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A Semiparametric Model Selection Criterion
with Applications to the Marginal Structural

Model

M. Alan Brookhart and Mark J. van der Laan

Abstract

Estimators for the parameter of interest in semiparametric models often depend
on a guessed model for the nuisance parameter. The choice of the model for the
nuisance parameter can affect both the finite sample bias and efficiency of the re-
sulting estimator of the parameter of interest. In this paper we propose a finite
sample criterion based on cross validation that can be used to select a nuisance
parameter model from a list of candidate models. We show that expected value
of this criterion is minimized by the nuisance parameter model that yields the es-
timator of the parameter of interest with the smallest mean-squared error relative
to the expected value of an initial consistent reference estimator. In a simulation
study, we examine the performance of this criterion for selecting a model for a
treatment mechanism in a marginal structural model (MSM) of point treatment
data. For situations where all possible models cannot be evaluated, we outline
a forward/backward model selection algorithm based on the cross validation cri-
terion proposed in this paper and show how it can be used to select models for
multiple nuisance parameters. We evaluate the performance of this algorithm in a
simulation study of the one-step estimator of the parameter of interest in a MSM
where models for both a treatment mechanism and a conditional expectation of
the response need to be selected. Finally, we apply the forward model selection
algorithm to a MSM analysis of the relationship between boiled water use and
gastrointestinal illness in HIV positive men.



1 Introduction

The selection of the appropriate statistical model for the data and research
question under investigation is a critical step in the practice of data analysis.
The literature on model selection is extensive, covering such varied topics
as selecting smoothing parameters in density estimation (Silverman, 1986),
selecting the order of autoregressive processes in the analysis of time series
(Akaike 1969; Parzen 1974) to the selection of covariates to be included in
a multivariate linear regression model (Mallows, 1973; Allen, 1971). In this
paper, we identify a new model selection problem relating to the estimation of
nuisance parameters in semiparametric models and propose a model selection
criterion appropriate to this problem based on cross-validation (Stone, 1974).

To understand the problem, consider a semiparametric model where the
distribution of the data is modeled with Fη,ψ where ψ is the parameter of
interest and η is a high dimensional nuisance parameter. In this paper, we
consider classes of estimating functions of ψ that depend on an estimated
value for η. Additionally, we assume that the choice of ψ is completely
determined by the specific research question, so that our model selection
problem is concerned only with the selection of a model for η.

Due to the curse of dimensionality, a non-parametric estimate of η may
not be possible; therefore some modelling assumption for η will be neces-
sary. How η is modeled can affect both the finite sample bias and variance
of the estimate of ψ. When the parameter η is orthogonal to ψ (in the sense
that their scores are uncorrelated), the asymptotic variance of the estima-
tor ψ̂(η̂) decreases as the dimension of the model for η̂ gets larger (Robins
and Rotnitsky 1992; van der Laan and Robins 2002). This result implies
that asymptotically η should be estimated with as large a model as possi-
ble. However, in finite samples there is no established theory to guide the
construction of the model for η. In general, larger models for η will have
less bias, but may suffer from greater finite sample variability. This paper is
concerned with the development of a finite sample criterion that can be used
to select models of η.

Model selection criteria are often based on either prediction error, for ex-
ample Allen’s PRESS statistic and Mallows’s Cp statistic, or on the Kullback-
Liebler distance (Kullback and Liebler, 1951), for example Akaike’s Informa-
tion Criterion (Akaike, 1973). Due to the curse of dimensionality, in many
semiparametric models the maximum likelihood estimate is either asymptot-
ically inconsistent or has poor finite sample performance (Robins and Ritov,
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1997; van der Laan and Robins 2002). For this reason, model selection cri-
teria based directly on the Kullback-Liebler distance are not always feasible
in semiparametric models. Additionally, since we are concerned with the
estimation of a parameter rather than the prediction of an outcome, it seems
natural to base our model selection criterion directly on the estimation error
rather than on prediction error.

In this paper, we propose a model selection criterion based on cross-
validation that aims to minimize the mean-squared error of ψ̂. The develop-
ment of this criterion assumes that we have available a consistent, but poten-
tially highly variable estimate of the true value of ψ. The goal for our model
selection criterion is to select a model from a given a set of candidate models
of η, yielding estimators {η̂0, η̂1, . . . , η̂K}, where the estimator of the parame-
ter of interest ψ̂(η̂0) is assumed to be consistent and approximately unbiased
for ψ although possibly highly variable. We show that the expected value of
this criterion is minimized by the estimator ψ̂(η̂k) ∈ {ψ̂(η̂0), ψ̂(η̂1), ..., ψ̂(η̂K)}
with the smallest mean-squared error relative to E[ψ̂(η̂0)].

We demonstrate the use of the criterion in the context of the marginal
structural model (MSM) for point treatment data of Robins (1998, 2000).
The estimators that we consider are semiparametric and depend on the es-
timation of either one or two large nuisance parameters. In this setting,
we examine the performance of model selection criterion and an associated
iterative model selection algorithm through simulation studies and a data
analysis.

This paper is organized as follows: in section 2, we review the marginal
structural model for point treatment data and discuss two different estima-
tors of its parameters, the inverse-probabilty of treatment weighted (IPTW)
estimator and the one-step estimator. In section 3, we present our model
selection criterion and discuss its characteristics. In section 4, we introduce
a forward selection algorithm based on this criterion that can be used to
select variables for multiple distinct nuisance parameter models. In section
5, we present a simulation study of the model selection criterion in an MSM
for both a discrete and continuous outcome. In section 6, we present a sim-
ulation study of the forward selection algorithm for selecting variables to be
included in a treatment mechanism and projection term model for the one-
step estimator of an MSM parameter. Finally, in section 7 we demonstrate
the use of our forward model selection algorithm in an MSM analysis of the
causal relationship between boiled water use and gastrointestinal illness in
HIV positive men.

2

http://biostats.bepress.com/ucbbiostat/paper129



2 Marginal structural model for point treat-

ment data

We illustrate the use of the model selection methodology proposed in this
paper in the context of the marginal structural model (MSM) of point treat-
ment data (Robins, 1998). The data that we consider for this model are n iid
realizations of (W,A, Y ) where Y is the outcome, A is the treatment, and W
is vector of potential confounders that may be related to both A and Y . The
only assumption that we impose on the data is that there are no unmeasured
confounders for treatment. This assumption is expressed formally with the
following conditional independence statement:

A ⊥ (Ya, a ∈ A)|W
where A is the set of all possible treatments and Ya is the counterfactual
outcome a randomly selected subject would have experienced if, possibly
contrary to fact, he had been assigned treatment a.

A marginal structural model is a model for the mean of the counterfactual
random variable Ya, i.e.,

E[Ya|V ] = mψ(a, V )

where m is our model for the mean of Ya parameterized with ψ ∈ RM , and
V ⊂ W are covariates on which we may want to condition.

Under the assumption of no unmeasured confounders for treatment, ψ
can be consistently estimated by solving the so-called inverse probability of
treatment weighted (IPTW) estimating equation:

1

n

n∑

i=1

U(Yi, Ai,Wi; ψ, g) ≡ 1

n

n∑

i=1

h(Ai, Vi)εi(ψ)

g(Ai|Wi)
= 0

where εi(ψ) = (Yi −mψ(Ai, Vi)), g is the conditional distribution of A given
W , and h(A, V ) is a vector function of A and V . This estimating equation
follows directly from the identity:

E[
h(A, V )ε(ψ)

g(A|W )
] = 0.

Note that for identifiability, we require that g(a|W ) is bounded away from
zero for all a ∈ A or less restrictively that maxa∈A |h(a, V )/g(a|W )| < ∞
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almost everywhere. For the purposes of this paper, we take

h(A, V ) =
d

dψ
m(A, V )g(A|V )

E[ε(ψ)2|A,W ]
.

Solving the estimating equation U for this choice of h is equivalent to per-
forming a weighted regression of Y on A and V using as weights

w =
g(A|V )

g(A|W )
.

In either case, since g is typically not known, it is regarded as a nuisance
parameter and estimated.

The efficiency and robustness of the IPTW estimator can be improved by
subtracting from U its projection onto TRA, where TRA denotes the Hilbert
space of scores for all one-dimensional sub-models of g satisfying the as-
sumption of no unmeasured confounders for treatment (Robins 1998). The
projection is given by

Π(U |TRA) = E[
h(A, V )ε(ψ)

g(A|W )
|A,W ]− E[

h(A, V )ε(ψ)

g(A|W )
|W ]

where Π denotes the Hilbert space projection operator. This projection term
can be written as:

Π(U |TRA) =
h(A, V )E[ε(ψ)|A,W ]

g(A|W )
− ∑

a∈A
h(a, V )E[ε(ψ)|A = a,W ]

where E[ε(ψ)|A,W ] = E[Y |A, W ] −mψ(A, V ). We denote this orthogonal-
ized version of the IPTW estimating function as U∗ and write it as:

0 =
1

n

n∑

i=1

U∗(Yi, Ai,Wi; ψ, Q, g) ≡

1

n

n∑

i=1

{
h(Ai, Vi)εi(ψ)

g(Ai|Wi)
− h(Ai, Vi)E[ε(ψ)|Ai,Wi]

g(Ai|Wi)
− ∑

a∈A
h(a, Vi)E[ε(ψ)|Ai = a,Wi]

}
.

where Q = E[ε(ψ)|A,W ]. The estimator U∗ now depends on two nuisance
parameters: g, and Q.

In additional to being more efficient than U , U∗ also has the property
of being doubly robust (Scharfstein, Rotnitsky, Robins 1999; Robins 2000;
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van der Laan and Robins 2002). So, even if the model for g is misspecifed,
the estimator remains consistent provided that the model for Q is specified
correctly.

It is possible to solve U∗ directly, however, given an initial
√

n−consistent
estimate of ψ, say ψ̂ from the solution of U , we can use the principle of one-
step estimation to derive an estimator that is asymptotically equivalent to
the solution of U∗. To do this, we perform one iteration of the Newton-
Raphson algorithm using ψ̂ as our initial estimator. This yields the so-called
one-step estimator:

ψ̂∗ = ψ̂ − C−1

{
1

n

n∑

i=1

U∗(Yi, Ai,Wi; ψ̂, Q, g)

}

where C is a p by p matrix of derivatives:

C =
1

n

n∑

i=1

d

dψ
U∗(Yi, Ai,Wi; ψ,Q, g)

∣∣∣∣∣
ψ=ψ̂

.

Note that although the one-step estimator is computationally efficient, the
double robust property is lost since the consistency of the one-step estimator
depends on

√
n−consistency of the initial estimator.

Both the IPTW and the one-step estimators of parameters in the marginal
structural model outlined here require the estimation of nuisance parameters.
Misspecification of the nuisance parameter models can lead to inconsistent
and/or highly variable estimators of the parameter of interest. For the IPTW
estimator, the asymptotic variance of ψ̂ decreases as the model for g gets
larger. In the case of the one-step estimator ψ̂∗, when Q is misspecified the
asymptotic variance decreases as the model for g get larger. These asymp-
totic results have led to the suggestion of creating richly specified nuisance
parameter models. While this is certainly correct asymptotically, in finite
samples large nuisance parameters models may lead to estimators that are
considerably more variable than more succinctly specified models. In the fol-
lowing section, we propose a semiparametric model selection criterion based
on cross-validation that can be used to help select nuisance parameter models
with the goal of balancing the potential variance of large nuisance parameter
models with possible bias of smaller models.

5
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3 Model selection methodology

The goal for our model selection criterion is to select a nuisance parameter
model from a set of candidate models that minimizes the mean-squared error
of the estimator of ψ ∈ RM . The development of our criterion is based on
the assumption that the estimator ψ̂(η̂0) is a consistent and approximately
unbiased, although potentially highly variable estimator of ψ. To denote the
dependance of the estimator on both the data and the choice of model, we
denote ψ̂(η̂k) as ψ̂k(X). We assume that our estimators ψ̂k(X) , k ∈ K =
{0, 1, ..., K} are all regular asymptotically linear (RAL) estimators.

For simplicity of exposition, we first consider univariate ψ (i.e., M = 1).
Let the optimal estimator be referenced by k∗, i.e.,

k∗ = argmink∈KEF [(ψ̂k(X)− ψ)2],

where F is the true distribution of the data.
Our model selection criterion is based on a cross-validation procedure

where the data are partitioned into 2 groups V times. Let X0
v be data in

the training sample and X1
v be the data in the validation sample for the vth

partition of the data.
For univariate ψ, our criterion function is given by

CV (k) =
1

V

V∑

v=1

(ψ̂k(X
0
v )− ψ̂0(X

1
v ))2. (1)

Our estimate of the optimal model is found by minimizing CV (k), i.e.,

k̂∗ = argmink∈KCV (k)

To see why this is a reasonable criterion, note that

E[CV (k)] =
1

V

V∑

v=1

{
E[(ψ̂k(X

0
v )− ψ)2]

−2E[(ψ̂k(X
0
v )− ψ)(ψ̂0(X

1
v )− ψ)] + E[(ψ̂0(X

1
v )− ψ)2]

}
.

and since X0
v is independent of X1

v by cross-validation,

E[CV (k)] =
1

V

V∑

v=1

{
E[(ψ̂k(X

0
v )− ψ)2]
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−2E[(ψ̂k(X
0
v )− ψ)]E[(ψ̂0(X

1
v )− ψ)] + E[(ψ̂0(X

1
v )− ψ)2]

}
.

If ψ̂0(X
1
v ) is unbiased, then

E[CV (k)] =
1

V

V∑

v=1

{
MSE(ψ̂k(X

0
v )) + VAR[ψ̂0(X

1
v )]

}
.

Since VAR[ψ̂0(X
1
v )] is constant across k, the estimator that yields the smallest

mean squared error for the training data minimizes E[CV (k)].
If ψ̂0 is biased, the cross term 2E[(ψ̂k(X

0
v ) − ψ)]E[(ψ̂(X1

v , 0) − ψ)] in
E[CV (k)] is not zero. However, since by assumption ψ̂0 is a consistent
RAL estimate of ψ, the bias term E[ψ̂0(X

1
v ) − ψ] is O(1/n). Therefore the

cross-term 2E[(ψ̂k(X
0
v ) − ψ)]E[(ψ̂0(X

1
v ) − ψ)] will be asymptotically negli-

gible because it will be either O(1/n2) if ψ̂ is consistent, or if ψ̂k is incon-
sistent the bias squared term E[(ψ̂k − ψ)]2 will dominate E[CV (k)]. How-
ever, it would be possible to estimate 2E[(ψ̂k(X

0
v ) − ψ)]E[(ψ̂0(X

1
v ) − ψ)]

via the bootstrap and adjust the criterion function by minimizing instead
CV (k) + 2EF̂ [(ψ̂k(X

0
v )− ψ)]EF̂ [(ψ̂0(X

1
v )− ψ)].

For multidimensional ψ, our aim is to minimize the sum of the mean-
squared error of ψ with respect to a M by M matrix B:

k∗ = argmink∈K
{
(ψ̂k(X)− ψ)T B(ψ̂k(X)− ψ)

}
.

The matrix B is arbitrary and could reflect the relative importance of the
elements of ψ. One natural choice of B would be, ˆVAR[ψ̂k(X)]−1. For such a
choice of B our criterion would correspond to minimizing the mean-squared
error of ψ with respect to it’s variance-covariance matrix.

Given this aim, we propose to use the following analogous criterion func-
tion

CV (k) =
1

V

V∑

v=1

{
(ψ̂k(X

0
v )− ψ̂0(X

1
v ))T B(ψ̂k(X

0
v )− ψ̂0(X

1
v ))

}
. (2)

For a fixed nuisance parameter model, asymptotic inference for ψ can be
based on the variance-covariance matrix of the influence curve of ψ. How-
ever, when the nuisance parameter model is selected in a data adaptive way,
as we propose here, this confidence interval may be inaccurate. In order
for the variability of the model selection procedure to be reflected in the
confidence interval, it would be possible to employ a bootstrap estimation
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procedure where for each bootstrap resample, the nuisance parameter model
is re-selected before ψ estimated.

An additional issue facing the analyst is how to optimally partition the
data. For Monte-Carlo cross-validation, the data are randomly divided in a
training and validation data set for each of the V divisions. For V -fold cross-
validation, the data are split into V approximately equal sized partitions
where for the vth iteration, the validation sample consists of the vth division
of the data and the training sample consists of the remaining v− 1 divisions.
Recent theoretical and empirical results have suggested that V -fold cross-
validation, while computationally simpler than Monte-Carlo cross-validation,
is asymptotically equivalent (van der Laan, Dudoit, Keles 2003).

3.1 Forward/backward model selection of the nuisance
parameter model based on cross-validation w.r.t.
parameter of interest

In situations where it is not possible to evaluate all candidate nuisance pa-
rameter models, it will be necessary to conduct a search in the space of
possible models to find the best model selection possible. For this task, we
propose a forward/backwards model selection algorithm that can be used to
build the nuisance model in a stepwise manner. Consider the situation where
we need to select variables for a single nuisance parameter model, for exam-
ple in the IPTW estimator where η = g(A|W ). Suppose that the models for
g that we consider are regression models defined by the set of covariates we
enter in the model. Let the set of p covariates be indexed with {1, . . . , p}.
For a subset R ⊂ {1, . . . , p}, let βR be the p-dimensional regression param-
eter with j-th component set equal to zero for all j 6∈ R. Each subset R
defines a lower dimensional multivariate regression model for g. Let ψ̂R be
the corresponding estimator of the parameter of interest ψ. As before, let ψ̂0

be an approximately unbiased estimator of ψ. For example, in the context
of the IPTW estimator, ψ̂0 could be given by estimating g(A|W ) with a re-
gression of A onto all covariates with a significant marginal association with
Y . As before, let X0

v be data in the training sample and X1
v be the data in

the validation sample for the vth partition of the data. We would like to find
the model selection R∗ that minimizes either the univariate or multivariate

8
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criterion function defined previously, e.g.,

CV (R) =
1

V

V∑

v=1

(ψ̂R(X0
v )− ψ̂0(X

1
v ))2.

However, because there are 2p possible subsets of {1, . . . , p}, it is compu-
tationally infeasible to evaluate all of possible nuisance parameter models for
large p. In this situation, we propose to use a forward/backward selection
algorithm for obtaining a good model selection R̂∗. This algorithm works like
a standard stepwise model selection algorithm, however instead of adding or
subtracting variables that improve the predictive accuracy of the model, as
measured by a criterion such as AIC, our model selection algorithm selects
variable with the aim of improving the criterion with the ultimate goal of
minimizing the MSE of the parameter of interest. The algorithm is formally
defined as follows:

Initialization of forward selection. Let k = 0, R(0) =, R+(j, k) = R(k)∪
{j}.

Forward selection. We have R(k) is given. Let j∗ = argminj /∈R(k)CV (R+(j, k)).
If CV (R+(j∗, k)) < CV (R(k)), then k = k + 1, R(k) = R+(j∗, k) and
repeat the previous step. Otherwise we stop with this forward selection
and proceed to backward selection with this set R(k) as start.

Backward selection. From the forward selection algorithm we obtain a set
R(k). Let R−(j, k) = R(k)/{j}. Let j∗ = argminj∈R(k)CV (R−(j, k)). If
CV (R−(j∗, k)) < CV (R(k)), then k = k − 1, R(k) = R−(j∗, k) and re-
peat the previous step. Otherwise, we stop with this backward selection
and stop or proceed with forward selection with this set R(k).

Iterate forward/backward selection until convergence. Let R̂∗ = R(k)
be the final subset resulting from this algorithm.

The algorithm presented here can be generalized to situations where we
need to select regression models for two or more nuisance parameters.

9
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4 Simulation study of model selection in an

MSM

Through a simulation study, we examine the performance of our proposed
criterion for selecting a treatment mechanism model in the IPTW estimator
of the parameters in a marginal structural model of point treatment data.
In this experiment, we take W to be a 3-dimensional covariate, A to be
a dichotomous treatment, and Y to be either a continuous or dichotomous
outcome. We consider only simple linear combination of the W , so in this
simulation we can examine all eight possible combinations of covariates in
the treatment mechanism model.

We generate data using the following laws for the observed data:

• W is multivariate normal with mean 0 and Σ = I.

• A is conditionally Bernoulli with mean

E[A|W ] = (1 + exp{−(β0 + β1W1 + β2W2 + β3W3)})−1.

• The conditional distribution of Y is either Gaussian with mean

E[Y |A,W ] = α0 + α1W1 + α2W2 + α3W3 + α4A

and variance σy or Bernoulli with

E[Y |A,W ] = (1 + exp{−(α0 + α1W1 + α2W2 + α3W3 + α4A)})−1.

Since treatment only depends on W , the simulated data satisfy the assump-
tion of no unmeasured confounders for treatment.

For the simulations where we take Y to be continuous, the parameter of
interest is ψ(1) = E[Y1] − E[Y0], so we fit the following marginal structural
model:

m(a, V ) = ψ(0) + ψ(1)a.

For the simulations where Y is dichotomous, we are interested in the causal
log odds-ratio, i.e.,

ψ(1) = log
E[Y1](1− E[Y0])

E[Y0](1− E[Y1])
,

so we fit the marginal structural model, where

E[Ya] = m(a, V ) = (1 + exp{−(ψ(0) + ψ(1)a)})−1

10
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To compute the mean-squared error for the simulations, we need to deter-
mine the true value of ψ given the true value of the association parameters α
and β. This can be done using the G-computation formula of Robins (1986).

Given this set-up described, we consider three scenarios based on different
settings from the parameters of the data generating distribution. We evaluate
each of these scenarios for both the continuous and dichotomous outcomes.
In all three scenarios, the covariates W1 and W2 are related to the outcome,
while W3 is not (α1 = α2 = 1, α3 = 0). For all scenarios, the treatment has
the same effect on the outcome (α4 = 1). The three scenarios differ in how
the covariates are related to treatment:

• Scenario 1 Treatment is completely randomized as it would be in a
clinical trial (β1 = β2 = β3 = 0). This scenario is depicted graphically
in figure 1.

• Scenario 2 Treatment depends on W3 (β3 = 1), but since this covariate
is unrelated to the outcome there is no confounding. This scenario is
depicted graphically in figure 2.

• Scenario 3 Treatment is confounded through W1 while W3 still pre-
dicts treatment (β1 = β3 = 1). This scenario is depicted graphically in
figure 3.

Additionally, the marginal variance of W1, W2,W3 is one and the conditional
variance of Y is one when Y is continuous, and is the nominal binomial
variance when Y is dichotomous.

Simulation Experiment 1. To evaluate the performance of cross-
validation under each scenario and for each type of outcome, we simulate
200 data sets for sample sizes N = 200 and N = 1000. For each data
set, we evaluate the estimators corresponding to the eight possible combi-
nations of W1,W2,W3 in the treatment mechanism model and the estimator
corresponding to an unweighted estimating equation. The cross-validation
procedure evaluates all of these estimators for each data set and selects the
one that minimizes 1 where m = 25. For these simulations, we take ψ̂0 to
be the estimator derived from using a fully specified treatment mechanism
model; i.e.,

ĝ(A|W ) = β̂0 + β̂1W1 + β̂2W2 + β̂3W3.

The MSE of all estimators and the one selected by the cross-validation pro-
cedure are reported in tables 1 and 2. Additionally, we report the percentage
of times a particular estimator was selected by cross-validation.

11
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Simulation Experiment 2. To gain insight into how the criterion per-
forms under different specifications of the null model, we repeat the previous
experiment simulating data under each of the scenarios specified above for a
single sample size (n = 500); however we consider two different specifications
of the null model. In the Scenarios 1 and 2 where there is no confounding,
any specification of the nuisance parameter model in ψ̂0 will yield a consis-
tent estimate of ψ. For Scenario 3, only specifications of g(A|W ) that include
the confounder W3 will lead to a consistent estimate of ψ. For Scenarios 1,
we compare cross-validation using as ψ̂0 an unweighted regression of Y on
A, as might be done in a randomized clinical trial, to a null model based
on a treatment mechanism model using both W1 and W2. For both Scenar-
ios 2 and 3, we compare cross-validation based on a ψ̂0 using an estimate
of g based on to a model using all covariates W1,W2,W3 to one using only
W1,W2. The results for continuous and dichotomous outcomes, respectively,
are displayed in tables 3 and 4.

Under all three scenarios, the most efficient choice for the model of
g(A|W ) is the one using both W1 and W2, the covariates related to the out-
come. In all cases, adding W3, the covariates related only to treatment, in-
creases the finite sample variability of our estimator. These results are much
more pronounced with the continuous outcome than with the dichotomous
outcome. For simulations involving the continuous outcome, the estimator
generated by cross-validation is as efficient, or nearly so, as the estimator
derived from a treatment mechanism model using only W1 and W2. The
performance of the model selection criterion for a dichotomous outcome is
nearly as efficient as the most efficient choice of the model for g, given the
efficient choice for the null model.

Increasing the sample size does not improve the performance of this pro-
cedure under either Scenario 1 or 2. However, increasing the sample size
increases the relative MSE of the estimator chosen by cross-validation to any
inconsistent estimator (i.e., any estimator in Scenario 3 that does not include
the confounder in the model for g(A|W )). This suggests that increasing sam-
ple size will help rule out all inconsistent estimators, but will not necessarily
help the criterion select between the consistent estimators.

The second simulation experiment suggests that the performance of the
procedure is strongly dependent on the choice for the null model. The cri-
terion is able to select models that are more efficient than the null (if they
exist); however these models are selected more frequently when more effi-
cient choices for ψ̂0 are used. This observation suggests that the data analyst
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should include in η0 not just confounders, in order to insure the approximate
unbiasedness of ψ̂0, but also covariates related to the outcome in order to in-
crease the efficiency of ψ̂0 and thus the overall performance of the algorithm.

5 Simulation study of forward model selec-

tion algorithm

We examine the performance of the forward component of our proposed
forward/backward model selection algorithm to select the nuisance parameter
models in a one-step estimator of an MSM through a simulation study. In
these simulations, we use the same basic data generating set-up outlined in
the previous section, although here we only consider continuous outcomes
for a single sample size (n = 500). We use slightly different settings for the
parameters of the observed data generating distributions.

In all three scenarios, the treatment has always the same effect on the out-
come (α4 = 1), VAR[W2] = VAR[W3] = VAR[Y |A,W ] = 1 an VAR[W1] = 2.

• Scenario 1: (One Confounder, strong confounding) Treatment
depends on W1 and W3 (β1 = β3 = 1, β2 = 0) while both W1 and W2

are related to the outcome (α1 = 1, α2 = 1.5, α3 = 0).

• Scenario 2: (Two Confounders) Treatment depends on W1 and
W3 (β1 = 1, β3 = 1.2, β2 = 0) while all covariates are related to the
outcome (α1 = 1, α2 = 1.5, α3 = 0.5).

Our model selection simulation considers each of the three components
of W as possible covariates in both the model for g and the model for Q.
For each data generating scenario, we run the forward model selection cross-
validation algorithm based on 25 sample partitions for two different null
models: an IPTW estimator and a one-step estimator. The IPTW used as
ψ̂0 includes only covariates related to the outcome in the model for g. The
one-step estimator used as ψ̂0 includes only the confounders in the treatment
mechanism model, but includes all variables related to the outcome in the
model for Q. The results for 200 simulated data sets are presented in table
5. We report the mean-squared error of the two estimators chosen by cross-
validation as well as five other sample estimators:

• One Step 1: model for g includes W1, W2, W3 model for Q include W1,
W2, W3, A.
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• One Step 2: model for g includes W1, model for Q include W1, W2,A.

• One Step 3: model for g includes W1, W2, model for Q include W1,
W2,A.

• IPTW 1: model for g includes W1, W2, W3.

• IPTW 2: model for g includes only W1, W2.

Consistent with Section 4, these results suggest that, for both scenarios,
the performance of the model selection algorithm is strongly dependent on
the efficiency of the null model used. In Scenario 1, cross-validation based on
the IPTW has approximately three times the MSE of the estimator selected
using as a null model a more efficient one-step estimator. For Scenario 2, the
relative MSE is slightly larger than three.

6 Data analysis example: Estimating the causal

relationship between boiled water use and

acute gastrointestinal illness in HIV posi-

tive men.

In this section, we employ the forward component of our forward/backward
model selection algorithm outlined in Section 3 to fit an MSM to an epidemi-
ological survey data set. We use this algorithm to select both a model for g
in an IPTW estimator and a model for g and Q in the one-step estimator.

The data that we use were gathered to estimate the causal effect of boiled
water use on the incidence of diarrhea among HIV positive men in San Fran-
cisco. The data (n = 499) consist of a treatment A (boiled water use),
an outcome Y (diarrhea during the past seven days), and 26 additional co-
variates that are all potential confounders. As potential confounders, these
variables may both predict the use of boiled water and be independently re-
lated to diarrhea incidence. The potential confounders include factors such
as risky sexual activity, ethnicity, presence of pets in the home, and consump-
tion of high risk foods (e.g., shellfish). The data and sample are described in
greater detail elsewhere (Eisenberg, et. al., 2002).

We assume that the 26 covariates contain all potential confounders, so
that the assumption of no unmeasured confounders for treatment holds. The
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parameter of interest in this analysis is the causal odds-ratio due to “boiled
water use,” so we estimate the following MSM

E[Ya] =
1

1− exp{ψ(0) + ψ(1)a} .

With many confounders, we might choose to select only those with marginal
relationship with the outcome to constitute the treatment mechanism model
in ψ̂0. However, with only 26 total covariates, we take ψ̂0 to be an IPTW es-
timator based a ĝ derived from a logistic regression of A on all 26 covariates.
Using this ψ̂0, we performed a forward selection procedure to select a model
for g in an IPTW estimator and a separate forward selection procedure was
used to select a model for g and Q in a one-step estimator of ψ.

The forward selection procedure arrived at the model given in table 7, for
ĝ in an IPTW. To understand the type of confounding that might be present,
we also included these same variables in a logistic regression model of the
outcome. These estimates are given in table 8. Interestingly, the indicator
variables, “use of anti-diarrheal medication” and “use of bottled water,” both
predict the treatment, “use of boiled water,” as well as diarrhea incidence
itself. We speculated that these variables must be controlling for severity of
illness; i.e., the sicker the patients are, the more likely they will employ other
measures to try to limit gastrointestinal illness. Additionally, all variables
except for “years of education” affect the treatment and the outcome in the
same direction; i.e., increases in the levels of the confounders are associated
with an increased likelihood of both treatment and diarrhea or a decreased
likelihood of both. Therefore, we expected that an IPTW that adjusts for
these confounders to yield an estimated treatment effect that is shifted to
the left of an unweighted estimate.

Parameter estimates as well as estimated variances derived from 500 boot-
strap re-samples of the data are reported in table 6. Kernel density estimates
of the bootstrap distribution of ψ̂(1) are depicted in figure 4 for the forward
selected one-step estimator, the null model, and an unweighted estimator.
Although there does not appear to be strong measured confounding within
the data, the unweighted estimator appears to be slightly biased to the right,
as expected. The one-step estimator is clearly less variable than ψ̂0 without
appearing to have introduced much bias.

The estimated standard errors for the estimators considered are presented
in table 6. There is little difference between the estimated standard error of
the estimator chosen by forward model selection of g compared with the
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forward selected one-step estimator. However, both of these estimators have
a variance that is approximately 30% less than the variance ψ̂0, the estimator
we might have naively used in an attempt to make the dimension of the model
of ĝ large and thereby minimize the asymptotic variance of ψ̂.

7 Discussion

This paper has presented a general model selection methodology that can be
used to select nuisance parameter models for semiparametric estimators of
a parameter of interest. In this paper, we have looked at the MSM where
the nuisance parameters were the conditional distribution of treatment and
the conditional expectation of the response given all available covariates.
However, the general approach outlined in the paper has wide applicability
beyond the MSM to a broad of class of censored data and causal inference
models (van der Laan and Robins, 2002). To illustrate this generality of this
method, we present here two other applications where a model for a nuisance
parameter needs to be selected: the inverse probability of censoring weighted
estimator (IPCW) and a semiparametric missing data model.

The inverse probability of censoring weighted estimator (IPCW) of Robins
and Rotnitsky (1992) allows for the estimation a survival function of a right
censored random variable when the data satisfy the assumption of coarsening
at random (CAR) (Gill, et. al. 1995). The observed data structure in this
problem takes the form of n iid copies of (W̄ (T̃ ), T̃ = min(T, C), ∆ = I(T =
T̃ )), where T is a possibly censored outcome, ∆ is indicator that T was not
censored, W̄ (t) is the history of a vector of time varying covariates through
time t, and C is a random variable denoting the time of censoring.

The CAR assumption states that the hazard of censoring at time t only
depends on the observed covariate process up until time t. Formally,

λC(t|W̄ (T ), T ) = λC(t|W̄ (t−)).

If CAR holds and the survival function of censoring is bounded away from
zero, i.e., Ḡ(T |W̄ (T )) > 0 almost everywhere, then distribution function of
T at time t can be estimated by solving the IPCW estimating function:

0 = F̂ (t)− 1

n

n∑

i=1

I(Ti < t)∆i

Ḡ(Ti|W̄ (Ti))
.

for F̂ (t).
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Since the conditional survival function of the time of censoring is not
known in practice, it must be estimated. How this model is selected can
affect both the consistency and efficiency of the estimate of F (t). The model
selection procedure outlined in this paper can be used to select a model for
Ḡ(T |W̄ (T )) in an attempt to minimize the mean-squared error of F̂ (t).

A similar model selection problem occurs in the semiparametric missing
data model of Robins, Rotnitzky, Zhao (1994). In this model, we observe n iid
copies of (Y,W, ∆, E∆) where E is an exposure, W is a vector of covariates
including surrogates for E, Y is an outcome, and ∆ is a random variable
indicating whether or not E was observed (i.e., if ∆ = 0 then E is missing).

We are interested in estimating the parameters of a model for the condi-
tional mean of Y given E and perhaps some additional covariates V extracted
from W . We denote the parameterized model with mβ, i.e.,

Y = mβ(V, E) + ε,

where E[ε|V, E] = 0.
Under the assumption that E is missing at random (Rubin, 1976), i.e.,

Pr[∆ = 1|E, W, Y ] = Pr[∆ = 1|W,Y ]

and that Pr[∆ = 1|W,Y ] is bounded away from 0 almost everywhere, β can
be consistently estimated by solving

0 =
1

n

n∑

i=1

h(Ei, Vi)(Yi −mβ(Ei, Vi))∆i

Pr(∆i = 1|Wi, Yi)
.

where h is an arbitrary vector function. Again, since Pr(∆ = 1|W,Y ) will
not be know in practice, the inverse probability weighted estimating function
depends on the nuisance parameter P̂ r(∆ = 1|W,Y ). The efficiency and
the consistency of this estimating function depends on how the model for
P̂ r(∆ = 1|W,Y ) is chosen. Like the model for the treatment mechanism
in an inverse probability of treatment weighted estimator and the model
for the hazard of censoring in an inverse probability of censoring weighted
estimator, the model for the missing data mechanism can be selected using
the cross-validation approach detailed in this paper.

We have shown through simulation studies that the model selection cri-
terion proposed in this paper is frequently able to identify the optimal finite
sample estimators of a parameter of interest in a MSM in a mean-squared
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error sense. In the simulated data examples considered in this research, ad
hoc choices of the nuisance parameter model, for example a model including
variables marginally related to the outcome, would have resulted in highly
efficient estimators. However, for realistic data sets with many covariates
exhibiting a complex multivariate relationship with both the outcome and
treatment, it is no longer clear that such a simple strategy will continue to
work well. In the data analysis presented in this paper, the estimators se-
lected by cross-validation were considerably less variable than ones selected
by a naive method, without introducing significant bias.

Since the criterion minimizes the mean-squared error of the estimator
based on the training data set, rather than the larger, complete data set,
one potential criticism of this approach is that it may tend to select models
that are smaller than optimal. A potential solution approach to this problem
would be to use the entire sample to fit the nuisance parameter model for both
the null and candidate models. These models are then held constant across
iterations of the cross-validation procedure which still respects the sample
splits for the evaluation of the estimating functions. In future work, we
intend to investigate the performance of such a procedure both theoretically
and empirically through simulation studies and data analysis.
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Figure 1: The causal diagram for Scenario 1.
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Figure 2: The causal diagram for Scenario 2.
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Figure 3: The causal diagram for Scenario 3.
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Figure 4: Kernel density estimates of the bootstrap distribution of ψ̂0 (solid
line), ψ̂∗k from a one-step estimator with ĝ and Q̂ selected by forward selection
(dotted line), and an unweighted estimator (dash-dot line). Density estimates
based on 500 bootstrap samples.
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Table 6: Results from analysis of effect of boiled water use on diarrhea inci-
dence. Estimates reported from four estimators: 1) an unweighted estimating
equation; 2) an IPTW using all covariates in model for treatment mechanism
(Full IPTW), 3) an IPTW estimator using ĝ selected by forward model se-
lection, 4) an one-step estimator using ĝ, and Q̂ selected by forward model
selection. Estimated variances are derived from 500 bootstrap resamples of
data.

Estimator ψ̂(1)
ˆVARF̂ [ψ̂(1)]

Unweighted -0.163 0.035
Full IPTW -0.280 0.060
Forward Selected IPTW -0.234 0.039
Forward Selected One-Step -0.254 0.037

Table 7: Treatment mechanism in an IPTW selected by forward model se-
lection.

Value Std. Error t value
(Intercept) 0.337 0.140 2.41
use of anti-diarrheal meds 0.106 0.050 2.11
income -0.031 0.022 -1.38
currently employed -0.097 0.055 -1.75
glasses/day water consumed 0.002 0.003 0.78
use of bottled water 0.140 0.039 3.61
years of education -0.007 0.009 -0.83
age in years -0.001 0.002 -0.55
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Table 8: Variables from forward selected treatment mechanism model used
in logistic regression model of outcome.

Value Std. Error t value
(Intercept) 0.226 0.149 1.52
use of anti-diarrheal meds 0.167 0.054 3.10
ordinal measure of income -0.018 0.024 -0.77
currently employed -0.027 0.059 -0.46
glasses/day water consumed 0.003 0.003 0.95
use of bottled water 0.046 0.041 1.12
years of education 0.022 0.009 2.42
age in years -0.003 0.002 -1.41
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