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Semiparametric Quantitative-Trait-Locus
Mapping: II. on Censored Age-at-Onset

Ying Qing Chen, Chengcheng Hu, and Rongling Wu

Abstract

In genetic studies, the variation in genotypes may not only affect different inheri-
tance patterns in qualitative traits, but may also affect the age-at-onset as quanti-
tative trait. In this article, we use standard cross designs, such as backcross or F2,
to propose some hazard regression models, namely, the additive hazards model
in quantitative trait loci mapping for age-at-onset, although the developed method
can be extended to more complex designs. With additive invariance of the addi-
tive hazards models in mixture probabilities, we develop flexible semiparametric
methodologies in interval regression mapping without heavy computing burden.
A recently developed multiple comparison procedures is adapted to identify the
QTL in dense maps. The proposed methodologies will be evaluated by simulation
studies and demonstrated in an actual data analysis of forest tree growth.



1 INTRODUCTION

Genetic mapping has long been a major approach for geneticists to study and locate the chromo-

somal regions that may link to the patterns of inheritance of a trait. With new development in

recombinant DNA, it is possible for genetic mapping to further isolate a gene by positional cloning

(Bender, Spierer and Hogness, 1983). Several hundreds of rare human diseases of simple Mendelian

inheritance have been mapped and dozens of them have been positionally cloned. More complex

traits that do not follow Mendelian monogenic inheritance, such as diabetes, cancer and Parkin-

son’s disease, have been considered for the genetic mapping as well. Age-at-onset, or time-to-event

in general, as an inheritable quantitative trait, usually does not follow the classical Mendelian

inheritance paradigm, due to various reasons, such as gene-gene interactions, gene-environment in-

teractions or random chance. It has been nevertheless of important scientific interest. For example,

a total of 3,796 individuals in 263 prostate cancer families were analyzed in Conlon, et al. (2003),

and there was for two to three QTLs to contribute to the variation in the age-at-onset of hereditary

prostate cancer.

To map complex trait such as the age-at-onset, there are usually four types of epidemiological or

experimental ways: linkage analysis, allele-sharing methods, association studies and genetic analysis

of experimental crosses, as summarized in Lander and Schork (1994). Among them, the method

of experimental crosses is relatively more powerful in the QTL mapping of complex traits than

three other methods, due to its ability to control the non-genetic noise. Although experimental

crosses are often done in animal and plant studies, they are able to identify the key genes and help

understand the possible biochemical pathway in a disease, when the biochemical pathologies are

similar or the same. Another advantage of the experimental crosses is their easy adaptability of

genomic information into the QTL mapping. With the interval mapping method and its variants

(Lander and Botstein, 1989), the QTL mapping can be conducted in whole genome to search for

possible QTLs with available phenotypic and genetic marker data.

The statistical methods in QTL mapping, even though they have been developed rapidly with

recent development in DNA-based genetic linkage maps, has been largely based on parametric

methods with normal theory, since the seminal work of Lander and Botstein (1989). Consider a

prototype version of their framework. Let Y be the measurement of the phenotype of interest and

G be the indicator of causal genotype, respectively. The following multiple linear regression model
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is often considered,

Y = β0 + βGG + e, (1)

where e are normal deviates with mean 0 and variance σ2, β0 and βG are the unknown parameters.

Here, βG �= 0 means potential existence of QTL. Then the so-called LOD-score profile can be

obtained by way of the maximum likelihood and plotted against the genetic distance of makers to

locate the potential QTLs. In practice, since the exact genotypes are unknown, the normal mixture

models, along with the EM-algorithm, are used according to the specific design of experimental

crosses (Lincoln, Daly and Lander, 1993). The normality assumption, however if violated, may

lead to false QTL detection (Morton, 1984), although it greatly simplifies the EM-algorithm used.

Apparently the age-at-onset, which is mostly positively distributed, usually does not satisfy the

normal assumptions. Although special transformations, such as the log-transformation or the Box-

Cox transformation, can be applied to symmetrize the distributions, they often tend to be arbitrarily

chosen and sometimes the interpretation of parameters is not clear. More importantly, the age-

at-onset may be often subject to censoring, for which it is not fully observed due to reasons, such

as limited observation period. Special methods are thus needed in the QTL mapping of censored

age-at-onset, as those in conventional survival analysis.

One of the most widely used models for time-to-event is the semiparametric Cox proportional

hazards model (Cox, 1972). If it is applied to the age-at-onset following the similar fashion of the

aforementioned multiple linear regression model, that would be

λ(t | G) = λ0(t) exp(βGG), (2)

where λ(·) are the hazard functions and λ0(·) is usually unknown. In this model, βG is the parameter

for the relative hazards between two genotypes at one locus. If βG = 0, it means no difference in

hazard functions due to variation in genotypes, whereas it implies a possible QTL if βG �= 0. This

model has been fairly successful in the usual survival analysis. However, it may not have significant

advantage when it becomes mixed due to unknown G. If the model is marginalized over all possible

G’s, then it is well known that the proportionality in the hazard functions would not be preserved.

As a result, the simple form of estimation by way of maximum partial likelihood would not work

well to eliminate the infinite-dimensional baseline hazard function as nuisance parameter. If the

maximum likelihood method has to be implemented onto the full likelihood function as in the

multiple linear regression models, then the baseline hazard functions have to be explicitly specified
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in some parametric form. However, the EM-algorithm may not have the clean forms any longer as

in the normal mixture except for some special distributions, such as the exponential distributions.

In this article, we will develop a new methodology in the semiparametric QTL mapping of cen-

sored age-at-onset by applying the additive hazards model instead. The new methodology will take

the full advantage of the simple invariance property of the mixed additive hazards model in hazards

additivity. They will greatly relieve computing burden and preserve the appealing interpretation

of relative hazards in the parameters. In the rest of this article, we will first discuss the genetic

designs in experimental crosses. Then the new methodology and relevant theory are studied. A

recently developed multiple comparison procedures is adapted to identify the potential QTLs based

on the parameter estimates. Numerical studies including simulations and an application to actual

data are in §3. Some issues are discussed in §4. The technical proofs of asymptotic properties are

collected in the Appendix.

2 METHODS AND THEORY

2.1 Genetic designs

In this article, we mainly focus on the genetic designs with inbreed experimental crosses. Unlike

natural population such as human families, these designs exercise more control on the nongenetic

noise and individual unobserved heterogeneity of the genetic materials, and hence the difference in

the quantitative trait of age-at-onset, if there is, may be mostly likely caused by possible genetic

factors. There are two important designs of inbreed experimental crosses for the QTL mapping,

namely, the backcross and F2 designs.

Both of the designs are initiated with two contrasting homozygous inbred lines, that is, their

paternal (A) and the maternal (a) alleles are identical at any given locus of the genome. Thus, their

F1 generation are completely heterozygous. In a backcross design, the F1 generation is backcrossed

with one of their parents, for example, their paternal parents. In an F2 design, the F1 is selfed or

two F1’s are crossed. A marker-based genetic linkage map of the crossed offsprings is constructed

and aims to the QTL identification. Denote the marker positions as Pl, l = 1, 2, . . . , L, with L to

be the total number of markers on the genome. The possible genotypes at Pl are AlAl and Alal in

the backcross design, and AlAl, Alal and alal in the F2 design, respectively.
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Consider the interval mapping introduced by Lander and Botstein (1989). In this mapping

scheme, a putative QTL is assumed to be bracketed by two flanking markers Pl and Pl+1, l =

1, 2, . . . , L − 1. Let Ml be the indicator for different combinations of genotypes at Pl and Pl+1.

Specifically, it would be a value of {1, 2, 3, 4} in the backcross design and {1, 2, . . . , 9} in the F2

design, respectively. In addition, there are assumed two distinct genotypes, Q and q at a specific

locus to affect the trait of age-at-onset. They segregate with two different genotypes of Qq and qq

in the backcross population, and three different genotypes of QQ, Qq and qq in the F2 population,

respectively. Let G be the genotype indicator at a putative QTL. It would be a value of {0, 1}
in the backcross design and {0, 1, 2} in the F2 design, respectively. In total, there are 23 = 8 and

33 = 27 different combinations of genotypes for the putative QTL and its flanking markers in the

backcross design and in the F2 design, respectively.

In order to conduct the interval mapping, we also need to collect the phenotypic data in addition

to the marker information to probe possible QTLs and estimate the genotype effect. Suppose there

are n progeny subjects in the data set and they are indexed by i, i = 1, 2, . . . , n. After an experiment

is conducted, their phenotypic traits of age-at-onset and other variables are collected. Let Ti be the

age-at-onset, which however may be censored at time Ci. Thus the smaller value of the underlying

age-at-onset Ti and its censoring time Ci is often observed and denoted as Xi = min(Ti, Ci). Let the

event indicator be ∆i = I(Ti ≤ Ci), indicating whether or not an event is censored. LetM l,i be the

p1−vector of dummy indicators of marker information, and let Ri(t) be the p2−vector of possible

confounding covariates, such as temperature, that need to be adjusted. The (p1 + p2 + 1)-vector of

(MT
l,i,Ri(·), Gi)T is denoted by Zl,i(·).

2.2 Statistical models

To analyze age-at-onset as time-to-event, the semiparametric Cox proportional hazards model is

often used. Specifically, a Cox model would assume that the hazard function of Zi follows

λ{t | Zi(t)} = λ0(t) exp{βT
RRi(t) + βGGi}, (3)

where βR and βG are parameters. Here λ0(·) is usually unspecified. The parameter βG characterizes

the proportionality on the hazard functions due to different genotypes. Thus the model may imply

a potential QTL if βG �= 0. Implicitly, this model assumes that the genetic effect at any putative

QTL is multiplicative, regardless of the flanking markers. If the genotypes are known, then the
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usual maximum partial likelihood method can be implemented for inferences on βG, considering

the censoring.

In reality, the exact genotype of a progeny subject, Gi, is usually unknown, although its prob-

ability distribution can be calculated given the genotypes of the two-locus flanking markers and

the QTL position within the marker interval. With known conditional distributions, the aforemen-

tioned Cox model is a mixture model and can be marginalized over the unknown Gi conditional

on the marker information. An advantage of doing so is that the statistical analysis would be

solely based on the observed marker information, instead of the unknown genotypes at the pu-

tative QTL. In Haley and Knott (1992), the similar regression mapping approach was applied in

the multiple linear regression models such as (1), when the trait is normally distributed without

censoring. In linear regression model, the advantage is greater since the marginalized model is still

linear regression, and hence the usual computing routines can be applied, which greatly decrease

the computing burden. This, however, does not apply in straightforward terms to the Cox model

(3), since its marginalized version does not maintain the proportionality any longer. It actually

leads to a complicated form in hazard functions. So the usual maximum partial likelihood does

not apply, which may still need computer-intensive methods to estimate the unspecified baseline

functions and the parameters of β = (βT
R, βG)T jointly.

One alternative model to the Cox proportional hazards model is the additive hazards model

proposed by Lin and Ying (1994). In an additive hazards model, the hazard function of Z i is

assumed as

λ{t | Zi(t)} = λ0(t) + βT
RRi(t) + βGGi. (4)

Another alternative would be the additive-multiplicative model

λ{t | Zi(t)} = λ0(t) exp{βT
RRi(t)} + βGGi. (5)

. In both models, the genotypes at a putative QTL have additive effect on the hazard functions of

age-at-onset as trait. That is, the parameter βG characterizes the additional adjusted instantaneous

hazard rate caused by one genotype versus the other. Therefore, βG would mean a potential QTL

to affect the trait of age-at-onset if βG �= 0. Straightforward calculation shows that the marginal

additive hazards model (4) over unknown Gi given its associated marker information becomes

λ{t |Ri(t),M l,i} = λ0(t) + βT
RRi(t) + βGp

T
l,iM l,i, (6)
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Table 1: Conditional probabilities of genotype indicator G at a QTL bracketed by markers Pl and

Pl+1 in a backcross population. When rl1 or rl2 is relatively small, rl1 + rl2 approximates rl·.

Marker type Marker genotypes Conditional probabilities

Ml Pl Pl+1 pG
l = pr{G = 1 | Ml} 1 − pG

l = pr{G = 0 | Ml}
1 Alal Al+1al+1

(1−rl1)(1−rl2)
1−rl·

rl1rl2
1−rl·

2 Alal al+1al+1
(1−rl1)rl2

rl·
rl1(1−rl2)

rl·

3 alal Al+1al+1
rl1(1−rl2)

rl·
(1−rl1)rl2

rl·

4 alal al+1al+1
rl1rl2
1−rl·

(1−rl1)(1−rl2)
1−rl·

where M l,i is the vector of dummy indicators of genotypes at markers l and l + 1, and pl,i is the

associated conditional probabilities of Gi given M l,i, l = 1, 2, . . . , L − 1, and i = 1, 2, . . . , n. The

marginalized model (5) can derived similarly.

Assume that the recombination fractions between the marker Pl and the potential QTL, the

potential QTL and the marker Pl+1 and the markers Pl and Pl+1 are rl1, rl2 and rl, respectively.

The conditional probabilities of pl,i in (6) can be further determined as function of r = (rl1, rl2)T,

pl,i = pl,i(r), say. Since the genetic distance between markers Pl and Pl+1 is usually known and

measured in Morgans or centiMorgans, the Haldane’s mapping function can be used to determine

rl· =
1
2
{1 − exp(−2dl)},

where dl is the genetic distance between Pl and Pl+1. This is not the only mapping function we

can use. More comprehensive discussion on the genetic mapping functions can be found in Speed

(1996). In Tables 1 and 2 for the backcross and F2 designs, the conditional probabilities are listed

for all the potential genotypes, respectively.

2.3 Estimation and inferences

To estimate the parameters in model (6), it is natural to consider the full likelihood function based

on {Xi, ∆i,M l,i,Rl,i}, i = 1, 2, . . . , n, when the baseline hazard function of λ0(·) is known. It is in

fact proportional to

n∏
i=1

λ(Xi |M l,i,Rl,i;β, r)∆iS(Xi |M l,i,Rl,i;β, r),
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Table 2: Conditional probabilities of genotype indicator G at a QTL bracketed by markers Pl and

Pl+1 in an F2 population.

Marker type Marker genotypes Conditional probabilities

Ml Pl Pl+1 pG
l = pr{G = 0} pG

l = pr{G = 1} p G
l = pr{G = 2}

1 AlAl Al+1Al+1
(1−rl1)2(1−rl2)2

(1−rl·)2
2rl1rl2(1−rl1)(1−rl2)

(1−rl·)2
r2

l1r2
l2

(1−rl·)2

2 AlAl Al+1al+1
(1−rl1)2(1−rl2)rl2

(1−rl·)rl·
rl1(1−rl1){r2

l2+(1−rl2)}2

(1−rl·)rl·
r2

l1rl2(1−rl2)

(1−rl·)rl·

3 AlAl al+1al+1
(1−rl1)2r2

l2
r2

l·
2rl1rl2(1−rl1)(1−rl2)

r2
l·

r2
l1(1−rl2)2

r2
l·

4 Alal Al+1Al+1
rl1(1−rl1)(1−rl2)2

rl·(1−rl·)
{r2

l1+(1−rl1)2}rl2(1−rl2)

rl·(1−rl·)
rl1(1−rl1)r2

l2
rl·(1−rl·)

5 Alal Al+1al+1
2rl1rl2(1−rl1)(1−rl2)

r2
l·+(1−rl·)2

{(1−rl1)2+r2
l1}{(1−rl2)2+r2

l2}
r2

l·+(1−rl·)2
2rl1rl2(1−rl1)(1−rl2)

r2
l·+(1−rl·)2

6 Alal al+1al+1
rl1(1−rl1)r2

l2
rl·(1−rl·)

{(1−rl1)2+r2
l1}rl2(1−rl2)

rl·(1−rl·)
rl1(1−rl1)(1−rl2)2

rl·(1−rl·)

7 alal Al+1Al+1
r2

l1(1−rl2)2

r2
l·

2rl1(1−rl1)(1−rl2)

r2
l·

(1−rl1)2r2
l2

r2
l·

8 alal Al+1al+1
r2

l1rl2(1−rl2)

rl·(1−rl·)
rl1(1−rl1){r2

l2+(1−rl2)2}
rl·(1−rl·)

(1−rl1)2rl2(1−rl2)
rl·(1−rl·)

9 alal al+1al+1
r2

l1r2
l2

(1−rl·)2
2rl1(1−rl1)rl2(1−rl2)}

(1−rl·)2
(1−rl1)2(1−rl2)2

(1−rl·)2

where S(·) = exp{−Λ(·)} is survival function and Λ(·) =
∫ ·
0 λ(u)du is cumulative hazard function,

respectively. Let {Ni(t) = I(Xi ≤ t, ∆i = 1), i = 1, 2, . . . , n} be the counting processes, and let a

filtration be

Ft = σ{Ni(t), Yi(t),M l,i,Rl,i(t); i = 1, 2, . . .n},

where Yi(t) = I(Xi ≥ t). Then the likelihood function can be written alternatively as

n∏
i=1

∏
t≤τ

λ(t |M l,i,Rl,i)dNi(t) exp
{
−
∫ τ

0
Yi(u)λ(u |M l,i,Rl,i)du

}
where τ is some finite number such that limn→∞

∑n
i=1 Yi(τ) > 0. Here the use of τ is to avoid tech-

nical discussion on tail behavior of asymptotic properties for the proposed estimation procedures.

For interested readers, we refer to the work by Ying (1993), which can be adapted to extend τ to

infinity. The associated score functions with respect to β and r are thus
n∑

i=1

∫ τ

0

(Ri(u)T,pl,i(r)TM l,i)T

λ0(u) + βT
RRi(u) + βGpl,i(r)TM l,i

dB0i(u;β, r, Λ0),

and
n∑

i=1

∫ τ

0

βGpl,i(r)TM l,ip
′
l,i(r)

T

λ0(u) + βT
RRi(u) + βGpl,i(r)TM l,i

dB0i(u;β, r, Λ0),

where B0i(β, r) = Ni(t)−
∫ t
0 Yi(u){λ0(u)+ βT

RRi(u)+ βGpl,i(r)TM l,i}du. Denote the true value of

a parameter its same symbol but with subscript ‘∗.’ For example, the true value of β would be β∗.

Then {B0i(t;β∗, r∗, Λ0∗)} are local square integrable Ft-martingales and hence the score functions
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are martingale integrals at the true values of parameters. By further examining the score functions,

it is not difficult to discover these two equations are only different in the integrands. Therefore, a

more general version can be used to estimate the parameters as
n∑

i=1

∫ τ

0
W (u)J i(u;β, r)dB0i(u;β, r, Λ0) = 0. (7)

Here W (·) is Ft-measurable weight function converging to a deterministic function of w(·), and

J i(·) are Ft-measurable smooth functions of dimension p2 + 3 with known forms. However, since

the baseline hazard function is usually unspecifed, an estimator needs to be developed before using

these estimating functions to estimate β and r in (7).

Notice that E{B0i(t;β∗, r∗, Λ0∗)} = 0. Thus the estimating equation,
∑n

i=1

∫ τ
0 dB0i(;β, r, Λ0) =

0, can be used to estimate Λ0 as if β and r were known. This actually leads to a Breslow-type of

estimator for Λ0,

Λ̂0(t;β, r) =
∫ t

0

∑n
i=1 dBi(u;β, r)∑n

i=1 Yi(u)
.

Here Bi(t;β, r) = Ni(t)−
∫ t
0 Yi(u){βT

RRi(u)+βGpl,i(r)
TM l,i}du = B0i(t;β, r, Λ0)+

∫ t
0 Yi(u)dΛ0(u).

Therefore, the following estimating equations can be used to estimate β and r by replacing Λ0 with

Λ̂0,
n∑

i=1

∫ τ

0
W (u)J i(u;β, r)dB̂0i(u;β, r, Λ̂0) = 0. (8)

Straightforward calculation thus shows that the left-hand side of the above equation is

E(t;β, r) =
n∑

i=1

∫ t

0
W (u){Ji(u;β, r)− J(u;β, r)}dBi(u;β, r), (9)

at t = τ , where J(u;β, r) = {∑n
i=1 Yi(u)J i(u;β, r)}{∑n

i=1 Yi(u)}−1. Furthermore, since

E(t;β∗, r∗) =
n∑

i=1

∫ t

0
W (u){J i(u;β∗, r∗) − J(u;β∗, r∗)}dB0i(u;β∗, r∗, Λ0∗), (10)

the process of E(t;β∗, r∗) is also an Ft−martingale. Denote E(β, r) = E(τ ;β, r) and (β̂, r̂) the

solutions in E(β, r) = 0.

Without loss of generality, we first establish the asymptotic properties for the estimating func-

tions when W (·) ≡ 1. In later this section, we will discuss more on the use of weight functions. By

a Taylor expansion, we notice that

n−1/2{E(β̂, r̂) − E(β∗, r∗)} =

[
n−1

({
∂E(β̃, r̃)

∂β

}T

,

{
∂E(β̃, r̃)

∂r

}T)]n1/2

 β̂ − β∗

r̂ − r∗

 ,
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where (β̃
T

, r̃T)T lies in the linear line segment between (β̂
T

, r̂T)T and (βT
∗ , rT∗ )T. Therefore, we can

establish the asymptotic properties of β̂ and r̂ accordingly.

Lemma 1. Assume that there exists an integrable function of v(·) such that

n−1
n∑

i=1

Yi(t)λ(t |M l,i,Ri){Ji(t;β∗, r∗) − J(t;β∗, r∗)}⊗2 → v(t;β∗, r∗)

in probability; and for any ε > 0

n−1
n∑

i=1

∫
n−1‖Ji−J‖2>ε

Yi(u)λ(t |M l,i,Ri)‖Ji(u;β∗, r∗) − J(u;β∗, r∗)‖2du → 0

in probability as well, as n → ∞. Here ‖ · ‖ defines an appropriate Euclidean norm. Then

n−1/2E(β∗, r∗) converges weakly to a zero-mean Gaussian process in D[0, τ ] with independent

increments and variance function of V (t;β∗, r∗) =
∫ t
0 v(u;β∗, r∗)du, which is the limit of

n−1
n∑

i=1

∫ t

0
Yi(u)λ(t |M l,i,Ri){J i(u;β∗, r∗) − J(u;β∗, r∗)}⊗2du.

Here D[0, τ ] denotes the space of cadlag functions on [0, τ ] endowed with the Skorohod topology.

The stated conditions in the above lemma correspond to the ones of 2.5.1 and 2.5.3 in the

Rebolledo’s Theorem (Andersen, Borgan, Gill and Keiding, 1993, p. 83), which can be straightfor-

wardly applied in proof and variance calculation. Furthermore in conjunction with Lemma 1, we

establish the asymptotic properties of the proposed estimators in

Theorem 2. Assume that there exists a nonsingular matrix D such that

n−1

∫ τ

0
Yi(u){Ji(u;β∗, r∗) − J(u;β∗, r∗)}


Ri(u)

pl,i(r)
TM l,i

βGpl,i(r)TM l,ip
′
l,i(r)


T

du → D(β∗, r∗)

in probability, in addition to the assumptions in Lemma 1. If the partial derivatives of J i with

respect to parameters β and r are uniformly continuous in U(β∗, r∗), a neighborhood of (β∗, r∗),

then β̂ and r̂ are uniquely defined and consistent in U(β∗, r∗). Furthermore,

n1/2

 β̂ − β∗

r̂ − r∗

 D→ N{0, D−1(β∗, r∗)V (β∗, r∗)D
−1(β∗, r∗)}.

The proof of this theorem can be referred in the Appendix. It is worthwhile to point out

that the uniqueness, consistency and asymptotic normality in this theorem are established for a

9
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neighborhood of the true parameters. In practice, there are possibly multiple solutions to the

proposed estimating equations over the entire parameter space. One solution to solve the multiple

roots issue is to minimize the quadratic version of the estimating functions. The other solution is

choose a second set of {J i} to find the roots that make the estimating functions of both choices

close to zero. However, as a special situation when the uniform continuity is satisfied on a compact

set with the true parameters as interior point and n−1E(β, r) converges to a deterministic function

at any pair of β and r in the compact set, the uniqueness can be extended to the entire compact

set if the limiting function has unique solution as well.

To make inference in practice on the parameters, the variance-covariance matrix can be cal-

culated by the empirical version of the asymptotic variance-covariance matrix. That is, it can be

estimated by D̂−1(β̂, r̂)V̂ (β̂, r̂)D̂−1(β̂, r̂). And similarly, the baseline cumulative hazard function

can be estimated as

Λ̂0(t; β̂, r̂) =
∫ t

0

∑n
i=1 dB̂i(u; β̂, r̂)∑n

i=1 Yi(u)
.

We establish its asymptotic properties in the following corollary:

Corollary 3. Under the assumptions listed in Lemma 1 and Theorem 2, n1/2{Λ̂0(t, β̂, r̂)−Λ0(t)}
converges weakly to a zero-mean Gaussian process in D[0, τ ]. The limiting covariance function is

VΛ(s, t) =
∫ min(s,t)

0
{y0(u)}−1{λ0(u) + y1(u)}du +

{∫ t

0
y2(u)du

}T

D−1V D−1

∫ s

0
y2(u)du

−
{∫ t

0

y2(u)du

}T

D−1

∫ s

0

{yJ1(u)− y1(u)yJ0(u)}du

−
{∫ s

0
y2(u)du

}T

D−1

∫ t

0
{yJ1(u)− y1(u)yJ0(u)}du,

where y0(u) = limn n−1
∑n

i=1 Yi(u), y1(u) = limn[
∑

i Yi(u){βT
RRi(u) + βGp

T
l,iM l,i}]{

∑
i Yi(u)}−1,

y2(u) = limn{
∑

i Yi(u)(Ri(u)T,pl,i(r)TM l,i, βGp
T
l,iM l,ip

′
l,i)

T}{∑i Yi(u)}−1, yJ0(u) = limn J(u)

and yJ1(u) = limn[
∑

i Yi(u){βT
RRi(u) + βGp

T
l,iM l,i}J i(u)]{∑i Yi(u)}−1.

To show this corollary, as in Fleming and Harrington (1991, p. 300), consider a decomposition of

Λ̂0(t; β̂, r̂)−Λ0(t) into summation of three terms: Λ̂0(t; β̂, r̂)−Λ̂0(t;β∗, r∗), Λ̂0(t;β∗, r∗)−Λ̃0(t) and

Λ̃0(t)−Λ0∗(t), where Λ̃0(t) =
∫
∑

i Yi(u)>0 λ0(u)du. As shown in the Appendix, the first two terms can

be written as summation of martingale integrals and the third term is negligible. The asymptotic

normality follows and the variance calculation is straightforward. As a result of Corollary 3, the

empirical variance estimator of D−1V D−1 is also consistent as stated in
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Corollary 4. Assume that the total variations of {Zi,J i; i = 1, 2, . . . , n} are uniformly bounded.

Then D̂−1(β̂, r̂)V̂ (β̂, r̂)D̂−1(β̂, r̂) converges to D−1V D−1 in probability.

The estimation procedure proposed in this section is originally motivated by the score functions

in which the infinite-dimensional nuisance parameter of baseline hazard function λ0 was treated

as known. The choices of W (·) and J i’s yield flexibility, for instance, in designing estimating

equations with unique solutions. However, the arbitrariness in choice may also lead to potential

loss of efficiency, although the inference procedures are always valid. To address this issue, we

consider the following parametric submodels:

λ0(t | Ri,M l,i;β, r,ψ) = λ0(t) + βRRi(t) + βGpi,l(r)
TM l,i + ψTλ(t),

where β, r and ψ are parameters, and λ0(·) and λ0(·) are known functions. Thus, the log-likelihood

function l(β, r,ψ) can be used to compute the Fisher information matrix at β = β∗, r = r∗ and

ψ = 0. By an application of the Cramér-Rao inequality, the lower bound of the covariance matrix

for any semiparametric parameter estimators is{
I(β,r),(β,r)(λ) − I(β,r),ψ(λ)I−1

ψ,ψ(λ)Iψ,(β,r)(λ)
}−1

,

where I
(β,r),(β,r)

= E{l′′
(β,r)

}, I
(β,r),ψ = Iψ,(β,r)

= E{l′′
(β ,r),ψ} and Iψ,ψ = E{l′′ψ,ψ}. In fact, the lower

bound can be reached when λ(t) = λ0(t) is the limit of

E
[∑

i Yi(t)(RT
i (t),pi,l(r)

TM l,i, βGpi,l(r)
TM l,ip

′
i,l(r)

T)T/{λ0(t) + βRRi(t) + βGpi,l(r)
TM l,i}

]
E
[∑

i Yi(t)/{λ0(t) + βRRi(t) + βGpi,l(r)TM l,i}
] .

Thus a set of optimal estimating functions for β∗ and r∗ are

Eopt(β, r) =
n∑

i=1

∫ τ

0

{
Jopt,i(u)− Jopt(u)

}
dBi(u)

λ0(u) + βRRi(u) + βGpi,l(r)TM l,i
, (11)

where Jopt,i(t) = (RT
i (t),pi,l(r)TM l,i, βGpi,l(r)TM l,ip

′
i,l(r)

T)T, and

Jopt(t) =

∑
i Yi(t)/{λ0(t) + βRRi(t) + βGpi,l(r)TM l,i}Jopt,i(t)∑

i Yi(t)/{λ0(t) + βRRi(t) + βGpi,l(r)TM l,i} .

By comparing the optimal estimating functions with the general weighted estimating functions

in (10), it is obvious that they are identical when J i = Jopt,i and W (t) = {λ0(t) + βRRi(t) +

βGpi,l(r)TM l,i}−1. To use the optimal estimating function derived above, a sample-splitting tech-

nique (Lin and Ying, 1994) can be used to yield most efficient estimators. However, the nonpara-

metric estimation of λ0(·) causes the fundamental difficulty. One simple way is use ad hoc estimate
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of λ0(t) based on prior knowledge, for instance, piecewise exponential hazard function. Another

simple way is ignore λ0(t)+βRRi(t)+βGpi,l(r)TM l,i in Eopt(β, r). That is, the following estimating

functions

Ẽ(β, r) =
n∑

i=1

∫ τ

0

{
Jopt,i(u;β, r) − J̃(u;β, r)

}
dBi(u;β, r),

can be used, where J̃(t;β, r) =
∑

i Yi(t)Jopt,i(t;β, r)/
∑

i Yi(t). Apparently, the approximation of

both ad hoc approaches to the optimal estimating functions depends on the choices of λ0(·) and

how close the ignored terms are to constant, respectively.

As stated previously, use of weight functions in estimating equations can help gain efficiency

of estimators, or alleviate the problem of multiple roots. Another important application of weight

functions in the estimating equations is for model adequacy checking, as in Lin (1991) for the

goodness-of-fit in the Cox proportional hazards model. Specifically, suppose that there are two sets

of weight functions for estimating equations,

Em(β, r) =
n∑

i=1

∫ τ

0
Wm(u){J i(u)− J(u)}dBi(u),

m = 1, 2, respectively. Then according to Theorem 2, their respective ‘weighted’ estimators,

(β̂
T

1 , r̂T
1)T and (β̂

T

2 , r̂T
2 )T, are both consistent and asymptotically normal, if the additive hazards

model indeed holds. In fact, when the additive hazards model is true, the joint distribution of

n−1/2E1(β∗, r∗) and n−1/2E2(β∗, r∗) is asymptotically normal. By standard counting process tech-

niques, n1/2{(β̂T

1 , r̂T
1 )− (β̂

T

2 , r̂T
2)}T is shown to be zero-mean normal asymptotically. Let its asymp-

totic variance be Σ. Then the quadratic form of n{(β̂T

1 , r̂T

1 ) − (β̂
T

2 , r̂T

2 )}Σ−1{(β̂T

1 , r̂T

1 ) − (β̂
T

2 , r̂T

2 )}T

can be used as an asymptotic central χ2 test statistic with p1 + p2 + 1 degrees of freedom.

2.4 Multiple comparison procedures in QTL detection

The regression models and their estimation are proposed mainly to evaluate the association between

the genotypes and the functional quantitative trait at a putative locus bracketed by one specific

pair of markers. To detect the QTLs, the following null hypotheses would be tested: Hl,1 : βG = 0

versus Hl,0 : βG �= 0, for l = 1, 2, . . . , L. When the testing procedure is repeated at every pair

of consecutive markers throughout the entire linkage map, L multiple-comparison procedures are

thus conducted. There are many factors, like genetic map density to influence the distribution of
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the test statistics and hence the determination of threshold of the test statistics under the null

hypotheses.

2.4.1 Conventional approaches

In a sparse map where markers are spreaded broadly, the marker intervals are considered indepen-

dent. The usual Bonferroni correction, although conservative, may be used for multiple compar-

isons. In a dense map when thousands of markers are tested, a common approach to identify the

amount of support for QTL at a particular map position is often by graphically displaying the likeli-

hood ratio test statistics as a function of the map position of a putative QTL (Lander and Botstein,

1989). Conventionally a LOD score exceeding 3 usually suggests a QTL for simple Mendelian dis-

ease. This threshold is calculated by a Bayesian argument of a prior probability which leads to

false positive rate of 5%. In fact, this method may not work well for complex traits such as

age-at-onset or highly dense map. Lander and Botstein (1989) showed that the LOD score ap-

proaches in large sample to an Ornstein-Uhlenbeck diffusion process in backcross design, while

Dupuis and Siegmund (1999) reported similar result for F2 design. These approximations can be

used to determine the threshold of significance levels as given in Lander and Schork (1994). There

is also a permutation approach available to permute the phenotypes while the marker information

stays (Churchill and Doerge, 1994).

In fact, when a large number of hypothesis testing are performed, the rate of false QTL

claims usually needs to be controlled. Conventional approaches, such as the ones discussed in

Hochberg and Tamhane (1987), are mainly aimed to controlling the so-called family-wise error rate

(FWER), i.e., the probability of at least one false QTL claim when there is no QTL bracketed by

any pair of markers in the entire linkage map. When certain proportion of markers to be tested

actually depart from their corresponding null hypotheses, these procedures are often conservative

and less powerful, as discussed extensively in literature. An important alternative has been devel-

oped to focus on the control of the so-called false discovery rate (FDR), which is the expected false

positive rate of the rejected hypotheses, since the work by Benjamini and Hochberg (1995). There

are both Frequentist and Bayesian FDR-based approaches. Yet most of them rely on the assump-

tions of the independence among the test statistics, although certain specific form of dependence

may be allowed.
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Table 3: Error types in QTL multiple comparisons

QTL not claimed QTL claimed Total hypotheses tested

No QTL existed U V L0

QTL existed T S L − L0

Total claims L − R R L

2.4.2 A new approach

Nevertheless, most of the conventional approaches are mainly based on the critical assumptions

of normality and pooling of independent meiosis. However, given the semiparametric framework

of our models, the underlying distributional form of the errors are usually not assumed, and it is

thus almost impossible to obtain the usual likelihood maps or profiles to construct a linkage map

the based on likelihood ratios. In addition, the independence assumption does not always hold for

QTL detection in dense map, given the same set of observations of age-on-set being repeatedly

used in the semiparametric models. In this section, we adapt the framework recently constructed

by Dudoit, van der Laan and Pollard (2003) and van der Laan, Dudoit and Pollard (2003) to the

test statistics on the QTL parameter.

Two kinds of Type I error rate, θn, are considered: the generalized family-wise error rate

(gFWER) and the proportion of false QTL claims of the rejected hypotheses (PFP). A gFWER(k)

is the probability of allowing at least k false claims for some k + 1 ≥ 0, while a PFP(κ) is the

probability of false claims larger than some κ in (0,1) among the total rejections. We use the

notations in Benjamini and Hochberg (1995), as seen in Table 3. Then the gFWER(k) and PFP(κ)

are actually pr{V ≥ k + 1} and pr{V/R > κ}, respectively. Compared with the definitions of the

FWER and FDR, it is not difficult to find that

FWER = gFWER(0), and FDR = E(V/R) =
∫ 1

0

PFP(κ)dκ,

respectively. For a prespecified α-value, it is said to be of finite sample control if θn ≤ α, whereas

it is of asymptotic control if limn→∞ θn ≤ α. Usually α is chosen to be 0.05.

Consider two statistics that may be used for the lth pair of markers: one is the difference

statistic of φn,l = n1/2(β̂G,l−0), and the other is its standardized version of ϕn,l = n1/2(β̂G,l−0)/σn,l,

where σn,l/
√

n is the estimated standard error of β̂G,l. Let φn = (φn,1, φn,2, . . . , φn,L)T and ϕn =

(ϕn,1, ϕn,2, . . . , ϕn,L)T, respectively. Assume that F is the underlying data generating distribution.
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Denote Ωn,φ(F ) and Ωn,ϕ(F ) the joint distributions of φn and ϕn with limiting distributions of

Ωφ(F ) and Ωϕ(F ), respectively. Then the distributions of V is determined by the corresponding

Ωn,φ(F ) and Ωn,ϕ(F ). Since P is usually unknown, it needs to be estimated to ensure appropriate

control of gFWER(k) and PFP(κ) in the QTL detection under the null distributions of Ω0,φ(F )

and Ω0,ϕ(F ), respectively. Since

φn,l = n1/2(β̂G,l − βG∗,l) + n1/2βG,l = φ∗
n,l + n1/2βG∗,l, and

ϕn,l =
n1/2(β̂G,l − βG∗,l)

σl,n
+

n1/2βG∗,l

σl
· σl

σn,l
= ϕ∗

n,l +
n1/2βG∗,l

σl
· σl

σn,l
,

it is therefore true that

φ∗
n,l

L→ N(0, Vφ(F )) and ϕ∗
n,l

L→ N(0, ρϕ(F )),

where Vφ(F ) is the covariance matrix and ρϕ(F ) is the correlation matrix. Thus according to the

Theorem 2 in Dudoit, van der Laan and Pollard (2003), the bootstrapping algorithm such as the

following can be used to estimate the null distribution:

Algorithm 1.

1. Obtain a bootstrapping set of samples as {(Xb
i , ∆b

i ,Z
b
i), i = 1, 2, . . . , n};

2. Compute φb
n and ϕb

n, respectively;

3. Repeat Step 1 and 2 for a total of B times;

4. Compute the sample mean and the sample variance for each element in φb
n and ϕb

n;

5. Compute

φ∗,b
n,l =

√
min{1, 1/v̂ar(φb

n,l)}{φb
n,l − Ê(φb

n,l)}, and

ϕ∗,b
n,l =

√
min{1, 1/v̂ar(ϕb

n,l)}{ϕb
n,l − Ê(ϕb

n,l)},

respectively.

6. Compute the empirical distributions of φ∗,b
n,l and ϕ∗,b

n,l for b = 1, 2, . . . , B.

After the null distribution Ω0 is estimated, there are two procedures to choose actual cutoffs,

βc
G = (βc

G,1, β
c
G,2, . . . , β

c
G,L)T, say, to decide the rejection regions for φn,l and ϕn,l, l = 1, 2, . . . , L,
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namely, single-step common-quantile and single-step common-cutoff, to control the FWER. For the

single-step common-quantile procedure, the cutoffs can be selected as the common quantile of the

marginal distributions of the estimated Ω0. For the single-step common-cutoff, the common cutoff

can be selected as inf{c : θn(R | Ω0) ≤ α}. Furthermore, their adjusted p-values can be computed

as p̃n,l = inf{α : l ∈ Sn(α)}, l = 1, 2, . . . , L, where Sn = {l : ϕn,l > cl(α)}.

Based on the aforementioned control of FWER, there are augmentation procedures to select

additional rejections to control the gFWER and PFP (van der Laan, Dudoit and Pollard, 2003).

Specifically, the augmentations are done in the following algorithm:

Algorithm 2 :

1. Sort the adjusted FWER p-values as

p̃n,(1) ≤ p̃n,(2) ≤ . . . ≤ p̃n,(L),

where (·) defines a permutation of {1, 2, . . . , L}. Then the rejected null hypotheses of Sn

consist of {l : p̃n,l ≤ α} or {(l) : l = 1, 2, . . . , R};

2. Additional rejections are selected as {(l) : l = R + 1, . . . , R + k}, for k = k0 of a given

0 ≤ k0 ≤ L− R in the gFWER-control, and for k = max{0 ≤ l ≤ L − R : l/(l + R) ≤ κ} of a

given κ in FPF -control, respectively.

Thus the adjusted p-value for controlling the gFWER(k) is calculated as p̃n,(l−k)I(l > k), and the

adjusted p-value for controlling the PFP(κ) is calculated as inf{α : {l − R(α)}/l ≤ κ}.

3 NUMERICAL STUDIES

Moderate simulation studies are conducted to evaluate the performance of the proposed models

and inference procedures in simulated backcross experiments. For demonstration purpose, one

chromosomal segment flanked by two markers are set at 0 and 20 cM. A QTL is assumed at the

mid-point of 10cM. The following model is used in simulation to generate age-at-onset

λ(t | Ri, Gi) = λ0(t) + βRRi + βGGi.

Here, the baseline hazard function is of a Weibull distribution, Ri is continuous and simulated

following a uniform distribution on [0, 1], and Gi are simulated as 0/1 following the probabilities
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calculated according to Table 1. The parameters of (βR, βG)T are set to be (0,0)T and (1,1)T,

respectively. The total sample size is chosen to be 100 and 200, respectively. In addition, censoring

times are simulated following an exponential distribution to yield about 15% and 30% of censoring,

respectively. Estimating functions in (11) with and without weight are used in estimation of

parameters. The simulation results are listed in Table 4. One thousand data sets are simulated

for each entry in the table to calculate the bias and empirical coverage probabilities. The bias

is defined as the difference between the sample mean of estimates over 1000 simulations and the

true parameter value; and 95% empirical coverage probability is the percentage of Wald-type 95%

confidence intervals that include the true parameter value. As shown in the table, the estimators

are virtually unbiased and the nominal confidence intervals have sound coverage probabilities.

The weighted estimators tend to have smaller variances, although the reduction is not dramatic

under current simulation setting. More extensive simulations need to be conducted to evaluate the

efficiency of different sets of {J i}.

A study of forest tree growth was conducted at a forest farm in Xuzhou City of Jiangsu Province

in China since the Spring of 1988. The study materials used in the study were derived from the

triple hybridization of Populus (poplar). As described in Wu, Wang and Huang (1992), a Populus

deltoides clone (designated I-69) was used as a female parent to mate with an interspecific P.

deltoides × P. nigra clone (designated I-45) as a male parent to produce the hybrids Euramerica

poplar, P. euramericana. A total of 450 one-year-old rooted three-way hybrid seedlings were planted

at a spacing four by five meters in the forest farm. In this study, the age-at-onsets were recorded

at the times when the diameters reaches 20cm within 11 growing seasons.

The genetic linkage maps based on the pseudo-test backcross design were constructed using

90 randomly selected genotypes of the 450 hybrids with random amplified polymorphic DNAs

(RAPDs), amplified fragment length polymorphisms (AFLPs), and intersimple sequence repeats

(ISSRs), see Yin, Zhang, Huang, et al. (2002). These parent-specific maps consist of the 19 largest

linkage groups for each parent parental map. They amount to 19 pairs of chromosomes. For

demonstration purpose, we choose the linkage group 10 of the P. deltoides parental map to detect

statistically meaningful QTLs that potentially affect the age-at-onset of tree growth.

By applying the additive hazards regression model to the time-to-events, one QTL is detected

on the linkage group 10 between the markers CA/CCC-640R and CG/CCC-825 in interspecific
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Table 4: Summary of simulation studies

(βR∗, βG∗)T = (0, 0)T

β̂R β̂G

Censoring Bias Coverage Mean Bias Coverage Mean

n Percentage Weight |β̂R − βR∗| Probability SE(β̂R) |β̂R − βR∗| Probability SE(β̂G)

100 15% N 0.034 0.954 0.411 0.044 0.943 0.340

100 15% Y 0.038 0.955 0.394 0.016 0.962 0.331

100 30% N 0.045 0.954 0.430 0.064 0.946 0.323

100 30% Y 0.049 0.942 0.409 0.047 0.953 0.355

200 15% N 0.033 0.958 0.291 0.041 0.961 0.257

200 15% Y 0.024 0.974 0.283 0.044 0.948 0.251

200 30% N 0.047 0.956 0.301 0.021 0.962 0.262

200 30% Y 0.041 0.958 0.297 0.026 0.938 0.259

(βR∗, βG∗)T = (1, 1)T

β̂R β̂G

Censoring Bias Coverage Mean Bias Coverage Mean

n Percentage Weight |β̂R − βR∗| Probability SE(β̂R) |β̂R − βR∗| Probability SE(β̂G)

100 15% N 0.016 0.960 0.452 0.043 0.945 0.357

100 15% Y 0.013 0.956 0.510 0.016 0.977 0.299

100 30% N 0.018 0.967 0.467 0.012 0.935 0.378

100 30% Y 0.047 0.974 0.488 0.064 0.925 0.349

200 15% N 0.022 0.940 0.396 0.039 0.952 0.287

200 15% Y 0.051 0.958 0.393 0.036 0.947 0.277

200 30% N 0.031 0.957 0.411 0.037 0.949 0.375

200 30% Y 0.018 0.971 0.388 0.058 0.942 0.313
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hybrids of poplar at adjusted p−value of 0.05 based on 1000 bootstrapped samples. The 95%

confidence interval for the QTL is (10.51cM, 20.79cM) from the marker CA/CCC-640R. And the

estimated genotype effect is 0.517 with standard error of 0.112. In fact, when the overall growth

curves of diameters were studied, a QTL was also reported between these same set of markers,

at about 13cM from CA/CCC-640R (Ma, Casella and Wu, 2002). These discoveries consistently

indicate that there may be existence of QTL between these two markers, whose alleles control not

only the growth profiles but also the rate of growth measure by time-to-growths.

4 DISCUSSION

Statistical methods in mapping quantitative trait loci for age-at-onset in presence of censoring

has been developed in literature. For example, an additive gamma frailty model with inheritance

vectors was proposed in Li (2000) to develop likelihood ratio-based LOD score and test the disease

gene locus. Nevertheless, in most of these methods, the popular Cox proportional hazards models

have been used. The advantages of the Cox model are its appealing interpretation in hazard

functions and readily available softwares. Its nonlinear form, however, often causes challenges in

preserving proportionality in mixture models. As pointed in Lin and Ying (1997), the mixed Cox

model often leads to “numerical and theoretical difficulties” in inference procedures and “awkward

interpretation” in parameter interpretation.

The additive hazards model used in this article has same appealing interpretation in hazard

function as the Cox model. More attractively, its additive invariance for mixture distributions

enable itself with much more convenience and power in modeling and inferences. One caveat in

using the additive hazards model is that it usually requires restricted parameter space to warrant

positive hazard functions. A possible solution is to replace the linear combination terms with their

respective exponentiated terms. Then it may lose the attractive feature of simplicity in additivity

and also leads to cumbersome parameter interpretation.

Although the methodologies are demonstrated in this article with experimental crosses of stan-

dard backcross and F2, they can be easily extended to other occasions. For examples, one such

occasion is the so-called Composite Interval Mapping (Zeng, 1994), when the QTLs are suspected

to link to multiple markers or intervals between markers. To extend the proposed methods to the
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Composite Interval Mapping for age-at-onset, consider

λ{t | G,M} = λ0(t) + βGG + βT
MM ,

where M are the selected markers for genetic background control. This would adjust for the effect

of other potential QTLs outside the interval containing the putative QTL of interest. For more the

type of family pedigree data structure, the additive hazards model with frailties can be also used

(Lin and Ying, 1997).

APPENDIX: Proof of theorems

A.1 Proof of Lemma 1

Consider the predictable variation process of n−1/2E(t;β∗, r∗),

n−1
n∑

i=1

∫ t

0
Yi(u)

{
J i(u)− J(u)

}⊗2
λ(u | Ri,M l,i)du,

which converges to V , due to the convergence of integrands on a finite closed interval [0, τ ].

Thus the first condition of 2.5.1 in the Rebolledo’s theorem is satisfied. The third condition

of 2.5.3 is also satisfied by the assumptions in the Lemma. Therefore, the martingale inte-

gral form of n−1/2E(β∗, r∗) leads to its weak convergence according to the Theorem II.5.1 in

Andersen, Borgan, Gill and Keiding (1992, p. 83). In fact, the listed conditions are also special

forms of the stability and negligibility conditions in Lin and Ying (1995).

A.2 Proof of Theorem 2

Consider

n−1

 ∂E(β∗, r∗)/∂β

∂E(β∗, r∗)/∂r

 = n−1
n∑

i=1

∫ τ

0

 ∂{J i(u;β∗, r∗)− J(u;β∗, r∗)}/∂β

∂{J i(u;β∗, r∗)− J(u;β∗, r∗)}/∂r

dB0i(u)

− n−1
n∑

i=1

∫ τ

0
Yi(u)

{
J i(u;β∗, r∗) − J(u;β∗, r∗)

} ∂λ(u |Ri,M l,i)/∂β

∂λ(u |Ri,M l,i)/∂r

 du.

The first term on the right-hand side of the above equation is sum of martingale integrals. Their

predictable variation is of op(1), due to the factor of n−1, and hence negligible asymptotically. The
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second term converges to −D according to the condition in theorem. When D is nonsingular,

consider the Taylor expansion

n1/2

 β̂ − β∗

r̂ − r∗

 =

−n−1

({
∂E(β̃, r̃)

∂β

}T

,

{
∂E(β̃, r̃)

∂r

}T)−1
{n−1/2E(β∗, r∗)

}
.

By the uniform continuity assumed in Theorem 2, for any ε > 0, there exists δ > 0 independent of

n, such that

n−1

∥∥∥∥∥∥
 ∂E(β, r)/∂β

∂E(β, r)/∂r

−
 ∂E(β∗, r∗)/∂β

∂E(β∗, r∗)/∂r

∥∥∥∥∥∥ <
ε

2
,

when ‖(βT − βT
∗ , rT − rT∗)T‖ < δ. Therefore, as n → ∞,

pr

sup

∥∥∥∥∥∥n−1

 ∂E(β, r)/∂β

∂E(β, r)/∂r

+ D

∥∥∥∥∥∥ > ε : ‖(βT − βT
∗ , rT − rT

∗ )T‖ < δ


goes to 0. By the nonsingularity of D, there exist a neighborhood of (βT

∗ , rT∗ )T such that the

uniqueness and consistency of β̂ and r̂ are warranted. As a result, the asymptotic normality is

straightforward.

A.3 Proof of Corollary 3

The first term in the decomposition of n1/2{Λ̂0(t, β̂, r̂)−Λ0(t)} is n1/2{Λ̂0(t; β̂, r̂)− Λ̂0(t; β̂∗, r̂∗)},
which is equivalent to ∂Λ̂0(t;β∗, r∗)/∂β

∂Λ̂0(t;β∗, r∗)/∂r

T

n1/2

 β̂ − β∗

r̂ − r∗

+ op(1) =
{∫ t

0
y2(u)du

}T

D−1{n−1/2E(β∗, r∗)}+ op(1),

due to

sup
t∈[0,τ ]

∥∥∥∥∥∥
 ∂Λ̂0(t;β∗, r∗)/∂β

∂Λ̂0(t;β∗, r∗)/∂r

−
∫ t

0

y2(u)du

∥∥∥∥∥∥ ≤
∫ τ

0

∥∥∥∥∥∥∥∥∥


∑

i Yi(u)Ri(u)/
∑

i Yi(u)∑
i Yi(u)pl,i(r)TM l,i∑

i Yi(u)βGp
T
l,iM l,ip

′
l,i/
∑

i Yi(u)

− y2(u)

∥∥∥∥∥∥∥∥∥
du

and the definition of y2(·). The second term of n1/2{Λ̂0(t;β, r) − Λ̃0(t)} in the decomposition is

sum of martingale integrals as

n1/2

∫
∑

i Yi(u)>0

∑n
i=1 dB0i(u)∑n

i=1 Yi(u)
.
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The last term goes to zero almost surely. Thus, n1/2{Λ̂0(t, β̂, r̂) − Λ0(t)} is equivalent to{∫ t

0

y2(u)du

}T

D−1

[
n−1/2

n∑
i=1

∫ τ

0

{
J i(u)− J(u)

}
dB0i(u)

]
+n1/2

∫
∑

i Yi(u)>0

∑n
i=1 dB0i(u)∑n

i=1 Yi(u)
+op(1).

By a multivariate central limit theorem of martingales, the conclusion in Corollary 3 is proven and

the variance calculation follows.

A.4 Proof of Corollary 4

As shown in the proof of Corollary 3, Λ̂0(·; β̂, r̂) converges to Λ0(·) uniformly on [0, τ ]. Fur-

thermore, since D̂(β̂, r̂) is equivalent to −n−1(∂E(β∗, r∗)T/∂β, ∂E(β∗, r∗)T/∂r)T + op(1) and the

consistency of β̂ and r̂, D̂(β̂, r̂) is thus consistent. Similarly, V̂ (β̂, r̂) is also consistent. Thus,

D̂(β̂, r̂)−1V̂ (β̂, r̂)D̂(β̂, r̂)−1 is consistent.
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