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A B S T R A C T

The accurate and reliable counting of animals in quadcopter acquired imagery is one of the most promising but
challenging tasks in intelligent livestock management in the future. In this paper we demonstrate the application
of the cutting-edge instance segmentation framework, Mask R-CNN, in the context of cattle counting in different
situations such as extensive production pastures and also in intensive housing such as feedlots. The optimal IoU
threshold (0.5) and the full-appearance detection for the algorithm in this study are verified through perfor-
mance evaluation. Experimental results in this research show the framework’s potential to perform reliably in
offline quadcopter vision systems with an accuracy of 94% in counting cattle on pastures and 92% in feedlots.
Compared with the existing typical competing algorithms, Mask R-CNN outperforms both in the counting ac-
curacy and average precision especially on the datasets with occlusion and overlapping. Our research shows
promising steps towards the incorporation of artificial intelligence using quadcopters for enhanced management
of animals.

1. Introduction

Animal husbandry accounts for a large proportion of agriculture in
many agricultural developed countries. In order to meet the increasing
population's demand for meat and to respond to changes in people's
dietary habits, there is a definite need for improving livestock pro-
duction and welfare (Liaghat and Balasundram, 2010). The manage-
ment for livestock is developing from small-scale and subsistence
farming towards intensive and specialized grazing. Complicating fac-
tors such as lack of labour, difficulties in real-time monitoring and high
costs in management have presented serious challenges to the large-
scale and intensive pasture-based production systems. This requires
precise and cost-effective technology methods to address these chal-
lenges in animal agricultural systems.

1.1. Animal remote monitoring

Recent advancements in information technology for remote mon-
itoring have enabled farmers to obtain more accurate

and valuable information about an animals’ behaviour and the

environment in which they live to improve meat quality, maximize
production and promote animal health and welfare (Ruiz-Garcia et al.,
2009). Wireless Sensor Technologies which can assist in providing
continuous and remote monitoring information in real time, have
brought great changes to information perception, making remote
monitoring and management possible (Ruiz-Garcia et al., 2009).
Wearable technologies such as RFID, Accelerometer Sensors, GPS Col-
lars and Smart Ear Tags are already available for farmers to monitor
behaviour and movement, body temperature, heart rate and other
physiological factors to avoid morbidity and mortality of animals, and
thereby reduce production losses (Frost et al., 1997; Handcock et al.,
2009; Marsh et al., 2008; Neethirajan, 2017; Neethirajan et al., 2017;
Ruiz-Garcia et al., 2009; Sellier et al., 2014; Van Nuffel et al., 2015).
Motion-activated cameras (camera traps) have also been used as a cost-
effective approach to recording an animals’ presence, location and ac-
tivity (Yu et al., 2013). Animal species can also be identified and
counted automatically based on camera trapping imagery
(Norouzzadeh et al., 2018). In the diagnosis of animal diseases and
detection of habitats, Thermal Infrared Imaging has played an in-
creasingly indispensable part in detecting early inflammations of limbs
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and follow up pregnancy in animals (Gonzalez et al., 2016; Handcock
et al., 2009).

In sparsely populated countries with existing advanced animal
husbandry techniques such as Australia and New Zealand, due to vast
areas and distances in the rangelands, it remains a critical but chal-
lenging task to detect animals and obtain accurate information on an
individual basis without delay especially in extreme weather condi-
tions. Real-time detection can avoid loss or theft of animals as well as
prevent animal incursions from other farms resulting in overgrazing of
pastures. A significant limitation of existing ground-based monitoring
techniques such as smart ear tags, camera traps and Infrared Thermal
Imaging is a result of the relatively large geographic scope and complex
terrain where animals could possibly be identified and tracked
(Norouzzadeh et al., 2018). Remote sensed imagery could be utilised as
a potential alternative to ground-based animal surveys. The use of
Quadcopters as an emerging but promising approach will combine with
machine learning algorithms to revolutionize livestock management.
Compared with other technologies, quadcopters can: (1) complete low-
altitude and ultra-low-altitude flight paths; (2) obtain high-resolution
images at any time over a wide range of weather conditions; (3) acquire
images quickly in small areas and over inaccessible rugged terrain.
Even so, the accurate and reliable counting of animals in quadcopter
acquired imagery is one of the most important but challenging tasks in
intelligent livestock management (Barbedo and Koenigkan, 2018). The
challenge for quadcopters to become a truly efficient livestock mon-
itoring tool are image processing algorithms matching the corre-
sponding functions (Gonzalez et al., 2016). Therefore, our work focuses
on algorithms for animal detection and counting to automatically
conduct population censuses of cattle in the images captured by the
quadcopter and to further demonstrate the potential for quadcopter
machine vision system learning applied in livestock management
(Chamoso et al., 2014; Handcock et al., 2009; Norouzzadeh et al.,
2018).

1.2. Animal detection and counting using a quadcopter

Thanks to recent developments in machine vision, the application of
quadcopters in animal detection and counting has increased (Chamoso
et al., 2014). Examples of applying UAV for population estimation in-
clude birds (Abd-Elrahman et al., 2005; Chabot and Francis, 2016;
Descamps et al., 2011; Grenzdörffer, 2013), mammals, (Hodgson et al.,
2013; Koski et al., 2009; Rey et al., 2017; Vermeulen et al., 2013),
wildlife (Chabot, 2009; Chabot and Bird, 2015; Chrétien et al., 2015;
Gonzalez et al., 2016; Lhoest et al., 2015) and livestock (Chamoso et al.,
2014; Hollings et al., 2018; Kellenberger et al., 2018; Longmore et al.,
2017; Van Nuffel et al., 2015). The most straightforward method for
automated techniques in detecting and counting animals is image seg-
mentation which analyses the individual pixels in the UAV images with
a specified spectral threshold (Chabot and Francis, 2016; Mejias et al.,
2013). This works best in the situation where animals contrast sharply
with their background. As for more complex scenes which need to
consider texture, colour, spatial context and so on, Abd-Elrahman et al
(2005) improved a template matching approach in conjunction with
spectral characteristics to carry out multi-stage pattern recognition and
counting in the UAV equipped with video imaging sensors (Abd-
Elrahman et al., 2005). Gonzalez et al (2016) integrated thermal image
capabilities into a UAV and proposed to detect, classify and track
wildlife to obtain promising estimate within the area surveyed. They
used pixel intensity threshold and template matching binary mask re-
spectively in different cases (Gonzalez et al., 2016).

Nonetheless, the resulting estimate seems to be unsatisfactory if
animals overlap seriously in the images. Such a situation is likely to
occur in the livestock monitoring context where imagery is acquired of
herds of animals. The use of machine vision to detect livestock from
UAV imagery has been demonstrated as successful and promising for
further research (Sadgrove et al., 2018). Indeed, a wide range of

machine learning approaches have been explored for the task of animal
detection and counting from remotely sensed imagery. Descamps et al.
(2011) employed the method of unsupervised learning to achieve
clustering and automatic counting among birds according to shape and
spectral discreteness. Traditional supervised multispectral image clas-
sification (Chabot and Francis, 2016) such as Maximum Likelihood
Classification based on pixels with ArcGIS’s Spatial Analyst extension
was also introduced to identify and count animals. However, species
classes in some images needed to be labelled manually prior to the
training examples which required user’s knowledge to accurately label
animals (Grenzdörffer, 2013) and the quality of training data largely
determined the effect of supervised method. Unsupervised classification
has also been demonstrated overestimating populations (Hollings et al.,
2018). Chrétien et al (2015) combined object-based image analysis with
spectral and spatial information for white-tailed deer detection in
multispectral imagery, and also for multispecies detection and counting
in a controlled environment. Compared with supervised and un-
supervised pixel- based image classification approaches, they per-
formed more accurately but slow in processing and also required spe-
cialist knowledge (Chrétien et al., 2015).

The Convolutional Neural Network (CNN) has also been considered
as a practical detection and counting technique with regard to variable
inputs, processing speed and accuracy for image recognition (Barbedo
and Koenigkan, 2018; Chamoso et al., 2014). Chamoso et al. (2014)
combined CNN with UAV system to keep track of counting animals
detected in video recordings taken from UAV. Maire et al (2014) ap-
plied CNN in aerial imagery and proposed an approach for training
negative example-selection, which proved very effective for auto-
matically annotating and detecting dugongs. Whereas, the excellent
performance of convolutional neural networks used in animal detection
heavily depend on the large datasets including positive and negative
examples. Kellenberger et al (2018) presented a solution to sparse data
in the aerial images including class weights application to reduce the
impact of complex background using curriculum learning (Bengio et al.,
2009) to strengthen the feature training of animals and backgrounds. In
recent years, deep convolutional neural networks such as R-CNN
(Girshick et al., 2014), Fast R-CNN(Girshick, 2015), Faster R-CNN (Ren
et al., 2015) and Mask R-CNN (He et al., 2017) have shown their great
potential in object detection and classification of thousands of global
images due to higher accuracy, precision and a quicker processing
speed. They have been used to detect and count fruit (Sa et al., 2016;
Stein et al., 2016) as well as assess the quality of fruit automatically
(Jail et al., 2018) which achieved good results.

For animal detection, as with fruit detection, consideration should
be given to changes in illumination, overlapping, and small differences
between background and target objects. Faster R-CNN has been applied
to the task of detection and individually identifying 30 Holstein-
Friesian cattle from DJI MkI quadcopter videos (Andrew, 2017a). The
Faster R-CNN algorithm proposed produced an excellent detection and
localisation performance of 99.3% in a relevant dairy production set-
ting (Andrew, 2017a). Although the results were impressive, the sce-
nario examined was very specific and arguably, which was one of less
challenging computer vision scenarios for object detection and locali-
sation consisting of cattle with distinctive black and white coat patterns
contrast with lush green pasture. In contrast, there are many more di-
verse and challenging livestock monitoring scenarios including visual
clutter (vegetation and other natural elements), strong lighting contrast
and shadows (from farm infrastructure) and high density (tightly
packed herds or stock constrained in feedlots). There is a need to per-
form wider assessment of cattle counting algorithm performance across
a range of livestock production settings.

Of all of the approaches proposed in the literature, the Mask R-CNN
appears to the most promising for the monitoring of cattle. The Mask R-
CNN approach allows both counting the number of stock in the image
and also identification/extraction of the pixels associated with each
individual animal. Such extraction leads to further applications in the

B. Xu, et al. Computers and Electronics in Agriculture 171 (2020) 105300

2



machine vision pipeline, e.g. biometrics and welfare monitoring. The
focus of this paper is on counting but these other tasks are also noted
and a motivation for the use of Mask R-CNN. Mask R-CNN has also been
demonstrated to be robust to illumination, deals adequately with large
numbers of over-lapping and close proximity objects. Mask R-CNN can
also detect objects with similar texture or colours to background objects
(He et al., 2017). Despite the general appeal of Mask R-CNN (Qiao
et al., 2019), it has not been evaluated in great detail for precision li-
vestock monitoring applications using quadcopters. Given the urgent
need to develop technologies which can assist with livestock production
and welfare management, it is timely to assess the application of a state-
of-the-art machine learning algorithm for precision livestock mon-
itoring. In this work, we explore the application of machine learning in
cattle detection and counting using the cutting-edge instance segmen-
tation framework, Mask R-CNN, a stronger robust method, aiming to
build a quadcopter machine vision system for monitoring livestock in a
precise and effective way.

2. Related work

Object detection is a fundamental task in the field of computer vi-
sion, which is aimed to accurately find the target objects and their lo-
cation in the images. In the case of multiple objects, the processing
pipeline can be further extended to classify the images into known
classes (Radovic et al., 2017). Cattle, due to their major importance to
the livestock industry, were selected as the case-study to explore the
performance of Mask R-CNN based object detection within quadcopter
imagery. In traditional object detection, a sliding-window frame is
generally adopted with three stages. First, sliding windows of different
sizes are used to generate the region proposals, followed by extracting
visual features through models such as Haar-like feature and Histogram
of Oriented Gradient feature (HOG) (Dalal and Triggs, 2005). The final
stage is to put the features selected into the classifier for identification
such as Support Vector Machine model (SVM). For instance, Viola-
Jones algorithm based on Haar-features and Adaboost boosting algo-
rithm was implemented to detect black-backed jackal faces in images
(Pathare, 2015), and the Local Binary Pattern (LBP) adopting AdaBoost
algorithm was used to detect dangerous animals including moose, elk
and cow (Zhou, 2014). However, traditional object detection is often
not on target while selecting the region proposals, rendering the time
complexity high and many of the windows redundant. In addition,
manually-designed features in the traditional object detection are not
robust enough to deal with wide diversity image changes encountered
in practice.

In contrast, more recent objection approaches combine artificial
neural network and deep learning technology via the convolutional
neural network, which has combined local region perception, feature
extraction along with a classification process to train the network
globally. The weight-sharing network structure is invariant to the
translation, tilt, zoom, or other forms of deformation of images, so that
images can be directly used as the input of the network, avoiding the
extraction of complex features and their reconstruction process in the
traditional object detection (Zhang, 1988; Zhang et al., 1990). Among
the state-of-the-art object detection algorithms in the field of deep
learning, the algorithm based on region proposals such as R-CNN
(Girshick et al., 2014), Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren
et al., 2015) and Mask R-CNN (He et al., 2017), and the algorithm based
on regression such as YOLO (Redmon et al., 2016) and SSD (Liu et al.,
2016) has achieved the best performance in terms of mean average
precision (mAP) and frame per second (FPS). Importantly, these deep
learning-based object detectors have been demonstrated to significantly
out-perform traditional based object detection algorithms (Lee, 2015).

The regression-based algorithms such as YOLO and SSD requires the
generation of some regions of interest according to feature extraction
firstly, then classification of every region and finally produce a
bounding-box regression. This provides an end-to-end process for the

regression-based detection with direct prediction of target classification
and a bounding-box using a single neural network. Despite fast speed
and applicability of real-time detection, regression-based detectors
(such as SSD and YOLO) have been demonstrated to achieve lower
mean average precision (mAP) especially for low image resolution as
compared to other detectors such as Faster R-CNN (Huang et al., 2017;
Redmon et al., 2016; Redmon and Farhadi, 2018). In addition, YOLO
also has difficulty detecting small objects as well as overlapping objects,
and is hard to distinguish objects with a similar color to the background
(Burić et al., 2018; Sommer et al., 2018), which are very common in the
outdoor type of farmlands. The detection of objects in imagery with low
resolution is very relevant for the monitoring of livestock using quad-
copters, as monitoring stock from a distance is more efficient and less
intrusive but produces smaller sized objects in the images. Because
Faster R-CNN involves global average pooling in order to reduce the
computation of first fully connected layer, this reduces the precision of
spatial localization (Li et al., 2017). Instead, Mask R-CNN improves the
RoI Pooling using RoIAlign to remove the harsh quantization of RoI
Pooling, properly aligning the extracted features with the input to im-
prove the accuracy of prediction (He et al., 2017; Li et al., 2017).

Therefore, Mask R-CNN (an extension of Faster R-CNN) which also
allows for instance segmentation (associating specific image pixels to
the detected object) is selected for further study. Instance segmentation
allows not only the detection of each animal but also the delineation of
its boundaries within the image thereby allowing further potential ap-
plications for livestock welfare monitoring. The benefits provided by
instance segmentation allow for diverse future applications including
estimation of animal pose and direction of travel. In this work however,
we constrain interest to the object detector capabilities of Mask R-CNN.
He et al. (2017) compared the detection performance of Mask R-CNN
(ignoring the mask output) to Faster R-CNN and found slight increases
in detection performance (+3.6 of average precision) (He et al., 2017).
Based on the results reported by (He et al., 2017) and the potential
future user afforded by instance segmentation, this paper aimed to
examine the effectiveness of Mask R-CNN for the detection and
counting of cattle in quadcopter imagery.

Common difficulties in livestock imagery such as diversities in cattle
pose, heavy occlusions among a herd of cattle and repeat count for
single cattle cropped into multiple images have brought great chal-
lenges to cattle detection and counting (Van Nuffel et al., 2015). Head
detection, as typically applied in people detection (Gao et al., 2016; Van
Nuffel et al., 2015) is introduced to recognize cattle in this paper and
compare performance with full-appearance detection to decide which
approach is best for detecting cattle in quadcopter imagery.

3. Materials and methods

3.1. Overview of our framework

The section describes the pipeline which is proposed for processing
RGB images that are captured by a quadcopter to detect and count
cattle using deep learning algorithm. The structure of cattle detection
and counting in aerial images is illustrated in Fig. 1. The RGB image
acquired by the drone is used to extract the feature from the full image
using the convolution layers, and then the obtained feature map is sent
to the Region Proposal Network (RPN) to generate Region of Interests
(ROIs). The RoiAlign layer selects the feature corresponding to each
ROI on the feature map according to the output of the RPN, and send
them to the fully connected layer for classification prediction, mask
prediction and bounding-box prediction. Ground truth was annotated
manually for every cattle in the training sets and then network training
was performed after labelling for parameters optimization, followed by
cattle detection and counting in testing sets.
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3.2. Datasets preparation and preprocessing

The limitation to effectively detect and count cattle using machine
vision is the lack of suitable publicly available datasets because the
published datasets like FriesianCattle dataset in (Andrew, 2017) are
only one or two cows per image, little difference between images and
other disadvantages discussed in Section 1.2. Therefore, we used a
drone to collect representative image data sets both in extensive pasture
and in feedlot environments separately. The datasets utilized in this
research were collected from the Tullimba Research Feedlot (AEC18-
038) owned by the University of New England, New South Wales,
Australia and surrounding farmlands (AEC19-009) across seasons from
Summer to Spring (February to October). Examples of cattle in different
scenes are on display in Fig. 2. Three farmlands and one feedlot were
chosen for the potential application of this technology in different cases
and in different weather and backgrounds. Fifteen flight campaigns
were conducted by the MAVIC PRO drone which is equipped with an
integrated PTZ camera shown in Fig. 3. The camera has a 1/2.3-inch
CMOS image sensor that can rotate flexibly both laterally and verti-
cally. 4 K HD videos and 12-megapixel photos are captured by this
stabilized camera. Considering the pixels and the delay of taking photos
as well as the convenience of operation, videos were adopted to obtain
the cattle datasets in different scenes at 30 frames per second in re-
cordings and were saved in MOV format. The cattle datasets were
captured at a height of 8–25 m with angles of inclination in the pastures
and at a downward angle vertically in the feedlot to simulate the aerial
detection (Sadgrove et al., 2017).

The original images cropped from videos were in JPG formats at
4096 by 2160 pixels. In order to avoid overfitting when training the
network and improve the processing speed, after extracting valuable
data frames of every video in MATLAB, the selected images were
clipped automatically using MATLAB to the size 512 * 512 pixels from
the pastures and 1280 * 1280 pixels from the feedlot. The image size
must be divisible by 2 at least 6 times to avoid fractions when down-
scaling and upscaling in the CNN algorithm. Each of the datasets both in
the pastures and feedlot contain a total of 750 images consisting of 500
images for training and 250 images for testing. The dataset chosen for

Intercept frames from the video

Image Partitioning

 500 Training Examples 250 Testing Examples

 Convolutional layers

RoiAlignFeature map

Region proposal network

Fully‐connected  
layers Classification

Bounding‐box

Mask

Cattle detection and counting

Fig. 1. The structure of the cattle detection and counting algorithm.

Fig. 2. Examples of cattle in the farmland (left) and in the feedlot (right).
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training and testing are from different key frames during cattle move-
ment, and the ratio of training and testing under same environmental
conditions is 2:1.

The specifications of dataset used in the experiments are displayed
in the Table 1. Due to the limited space for each pen in the feedlot and
the diverse body positions of the cattle, only data collection for
counting, was obtained vertically using the quadcopter. But the head of
cattle is very difficult to distinguish from other parts of the body even
with our eyes because of the small size of head compared to the body
and similar colour between the background of the image and the cattle.
So, only the full-appearance is performed in the feedlot. In addition, the
angles and heights of data collection in the feedlot and the pasture are
different, so the size of cattle in the original images differs greatly. In
order to reduce the deviation caused by varying visual scales of cattle in
the images and to be within computational constraints, image dimen-
sions of 1280 square pixels and 512 square pixels were selected for the
feedlot and pasture environments respectively.

The publicly available image annotation tool known as LabelMe
(Russell et al., 2008) is used to label the ground truth for head and full-
appearance respectively using polygon for training datasets (see Fig. 4).
For labelling, points are clicked along the outside edge of every cattle in
the images until connected to the starting point. Then the class label
named cattle needs to be marked on the bubble pop up on the screen.
The ground truth data was stored in a table format aligned with that
required by the Mask R-CNN framework for data annotation.

3.3. The detection and counting algorithm

Extended from Faster R-CNN, Mask R-CNN additionally provides a
mask prediction branch composed of a small Fully Convolutional
Network for segmenting each Region of Interest (ROI) with simulta-
neous classification prediction and bounding-box prediction. Same with
Faster R-CNN, the object detection of Mask R- CNN is also divided into
two stages: (i) Region Proposal Network (RPN) and (ii) Classification
based on binary mask. RPN is a newly high-sufficient proposal gen-
eration network in the Faster R-CNN which replaces the selective search
method in the previous RCNN and Fast R-CNN.

However, Mask R-CNN additionally produces a binary mask besides
the class label and bounding-box for each ROI (He et al., 2017).

Classification prediction in Mask R-CNN is closely related with mask
branch, so the mask is also exploited to get the spatial structure of an
object through the pixel-to-pixel alignment in the convolutional layers
being encoded. Considering the potential regional misalignment be-
tween the input and extracted feature map with no impact on ROI
Pooling, RoiAlign is adopted in the Mask R-CNN using the bilinear in-
terpolation to improve the precision of the model. The details for Mask
R-CNN evolved from CNN and other region-based approaches are ex-
pounded in the original papers (Girshick, 2015; Girshick et al., 2014;
He et al., 2017; Ren et al., 2015) and this paper mainly describes the
key procedures in the application of the algorithm.

• Region Proposal Network

On the feature maps from the convolutional layers, the network
performs convolution operation on a 3 * 3 pixel sliding window. For
each centre point in the feature map, k anchors with different scales and
aspect ratios are selected and then are mapped on the original feature
maps according to the scales and aspect ratios, producing thousands of
region proposals. Each point in the feature maps generates feature
codes for the corresponding window regions which is corresponded to
the low-dimensional feature codes of 512 dimensions in Mask R-CNN.
Then, the low-dimensional feature codes are performed by a
1 × 11 × 1 convolution operation, which outputs 2 * k classification
features and 4 * k regression features, respectively corresponding to the
confidence scores and the relative coordinates of anchors. Based on the
ranking of classification scores, the first 2000 regression feature boxes
are selected and the values of relative coordinates are decoded into the
absolute coordinates via the following formulas (1) and (2):

= − = −t x x w t y y h( )/ , ( )/x a a y a a (1)

= =t w w t h hlog( / ), ( / )w a h a (2)

Here (xa, ya) is the coordinates of the centre of the anchor and (wa, ha) is
the height and width of the anchor. (x, y) is the coordinate of the centre
of the predicted ROI in the original image and (w, h) is the height and
width of the ROI predicted in the original image. (tx , ty) is the regression
value of the coordinates of the centre on the feature map and (tw, th) is
the regression value of the height and width on the feature map. A
certain number of Region of Interests (200 in Mask R-CNN) are then
selected to be trained through Non-maximum suppression which needs
to compare the ROI with ground truth. Specifically, if the value of in-
tersection-over-union (IoU) between the predicted bounding boxes in
the ROI with ground truths is larger than a set threshold, there must be
targets in this ROI which will be regarded as foreground and back-
ground otherwise.

• Loss Function

Multi-task loss function is used in the training for Mask R-CNN
which consists of three parts: the classification loss of the bounding box,
the position regression loss of bounding box and the loss of the mask
following formulas.

= + +L L LL cls box mask (3)

= − + − −
∗ ∗L p p p plog[ (1 )(1 )]cls i i i i (4)

= −
∗L r t t( )box i i (5)

=L Sigmoid(Cls )mask k (6)

Here, pi is the predicted probability for ROI in the classification lossLcls
and ∗pi for ground truth is 1 if the ROI is regarded as foreground or 0
otherwise.tiis the vector of absolute coordinates for predicted bounding
box (see formula 5) and ∗ti is for ground truth in the position regression
loss of bounding box where r is the robust loss function to calculate
regression error referring to (Girshick et al., 2014). Each ROI predicts

Fig. 3. MAVIC PRO drone.

Table 1
Dataset specifications from pasture and feedlot environments.

Case Description Training set Test set Image pixels

Pasture Full-appearance detection 500 250 512 * 512
Pasture Head detection 500 250 512 * 512
Feedlot Full-appearance detection 500 250 1280 * 1280
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an output of K*m^2 dimensions through the mask branch, and it en-
codes K binary masks with a resolution of m*m, corresponding to K
classes. The loss of the maskLmask is defined as the Average Binary
Cross-entropy Loss which performs sigmoid function on each pixel in
the ROI. For class k (Clsk), the mask loss is shown in formula 6.

3.4. The implementation details and evaluation protocol

In view of relatively simple workflow and compatibility with other
APIs, TensorFlow does not require any compiling time, which allows for
faster iteration of models. Furthermore, the distributed architecture
does not increase the time required for model training of large datasets.
Multiple pre-trained machine learning models in TensorFlow are also
available for use. Keras, an advanced neural network framework for
Python which is added to TensorFlow to provide more modern APIs,
allows import of the Resnet101 model and utilises data flow graphs to
perform calculation. Therefore, the Mask R-CNN algorithm utilized in
this paper is implemented on the TensorFlow framework. Python is
selected as the programming language due to its code efficiency and
comprehensive support for deep learning algorithms. Based on the
Python 3.6 environment, the required toolkits such as ‘numpy’ and
‘skimage’ are obtained via anaconda3. The TensorFlow1.3 and Keras
2.15 that are compatible with the Python version were also installed.

Transfer learning can be defined as the tuning of an existing con-
volutional network to perform new tasks. It has become an essential
part of machine learning as it provides a way to train a network when
limited annotated data exists for the intended task. The network in this
paper was initialized by a Resnet101-pre-trained model using COCO
datasets (Ren et al., 2015) and the network head was used for multi-
tasks of classification, bounding-box and mask prediction (He et al.,
2016). To avoid destroying the extraction ability of convolutional
layers, all the backbone layers were frozen and only the network head
was trained independently using the training dataset of 500 aerial
images in each case. The global layers were then fine-tuned to optimize
the key parameters to achieve higher accuracy and faster processing
speed. During network training, the loss of each ROI consisted of
classification loss, bounding-box loss and mask loss, but the mask loss
only exists in positive ROIs. So, the outcome was assigned positive if the
Intersection-over-Union (IoU) between ROI and its ground-truth was at
least a certain threshold otherwise it was classed as negative. Every

image has some sampled ROIs with a 1:3 ratio of positive to negatives.
The Mask R-CNN implementation has been executed on a 64-bit

version of Windows 10 laptop with Intel core i7-7560U CPU@2.4 GHz
with 16 GB RAM. The Stochastic Gradient Descent (SGD) algorithm is
adopted in network training with a weight decay of 0.001 and a mo-
mentum of 0.9 and an initial learning rate of 0.01. All the training
experiments had a batch size of 50 images and the iterations of 3000.
For the testing, all the testing results of each case were averaged 10
times from the dataset in the trained model with the same parameters.
The number of proposals in the conv4_x was 1000 and the bounding-
box prediction branch was performed on these proposals, then followed
by non-maximum suppression to filter some overlapping proposals. The
mask branch was run to the 200 detection boxes with highest scores so
M masks can be predicted for per ROI but only the M-th mask is chosen
(M is the predicted class by the classification predictor). The size of
mask output was then adjusted to the size of ROI and binarized using a
certain threshold ranging from 0 to 1.

In this paper, the precision, recall, F1 score and average precision
(AP) are utilized as the evaluation metrics. The precision reflects the
proportion of true predicted positive in all the predicted positive but the
recall reflects the proportion of true predicted positive in all of the
positives. For the precision-recall curve, the larger the area enclosed by
the curve at different IoU threshold, the better the performance. F1
score is a statistical measure which is defined as the harmonic average
between precision and recall, where it achieves the best performance at
the value 1. IoU is the area of overlap between predicted and ground-
truth bounding boxes divided by their area of union and represents the
accuracy of the detection (formula 7).

=
∩

∪

IoU
detection result ground truth
detection result ground truth (7)

4. Experimental results

This section presents the performance evaluation of the proposed
method to detect and count cattle on different experimental settings: (1)
determine the optimal threshold of IoU; (2) compare the detection
performance of cattle’s head and cattle’s full-appearance; (3) evaluate
the effectiveness of proposed method by applying it in both pasture and
feedlot situations; and (4) compare the proposed method with other

Fig. 4. Examples of annotations (green) for head detection in the first line and for full-appearance detection in the second line. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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state-of-the-art object detection algorithms.

4.1. Threshold selection of IoU

Intersection-over-Union (IoU) regarded as an important evaluation
metric measures the overlap rate between the detection result predicted
by the model and the ground truth. The threshold is a value between 0
and 1 and when it is reached, the dependent variable will change dif-
ferently than before. The threshold value is critical to prediction per-
formance of objection detection. If the threshold is set too large or too
small, it will result in overlapping bounding-box predictions for the
same cattle or missing cattle. In most cases, such as ImageNet challenge
and PASCAL VOC challenge, the threshold from 0.4 to 0.7 is always
chosen which is not necessarily the optimal threshold. This paper
considers precision and F1 score as standard evaluation criterion in the
single label detection (Fan and Lin, 2007) to evaluate variable thresh-
olds under three different detection cases.

Fig. 5 shows that the precision, recall and F1 scores for three de-
tection cases as a function of IoU thresholds. The solid lines in Fig. 5a
represent the precision rates and the dotted lines for the recall rates. It
can be observed that the precision increases but the recall decreases
with the IoU threshold increasing. However, the precisions and the
recalls in these cases have the same value while reaching a certain
threshold (0.5) known as balance point which indicates that all the
positive predictions are the true positives. Comparing the related F1
scores for three detection cases presented in Fig. 5b, resulted in the F1
scores being similar, where they get the best values at around that
threshold. Obviously, at IoU = 0.5, the precision and the recall are high
but not optimal but F1 score is maximised. F1 score is preferable as the
metric for ‘true positive detection’ whilst precision is preferable for
‘instance segmentation’ (boundary extraction of each cow). Therefore,
the performance of the threshold at 0.5 is significantly better than
others. The best average precisions are achieved through the optimal
threshold with 0.96, 0.92 and 0.94 for full-appearance detection, head
detection in the pastures and full-appearance detection in the feedlot
respectively.

4.2. Evaluation of detection and counting results

As previously mentioned in this section, the performance precision-
recall curves whose IoU threshold ranges from 0.1 to 0.95. The results
in Fig. 6 demonstrate the comparison between head detection and full-

appearance detection in the pastures and performance for head detec-
tion in the feedlot. Due to the confined conditions and higher stock
densities in the feedlot, it is very difficult to detect cattle’s heads
especially when they are in different body positions such as lying
compared to standing. Consequently, the paper only performs on the
full-appearance detection in the feedlot.

It can be seen from Fig. 6 there is an inverse relationship between
the precision and recall which means the higher the precision the lower
the recall. But we expect to detect all the target objects which means
higher recall rates and also expected higher precision rates of the de-
tected objects. At around recall = 0.91, 0.95, 0.96, the inflection point
respectively appears in all three curves known as balance points where
the precision and recall get best values, and then the precision drops
sharply. Although three curves have some intersections, the precision of
full-appearance detection in the pasture is higher than head detection
and also than in the feedlot at balance points which is consistent with
the conclusion in Section 4.1.

We compute the APs for bounding-box prediction masked as APbb

and mask prediction as APm of three detection cases over a variety of
IoU thresholds and F1 scores at the balance points shown in Table 2.
These points imply that the predicted positives are all true positives. As
observed, cattle counting based on full-appearance detection, yields an
AP of 95% for bounding-box prediction, 94% for mask prediction and a
F1 score of 0.96, which are both higher than head detection. In addi-
tion, the results concerning counting errors for all the test images in
Table 3 depict that the accuracy of cattle counting based on full-ap-
pearance is 94% which is 4% higher than head. Therefore, the full-
appearance detection outperforms the head detection approach in
pasture situations. This discrepancy can be attributed to the difference
of size and appearance of head and the whole body in cattle detection.
The full-appearance detection for the feedlot also produces a good re-
sult with a counting accuracy of 92%, an AP of 91% for bounding-box
prediction, 90% for mask prediction and a 0.95 F1 score. The standard
deviation (SD) of APs for ten tests in each case is less than 0.01 and the
counting numbers remain the same for ten tests in each case, indicating
that the difference between the results is small so the results are stable
and highly reliable.

4.3. Comparison with other state-of-the-art object detection algorithms

We compared the proposed Mask R-CNN model with three typical
existing object detection methods: (1) Faster R-CNN, (2) Yolo v3, (3)

Fig. 5a. Comparisons of precision (solid lines) and recall (dotted lines) over different IoU thresholds for three detection cases.
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SSD. Among these competing methods, the first solution and Mask R-
CNN model take the advantages of region proposals to improve the
location accuracy, while the last two methods apply the regression-
based technique. We evaluated the three competing methods on the
same test images as Mask R-CNN collected from pastures and feedlot,
and summarized the performances in term of counting accuracy and AP
in Table 4. As we can see, Mask R-CNN used in this paper has achieved
the best counting accuracy and AP in both two test datasets (marked in
bold). The result indicates that Mask R-CNN is most effective in real-
world datasets as the datasets are in different complex scenes with
different density distributions and different degrees of occlusion. To
facilitate the readers to visually observe the comparisons of results for
different methods, we compared the predictions processed by the
competing methods in Fig. 7. As mentioned in Section 2, the prediction

for each cattle in the image using the Mask R-CNN presents both with
bounding-box and mask, but three competing methods present just with
bounding-box. Fig. 7(b) and (g) show the Mask R-CNN can detect the
cattle precisely with occlusion, illumination and overlapping.

Fig. 5b. Comparisons of F1 scores over different IoU thresholds for three detection cases.

Fig. 6. Comparisons of precision-recall curves for three detection cases.

Table 2
AP and F1 scores of three detection cases.

Case APbb APm F1 SDbb SDm

Full-appearance detection (pasture) 0.95 0.94 0.96 0.008 0.006
Head detection (pasture) 0.86 0.84 0.91 0.007 0.008
Full-appearance detection (feedlot) 0.91 0.90 0.95 0.007 0.009
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5. Discussion

In this paper we evaluate Mask R-CNN, a state-of-the-art deep
learning algorithm, for the detection and counting of cattle from
quadcopter imagery. The key novelty of the work is the application of
the Mask R-CNN algorithm and the demonstration of its effectiveness
for this important livestock monitoring task. The essence of the detec-
tion in this paper is the binary classification with confidence and mask,
that is, the result is cattle or not. Previous studies in cattle counting
suffer the deviation of bounding-box and the challenge for mask de-
tection (Rivas et al., 2018). A major advantage of the Mask R-CNN
approach is the ability to perform both detection and instance seg-
mentation of cattle within the imagery, this allows the development of
further algorithms to perform tasks such as welfare monitoring from the
imagery. Specifically, Mask R-CNN can also be used for key point de-
tection (He et al., 2017), which can be used for real-time detection of
behaviours of the animals to provide early warning for diseases like
estrus (Dolecheck et al., 2015; Tian et al., 2013). Cattle instance seg-
mentation in the paper is the first step towards real-time animal mon-
itoring in farming environments that have different applications, such
as early lameness detection (Viazzi et al., 2013) and other animal
welfare improvements.

The Mask R-CNN detection performance was found to be affected by
IoU threshold where the higher threshold lead to multiple predicted
regions for one cow and the lower threshold resulted in lacking pre-
dicted region for other cattle. To evaluate the performance quantita-
tively and select the optimal threshold in this study, the F1 scores and
Precision metrics were assessed over different thresholds. The results
indicate that the threshold at 0.5 performs better all with average
precision of more than 90%. Since there is no agreed standard threshold
in object detection, this optimal threshold could be properly adjusted
depending on the circumstances and applications in which it is used.
For instance, IoU values above 0.70 for ecological camera trap data
were considered well performing (Schneider et al., 2018) but IoU at
0.50 output may be better utilised for a person making an estimation in
the wild, and both two using Faster R-CNN (Papandreou et al., 2017).
However, current applications of Mask R-CNN including multi-person
pose estimation (Chen et al., 2018) and beef cattle instance segmenta-
tion (Danish, 2018) achieve best results at around IoU = 0.5.

Considering the overlapping when many cattle gather together and
repeat counting when some cattle are separated into several parts in
different images, the full-appearance detection accuracy could be re-
duced to some extent. We learn from the successful practice of head
detection of people to evaluate the effect of head detection for cattle.
The comparisons of performance show that head detection results is
unreliable where head detection methods achieve an accuracy of 90%
for counting and full-appearance detection method achieves an

accuracy of 94% for counting. The suggested main reason for this dis-
crepancy of head detection performance is caused by multiple beha-
viours such as leaning over to graze or moving away from the drone in
an opposite direction which then makes it difficult to detect the head.
However, there is a possibility that head detection can be combined
with facial features for individual cow identity.

In addition, we extended the full-appearance detection method to
the feedlot case to evaluate the Mask R-CNN algorithms performance
across various relevant cattle production scenarios. Also, we made the
performance comparisons with other three competitive algorithms on
the same datasets. The detection results presented illustrates that Mask
R-CNN outperforms both in the counting accuracy and average preci-
sion, and the feedlot situation is a particularly challenging situation for
the detection and counting of cattle even using Mask R-CNN and
computer vision in general. Suggested reasons for this challenging si-
tuation include higher density of cattle and the similarity between the
background pen surface colour and the cattle coat colour.

A wide variety of issues should also be considered including plat-
form variation, sensor modality, costs and legal requirements asso-
ciated with the monitoring of cattle using quadcopters like (Barbedo
and Koenigkan, 2018). Barbedo & Koenigkan (2018) presented a strong
case for the using Unmanned Aerial Systems (UAS) platforms for cattle
detection and counting over extensive properties such as those in Brazil
and Australia (Barbedo and Koenigkan, 2018). Whilst there is un-
doubtedly an important role for UAS monitoring of livestock on ex-
tensive properties, the outlook provided by Barbedo & Koenigkan
(2018) downplayed the potential offered by small quad-copters already
commercially available in many countries. Such technology has wit-
nessed a strong interest from the livestock production industry. Quad-
copters are used for a diverse range of tasks including mustering,
checking infrastructure and stock welfare. Specific examples include
the use of the DJI Phantom 4 quad-copter to monitor cattle over un-
dulating and mountainous terrain in New South Wales, Australia, pro-
viding labour time-savings of 55 min (reported in Feedback magazine
February/March 2017 https://www.mla.com.au/news-and-events/
publications/feedback-magazine/2017-editions/) through monitoring
and moving cattle in Nebraska, USA (https://www.agriculture.com/
technology/livestock/up-in-the-air-cattle-management). Quad-copter
drones are also of promise within feedlot operations where they can be
used to monitor the number of stock at a facility (Condon, 2015). The
high level of industry uptake is a strong indicator of the relevance of
quad-copter technology for livestock monitoring.

6. Conclusion

Development of machine learning for object detection and instance
segmentation is crucial to the vision system in a quadcopter. To

Table 3
Counting results of three detection cases.

Case Ground truth Detected Counting error Counting accuracy

Full-appearance detection (pasture) 857 912 0.06 0.94
Head detection (pasture) 857 952 0.10 0.90
Full-appearance detection (feedlot) 1064 1156 0.08 0.92

Table 4
Comparision of counting results with three competing methods.

Methods Ground truth Detected Counting accuracy AP

pasture feedlot pasture feedlot pasture feedlot pasture feedlot

Faster R-CNN 857 1064 771 1013 0.90 0.95 0.89 0.8
Mask R-CNN 857 1064 912 1156 0.94 0.92 0.96 0.94
Yolo v3 857 1064 798 979 0.93 0.92 0.96 0.93
SSD 857 1064 725 883 0.85 0.83 0.92 0.85
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(a) Ground Truth from pasture (b) Mask R-CNN 

(c) Faster R-CNN (d) Yolo v3 (e) SSD

(f) Ground Truth from feedlot (g) Mask R-CNN

(h) Faster R-CNN (i) Yolo v3 (j) SSD

Fig. 7. Predictions on the test images for four object detection algorithms, images are from the pasture and feedlot. (Different colour of the mask and bounding-box
have no special meanings).
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establish the quadcopter machine vision system capable of monitoring
livestock, we focused on cattle detection and counting which are im-
portant components of envisaged future technology. Performance of the
Mask R-CNN model was assessed using manually annotated imagery
acquired from a quadcopter and the compared metrics performed suc-
cessfully across a range of relevant scenarios with average precision
scores of 86%, 91%, 95% for bounding box and 84%, 90%, 94% for
mask, and with a counting accuracy of 90%, 92%, 94, and a recall of
91%, 95%, 96%. The results presented indicate that Mask R-CNN could
be utilised in practical settings as a method of livestock detection and
counting using a quadcopter. Due to the high computational complexity
of Mask R-CNN, the envisaged system would work best with a wireless
link back to a central processing node either stationary or mobile to
handle the higher computational requirements. The longer-term de-
monstration of Mask R-CNN paves the way for further algorithm in-
novations which could be utilised to process on the quadcopter.

From a practical precision livestock management perspective, this
paper demonstrates that development of a key software component
which could lead to quadcopters capable of autonomously identifying
and quantifying livestock. Our research shows promising steps towards
machine vision equipped livestock management quadcopters. In future
work, we will concentrate on assessing Mask R-CNN performance over
classification of livestock species and further explore the impact of
stocking density on animal welfare.
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