses (h0/m = 0.5) or 75% of true null hypotheses
(h0/m = 0.75).

• Shift parameters, dn(j):

For the true null hypotheses, i.e., for j ∈ S0, dn(j) = 0.

For the false null hypotheses, i.e., j �∈ S0, the following (common) shift
values were considered: dn(j) = 2, 3, 4, [2, 10].

**Note in the case dj = [2, 10] with m=400, 150 Tn had a shift of 2 and 50
Tn had a shift of 10, thus simulating an actual situation in practice where
50 of the hypotheses are bound to be automatically rejected.

• Correlation matrix, σ∗:

The following type of correlation structure was considered:

Local correlation, where the only non-zero elements of σ∗ are the diagonal
and first off-diagonal elements, i.e., σ∗(j, j) = 1, for j = 1, . . . ,m, σ∗(j, j −
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1) = σ∗(j−1, j) = 0.5, for j = 2, . . . ,m, and σ∗(j, j′) = 0, for j, j′ = 1, . . . ,m
and j′ �= j − 1, j, j + 1.

• The null distribution, usually obtained from the bootstrap, is generated by
creating a 10, 000 × m matrix of test statistics null distribution Q0, Z ∼
N(0, σ∗). We note that Z represents the limit distribution of the bootstrap
null distribution which we actually use in practice.

• The possible cut-off values c are between 2 and 4 by steps of size 0.05.

• The tail probability proportion q and α level are both set to 0.05.

• The number of draws of the Bernoulli-vector (C(1), . . . , C(m)) identifying
S0n was equal to 50. Note that in our actual description of the method we
are supposed to draw (T̃n, S0n) repeatedly, while in this simulation we draw
more T̃n (10, 000) than we draw S0n’s (50). However, this was only done
for computational reasons. One might expect a minor improvement of our
method in the case that both random variables are drawn 10,000 times, as
recommended in practice.

Multiple Testing Procedure: TPPFP Augmentation

We have applied the single step maxT Multiple Testing Procedure outlined in
Pollard and van der Laan (2003). This procedure is a single-step approach, with
common cut-off, which uses a null distribution based on the joint distribution of
the test statistics. This null distribution is used to define the rejection regions
as well as the adjusted p-values. The null distribution is the T̃n matrix (Pollard
and van der Laan, 2003). This procedure is based on obtaining a vector of B∗

maximum values from the columns of the T̃n matrix. The estimated common cut-
off value co is the (1 − α) quantile of the B∗-vector of maximum values, obtained
from the estimated bootstrapped distribution. This now defines a Multiple Test-
ing Procedure, which is based on the test statistics, null distribution, and α. We
then apply an augmentation defined in van der Laan et al. (2004b) to the FWER
adjusted p-values. This is done at a user defined q = α = 0.05. As mentioned
previously, we will define the initial set of rejections of size r0 corresponding with a
multiple testing procedure controlling FWER at level α. The TPPFP augmenta-
tion procedure simply adds the next � q

1−q r0� most significant tests to the rejection
set to control TPPFP(q) at level α.

Lehmann and Romano TPPFP Procedures:
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We also applied the Lehmann and Romano Restricted method to control the
tail probability of the proportion of false positives (Lehmann and Romano, 2003).
This is a method based on marginal p-values, and the adjusted p-values for such
procedures are simple functions of the unadjusted p-values P0n(j) corresponding
to each null hypothesis H0(j): we recall that an adjusted-p-value, given a test-
statistic value, is the actual nominal level α one needs to chose to just put the
test-statistic in the rejection region. We will denote the adjusted p-values for the
MTP by P̃0n(j) and the ordered p-values (from smallest to largest) are defined
as On(j), so that P0n(On(1)) ≤ . . . ≤ P0n(On(m)). The Lehmann and Romano
Restricted step-down procedure for controlling TPPFP at a user specified level q,
is defined as in (Lehmann and Romano, 2003; Dudoit et al., 2004a) in terms of
adjusted p-values as follows:

P̃0n(On(j)) = maxh=1,...,j

{
min

(
(m+�qh�+1−h)

(�qh�+1) P0n(On(h)), 1
)}

The Lehmann and Romano Restricted procedure is shown to control the TPPFP
under either one of two assumptions on the dependence structure of the unadjusted
p-values (Theorems 3.1 and 3.2 in Lehmann and Romano (2003)). Lehmann and
Romano (2003) have also proposed a General step-down method to control TPPFP,
which is outlined in both Lehmann and Romano (2003) and Dudoit et al. (2004a).
This method is a very conservative in practice, and controls the TPPFP under
arbitrary dependence structures (Theorem 3.3). We will not present results for
this Lehmann and Romano General method in this article.

We will report simulation results for the newly proposed procedure, the TPPFP
augmentation method described above, and the Restricted Lehmann and Romano
procedure. We note that the Lehmann and Romano method is not directly com-
parable to the augmentation method based on the single-step maxT method for
controlling FWE, since the Lehmann and Romano method is step-down. To make
them more comparable, we would have to include the augmentation method based
on the step-down method for controlling FWE, as in our simulation studies pre-
sented in Dudoit et al. (2004a).

3.5 Type I error rate and power comparisons

Finally, for each data generating distribution, we carry out the multiple testing
procedures (newly proposed procedure, augmentation of FWE adjusted p-values
procedure, and Lehmann and Romano Restricted procedure) Sn 1000 times. We
do this by generating W = 1000 m–vectors of test statistics Tw

n ∼ N(dn, σ∗),
w = 1, . . . ,W .

For a given nominal level α, we compute the numbers of rejected hypotheses
Rw

n (α) =| Sw
n |, Type I errors V w

n (α) =| Sw
n ∩ S0 |, and Type II errors Uw

n (α) =|
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Sw
n ∩ Sc

0 |.
Based on this Monte-Carlo sample of (Vn(α), Rn(α), Un(α)) for our multiple

testing procedure Sn(α), we can obtain an empirical estimate of the Type-I error
and Average Power:

TPPFP (q; α) =
1
W

W∑
w=1

I(V w
n (α)/Rw

n (α) > q)

AvgPwr(α) = 1 − 1
h1

1
W

W∑
w=1

Uw
n (α).

Similarly, we calculate this Type-I error and Average Power for the augmentation
procedure and the Lehmann and Romano procedure.
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Table 1: m = 24, shift for alternatives = 2, and h0

m
= 0.50

α TPPFP Augmentation LR Restricted
α = 0.05 Type I error 0.033 0.016 0.027

α = 0.05 Power 0.1836 0.1374 0.1341
α = 0.1 Type I error 0.079 0.035 0.054

α = 0.1 Power 0.2816 0.2029 0.192

Table 2: m = 24, shift for alternatives = 3, and h0

m
= 0.50

α TPPFP Augmentation LR Restricted
α = 0.05 Type I error 0.037 0.023 0.03

α = 0.05 Power 0.5875 0.4813 0.4772
α = 0.1 Type I error 0.093 0.053 0.06

α = 0.1 Power 0.6764 0.583 0.5775

3.6 Simulation Results

The various simulations indicate that the proposed tail probability of the propor-
tion of false positives (TPPFP) method is more powerful and less conservative
as compared to the augmentation method applied to FWER adjusted p-values at
nominal α levels of 0.05 and 0.10. The simulations vary several parameters in order
to make these comparisons. As mentioned earlier, we were particularly interested
in the performance of our new method in situations where the number of tests m
increases, therefore in this case m = 400, since the augmentation method is known

Table 3: m = 400, shift for alternatives = 2, and h0

m
= 0.50

α TPPFP Augmentation LR Restricted
α = 0.05 Type I error 0.037 0.007 0.006

α = 0.05 Power 0.1484 0.0555 0.05276
α = 0.1 Type I error 0.082 0.016 0.018

α = 0.1 Power 0.2135 0.0910 0.0819
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Table 4: m = 400, shift for alternatives = 3, and h0

m
= 0.50

α TPPFP Augmentation LR Restricted
α = 0.05 Type I error 0.041 0.009 0.0062

α = 0.05 Power 0.549 0.2899 0.3426
α = 0.1 Type I error 0.088 0.025 0.017

α = 0.1 Power 0.6425 0.3826 0.445

Table 5: m = 400, shift for alternatives = 4, and h0

m
= 0.50

α TPPFP Augmentation LR Restricted
α = 0.05 Type I error 0.037 0.017 0.005

α = 0.05 Power 0.89445 0.6869 0.7739
α = 0.1 Type I error 0.09 0.037 0.016

α = 0.1 Power 0.93075 0.7715 0.8369

Table 6: m = 400, shift for alternatives = [2,10], and h0

m
= 0.50

α TPPFP Augmentation
α = 0.05 Type I error 0.036 0.012

α = 0.05 Power 0.4009 0.3023
α = 0.1 Type I error 0.08 0.021

α = 0.1 Power 0.4535 0.3292

Table 7: m = 400, shift for alternatives = 2, and h0

m
= 0.75

α TPPFP Augmentation LR Restricted
α = 0.05 Type I error 0.045 0.011 0.01

α = 0.05 Power 0.09624 0.05295 0.0406
α = 0.1 Type I error 0.10 0.032 0.024

α = 0.1 Power 0.1481 0.0874 0.06469
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Table 8: m = 400, shift for alternatives = 3, and h0

m
= 0.75

α TPPFP Augmentation LR Restricted
α = 0.05 Type I error 0.044 0.010 0.01

α = 0.05 Power 0.42755 0.2838 0.2679
α = 0.1 Type I error 0.094 0.035 0.029

α = 0.1 Power 0.5244 0.3771 0.3436

Table 9: m = 400, shift for alternatives = 4, and h0

m
= 0.75

α TPPFP Augmentation LR Restricted
α = 0.05 Type I error 0.043 0.020 0.011

α = 0.05 Power 0.8259 0.6823 0.6955
α = 0.1 Type I error 0.092 0.049 0.023

α = 0.1 Power 0.8822 0.7677 0.7642

to be too conservative in these circumstances. Clearly, as we observed previously,
the augmentation method and LR-method are much too conservative in this case,
while our new method has an actual TPPFP close to the wished level (e.g., for
nominal level α = 0.1, we have 0.08 versus 0.018). Thus, we indeed see a greater
gain in both the respective power and Type I error rate (closer to the nominal
level) as the number of tests increases. In many cases the Type I error rate of the
TPPFP method is almost equal to the nominal Type I error rate, which is ideal
for a multiple testing procedure.

4 Data Analysis

4.1 Introduction

We applied the proposed TPPFP method to an actual dataset in order to assess
the performance by comparing the number of rejections at both α = 0.05 and
α = 0.10 to those produced from the Augmentation method. Before defining the
actual analyses, we will briefly describe the background and structure of the data.
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4.2 HIV-1 sequence variation and replication capacity

Studying sequence variation for the Human Immunodeficiency Virus Type 1 (HIV-
1) genome could potentially give important insight into genotype-phenotype asso-
ciations for the Acquired Immune Deficiency Syndrome (AIDS).

In this context, the phenotype is the replication capacity (RC) of HIV-1, as it
reflects the severity of the disease. A measure of replication capacity may be ob-
tained by monitoring viral replication in an ideal environment, with many cellular
targets, no exogenous or endogenous inhibitors, and no immune system responses
against the virus (Barbour et al., 2002; Segal et al., 2004).

The genotype of interest correspond to codons in the protease and reverse
transcriptase regions of the viral strand. The protease (PR) enzyme affects the
reproductive cycle of the virus by breaking protein peptide bonds during viral
replication. The reverse transcriptase (RT) enzyme synthesizes double-stranded
DNA from the virus’ single-stranded RNA genome, thereby facilitating integra-
tion into the host’s chromosome. Since the PR and RT regions are essential to
viral replication, many antiretrovirals (protease inhibitors and reverse transcrip-
tase inhibitors) have been developed to target these specific genomic locations.
Studying PR and RT genotypic variation involves sequencing the corresponding
HIV-1 genome regions and determining the amino acids encoded by each codon
(i.e., each nucleotide triplet).

4.3 Description of Segal et al. (2004) HIV-1 dataset

The HIV-1 sequence dataset consists of n = 317 records, linking viral replication
capacity (RC) with protease (PR) and reverse transcriptase (RT) sequence data,
from individuals participating in studies at the San Francisco General Hospital
and Gladstone Institute of Virology (Segal et al., 2004). Protease codon positions
4 to 99 (i.e., pr4 – pr99) and reverse transcriptase codon positions 38 to 223 (i.e.,
rt38 – rt223) of the viral strand are studied in this analysis (Birkner et al., 2005).

The outcome/phenotype of interest is the natural logarithm of a continuous
measure of replication capacity, ranging from 0.261 to 151. The M covariates
correspond to the M = 282 codon positions in the PR and RT regions, with the
number of possible codons ranging from one to ten at any given location. A major-
ity of patients typically exhibit one codon at each position. Codons are therefore
recoded as binary covariates, with value of zero (or “wild-type”) corresponding
to the most common codon among the n = 317 patients and value of one (or
“mutation”) for all other codons. Previous biological research was used to con-
firm mutations and hence provide accurate PR and RT codon genotypes for each
patient (hivdb.stanford.edu/cgi-bin/RTMut.cgi) (Wu et al., 2003; Gonzales
et al., 2003). The data for each of the n = 317 patients therefore consist of a

Hosted by The Berkeley Electronic Press



replication capacity outcome/phenotype Y and an M–dimensional covariate vec-
tor X = (X(j) : j = 1, . . . ,m) of binary codon genotypes in the PR and RT HIV-1
regions.

4.4 Parameter of Interest

In order to perform multiple testing, one must define the parameter of interest. In
this specific case the parameter of interest is the difference ψ(j) in mean replication
capacity of viruses with mutant and wild-type codons, that is, ψ(j) ≡ E[Y |X(j) =
1] − E[Y |X(j) = 0], j = 1, . . . ,m. To identify codons that are associated with
viral replication capacity, one can perform two-sided tests of the null hypothe-
ses H0(j) = I(ψ(j) = 0) of no mean difference vs. the alternative hypotheses
H1(j) = I(ψ(j) �= 0), using pooled-variance two-sample t-statistics Tn(j). The
null hypotheses are rejected, i.e., the corresponding codon positions are declared
significantly associated with replication capacity, for large absolute values of the
test statistics Tn(j). It is important to note that only 25 of the 282 codon positions
have unadjusted p-values less than an α = 0.05 and 36 of the 282 codon positions
have unadjusted p-values less than an α = 0.1

We wish to test for each of the M = 282 codon positions whether viral repli-
cation capacity Y is associated with the corresponding binary codon genotype,
X(j) ∈ {0, 1}, j = 1, . . . ,m. For the jth codon (i.e., jth hypothesis), the param-
eter of interest is the difference ψ(j) in mean replication capacity of viruses with
mutant and wild-type codons.

We consider two-sided tests of the null hypotheses H0(j) = I(ψ(j) = 0) of
no mean difference in RC vs. the alternative hypotheses H1(j) = I(ψ(j) �= 0) of
different mean RC, based on pooled-variance two-sample t-statistics,

Tn(j) ≡ Ȳ1(j) − Ȳ0(j) − 0

sp(j)
√

1
n0(j) + 1

n1(j)

, (4)

s2
p(j) ≡ (n0(j) − 1)s2

0(j) + (n1(j) − 1)s2
1(j)

n0(j) + n1(j) − 2
,

where nk(j), Ȳk(j), and s2
k(j) denote, respectively, the sample sizes, sam-

ple means, and sample variances for the RC of patients with codon genotype
X(j) = k ∈ {0, 1} at position j. The pooled variance estimator is denoted by
s2
p(j). The null hypotheses are rejected, i.e., the corresponding codons are de-

clared significantly associated with RC, for large absolute values of the test statis-
tics Tn(j). Note that the above two-sample t-statistics correspond to t-statistics
for the univariate linear regression of the outcome Y on the binary covariates X(j).
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4.5 Methodology

4.5.1 Multiple Testing Procedures

We have applied the multiple testing procedure outlined in Pollard and van der
Laan (2003). This procedure is a single-step maxT approach which uses a null
distribution based on the joint distribution of the test statistics. This null distri-
bution is used to define the rejection regions as well as the adjusted p-values. The
null distribution is the T̃n matrix. We then apply the maxT single-step common
cutoff procedure to obtain the FWER controlling adjusted p-values (Pollard and
van der Laan, 2003). We then apply an augmentation defined in van der Laan
et al. (2004b) to the FWER adjusted p-values. This is done at a user defined
q = α = 0.05.

The FWER method produces 282 adjusted FWER controlling adjusted p-
values. Each of these adjusted p-values corresponds to a codon and represents
the significance of the association between the codon and replication capacity. The
augmentation is applied which results in TPPFP controlling adjusted p-values. We
will tabulate the number of codons with adjusted p-values less than an α = 0.05
and an α = 0.1.

4.5.2 Multiple Testing Procedure: TPPFP

We have applied the presented method to the HIV-1 dataset in order to determine
the number of rejected codons at both an α = 0.05 and an α = 0.1. This procedure
was applied as outlined previously in this article. We had to choose a Bernoulli
probability from the ratio of the null density f0 to the empirical density f . We will
assume that f0 ∼ N(0, 1). In order to obtain the empirical density we applied a
kernel density function (density() in R), to 10,000 m bootstrapped test statistics
from the dataset. These Bernoulli’s were repeated 50 times. The bootstrapped null
distribution to which the method was applied was a 10, 000 × m matrix and was
identical to the null distribution used for the construction of the FWER adjusted
p-values in the previous method. We also tried estimating the density f of the
bootstrapped test statistics with a normal distribution with the mean and variance
equal to the mean and variance of the bootstrapped distribution. The results from
this method were equivalent to the results found from using the kernel density
method (presented in Section 5.3).
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Table 10: HIV-1 Data: Number of Rejected Codons at α = 0.05, 0.1

α Rejections TPPFP Rejections Augmentation
α = 0.05 11 5
α = 0.1 13 8

4.6 Results

The results from two methods are presented below. The new method rejects more
hypotheses at both an α = 0.05 and an α = 0.1 as compared to the augmentation.
We do observe a greater gain of the new method at the α = 0.05 level.

Therefore this method proves to be less conservative as compared to the TPPFP
Augmentation, in the sense that it results in more rejections. As shown in the sim-
ulation section, the new method appears to be less conservative and more powerful
as compared to the augmentation procedure.

It is also important to note that a majority of the the codons which were
rejected by the new method, as well as the subset rejected by the augmentation
method, are biologically relevant and therefore are associated with an outcome of
replication capacity. In particular, protease positions pr32, pr34, pr43, pr46, pr47,
pr54, pr55, pr82, and pr90, and reverse transcriptase positions rt41, rt184, and
rt215, have been singled out in previous research as related to replication capacity
and/or antiretroviral resistance (Birkner et al., 2004; Segal et al., 2004; Shafer
et al., 2001). This new method illustrates that 11 of these positions are significant
at the α = 0.05 level, whereas the augmentation method was only able to identify
5 codons at that significance level. A further discussion of all of these biological
findings are outlined in Birkner et al. (2005).

5 Summary

This paper has introduced a new multiple testing for controlling TPPFP(q), as
well as a simulation study investigating its performance relative to previous pro-
posals, and we used it to detect codons in the HIV-virus significantly associated
with replication capacity of the virus. Our technique still fully uses the generally
valid null-value shifted resampling based null distribution for the test-statistics, as
generally proposed in our previous work (Pollard and van der Laan (2003) and Du-
doit et al. (2004b)), and thereby avoids the need for the so called subset pivotality
condition needed in the resampling based multiple testing literature presented in
Westfall and Young (1993). Our method also uses the mixture model previously
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used to obtain FDR-procedures (Efron et al. (2001a)) to generate random guesses
of the set of true null hypotheses, which are asymptotically degenerate at the set
of true null hypotheses. We have provided a finite sample rational, and formal
asymptotic results.

Our simulations show that the new method is significantly more powerful and
controls the type-I error at a level much closer to the nominal level α than the
competing methods in the important settings for which the number of tests is
very large. The practical utility of our method was evidence in our data analysis
which showed that our new procedure identified several codons with significant
associations, which were not identified by the augmentation procedure or marginal
p-value methods proposed in the literature.
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