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Estimation of Treatment Effects in
Randomized Trials with Noncompliance and a

Dichotomous Outcome

Mark J. van der Laan, Alan E. Hubbard, and Nicholas P. Jewell

Abstract

We propose a class of estimators of the treatment effect on a dichotomous outcome
among the treated subjects within covariate and treatment arm strata in random-
ized trials with non-compliance. Recent articles by Vansteelandt and Goethebeur
(2003) and Robins and Rotnitzky (2004) have presented consistent and asymptot-
ically linear estimators of a causal odds ratio, which rely, beyond correct specifi-
cation of a model for the causal odds ratio, on a correctly specified model for a
potentially high dimensional nuisance parameter. In this article we propose con-
sistent, asymptotically linear and locally efficient estimators of a causal relative
risk and a new parameter – called a switch causal relative risk – which only rely on
the correct specification of a model for the parameter of interest. As in Vanstee-
landt and Goethebeur (2003) and Robins and Rotnitzky (2004) our estimators
are always consistent, asymptotically linear at the null hypothesis of no-treatment
effect, thereby providing valid testing procedures. We examine the finite sam-
ple properties of these instrumental variable-based estimators and the associated
testing procedures in simulations and a data analysis of decaffeinated coffee con-
sumption and miscarriage.



1 Introduction and the statistical model.

To motivate the estimators using instrumental variables, consider a random-
ized trial with non-compliance in which the observed data on a randomly
sampled subject consists in chronological order of a vector of baseline co-
variates V , a randomly assigned treatment arm R, an actual treatment re-
ceived A, and a binary outcome Y . Given a sample of n i.i.d. observations
Oi = (Vi, Ri, Ai, Yi), i = 1, . . . , n, corresponding with n randomly sampled
subjects, this article concerns methods for estimation of a causal effect of the
actual received treatment A on the outcome Y within a subpopulation de-
fined by V = v,R = r, A = a. A particular example of this type is presented
in Hirano et al. (2000)).

Many other important examples are covered by allowing R to represent
any random variable that is conditionally independent of the characteris-
tics of the subject, given V , but is predictive of the actual treatment A.
Such a variable R is often referred to as an instrumental variable. Although
their application to estimation of causal effects in epidemiologic studies has
been limited, clever choices of instrumental variables can rescue estimation
of potentially causal associations in the presence of significant unmeasured
confounding. For instance, a particular environmental application is a recre-
ational swimming study for establishing effects of pathogens in the water
on the occurrence of illness among the swimmers. In this case, V are mea-
sured baseline characteristics of a sampled subject, R is the concentration of
pathogens in the ocean on the day the subject swims, T is the amount of time
the subject has spent in the water, A = R∗T is a measure of exposure to the
pathogens, and Y is an outcome such as the occurance of diarrhea (Kay et al.
(1994)). In this case, the amount of swimming a subject does is plausibly
related to their overall health, which could also be related to their under-
lying rates of illness. Thus, the simple empirical association of pathogen
exposure and illness can be confounded by these unmeasured measures of
health. Another application are studies with potentially strong unmeasured
confounding for treatments of interest, but where there is a strong predictor
of treatment that is not related to prognosis. For instance, Johnston et al.
(2002) report a study of different treatments (standard surgical clipping ver-
sus endovascular techniques) for ruptured cerebral aneurysms (where partic-
ular hospitals are prone to one treatment versus another). In this case, V
are baseline covariates, R is the patient’s hospital, A is the treatment the
patient received, and Y is an outcome (mortality). Finally, we consider a
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study of miscarriage and decaffeinated coffee consumption during pregnancy,
originally reported in Fenster et al. (1997). In this case, the reported con-
sumption of coffee before pregnancy is a potential instrumental variable as it
is related to consumption of decaf during pregnancy, but (in theory) it should
have no independent effect on pregnancy outcomes (this example is explored
in more detail in the Data Analysis Section below). In the first example R
and A are both continuous variables; in the second and third examples R is
a categorical variable, having more outcomes than treatment A. For all, R
is (plausibly at least) a valid instrumental variable because it is 1) assigned
(or chosen) independently of the prognosis of the individual, and 2) strongly
predictive of actual treatment or exposure.

In order to formally define the targeted causal parameter, we assume the
counterfactual framework for causal inference (Neyman (1990), Rubin (1978),
Robins (1986)). That is, the full data structure on a randomly sampled
subject (i.e., the experimental unit) is defined as X ≡ ((Yra : r, a), V ), where
Yra is the counterfactual outcome one would have observed, possibly contrary
to the fact, if the subject would have been assigned (R = r, A = a), and (r, a)
vary over the support of (R,A). The observed data structure is now defined
as a missing data structure on X:

O ≡ (V,R,A, Y = YRA). (1)

This assumption is often referred to as the consistency assumption implying
a subject’s observed outcome is equal to the potential outcome associated
with the assigned and received treatments, R and A. We also assume that
R is randomized:

P (R = r | X) = P (R = r | (Yra : r, a), V )) = P (R = r | V ), (2)

that is, R is conditionally independent of the subject-specific counterfactual
outcomes (Yra : r, a), given V = v. Since our methods rely on having a
consistent estimator of P (R = r | V ), we assume that we have a correctly
specified model for these randomization probabilities:

P (R = r | V ) = gη0(r | V ) (3)

for some parametrization {gη : η}. In randomized trials this distribution of
the assigned treatment arm is controlled by the experimenter and therefore
known. Finally, a typical assumption for instrumental variable estimators,
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which also applies to our estimators is the so-called exclusion restriction,
which states that Yra = Ya with probability 1 for all (r, a) (Angrist et al.
(1996), Abadie (2003), and Hirano et al. (2000)). In fact, our estimator
requires a somewhat weaker restriction, that E(YR0 | V,R) = τ(V ) for any
arbitrary function τ .

The causal parameter ψ0 we wish to estimate is now defined as a par-
ticular difference between the conditional probability m(V,R,A) = E(Y |
V,R,A) of an event in the observed data world and the conditional probabil-
ity m0(V,R,A) = E(Y0 | V,R,A) of an event in the counterfactual world in
which treatment is set to zero (baseline), within strata defined by the random-
ized treatment arm R = r, treatment A = a, and baseline covariates V = v.
We note that, by the consistency assumption, m0(V,R, 0) = m(V,R, 0) with
probability 1. Specifically, this paper concerns estimation of (i) the (ad-
justed) causal relative risk ψ0RR of having an event (Robins (1989) and
Robins (1994)), (ii) the causal additive risk ψ0AR, and (iii) a newly defined
(adjusted) switch causal relative risk ψ0SRR, defined, respectively, by

ψ0RR(v, r, a) =
m0(v, r, a)

m(v, r, a)

ψ0AR(v, r, a) = m0(v, r, a) − m(v, r, a)

ψ0SRR(v, r, a) =

(
IA0(v, r, a)

m0(v, r, a)

m(v, r, a)
+ IAc

0
(v, r, a)

1 − m0(v, r, a)

1 − m(v, r, a)
, IA0(v, r, a)

)
,

where A0 ≡ {(v, r, a) : m0(v, r, a) ≤ m(v, r, a)} identifies the sub-populations
for which treatment is not harmful relative to control , IA0 denotes the in-
dicator function for the set A0, and Ac

0 denotes the complement of the set

A0. Since the causal relative risk ψ−
0RR ≡ 1−m0(v,r,a)

1−m(v,r,a)
of having no event is

nothing else than the causal relative risk ψ0RR of Y ′ ≡ 1− Y , our results for
ψ0RR directly imply the results for ψ−

0RR with appropriate modification. Sim-
ilarly, redefining the null/baseline value 0 for A used to define m0, provides
other causal relative risk and switch causal relative risks of interest, and are
therefore captured by the methodology presented in this article.

The switch causal relative risk, ψ0SRR, yields the causal relative risk,
ψ0RR, only for those values of R and A for which ψ0RR ≤ 1; where ψ0RR > 1,
it yields ψ−

0RR instead. Note that which region is which is identified as part
of the parameter ψ0SRR. In a randomized trial with non-compliance with
two treatment arms, there can only be two possible values of R and A where
ψ0RR can differ from 1: either R = A = 1 or R = 0, A = 1, otherwise
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m0 = m. We also remark that this parameter reduces to a marginal causal
effect within strata of V in the special case that (A,R) is jointly randomized
(i.e., (A,R) ⊥ X | V ), since in that case m0(v, r, a) = P (Y0r = 1 | V ) and
m(v, r, a) = P (Yar = 1 | V ).

The first important issue to discuss is the identification of ψ0 in the above
model for the observed data distribution. As noted in the literature, with-
out making further assumptions, ψ0 cannot be identified: see, for example,
Balke and Pearl (1994) and Balke and Pearl (1997), who establish bounds for
the additive risk. We also refer to (Angrist et al. (1996), and Abadie (2003)
for discussions on the identification of causal effects based on instrumental
variables.

From an estimating function point of view (see e.g., Robins (1989), Robins
(1994)), each function h(R, V ) with conditional mean zero, given V , maps
into an unbiased estimating function for ψ0, which we use to propose esti-
mating functions in Section 3. For example, if all variables are discrete, then
one can identify for each value v of V , | R | −1 number of parameters, where
| R | denotes the number of categories of R. However, since ψ0 can be any
function of (v, r, a) which equals 1 for a = 0, it typically follows that the data
generating distribution does not completely identify ψ0.

On the other hand, if R has 2 or more categories, A is binary, and, for at
least one value of R, A is determined (e.g., P (A = 0 | R = 0) = 1), then we
have the wished non-parametric identifiability. An example is a randomized
trial for comparing two treatment arms in which everybody in the control
group complies.

In order to deal with the curse of dimensionality and/or the fact that
ψ0 is typically not fully identifiable from the observed data, we assume a
correctly specified model for the parameter of interest ψ0 of the distribution
of (X,A,R):

ψ0(v, r, a) = γ(v, r, a | β0) (4)

for some parametrization β → γ(· | β) respecting the constraint γ(v, r, 0 |
β) = 1 for all β.

In the next section, we will describe such models for the causal relative
risk, causal additive risk, and switch causal relative risk parameter. In this
article we are concerned with estimation of β0 in the above model defined by
(1), (2), (3), and (4).

To end this section, we will review the immediately relevant literature on
this model and estimation problem. Robins (1989) and Robins (1994) pro-
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vide the class of robust unbiased estimating functions (and thereby of corre-
sponding estimators) for the causal additive and relative risk ψ0 in the above
model for continuous and count outcomes. Robins refers to these models as
additive and multiplicative structural nested mean models, where each par-
ticular structural nested mean model corresponds with a link function Φ: i.e.,
Φ(x) = x and Φ(x) = exp(x), respectively. Robins and Rotnitzky (2004) re-
mark that, for dichotomous outcomes, additive and multiplicative structural
nested mean models cannot generally be used, because these models may fail
to guarantee response probabilities in the interval (0, 1). As a consequence,
Vansteelandt and Goethebeur (2003) and Robins and Rotnitzky (2004) fo-
cus on a logistic structural nested mean model so that ψ0 denotes the causal
odds ratio, given V,R,A:

ψ0(v, r, a) = log

{
P (Yra = 1 | V = v,R = r, A = a)

P (Yra = 0 | V = v,R = r, A = a)

/
P (Yr0 = 1 | V = v,R = r, A = a)

P (Yr0 = 0 | V = v,R = r, A = a)

}

In contrast to the multiplicative and additive link functions, Robins and Rotnitzky
(2004) show that, in this logistic structural nested mean model, consistent
(and asymptotically linear) estimation of ψ0 requires, beyond correct specifi-
cation of models for P (R | V ) and ψ0, also correct specification of models for
nuisance parameters (e.g., E(Y | V,R,A)). Vansteelandt and Goethebeur
(2003) and Robins and Rotnitzky (2004) show, however, that when the null
hypothesis of no treatment effect is true, estimators based on their class of
estimating functions remain consistent at misspecified nuisance parameters.
Thus, consistent tests of treatment effects can be derived that do not rely on
correct specification of the nuisance parameters.

We will show that the switch causal relative risk can be directly modelled
in terms of (e.g.) a logistic model, so that the concern expressed above
for modelling the causal relative risk does not apply to this newly defined
parameter. We also show that, by using a particular modelling strategy, it is
possible to obtain appropriate models for the causal relative and additive risk
as well. In this manner, in this article we are able to provide locally efficient
estimators of the causal relative risk, causal additive risk, and causal switch
relative risk in the above model for the observed data without the need to
rely on correct specification of a nuisance parameter.

5
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1.1 Organization.

In Section 2 we present our models for the causal relative risk which is known
to be bounded by 1/δ for some δ ∈ (0, 1), a general causal relative risk, and
the switch causal relative risk. In Section 3 we present for each of these causal
parameters and corresponding models the class of estimating functions, and
the corresponding asymptotically linear (locally efficient) estimators. In par-
ticular, we discuss statistical inference for the switch causal relative risk pa-
rameter that addresses the irregular behavior of estimators at data generating
distributions in which for certain strata (different from a = 0) the true causal
relative risk equals 1: that is, {(a, r, v) : a �= 0,m0(a, r, v)/m(a, r, V ) = 1}
is a set with positive probability. Finally, in Section 4 we conclude with a
simulation study and in Section 5 a data analysis to illustrate the practical
performance of our estimators; the article finishes with a discussion.

2 Modelling the causal risks.

2.1 Multiplicative structural nested mean model for
causal relative risk.

The primary objective of this subsection is to describe a class of (multiplica-
tive structural nested mean) models for ψ0RR that possesses two fundamental
properties: Property I and Property II. Property I states that one can always
choose a sufficiently flexile model in this class so that it contains the true
causal relative risk function ψ0RR. Property II states that, even when the
model is misspecified, the model respects the fact that m times the misspec-
ified fit of ψ0 is contained in [0, 1]. The verification of these two properties
Property I and II is deferred to the Appendix.

In general, we have the following generic modelling strategy for modelling
ψ0RR. We specify a possibly misspecified working model (in fact, a singleton
will represent an important special case)

Pα(Y = 1 | V,R,A) = m(V,R,A | α) =
1

1 + exp(−f(V,R,A | α))
,

indexed by a parameter α. In case this working model is not a trivial single-
ton, we let αn be the iteratively re-weighted least squares estimator (i.e., the
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maximum likelihood estimator) defined by:

αn = arg min
α

n∑
i=1

(Yi−m(Vi, Ri, Ai | α))2 1

m(Vi, Ri, Ai | α)(1 − m(Vi, Ri, Ai | α))
.

Let α1 denote the limit of αn. Secondly, we specify another (possibly mis-
specified) working model for the counterfactual conditional expectation

Pα,β(YR0 = 1 | V,R,A) = m0(V,R,A | α, β),

where we enforce the constraint that, for all (α, β), m0(V,R, 0 | α, β) =
m(V,R, 0 | α). For example, a possible parametrization is

m(V,R,A | α) ≡ 1

1 + exp(−f(V,R,A | α) − C(V,R,A | α))

m0(V,R,A | α, β) ≡ 1

1 + exp(−f0(V,R,A | β) − C(V,R,A | α))
, (5)

where f(V,R, 0 | α) = f0(V,R, 0 | β) = 0 for all R, V, α, β. Thus, one could
model f(V,R,A | α) = A∗h(R, V | α) and f0(V,R,A | β) = A∗h0(R, V | β)
for certain parameterizations h and h0.

We now assume the following multiplicative structural nested mean model,
in terms of the working model for m0 and limit m(· | α1), for the causal rel-
ative risk ψ0RR:

ψ0RR ∈
{

γα1(V,R,A | β) ≡ m0(V,R,A | α1, β)

m(V,R,A | α1)
: β

}
.

Let β0 be the true parameter value: that is, ψ0RR = γα1(· | β0).
One should not view the parametrization {m0(· | α1, β) : β} as a model

for the true counterfactual response probability m0, but one should view
{m0(· | α1, β)/m(· | α1) : β} as a model for the causal relative risk ψ0RR =
m0/m: this is particularly obvious in the important case that we choose a
singleton as working model for m. The only reason for selecting m(· | α1)
data adaptively (by fitting a model) is to guarantee that, if the collection
{m0(· | α1, β) : β} of functions mapping into [0, 1] is chosen large enough,
then our model for ψ0RR always contains the truth. In the Appendix, we
show this is true if m0/m ≤ 1/m(· | α1).

7
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In particular, if it is known that ψ0RR ≤ 1
δ

for some δ ∈ (0, 1), one can set
m(· | α1) = δ. This corresponds with the following multiplicative structural
nested mean model

γδ(V,R,A | β) =
1/δ

1 + exp(−f0(V,R,A | β) − C(δ))
, (6)

where C(δ) = log(δ/1 − δ) and f0(V,R,A | β) is a parametrization satis-
fying f0(V,R, 0 | β) = 0. Note that the null hypothesis H0 : ψ0RR = 1
corresponds with the test H0 : f0(V,R,A | β0) = 0 a.e., which, for most
parameterizations, is equivalent to H0 : β0 = 0.

One could also decide to let δ be a parameter of this multiplicative struc-
tural nested mean model, in which case γ(V,R,A | β, δ) ≡ γδ(V,R,A | β) is
our model with (β0, δ0) being the unknown parameter.

Model for additive causal risk. The same modeling strategy can be
applied for additive structural nested mean models for ψ0AR = m0 − m. In
order to have the wished model Properties I and (analogue of) II, the allowed
level of misspecification of m(· | α1) is now on the more restrictive additive
scale: for details, we refer to the Appendix.

2.2 Model for switch causal relative risk.

We will first adopt the same modeling strategy as for the causal relative
risk, and subsequently point out that in this case we can always choose a
singleton m(· | α1) = 0.5 as working model for m. Thus, we assume the
following parametrization for the switch causal relative risk ψ0SRR

γα1(V,R,A | β) = (γ1
α1

(V,R,A | β), IA(α1,β)(V,R,A)), where (7)

A(α1, β) ≡
{

(V,R,A) :
m0(V,R,A | α1, β)

m(V,R,A | α1)
≤ 1

}
,

and

γ1
α1

(V,R,A | β) ≡ IA(α1,β)(V,R,A)
m0(V,R,A | α1, β)

m(V,R,A | α1)

+IA(α1,β)c(V,R,A)
1 − m0(V,R,A | α1, β)

1 − m(V,R,A | α1)
.
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In the Appendix we verify that the two wished model properties I, II hold at
any m(· | α1). Since our model for the switch causal relative risk is valid at
any m(· | α1), there is truly no need to fit m at all. Instead, we can simply
use the model implied by (e.g.) m(· | α1) = 0.5. This yields the following
parametrization γ(V,R,A | β) for the switch causal relative risk:

γ(V,R,A | β) =(
IA(β)(V,R,A)m0(V,R,A|β)

0.5
+ IA(β)c(V,R,A)1−m0(V,R,A|β)

0.5
, IA(β)(V,R,A)

)
.

Here A(β) ≡ {(V,R,A) : m0(V,R,A | β)/0.5 ≤ 1}, and m0(· | β) is a
[0, 1]-valued parametrization satisfying m0(V,R, 0 | β) = 0.5. A possible
parametrization is

m0(· | β) =
1

1 + exp(−A ∗ f0(R, V | β))
,

which indeed satisfies m0(V,R, 0 | β) = 0.5 everywhere. Note that the null
hypothesis H0 : ψ0SRR = 1 now corresponds with testing H0 : f0(R, V |
β0) = 0 a.e. For example, if f0(R, V ) = β0oR + β10V + β20RV , then this is
equivalent with testing H0 : β0 = (β00, β10, β20) = 0.

Note, the key idea behind the switch causal relative risk and its estimators
is the generalized (to discrete outcomes) quantile-quantile function, as pro-
posed in Yu and van der Laan (2002) and we provide a detailed explanation
of this relationship in the Appendix.

3 Estimation and Inference.

3.1 The class of estimating functions and correspond-
ing estimators.

Let H0(Y, V,R,A | α1, β) be a function of the observed data structure O =
(Y, V,R,A) and the unknown parameters of our model {γα1(· | β) : β} of our
parameter of interest ψ0 which satisfies

E(H0(Y, V,R,A | α1, β0) | V,R,A) = m0(V,R,A).

Specifically, depending on the parameter of interest ψ0, this function (O, β) →
H0(O | α1, β) is defined as follows (note, in the models for the causal relative
risk assuming that ψ0RR ≤ 1/δ for some known δ ∈ (0, 1), and the switch

9
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causal relative risk, if one sets m(· | α1) = 0.5), then γα1 = γ is known and
in the this case we use the notation H0(O | α1, β) = H0(0 | β))

H0RR(O | α1, β) = I(Y = 1)γα1(V,R,A | β)

H−
0RR(O | α1, β) = 1 − I(Y = 0)γα1(V,R,A | β)

H0AR(O | α1, β) = I(Y = 1) − γα1(V,R,A)

H0SRR(O | β) = I{m0(V,R,A|β)/0.5≤1}I(Y = 1)
m0(V,R,A | β)

0.5

+I{m0(V,R,A|β)/0.5>1}

(
1 − I(Y = 0)

1 − m0(V,R,A | β)

0.5

)

or, using an estimator of m

H0SRR(O | α1, β) = I{m0(V,R,A|α1,β)/m(V,R,A|α1)≤1}I(Y = 1)
m0(V,R,A | α1, β)

m(V,R,A | α1)

+I{m0(V,R,A|α1,β)/m(V,R,A|α1)>1}

(
1 − I(Y = 0)

1 − m0(V,R,A | α1, β)

1 − m(V,R,A | α1)

)
.

For any user supplied function h of (R, V ) and q of V , we have the
following unbiased estimating function for β:

Dh,q,α1(O, β | η) = (h(R, V ) − Eη(h(R, V ) | V )) (H0(O | α1, β) − q(V )) .

The estimating function Dh,q,α1 for β is indexed by the nuisance parameter
η of our model gη for PR|V . For any h and q, this estimating function has
expectation zero at the true β0 and true η0. This is shown by 1) first con-
ditioning on R, V , 2) using that E(H0(O | α1, β0) | R, V ) = E(m0(V,R,A) |
R, V ) = E(Y0 | R, V ) and by the exclusion restriction, this equals E(Y0 | V ).
Finally, note that for any function f(V ), E({h(R, V )−E(h | V )}f(V )) = 0.
In fact, the estimating functions are double robust in the following sense.

Result 1 Let O ∼ P0. Consider the class of estimating functions Dh,q,α1(O, β |
η) indexed by nuisance parameters η = PR|V defined by:

Dh,q,α1(O, β | η) ≡ (h(R, V ) − Eη(h(R, V ) | V ))(H0(O | α1, β) − q(V )).

If either η(V ) = η0(V ) (thus PR|V is correctly specified) or

q = qopt(V )

≡ EP0(H0(O | α1, β0) | V ) = EP0(Y0 | V ),

then EP0Dh,q,α1(O, β0 | η) = 0.

10
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This result can be directly verified.
Given an estimator ηn of η0, a k-variate choice (possibly data dependent)

hn = (hn1, . . . , hnk) and univariate qn (estimating qopt), we propose to esti-
mate β0 with the solution βn = βn(hn, qn, ηn, α1) of the k-variate equation

0 =
n∑

i=1

Dhn,qn,α1(Oi, β | ηn).

If α1 is unknown, then α1 is replaced by the weighted least squares estimator
αn. If a solution βn does not exist, then one can simply set βn equal to the
minimizer of the Euclidean norm of this estimating equation. Because the
estimating equation is differentiable at all β, except at β = 0 for the switch
causal relative risk model, one can use the Newton-Raphson algorithm to
determine the solution (or minimum) with the usual line search to guarantee
convergence. The non-differentiability at β = 0 discussed below does not
cause the derivatives used in the Newton-Raphson algorithm to converge to
infinity for β ≈ 0, since the differential quotients at β = 0 are bounded, but
does not converge to a unique limit.

Clearly, the efficiency of the estimator βn(h, q, η0, α1) can be strongly
affected by the choice (h, q). Therefore it is natural to use a data dependent
(hn, qn) which is designed to locally estimate an optimal choice (hopt, qopt) for
which we provide and derive the closed form formula in the Appendix.

3.2 Asymptotic linearity of the estimators.

In the next subsections, if the parameter of interest is the switch causal
relative risk, then we make the assumption that

P0 ((V,R,A) ∈ {(v, r, a) : m0(v, r, a)/m(v, r, a) = 1, a �= 0}) = 0, (8)

where we remind the reader that P0 is the distribution of O. This assumption
is not needed for asymptotic linearity and inference for the causal relative
and additive risk. In the last subsection, we discuss statistical inference for
the switch causal relative risk not relying on this assumption.

In our model with the true gη0 = PR|V being known, under appropriate
regularity conditions, we have that βn(h, q, η0, α1) is an asymptotically linear
estimator of β0 with influence curve

ICh,q,α1(O) ≡ − d

dβ
EP0Dh,q,α1(O, β | η0)|−1

β=β0
Dh,q,α1(O, β0 | η0). (9)

11
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That is,

√
n(βn(h, q, η0, α1) − β0) =

1√
n

n∑
i=1

ICh,q,α1(Oi) + oP (1/
√

n),

and
√

n(βn(h, q, η0, α1) − β0) converges in distribution to the multivariate
normal distribution N(0,COV(ICh,q,α1(O))).

If η0 is replaced by an efficient estimator ηn according to the model
{gη : η} (e.g., ηn = arg maxη

∏
i gη(Ri | Vi) is the maximum likelihood es-

timator), then βn(h, q, ηn, α1) is asymptotically linear at P0 with influence
curve ICh,q,α1 − Π(ICh,q,α1 | Tη0), where Tη0 denotes the linear subspace of
L2

0(P0) spanned by the scores of η, and Π(· | Tη0) denotes the projection
operator onto this subspace in this Hilbert space L2

0(P0) (see Theorem 2.3,
page 135 van der Laan and Robins (2002)). That is, the efficiency of βn is
non-decreasing in the dimension of the model {gη : η} for η0. In the special
case that q = qopt the projection Π(ICh,qopt,α1 | Tη0) = 0 for all nuisance
tangent spaces Tη0 . Thus, the explicit influence curve ICh,q,α1 can always
be used as a conservative influence curve providing conservative confidence
intervals.

Given asymptotic linearity uniformly in h and q, under the same regular-
ity conditions,

√
n(βn(hn, qn, η0, α1) − β0) =

1√
n

n∑
i=1

ICh∗,q∗,α1(Oi) + oP (1/
√

n),

and
√

n(βn(hn, qn, η0, α1) − β0) converges in distribution to the multivariate
normal distribution N(0, Σ(h∗, q∗) = COV(ICh∗,q∗,α1(O))), where h∗ and q∗

denote the limits of hn and qn, respectively. Similarly as in the previous
paragraph, efficient estimation of η0 subtracts out the projection of ICh∗,q∗

onto the tangent space of {gη : η}.

3.3 Local efficiency.

In the Appendix we show that the asymptotic covariance matrix Σ(h, q) is
optimal at an explicitly specified (hopt, qopt). This proves that, if (h∗, q∗) =
(hopt, qopt), then βn(hn, qn, ηn, α1) is asymptotically optimal among our class
of candidate estimators indexed by all (h, q) and is asymptotically efficient.

12
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3.4 Confidence regions.

This asymptotic linearity result, under condition (8) for the switch causal
relative risk, allows us now to construct Wald-type (conservative) asymptotic
1 − α confidence intervals based on the asymptotically valid working model
βn ∼ N(β0, Σn/n), where

Σn =
1

n

n∑
i=1

ˆIChn,qn,α1(Oi)
2

and ˆIChn,qn is the substitution estimator of IChn,qn . If α1 is estimated (not
known), then the influence curve has an additional component, which can be
explicitly derived.

Because of the smoothness of the estimating function in β, βn will be a
compactly differentiable functional of the empirical distribution so that the
bootstrap is asymptotically consistent as well (van der Vaart and Wellner
(1996)). Thus, one could also use the bootstrap to construct an asymptotic
1 − α confidence region for β0, which is particularly attractive in the case
that α1 is estimated.

3.5 Asymptotic behavior and inference when α1 is es-
timated.

Since there is no need to estimate α in the switch causal relative risk model,
we will here only discuss the implications of estimating α1 in the causal rela-
tive risk model. Above, we provided a locally efficient estimator βn(hn, qn, ηn, α1)
of β0 of the unknown parameters in our assumed model {γα1(· | β) : β} for
the causal relative risk ψ0RR. That is, given α1, βn(hn, qn, ηn, α1) is a locally
efficient estimator of the true β0 satisfying γα1(· | β0) = ψ0RR. If α1 denotes
the limit of the maximum likelihood estimator αn (i.e., the iteratively re-
weighted least squares estimator) according to a working model m(· | α) for
E(Y | A,R, V ), then α1 is an unknown nuisance parameter. Since αn is, by
definition of α1 as the limit of αn, a consistent and asymptotically linear esti-
mator of α1, under regularity conditions, we also have that βn(hn, qn, ηn, αn)
is an asymptotically linear estimator of β0. In addition, its influence curve
can be explicitly derived. If it can be argued that the iterative re-weighted
least squares estimator αn is an efficient estimator of α1 in our causal model
for the observed data, then it also follows that βn(hn, qn, αn) is locally ef-
ficient. This statement follows from the general result that a differentiable

13

Hosted by The Berkeley Electronic Press



function of an efficient estimator is efficient (van der Vaart (1991)). At mini-
mal this argument suggests hat βn(hn, qn, αn) is, if not locally efficient, it will
approach locally efficiency. For the purpose of inference, in order to avoid
calculation of the influence curve, we recommend the bootstrap.

3.6 Irregularity of the switch causal relative risk at the
null.

James Robins and a referee made us aware of the fact that the switch causal
relative risk is not a path-wise differentiable parameter at a data generating
distribution which violates assumption (8). This follows from the fact that

β → E0Dh,q,α1(O | β, η0),

is not differentiable at the true β0 if m0(v, r, a | β0, α1) = m(v, r, a | α1) on a
set which has positive probability under P0. At such β0, the indicator function
β → I(m0(· | β) ≤ m(· | α1)) in the estimating function Dh,q,α1 can jump
from 1 to 0 in any neighborhood of β0, and thereby causes a discontinuity in
the derivative at β0: that is, one can calculate ”left” and ”right” derivatives
of the expectation of the estimating function as a function of β at β0, but
they are not equal to each other. Interestingly enough, in the special case
that m(· | α1) = m, the derivative does exist, but this result is not useful
since we wish to avoid correct specification of a model for m.

At a data generating distribution violating (8), by carrying out a general-
ized type of Taylor-expansion at β0, noting that a derivative along a sequence
βn converging to β0 is still bounded (but does not converge to a unique limit),
and using empirical process theory, one can still show that βn is a root-n con-
sistent estimator of β0. Unfortunately, we have not been able to prove weak
convergence of βn to a particular limiting distribution.

3.7 Inference for the switch causal relative risk at the
null and testing.

We refer to Robins (2004) who discusses in detail inference in the case that
1) estimators solve estimating equations which are non-differentiable at null-
values of the parameter of interest and 2) the parameter of interest is not
path-wise differentiable at these null values. Robins points out that the irreg-
ularity of the estimators at these null values causes the Wald-type confidence
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regions to not have the wished coverage uniformly over the whole model (as-
suming the model does not exclude a neighborhood of these null values),
and testing at these null-values with the test statistic being a standardized
version of the estimator βn itself would require deriving the limit distribution
of the standardized estimator at these null values, and the latter does not
necessarily exist.

Therefore, Robins proposed inference and testing based on the multi-
variate normal limit distribution of the standardized estimating equation.
Specifically, let

Un(β) = PnDhn,qn,αn(· | β, ηn),

and let U0(β) = P0Dh∗,q∗,α1(· | β, η0) denote its target, where we note that
U0(β0) = 0. Under regularity conditions, we have that

√
n(Un − U0) con-

verges in distribution as a random function in β to Gaussian process, and,
in particular,

{Un(β) − U0(β)}�Σn(β)−1{Un(β) − U0(β)} D⇒ X 2
k ,

where Σn(β) denotes a consistent estimator of the asymptotic covariance
matrix of Un(β), and X 2

k denotes the Chi-square distribution with k degrees
of freedom. As a consequence, an asymptotically valid confidence region for
the true parameter value β0 is given by:

{β : Un(β)�Σn(βn)−1Un(β) ≤ X 2
k,0.95},

where X 2
k,0.95 denotes the 0.95-quantile of the Chi-square distribution with k

degrees of freedom. In general, we propose to use the bootstrap to estimate
the covariance matrix Σn(β) at a given β, but if η0 and α1 are known, then
Σn(β) can be trivially estimated with the empirical covariance matrix of
Dhn,qn,α1(Oi | β, η0), i = 1, . . . , n.

Similarly, we obtain a valid test for testing H0 : β0 = 0 by using as test-
statistic Un(0)�Σn(βn)−1Un(0), and rejecting the test if this test statistic
exceeds X 2

k,0.95.

4 Simulation Study

To investigate the consistency of the proposed estimators, we conducted sev-
eral simulations based on the causal diagram displayed in Figure 1. The
influence of an unmeasured prognostic variable, U , and the treatment as-
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Figure 1: Causal diagram with instrumental variable(R), treatment(A), out-
come (U) and unmeasured confounder (U)

R A Y

U
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signment on the choice of the treatment actual taken is implemented through
the interaction of U and R on A. Our simulation is from a data-generating
distribution where we can non-parametrically identify the parameters of in-
terest, specifically the causal relative risk ψORR. In this case, we generate
both U and R uniformly over the integers (0, 1, 2), A | U,R for R > 0 is
from a binary with probability model ∼ logit [P (A | U,R)] = b0 + b1U + b2R,
with (b0, b1, b2) = (−5, 2, 2); A is deterministically 0 if R = 0. Finally Y is
simulated from logit [P (Y | U,A,R)] = a0 + a1U + a2A with (a0, a1, a2) =
(−5, 2, 2). In this case, there are 2 causal relative risks of interest (one for
R = 1 and R = 2) since the relative risk, ψ0RR(R = 0, A = 1) is undefined.
Given the data-generating model, one can easily calculate the true risk ratios
from this data as:

ψ0RR(R = 1, A = 1) =
m0(R = 1, A = 1)

m(R = 1, A = 1)
= 0.34 (10)

ψ0RR(R = 2, A = 1) =
m0(R = 2, A = 1)

m(R = 2, A = 1)
= 0.32. (11)

One can fit a saturated model to this data of the form:

ψ0RR(R = r, A = 1) = A ∗ (β0 + β1 ∗ I(r = 2)) + (1 − A), (12)

which guarantees that ψ0RR(R = r, A = 0) = 1. As estimating function, we
use:

Dh,q(O, β) = (h(R) − E[h(R)]) (H0(O | β)) − q) , (13)

where

h(R) = E

(
d

dβ
ε(β) |β=β0 | R

)

ε(β) = H0(O | β) − E(H0(O | β))

H0(O | β) = Y ψ0RR(a)

q = E0(H0(O | β)).

This estimating equation is linear in the parameters and can be solved as a
linear regression of the form Z = β0X0+β1X0 where Z = −

[
Y (1 − A) − Ê[Y (1 − A)]

]
,

X0 = Ê(Y ∗ A | R) − Ê(Y ∗ A) and X1 = Ê(Y ∗ A ∗ I(R = 2) | R) − Ê(Y ∗
A ∗ I(R = 2)).

The results are presented in figure 2A, where simulations at progressively
larger sample sizes have been run and the true ratios (for R = 1 and R = 2)
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Figure 2: Results of simulations and data analysis: A) estimates from single
simulations versus sample size using a saturated model. Circles are the esti-
mates of ψ0RR(R = r, A = 1) when R = 1 and triangles for R = 2. The lines
represent the respective true ratios; B) as A) but fitting a misspecified model
(estimates are open circles), which assumes ψ0RR(R = r, A = 1) is constant
in R; C) the relative mean-squared error (RMSE) of ψ0RR(R = r, A = 1) for
both r = 1 (solid line) and r = 2 (dashed line) versus sample size. RMSE is
the MSE for estimating m over that setting m to a constant δ; D) Estimated
causal relative risk ratios by R (and 95 percent pointwise confidence intervals)
for the association of decaffeinated coffee consumption during pregnancy and
miscarriage.
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are shown as a horizontal line. As one can see, the estimator is converging to
the truth, but has fairly substantial variability even at relatively large sample
sizes.

We also want to examine the estimator when the estimating model is
misspecified. We use the same simulation but now assume that the ratio,
ψ0RR(R = r, A = 1) is constant in R. As opposed to estimating m we set m
to a constant (δ = 0.5) and model the ratio of interest as (6), where a model
is used that respects that both m and m0 are probabilities by 1) setting
m(A = 1, R = r) = δ and 2) assuming a logistic model for m0. In addition,
the model also guarantees that m/m0 = 1 when A = 0, precisely as described
in section 2.1. Specifically, the model for the causal relative risk is:

ψ0RR(R = r, A = 1) =
1/δ

1 + exp(−(logit(δ) + β ∗ A))
(14)

This model has one (non-nuisance) parameter of interest (β) and only defines
one ratio for both R = 1 and R = 2 when A = 1. Using the same estimat-
ing equation approach outlined above, the estimates (of a single simulation)
versus sample size are shown in figure 2B. In this case the estimated causal
relative risk is converging to a value close to true causal relative risk when
R = 2. Our experience from simulations is that the convergence of these
misspecified models is not necessarily to an easily interpretable value (say,
some weighted average of the two causal relative risks in this case) and so
interpretation of the results in these misspecified, lower-dimensional models
should be done with caution.

Finally, we compare the relative efficiency in finite samples to two con-
sistent approaches to estimating the causal relative risk: 1) estimating m
nonparametrically and using the parameterization (5) and 2) setting m = δ
and using the model (6), similar to the simulation above, but now with a
correctly specified model. Again, the same data-generating distribution is
used as above and we perform repeated simulations at progressively larger
sample sizes (1000 at each sample size). The results are estimated as the
relative efficiency defined as the ratio of the estimated mean-squared error
(RMSE) of the estimator using a non-parametric estimate of m divided by
that using the estimator fixing m at δ. Figure 2C has the results plotted as
relative efficiencies versus sample size (the solid line is the RMSE of the ratio
when R = 1 and the dashed line for R = 2). In this simulation, one gains
efficiency for both ratios in finite samples by using the approach that sets m
at a fixed value δ except at very large sample sizes. This approach does not
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work unless one can a priori set a reasonable bound on the causal relative
risk (obviously 1/δ is the upper bound on the ratio using this approach).
However, in many practical situations, one might have good reason to either
expect the ratio is, for instance, ≤ 1 for all R (e.g., A is a risk factor for
some disease with no plausible benefit to the subject at any combination of
A and R). When one can set a plausible upper bound on the causal relative
risk, then at least this one simulation suggests the efficiency gains can be
significant by using model (6).

5 Data analysis

To demonstrate the method on existing data, we used data from a pub-
lished study examining the association of decaffeinated coffee and miscarriage
(Fenster et al. (1997)). A significant association was found between women
reporting drinking 2 or more cups of decaffeinated coffee when interviewed
during the first trimester of pregnancy and the subsequent occurrence of mis-
carriage. The hypothesis was that this reflected not an actual risk from de-
caffeinated coffee, but was confounded by nausea. Specifically, women with
nausea during early pregnancy have lower rates of miscarriage and these
same women tend to drink less decaffeinated coffee for obvious reasons. The
data was gathered from a questionnaire given shortly after a positive preg-
nancy test, which asked about behaviors both during this early pregnancy
period and those same behaviors before their last menstrual period (LMP). A
potential instrumental variable for decaffeinated coffee consumption during
pregnancy is the amount of coffee (de- and caffeinated) the woman reported
drinking before their LMP. Theoretically, this should be related to (and is)
their future consumption during pregnancy, but should have no indepen-
dent contribution to the outcome. Their are many potential reasons why
this might not be an ideal instrumental variable, particularly given that it
is based on recall and it is certainly possible a women will have trouble dis-
tinguishing her consumption before and after her LMP. Given those caveats
and other potential weaknesses, we use the example as a demonstration of
our method and believe at least it is a potential way to reduce the influence
of unmeasured confounding.

The observed data is R (ordered categorical total coffee consumption (in
cups) before LMP: 0 = 0, 1 = 1/2− 1, 2 = 2− 3, and 3 => 3; A is binary (0
if none, 1 otherwise) and Y is the binary miscarriage outcome (0 no, 1 yes).
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We assume an unsaturated, two parameter causal relative risk model of the
form:

ψ0RR(R = r, A = 1) =
1/δ

1 + exp(−( δ
1−δ

+ A(β0 + β1 ∗ rr)))
. (15)

Using bootstrapping to derive the confidence intervals for the estimate coeffi-
cient, β and converting back to the estimated causal relative risk, we present
the results and 95 percent non-parametric bootstrapped confidence intervals
(CI) in figure 2D. The plot shows the suggestion that decaffeinated coffee
consumption increases the risk of miscarriage, only among the highest those
that consume the highest of coffee prior to their LMP, but the confidence
intervals clearly overlap the null (ψ0RR(R = r, A = 1) = 1). In fact, the
variability is so high for the first two levels of R, there is essentially no in-
formation about the causal relative risk for those values, i.e., the CI hits
both the minimum (0) and maximum (1/δ) value possible for ψ0RR. As a
follow-up, we also test the association using the same model and the esti-
mating equation-based chi-square test discussed in section 3.7, which results
in χ2 = 3.2 (df=2), p-value=0.20. Looking at the naive approach assuming
no confounding, results in a Pearson’s χ2 = 6.0 (df=1), p-value=0.01. No
obvious conclusions can be made from this contrast, beyond that properly
accounting for the unmeasured confounding by this instrumental variable ap-
proach gives back inferences more commiserate with the actual knowledge of
the data-generating distribution, rather than an approach that assumes no
confounding.

6 Discussion

In this article we have provided various new results for estimation of the
causal relative risk and a newly defined switch causal relative risk for binary
outcomes, based on an instrumental variable assumption. In our general
method for obtaining a model for the causal relative risk we pose working
models for the two conditional response probabilities m0 and m, which incor-
porate the constraint that the response probabilities are equal within strata
of untreated sub-populations (i.e., m0/m = 1 at A = 0 for all R, V ). Our
proposed model for the causal relative risk is now defined by the working
model for the counterfactual conditional response probability m0 divided by
the asymptotic least-squares fit m1(A,R, V ) of m according to the working
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model {m(· | α) : α}. By noting that, for given m1, this model is a multi-
plicative structural nested mean model for the causal relative risk, we obtain
immediately the class of unbiased estimating functions and corresponding
asymptotically linear and locally efficient estimators (Robins (1989, 1994)).
Substituting for m1 the iteratively re-weighted least squares estimator of
E(Y | A,R, V ) according to the possibly misspecified working model, results
now in our proposed class of consistent and asymptotically linear estimators
of the causal relative risk. An important special case is to set m1 equal to a
known constant (see next paragraph), so that it is not even necessary to fit
m(A,R, V ) = E(Y | A,R, V ).

We show that, if the model for the counterfactual response probability
m0 is left unspecified, then the true causal relative risk is always contained
in this model, as long as the true causal relative risk is bounded by 1 divided
by m1 (i.e., m0/m ≤ 1/m1). Based on this property of our class of models,
given that it is known that the true causal relative risk m0/m is bounded by
1/δ for some δ ∈ (0, 1), we propose to set the working model for the observed
conditional response probability m equal to a singleton δ: that is, m1 = δ. In
this case, the model constraints the true causal relative risk to be between 0
and 1/δ. One can also decide to make δ an additional parameter in our model
for the causal relative risk. Simulations presented in Section 4 suggest that
this approach can significantly improve efficiency in finite samples relative to
the approach where m is estimated.

Since 1 is always an element of our model for the causal relative risk, our
estimator provides an asymptotically valid test of the null hypothesis of no
treatment effect, even when our model for the causal relative risk is misspeci-
fied. Vansteelandt and Goethebeur (2003) and Robins and Rotnitzky (2004)
highlight this as a fundamental and important property of their proposed es-
timator of the causal odds ratio.

Although our fit or choice m1 for the observed conditional probability is
allowed to be heavily misspecified (without affecting the sensibility of the
implied multiplicative structural nested mean model), it would be preferable
if such an assumption on a nuisance parameter can be avoided at all. (Just
as it is not needed in the case that the causal relative risk is known to be
smaller than 1/δ for a known δ ∈ (0, 1)). This motivates the introduction of
the switch causal relative risk and the corresponding estimators. The above
modeling strategy for the switch causal relative risk allows now arbitrary
miss-specification of m1, so that one can simply set (e.g.) m1 = 0.5, and
thereby avoid fitting m at all.
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In this case, our estimating functions are based on a generalized causal
quantile-quantile function proposed in Yu and van der Laan (2002). As al-
ready noted in Yu and van der Laan (2002), this generalized quantile-quantile
function provides us also with a generalization of structural nested models of
Robins (e.g., Robins (1997)) to general types of outcomes, including discrete
valued outcomes. In particular, it shows that our methods for estimation of
the causal quantile-quantile function for binary outcomes presented in this
article can be straightforwardly generalized to categorical outcomes. An in-
teresting issue is the irregularity of the regression parameters for such discrete
structural nested models at null values, and the practical and theoretical im-
plications are of interest and worth further study. This irregularity and its
practical implications have been discussed in Robins (2004) in the context
of a general class of structural nested models for modeling and estimation of
optimal dynamic treatment regimens.
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APPENDIX

Verification of properties I and II for our models of
causal relative risk.

In order to understand if the above strategy of formulating a model γα1(· |
β) results in a sensible multiplicative structural nested mean model, two
desirable properties are investigated.

Property I: Consider the maximal size model M0(m1) ≡ {m̃0/m1 : m̃0}
for the causal relative risk, where m1 = m(· | α1), and m̃0 ranges over
all [0, 1]-valued functions satisfying m̃0(V,R, 0) = m1(V,R, 0) a.e. This
model at m1 = m(· | α1) corresponds with our model for the causal
relative risk if we choose a saturated model for m0(· | β, α1). This model
for the causal relative risk should contain the true causal relative risk
ψ0RR = m0/m.

23

Hosted by The Berkeley Electronic Press



Solving m̃0/m1 = ψ0RR = m0/m w.r.t. m̃0 shows that

m̃0 =
m1

m
m0,

but we need to make sure it maps into [0, 1]. Thus, under the assump-
tion that

m1(V,R,A)

m(V,R,A)
≤ 1

m0(V,R,A)
with probability 1, (16)

or equivalently,

ψ0RR(V,R,A) =
m0(V,R,A)

m(V,R,A)
≤ 1

m1(V,R,A)
with probability 1,

(17)
the nonparametric model M0(m1) always yields a correctly specified
model for ψ0RR. Note that assumption (16) states that one can misspec-
ify the true observed conditional response probability m(V,R,A) by a
factor 1/m0(V,R,A), or equivalently, this assumption holds whenever
it is known that the true causal risk m0/m is bounded by 1/m1.

Property II: Let ψ̃0RR = m0(· | α1, β̃0)/m(· | α1) be an approximation of
the true ψ0RR, representing the limit of our estimator of ψ0RR under
our possibly misspecified model for ψ0RR. One would like to have that,
even when the model for ψ0RR is misspecified, it still respects that

m ∗ ψ̃0RR ≤ 1. (18)

We have

m ∗ ψ̃0RR = m0
ψ̃0RR

ψ0RR

.

Thus, (18) holds if and only if

ψ̃0RR

ψ0RR

≤ 1

m0

with probability 1. (19)

Thus, even when our model for the causal relative risk missspecifies
the true causal relative risk by a factor 1/m0, its asymptotic fit still
respects that it represents a ratio of probabilities.

Note that (19) puts no constraints on the level of missspecification of
m(· | α1) as an approximation of m. Therefore, if Property I holds under
(17) and it is known that ψ0RR ≤ 1

δ
for some δ ∈ (0, 1), then one can simply

set m(· | α1) = δ. This corresponds with the multiplicative structural nested
mean model (6).
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Verification of properties I and II for models of switch
causal relative risk.

Verification of Property I for model (7) for Switch Causal Relative
Risk: In order to understand if the model γα1(· | β) is a sensible model, one
must first verify if a flexible model M0(α1) for β → m0(· | α1, β) yields a
correctly specified model for ψ0SRR = IA0m0/m+IAc

0
(1−m0)/(1−m), where

A0 = {(V,R,A) : m0/m(V,R,A) ≤ 1} (ie., property I).
Solving m0(· | α1, β0)/m(· | α1) = m0/m on A0 w.r.t. β0 demonstrates

that

m0(· | α1, β0) =
m(· | α1)

m
m0 on A0.

Similarly, solving (1 − m0(· | α1, β0))/(1 − m(· | α1)) = (1 − m0)/(1 − m) on
Ac

0 w.r.t. β0 shows that

m0(· | α1, β0) =
1 − m(· | α1)

1 − m
(1 − m0) on Ac

0.

Thus,

m0(· | α1, β0) = IA0

m(· | α1)

m
m0 + IAc

0

1 − m(· | α1)

1 − m
(1 − m0).

Now, note that for any α1 (i.e., whatever the level of missspecification of m
is), the right-hand side is bounded by 1; use m0/m ≤ 1 on A0 and (1 −
m0)/(1 − m) ≤ 1 on Ac

0. This proves that by choosing a saturated model
{m0(· | α1, β) : β} our model for the switch causal relative risk will be
correctly specified, at any m(· | α1).
Verification of Property II: It also follows that, at any m(· | α1), we have
m ∗ γ1

α1
≤ 1 on A(α1, β), and (1−m) ∗ γ1

α1
≤ 1 on its complement A(α1, β).

To conclude, the model for the switch causal relative risk satisfies the
wished two properties I and II at any m(· | α1).

In terms of our general parametrization (5) for m0(· | β, α) = 1/(1 +
exp(−f0(· | β) + C(· | α))), and m(· | α) = 1/(1 + exp(−f(· | α) + C(· | α))),
with f0(V,R, 0 | β) = f(V,R, 0 | α, β) = 0 everywhere, we have that

f0(· | β0) + C(· | α1) = IA0 log

(
m(· | α1)m0/m

1 − m(· | α1)m0/m

)

+Ic
A0

log

(
(1 − m(· | α1))(1 − m0)/(1 − m)

1 − (1 − m(· | α1))(1 − m0)/(1 − m)

)
.
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Note that indeed, f0(V,R, 0 | β0) = 0 as required by noting m0(V,R, 0)/m(V,R, 0) =
1 and p → log(p/(1 − p)) is the inverse of x → 1/(1 + exp(−x)).

Verification of Property I and II for proposed models
for additive risk.

Using the same general modeling strategy as in Section 2, one could assume
the following additive structural nested mean model for the additive risk
ψ0AR:

ψARR ∈ {γα1(V,R,A | β) ≡ m0(V,R,A | α1, β) − m(V,R,A | α1) : β} .
(20)

However, in this case verification of Properties I and II puts serious restric-
tions on the allowed level of misspecification of m(· | α1).
Verification of Property I: Let β0 be the true parameter value. Solving
m0(· | α1, β0)) − m(· | α1) = m0 − m w.r.t. the true parameter β0 yields

m0(· | α1, β0) = m(· | α1) − m + m0.

Thus, under the assumption that

−m0(V,R,A) ≤ m(V,R,A | α1)−m(V,R,A) ≤ 1−m0 with probability 1,
(21)

a nonparametric model M0(α1) for the causal additive risk always yields a
correctly specified model for ψ0AR. In this case, both small values of m0 as
well as small values of 1 − m0 only allow minor levels of misspecification of
the working model for m.

Therefore, we feel that this assumption (21) needs to be seriously con-
sidered before applying the estimators of the causal additive risk. Similarly,
it follows that the condition m + γα1(· |, β) ∈ [0, 1] for a fit γα1(· | β) does
not easily hold for misspecified m(· | α1): this is the analogue of Property II.
Consequently, for estimating the causal additive risk we recommend a sincere
attempt at estimating the true m in order to establish the wished sensibility
of the corresponding model (20).
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Identification and estimation of marginal additive causal
risk.

It is of interest to note that for a subset V1 ⊂ V of the baseline covariates,
we have

θ0(V1) ≡ P (Y0 = 1 | V1) − P (Y = 1 | V1) = E(ψ0AR(V,R,A) | V1).

Thus, identification of the additive causal risk ψ0AR does imply identification
of a causal effect of setting A = 0 (relative to the population mean) within
strata V1 = v1. Given a model {θ(· | β) : β} for this marginal additive
risk θ0(·) = m(· | β0), one could estimate the unknown β0 by regressing an
(possibly highly nonparametric) estimator ψn of ψ0AR on V1:

βn = arg min
β

∑
i

(ψn(Vi, Ri, Ai) − m(V1i | β))2.

Generalized quantile-quantile function for general dis-
crete distributions

For the interested reader we provide here also the formula for the generalized
quantile-quantile function for general discrete distributions, which provides
us with a structural nested model for categorical outcomes, using (e.g.) multi-
nomial logistic models. In that case F1 and F2 play the role of FY0|V,R,A and
FY |V,R,A, respectively, and they would be modelled with multinomial logistic
regression models satisfying the constraint that they are equal at A = 0.

Result 2 Let X1, X2 be discrete random variables on ordered outcomes {x0, . . . , xK}
with corresponding probabilities p1(xj), p2(xj), j = 0, . . . ,K. Let F1(x) =∑K

j=0 I(xj ≤ x)p1(xj), and F2(x) =
∑K

j=0 I(xj ≤ x)p2(xj) be the two cu-
mulative distribution functions of X1 and X2, respectively. For notational
convenience, we define F1(x−1) = F2(x−1) = 0. We have the following for-
mula for the generalized quantile-quantile function

F−1
1 FΔ

2 (X2) =
K∑

j=0

xjIAj
(X2)IBj

(Δ, X2),

where

Aj ≡ {x2 : F1(xj−1) < F2(x2) ≤ F1(xj) + p2(x2)}
Bj ≡

{
(δ, x2) :

F1(xj−1) − F2(x2−)

p2(x2)
≤ δ ≤ F1(xj) − F2(x2−)

p2(x2)

}
.
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In particular, it follows that

EΔ(F−1
1 FΔ

2 (X2) | X2) =
K∑

j=0

xjIAj
(X2)dj(X2),

where

dj(X2) = min

(
1,

F1(xj) − F2(X2−)

p2(X2)

)
− max

(
0,

F1(xj−1) − F2(X2−)

p2(X2)

)
.

Finally, in order to provide the reader with an understanding of the general-
ized quantile-quantile function, we provide here a direct simple proof for the
pure discrete case.

Result 3 (Special case of result in Yu and van der Laan (2002)) Let F be a
discrete distribution function with support {x0, . . . , xK}, and let X ∼ F . We
have

FΔ(X) ∼ U(0, 1).

Consequently, for any cumulative distribution function F1, we have

F−1
1 FΔ(X) ∼ F1.

Proof. We have FΔ(X) = F (X−) + (1 − Δ)p(X), where we define p(x) =
F (x) − F (x−). Let x0 ∈ (0, 1) and let t(x0) ∈ {x0, . . . , xK} be the unique
point for which F (t(x0)−) ≤ x0 and F (t(x0)) > x0. Now,

Pr(FΔ(X) ≤ x0) = Pr

(
Δ ≤ x0 − F (X−)

p(X)

)

= E

{
I(0 ≤ x0 − F (X−)

p(X)
< 1)

x0 − F (X−)

p(X)
+ I(F (X) ≤ x0)

}

= E

{
I(F (X) > x0, F (X−) ≤ x0)

x0 − F (X−)

p(X)
+ I(F (X) ≤ x0)

}

=
K∑

j=0

I(F (xj) > x0, F (xj−) ≤ x0)(x0 − F (xj−))

+
K∑

j=0

I(F (xj) ≤ x0)p(xj)

= (x0 − F (t(x0)−)) + F (t(x0)−)

= x0.�
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The relation between switch causal relative risk and the
binary quantile-quantile function.

The key idea behind the switch causal relative risk and its estimators is the
generalized (to discrete outcomes) quantile-quantile function, as proposed in
Yu and van der Laan (2002). Their result states that, given two cumulative
distribution functions F1 and F2, we have

X1 ≡ F−1
1 FΔ

2 (X2) ∼ F1,

where X2 ∼ F2,

FΔ
2 (X2) ≡ ΔF2(X2) + (1 − Δ)F2(X2−), (22)

F2(x−) ≡ P (X2 < x), Δ is an external standard uniformly distributed ran-
dom variable (i.e., Δ ∼ U(0, 1)), and F−1

1 (x) ≡ inf{y : F1(y) ≥ x}. Here F1

and F2 are allowed to be any cumulative distribution function, which thus
includes the case that they are stepwise constant cumulative distributions
(corresponding with discrete random variables), or, more general, that they
have discontinuity points.

This result is proved by showing that for any cumulative distribution
function F2, we have FΔ

2 (X2) ∼ U(0, 1). We also note that if F2 is con-
tinuous, then FΔ

2 (X2) = F2(X2) with probability 1, which shows that this
quantile-quantile function indeed generalizes the quantile-quantile function
for continuous random variables. The proof of this result is presented in
Yu and van der Laan (2002). In the same spirit as in the structural nested
models of Robins (see, e.g., Robins (1997)), this motivates us to define the
quantile-quantile function

H0(V,R,A, Y, Δ) = F−1
Y0R|V,R,AFΔ

Y |V,R,A(Y ), (23)

where FY0R|V,R,A and FY |V,R,A denote the cumulative distribution functions of
the binary random variables Y0R ∼ Bernoulli(m0(V,R,A | α, β)) and Y ∼
Bernoulli(m(V,R,A | α)), conditional on V,R,A. We remind the reader
that structural nested models as introduced by Robins model the quantile-
quantile function of F−1

Y0R|V,R,AFY |V,R,A for continuous outcomes Y (see also
van der Laan and Robins (2002), chapter 6, for a detailed description and
references).

In the case that X1, X2 are both binary random variables, the generalized
quantile-quantile function has a simple explicit form provided in the next
result.
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Result 4 Consider two binary random variables Xj ∈ {0, 1} with P (Xj =
1) = pj, j = 1, 2. Let Fj denote the cumulative distribution function of Xj:
Fj(x) = I(x ≤ 0)(1− pj)+ I(x ≤ 1), and F−1

j (u) = I((1− pj) < u), j = 1, 2.
Then,

F−1
1 FΔ

2 (x) = I (1 − p1 < I(x = 0)Δ(1 − p2) + I(x = 1)(1 − p2 + p2Δ)) .

This Result 4 provides us with a closed form expression for H0(Δ) =
H0(Y,R, V,A, Δ). Application of the Result 4 with F1 = FY0R|V,R,A, F2 =
FY |V,R,A, p1 = m0(V,R,A), p2 = m(V,R,A), and x = Y , results in:

H0(Δ) = H0(Y,R, V,A, Δ)

= I ((1 − m0) < I(Y = 0)Δ(1 − m) + I(Y = 1)(1 − m + Δm))

= I

(
Δ >

(1 − m0(V,R,A)) − I(Y = 1)(1 − m(V,R,A))

I(Y = 0)(1 − m(V,R,A)) + I(Y = 1)m(V,R,A)

)
,(24)

where we used short-hand notation at the second equality.
The unbiasedness of our estimating functions for the quantile-quantile

function only relies on E(H0(Δ) | V,R,A) = m0(V,R,A). Since E(H0(Δ) |
V,R,A) = E(EΔ(H0(Δ) | Y, V,R,A) | V,R,A), it suffices to work with the
expectation of H0(Δ), given Y, V,R,A. We have

H0(Y, V,R,A) ≡ EΔ(H0(Δ) | Y, V,R,A)

= I{m0(V,R,A)/m(V,R,A)≤1}I(Y = 1)
m0(V,R,A)

m(V,R,A)

+I{m0/m(V,R,A)>1}

(
1 − I(Y = 0)

1 − m0(V,R,A)

1 − m(V,R,A)

)
.(25)

Now, note that the switch causal relative risk ψ0SRR and H0 are equivalent
parameters in the sense that H0 is a function of ψ0SRR and ψ0SRR is a function
of H0. Thus, if we define a generalized structural nested model as a model
for the generalized quantile-quantile function, EΔF−1

Y0|V,R,AFΔ
Y |V,R,A, then our

model on the switch causal relative risk is a generalized structural nested
model.

The key to construction of unbiased estimating func-
tions for switch causal relative risk.

It is easy to show that E(H0(Y, V,R,A) | V,R,A) = m0(V,R,A). Since this
is fundamental to the unbiasedness of our estimating functions (h(R, V ) −
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E(h(R, V ) | V ))H0(Y, V,R,A) presented in the next section, we will state
this as a formal result.

Result 5 We have E(H0(Y, V,R,A) | V,R,A) = E(Y0 | V,R,A).

Proof. Consider the expression (25) for H0(Y, V,R,A). First condition on
V,R,A, and note that E(I(Y = 1) | V,R,A)) = m(V,R,A) and E(I(Y =
0) | V,R,A) = 1 − m(V,R,A) so that we obtain Im0/m≤1m0 + Im0/m≥1m0 =
m0. �

Local efficiency.

Our models for the causal relative risks and causal additive risk are just
the structural nested mean models of Robins (1989,1994). He provides the
efficient choice (hopt, qopt) in these models. In Section 3 we already specified
the optimal choice qopt, which follows by a simple projection argument. In our
next result we provide the optimal choice in our class of estimating functions
for general H0, which is in agreement with Robins results, but also provides us
with the optimal choice of estimating function for the switch causal relative
risk.

Result 6 Let Σ(h, q) ≡ COV(ICh,q,α1(O)) be the covariance matrix for our
estimator implied by the choice h, q. We define

ε(β0) ≡ H0(O | α1, β0) − E0(H0(O | α1, β0) | V )

ε′(β0 | R, V ) ≡ d

dβ
E0(ε(β) | R, V )

∣∣∣∣∣
β=β0

σ2(R, V ) ≡ E0(ε
2(β0) | R, V ).

Let

qopt(V ) ≡ E0(H0(O | α1, β0) | V )

hopt(R, V ) =
1

σ2(R, V )

⎧⎨
⎩ε′(β0 | R, V ) −

∫ ε′(β0|r,V )
σ2(r,V )

dP0(r | V )∫ 1
σ2(r,V )

dP0(r | V )

⎫⎬
⎭ .

(Note that E0(hopt(R, V ) | V ) = 0.) For any vector c we have that

c�Σ(hopt, qopt)c ≤ c�Σ(h, q)c

for all possible choices h(R, V ) and q(V ).
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Proof. Given qopt, the optimal choice hopt can be determined as a straight-
forward application of theorem 2.9, page 159, in van der Laan and Robins
(2002)). Specifically, consider estimating functions of the form h0(R, V )ε(β0),
where h0(R, V ) = h(R, V )−E(h(R, V ) | V ). Note d/dβE(h0(R, V )ε(β))|β=β0

=
〈h, ε′(β0)〉H , where 〈g1, g2〉H = EFR,V

g1(R, V )g2(R, V ) is an inner product in

the Hilbert space H ≡ L2(FR,V ). Let Ã : H → L2
0(P0) be the Hilbert space

operator defined by Ã(h) = h0(R, V )ε(β0). Its adjoint Ã� : L2
0(P0) → H

is given by Ã�g = E(ε(β0)g | R, V ) − E(ε(β0)g | V ). Thus, Ã�Ã(h) =
h0(R, V )σ2(R, V )−E(h0(R, V )σ2(R, V ) | V ). By Theorem 2.9 in van der Laan and Robins
(2002), the optimal solution hopt is characterized as the solution of Ã�Ã(h) =
ε′(β0). This equation has the explicit solution provided in the result. To see
this, one first rewrites the equation as

h0(R, V ) =
1

σ2(R, V )

(
ε′(β0 | R, V ) + E(h0(R, V )σ2(R, V ) | V )

)
.

Subsequently, take (on both sides of the equation) the conditional expectation
w.r.t. R, given V . Since the conditional expectation on the left equals zero,
this immediately yields the closed form solution for E(h0(R, V )σ2(R, V ) | V ),
and thereby of the complete solution hopt. �

Our model for the observed data can be reformulated as {P : EP (H0(O |
β(P )) | R, V ) = EP (H0(O | β(P )) | V )}. That is, our model can be viewed as
a semi-parametric regression model H0(O | β) = g(V )+ε, where g is arbitrary
and E(ε | R, V ) = 0. Completely analogue as in Robins (1989,1994), it now
follows that the class {h(R, V )−E0(h(R, V ) | V )}(H0(O | β0)−EP0(H0(O |
β0) | V )} contains the efficient influence function at P0. This proves that
Dhopt,qopt(O | β0, η0) actually equals the efficient influence function, and that
Σ(hopt, qopt) equals the covariance matrix of the efficient influence function.

Estimation of optimal index of estimating function.

In order to estimate hopt and qopt, one will first need an initial estimator βn0

of β, which can be based on a simple choice (possibly data dependent choice)
(h, q). Given this estimator βn0, one can estimate qopt by regressing H0(O |
αn, βn0) on V according to a working model. This results now in an estimate
ε(βn0). Regressing ε(βn0)

2 on R, V according to a working model results in
an estimator of σ2(R, V ). Finally, by regressing d/dβH0(O | αn, β)|β=βn0

on
R, V and V , one obtains an estimator of ε′(β0 | R, V ). These estimators
provide us now with an estimator hn of hopt and qn of qopt. The estimator
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βn(hn, qn, ηn, α1) is locally efficient in the sense that it is always consistent and
asymptotically linear, and, if the guessed working models used to estimate
hopt and qopt happen to be correct, then βn(hn, qn, ηn, α1) is asymptotically
efficient.
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