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Supervised Distance Matrices: Theory and
Applications to Genomics

Katherine S. POLLARD and Mark J. van der Laan

Abstract

We propose a new approach to studying the relationship between a very high di-
mensional random variable and an outcome. Our method is based on a novel con-
cept, the supervised distance matrix, which quantifies pairwise similarity between
variables based on their association with the outcome. A supervised distance ma-
trix is derived in two stages. The first stage involves a transformation based on a
particular model for association. In particular, one might regress the outcome on
each variable and then use the residuals or the influence curve from each regres-
sion as a data transformation. In the second stage, a choice of distance measure is
used to compute all pairwise distances between variables in this transformed data.
When the outcome is right-censored, we show that the supervised distance ma-
trix can be consistently estimated using inverse probability of censoring weighted
(IPCW) estimators based on the mean and covariance of the transformed data.
The proposed methodology is illustrated with examples of gene expression data
analysis with a survival outcome. This approach is widely applicable in genomics
and other fields where high-dimensional data is collected on each subject.



1. Introduction

Due to various technological advances, it is now common to collect very high dimensional data

on each subject in a study. We will focus in this paper on gene expression data, although similar

data structures arise in proteomics, metabolomics, and many fields outside genomics. A typical

microarray experiment results in an observed data matrix X whose columns are n i.i.d. copies of a

p-dimensional vector of gene expression measurements. In addition to measuring gene expression,

researchers – particularly in clinical settings – are now collecting covariate and outcome data on

each sample. With this data, we can extend exploratory methods for finding patterns in gene

expression data and begin to study the relationships between gene expression and end points of

interest, such as tumor grade, time to metastasis, or survival in cancer patients. Such studies

provide insight into disease mechanism. Discovering groups of genes with similar relationships to

an outcome is also an important step in designing molecular diagnostic tools.

Gene expression profiling has become an established method for classifying patients into differ-

ent disease subpopulations. Associations between messenger RNA (mRNA) expression signatures

and clinical outcomes have been discovered in several studies (e.g. Rosenwald et al.(2003)Rosenwald,

Wright, Wiestner, Chan, Conors et al.). Even more striking associations with disease subtypes have

been discovered for microRNA (miRNA) expression profiles, which can now be measured in a simi-

lar high-throughput manner (Lu et al.(2005)Lu, Getz, Miska, Alvarez-Saavedra, Lamb et al.). One

goal of such studies is to develop molecular signatures that can be used to better diagnose and

tailor treatment for future patients. Because of the large number of genes assayed in a microarray

experiment, serious attention has been devoted to the issue of dimension reduction in prediction

problems using gene expresesion data (e.g. Li & Li(2004); Nguyen & Rocke(2002)). It is often

the case that many genes are more or less equally predictive of the outcome of interest and that

colinearity between genes makes variable selection unstable between repeated experiments. This

suggests that it would be useful to identify groups of genes whose expression profiles have a similar

association with the outcome variable.

Supervised clustering methods aim to group genes based on the association between their ex-

pression profile across subjects and a supervising variable measured on the same subjects. The

supervision can simply be based on a set of known or pre-defined expression profiles, in which
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case the goal is to find genes that match each profile (e.g. Qu & Xu(2004)). More generally, the

idea is to put genes together that have a similar relationship to a variable of interest, regardless of

whether or not they have similar expression profiles. This latter approach has been implemented for

a binary outcome using support vector machines (Brown et al.(2000)Brown, Grundy, Lin, Cristian-

ini, Sugnet et al.), for categorical outcomes using a forward-backward search algorithm (Dettling

& Bühlmann(2002)), and for contnuous outcomes using gene shaving (Hastie et al.(2000)Hastie,

Tibshirani, Eisen, Alizadeh, Levy et al.). Each of these methods is based on a particular choice

of clustering algorithm, including a way to measure distance between genes and a criteria for

quantifying cluster homogeneity.

In this paper, we propose a general approach to supervised clustering that can be used with

any choice of distance and clustering algorithm. Our main contribution is the idea of a super-

vised distance matrix, which measures similarity between variables (e.g. genes) based on their

association with an outcome. We show that the supervised distance matrix can be consistently

estimated even when the outcome is right-censored. As an illustration of the methodology, we focus

on understanding the association of gene expression and a post-expression outcome such as survival.

2. Data and Notation

Consider a p-dimensional random vector X and a univariate random variable Y . To be concrete,

we will talk about gene expression data, where X is a vector of expression levels for p genes and Y

is an outcome of interest, which may be right-censored. When Y is censored, we do not observe the

full data (X, Y ), but rather O = (Y ∧C,∆ = I[Y ≤ C], X), where C is the censoring time. If addi-

tional covariates are measured, we denote these by V and then O = (Y ∧C,∆ = I[Y ≤ C], X, V ).

Suppose we observe a sample of n i.i.d. copies of O. The observations of X can be stored in a

n × p matrix X = X(i, j) whose i’th row is the p-dimensional gene expression profile for subject

i and whose j’th column is the vector of n gene expression values for gene j across subjects. As

short-hand, let Xj denote the j’th column of X.
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3. Supervised Distance Matrices

Our goal is to define a measure of pairwise distance that reflects the degree to which the expression

data Xj and Xj′ for genes j and j′ (j = 1, . . . , p, j′ = 1, . . . , p) have similar patterns of covariation

with the outcome Y across subjects. Our approach to defining such a supervised distance matrix

is first to transform the data (X, Y ) to form a matrix of ”association profiles” and then to compute

pairwise distances between these transformed data profiles.

3.1 Stage 1: Transformations

Let W = W(X, Y ) be a transformation of the multivariate data X (i.e. gene expression

profiles) and the outcome Y based on a choice of model(s) for the marginal association of Xj with

Y , j = 1, . . . , p. In particular, we might choose a common regression model m(x | β) for all genes,

parametrized by a finite dimensional parameter β, so that E(Y | Xj) = m(Xj | βj), j = 1, . . . , p.

Then, we can define an association profile Wj = W (X, Y |βj) for each gene. The association profile

Wj will typically be n-dimensional, representing random deviations from an average (across the

whole population) association of Xj with Y as quantified by the particular gene-specific regression

model. In this case, it makes sense to store these profiles in an n × p matrix W of the same

dimension as X. We can think of each row of W as a realization of a random variable W , which is

a p-dimensional vector (W(i, 1), . . . ,W(i, p)) whose j-th component represents the subject-specific

association of gene j’s expression with the outcome Y for subject i (i = 1, . . . , n, j = 1, . . . , p).

Table 1 gives several specific examples of transformations Wj that provide meaningful associa-

tion profiles for the linear regression model

Y = m(Xj | βj) + εj = βj0 + βj1Xj + εj

The transformations are defined as if the regression parameters β = (βj0, βj1 : j = 1, . . . , p)

were known. Estimation is discussed in Section 4. The same approach can be used to define

transformations for other models.

[Table 1 about here.]

• Regression Coefficients. A simple transformation is the regression coefficient Wj(X, Y ) =

βj1 (j = 1, . . . , p) for the slope. In this case, Wj is a single number, not an n-vector. Like
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means in a typical gene expression analysis, marginal regression coefficients can be useful for

gene selection, but they are not useful for clustering.

• Residuals. The vector of residuals εj = Y −m(Xj |βj) captures subject-specific deviations

from E(Y | Xj). The transformation Wj(X, Y ) = εj is intuitively appealing, since residuals

are widely used in statistics and biostatistics for assessing subject-specific contributions and

goodness of fit in regression model diagnostics.

• Influence Functions. The influence function IC(i, j) represents the contribution of subject

i to the regression of gene j on Y . As such, Wj(X, Y ) = (IC(1, j), . . . , IC(n, j)) is an

interesting association profile. In the case of the linear regression model with the intercept

βj0 known, the efficient influence curve for the slope parameter βj1 can be thought of as a

subject-specific deviation from the overall slope (Appendix A).

• Standardized Residuals. Another transformation is the vector of standardized residuals

Wj(X, Y ) = (ε(1, j)/X(1, j), . . . , ε(n, j)/X(n, j)), where ε = ε(i, j) is the matrix of resid-

uals for subject i and gene j. A connection between the efficient influence curve and the

transformation εj/Xj is given in Appendix A.

Remark 1: The transformation Wj = εj/Xj will be unstable at small values of Xj . We propose,

therefore, the transformation εj/X̃j = εj

Xj+δ , where δ is a data adaptively selected small number

added to Xj for robustness against very small Xj . Alternatively, one could use max(Xj , c) in the

denominator to truncate gene expression from below by a constant c.

Remark 2: For each of these transformations, it is also possible to include covariates in the model

for association. The residuals from Y = m(Xj , V | βj) + εj are adjusted for the covariate(s) V . In

this case, the transformation is Wj = Wj(V,X, Y ), denoting the dependence on V .

Remark 3: For generalized linear regression, influence functions are equivalent to subject-specific

deviations from the overall regression coefficient to a first order approximation. The efficient influ-

ence curve suggests a transformation Wj = εj

{
d

dβj1
m(Xj |β)

}−1
(Appendix B).
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3.2 Stage 2: Distances

Given a transformation W = W(X, Y ) of the gene expression data and outcome into n-

dimensional association profiles {Wj : j = 1, . . . , p}, a p×p empirical supervised distance matrix D̃

is obtained by simply applying a choice of pair-wise distance (metric or non-metric) to the columns

of W. Some examples include Euclidean, cosine-angle, and correlation distance. For a given choice

of distance d, D̃ = d(W) = {d(Wj ,Wj′) : j = 1, . . . , p, j′ = 1, . . . , p} measures dissimilarity be-

tween pairs of gene association profiles. In other words, the distance D̃(j, j′) = d(Wj ,Wj′) is small

if genes j and j′ have a similar association between expression and the outcome Y across the n

subjects. Because D̃ is based on association profiles W, it directly reflects distance between genes

based on their associations with Y , rather than their expression per se.

We refer to the matrix D̃ = d(W) as an empirical distance matrix, because it is based on the

transformed data W for a sample of size n. In the discussion above, we suppose that the true

transformation W is known. In practice, W and hence the empirical distance matrix D̃ must

be estimated. Estimation of the transformations Wj = Wj(X, Y ) involves fitting an appropriate

regression model E(Y |Xj) = m(Xj | βj) for the association between the expression profile of each

gene Xj and the outcome Y . The estimator β̂j provides an estimator Ŵj = Wj(X, Y |β̂j) of Wj .

For instance, the transformations Wj in Table 1 are based on the intercept and slope parameters

βj = (βj0, βj1) from a simple linear regression model. An estimator β̂j can be obtained through

maximum likelihood (or least squares). Let D̂ = d(Ŵ) = {d(Ŵj , Ŵj′) : j = 1, . . . , p, j′ = 1, . . . , p}

denote the estimated supervised distance matrix, which is an empirical supervised distance matrix

based on the estimated transformation Ŵ.

3.3 Clustering

We now make a few comments about the use of the proposed empirical supervised distance

matrices to cluster genes with regard to their association profiles. Recall that in unsupervised

clustering of gene expression data X, the distance matrix measures pair-wise distances between

the genes’ expression profiles {Xj : j = 1, . . . , p}, and the goal of clustering is to find groups of

genes whose expression profiles Xj are similar. Here, we propose to supervise the clustering of

gene expression profiles with the outcome of interest Y by using instead the estimated supervised

distance matrix D̂. Thus, standard clustering methods can be applied directly to the analysis of

5
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the association between X and Y by using the matrix D̂ as input. In particular, any unsupervised

clustering algorithm can now be employed for supervised clustering.

A strong cluster of genes in D̂ represents a group of genes which show the same association

between Y (e.g.: survival) and gene expression across subjects. The n-dimensional profile of this

cluster, such as a cluster mean or medoid, identifies the typical response of Y to these genes. The

pattern of this response can vary between gene clusters. For example, for a given cluster we might

find that either all subjects show the same response to these genes, or the subjects cluster into two

or more groups with respect to these genes, or the subjects might show a gradient of increasing

responses.

Remark 4: Typically, the dimension of a gene expression data set is reduced before clustering

by removing any genes that do not carry significant information about the question of interest.

Filtering rules are usually based on testing a null hypothesis for each gene and making rejection

decisions so that a multiple testing error rate is controlled. The same methods that are employed

for filtering the gene expression profiles X can be applied to the transformed data Ŵ. For exam-

ple, testing the null hypotheses H0(j) : βj1 = 0 allows one to remove genes whose profiles show no

marginal association with the outcome Y .

4. Consistency Theorems for Supervised Distance Matrices

In the previous section, we focused on how one might use estimated supervised distance matri-

ces in practice. We now make the observation that there exists some true supervised distance

matrix D, which can be thought of as a parameter of the data generating distribution. This ma-

trix D = D(j, j′) measures how similar genes j and j′ are in terms of their associations with the

outcome Y in the population. We can therefore think of the empirical distance matrix D̃ as an

empirical estimator of D based on the true parameters βj . Similarly, D̂ is an empirical estimator

of D based on estimated parameters β̂j . Note that D̂ is the estimator one would typically use

in practice, since the regression parameters will not usually be known. Both estimators rely on

computing an empirical distance from a (possibly estimated) transformation of the observed data.

In this section, we show that under certain conditions on the data and the transformation, D is
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consistently estimated whenever β̂j is a consistent estimator of βj .

4.1 Uncensored Data

If the outcome Y is observed for all subjects, consistent estimation of the supervised distance

matrix D amounts to consistent estimation of the transformation W, since D is a deterministic

function of W. First, consider the specific case where the transformation Wj is the n-vector of

linear regression residuals εj = Y − (βj0 + βj1Xj) for gene j. If Xj is bounded and β̂j converges

to βj in probability as n
log p →∞, then the following theorem shows that D̂ converges to D at the

same rate.

Theorem 1. Let Wj = Y − (βj0 + βj1Xj), where Y is not censored. Suppose |Y | ≤ M and

|Xj | ≤ M for a constant M > 0, j = 1, . . . , p. If supj |β̂j − βj |
P−−−−−→

n
log p

→∞
0, then

sup
j,j′

|D̂(j, j′)−D(j, j′)| P−−−−−→
n

log p
→∞

0.

The proof of Theorem 1 is given in Appendix C. It involves showing that Ŵ converges to W as

n
log p →∞, using Berstein’s inequality. Then the result follows, since D is a deterministic function

of W and D̂ is a deterministic function of Ŵ.

Next, consider a general transformation Wj . Under the conditions of the following theorem,

similar reasoning to that used for the residual transformation provides convergence of D̂ to D.

Theorem 2. Let Wj = Wj(βj) be a transformation of the data (X, Y ) that is a function of an

unknown regression parameter βj, j = 1, . . . , p. Suppose Y is not censored. Consider the estimator

Ŵj = Wj(β̂j). If |Y | ≤ M and Wj(β̂j) − Wj(βj) ≤ M(β̂j − βj) for a constant M > 0 and if

supj |β̂j − βj |
P−−−−−→

n
log p

→∞
0, then

sup
j,j′

|D̂(j, j′)−D(j, j′)| P−−−−−→
n

log p
→∞

0.

The proof of Theorem 2 follows the same Bernstein’s inequality argument as the proof of Theorem 1,

with the condition Wj(β̂j)−Wj(βj) ≤ M(β̂j − βj) playing the role of |Xj | ≤ M .

We now make an observation that will allow us to estimate supervised distance matrices even

when the outcome Y is censored. Note that we have been describing the supervised distance
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matrix D as a deterministic function of the transformed data W. In fact, D is typically also a

deterministic function of the mean µ = E(W) and covariance Σ = E(W − µ)(W − µ)> of W,

which are parameters of the underlying data generating distribution. This is the case for many

commonly employed distance metrics, including Euclidean, cosine-angle, and correlation distance

(as well as the absolute values of these). For example, the Euclidean distance matrix is given by:

d(Wj ,Wj′) = n(σjj + σj′j′ − 2σjj′ + (µj − µj′)2). (1)

When D = D(µ,Σ) is a deterministic function of the mean and covariance of W, we can use

the estimator D̄ = D(µ̂, Σ̂) based on estimates of the mean and covariance of W. The following

theorem is the analog of Theorem 1 for convergence of D̄.

Theorem 3. Let Wj = Y − (βj0 + βj1Xj), where Y is not censored. Consider the estimator

D̄ = D(µ̂, Σ̂) of D = D(µ,Σ), defined above. Suppose |Y | ≤ M , |Xj | ≤ M , |Wj | ≤ M , |βj | ≤ M ,

and |β̂j | ≤ M for a constant M > 0, j = 1, . . . , p. If the variance of Xj is bounded away from zero

uniformly in j, then

sup
j,j′

|D̄(jj′)−D(jj′)| P−−−−−→
n

log p
→∞

0.

The proof, given in Appendix C, involves showing that the first two moments of the distribution

of Wj , (µ,Σ), can be consistently estimated under the conditions of the theorem. A similar result

can be obtained for other transformations.

4.2 Censored Data

For uncensored data, it is not necessary to use the estimator D̄ = D(µ̂, Σ̂) of the supervised

distance matrix, since we can typically estimate the transformation W itself and use D̂ = d(Ŵ).

However, when the transformation is not directly estimable, due to Y being unobserved for some

subjects, this alternative estimator D̄(µ̂, Σ̂) provides an approach to compute supervised distance

matrices in the presence of censoring.

A method for the estimation of regression coefficients when the outcome is right-censored

is based on the use of Horvitz-Thompson type estimators called Inverse Probability of Censor-

ing Weighted (IPCW) estimators, which are presented in great generality in Robins & Rot-

nitzky(1992)). The optimal estimating function is discussed in Robins & Rotnitzky(1992)) and
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van der Laan & Robins(2003)) (Chapter 3), but optimality is not the focus of this paper. Here,

we aim to illustrate how one example of a simple IPCW estimator can be used in the estimation

of the mean and covariance of W when Y is censored. A similar approach can be used with any

such estimator. The idea behind IPCW estimators is to use the data from uncensored subjects

to estimate the mean and covariance (µ,Σ) of W. The estimators are weighted by the inverse

probability of censoring given the data on a subject. These weights make the estimator unbiased.

The IPCW estimators of µ and Σ = {σjj′} based on the observed data Oi = (Yi ∧ Ci,∆i =

I[Yi ≤ Ci], Xi), i = 1, . . . , n are given by:

µ̂j = Ê(Ŵj) =
1
n

n∑
i=1

Ŵ(i, j)∆i

Ḡn(Yi | X, Y )
, j = 1, . . . , p, (2)

σ̂jj′,n = Ê(ŴjŴj′) =
1
n

n∑
i=1

Ŵ(i, j)Ŵ(i, j′)∆i

Ḡn(Yi | X, Y )
, j = 1, . . . , p, j′ = 1, . . . , p, (3)

where Ḡ(t | X, Y ) = pr(Ci > t | X, Y ) is the probability that subject i was still at risk at time t

given his/her gene expression profile. We call Ḡ the censoring mechanism. Ḡ(t | X, Y ) is estimated

by Ḡn(t | X, Y ). Note that the proposed IPCW estimators involve two estimation steps: estimation

of the transformation Wj for uncensored subjects and estimation of the mean or covariance via the

empirical mean and covariance. If the true transformation were know, we could form estimates

µ̃j,n and Σ̃jj′,n similar to Equations 2 and 3 (respectively) by replacing Ŵ(i, j) with W(i, j) and

Ḡn(Yi | X, Y ) with Ḡ(Yi | X, Y ) in each expression.

Given a choice of distance, the p× p supervised distance matrix D is estimated by plugging in

the IPCW estimators (µ̂, Σ̂) to Equation 1 or its analog. The resulting IPCW supervised distance

matrix estimator D̄ can then be used for clustering as described above for uncensored data. We

now turn to the question of consistency. Convergence of D̄ = D(µ̂, Σ̂) to D depends on consistency

of the estimators (µ̂, Σ̂), since D is a deterministic function of (µ,Σ). The following theorem gives

the necessary conditions for convergence of the IPCW estimators (Equations 2 and 3) to (µ,Σ) for

the residual transformation.

Theorem 4. Let Wj = Y − (βj0 + βj1Xj), where Y is right-censored. Consider the estimator

D̄ = D(µ̂, Σ̂) of D = D(µ,Σ), defined above. Suppose |Y | ≤ M , |Xj | ≤ M , |Wj | ≤ M , |βj | ≤ M ,

and |β̂j | ≤ M for a constant M > 0, j = 1, . . . , p. Also suppose the variance of Xj is bounded away

9
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from zero uniformly in j. Assume that (i) C ⊥ Y |X, (ii) sup |Ḡn(Y |X, Y ) − Ḡ(Y |X, Y )| P−→ 0

where the supremum is over the support of the distribution of (X, Y ), and (iii) Ḡ(Y |X, Y ) > δ > 0

for a.e. (X, Y ), where Ḡ(t|X, Y ) = Pr(C > t|X, Y ). Then,

sup
j,j′

|D̄(j, j′)−D(j, j′)| P−−−−−→
n

log p
→∞

0.

The proof is given in Appendix D. Similar results can be obtained for other transformations.

Remark 5: One can think of the output of a clustering algorithm (e.g. gene cluster labels or a

hierarchical tree) as parameters of the underlying data generating distribution. In the supervised

clustering problem presented here, these clustering parameters are typically deterministic functions

of the supervised distance matrix D. Hence, we can consistently estimate the supervised clustering

parameters themselves as long as we can consistently estimate D.

5. Simulations

In order to illustrate the implementation of this method, we designed a simulation consisting of

gene expression and survival time (possibly censored) for a sample of subjects. We generated the

data in such a way that one gene (the causal gene g1) is perfectly predictive of survival and another

nine genes have expression very similar to this gene. The remaining genes have one of several

expression patterns, one of which has the same mean as the causal gene. Thus, the genes still form

clusters with respect to gene expression alone, but an interesting cluster of ten genes exists which

has a special relationship to survival.

5.1 Data Generation

First, we generate the gene expression matrix X with n = 30 patients and p = 1010 genes. The

effect of increasing the sample size to n = 100 is investigated later. We suppose that the genes with

insignificant difference in expression between tumor and healthy tissues have already been removed

from the data set. For 1000 genes, each gene’s expression is an independent N(m, 0.75) variable,

where m ∈ {−9,−8,−5,−4, 4, 5, 8, 9} and each mean group consists of 125 genes. In addition, we

generate 10 genes with m = −9, that are not independent. A single gene g1 is generated first, and

then the other nine genes are g1 plus random N(0, 0.05) noise. In this way, we have an extra ten

genes with mean m = −9 that are very close to each other.

10
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Next, we generate survival times for each patient as a deterministic function of the expression

of g1. We generate according to log Ti = β0i + β1ig1i. For patients 1 to 15, we set β0i = 0, while

for patients 16 to 30 we set β0i = −2. For all patients, we set β1i = −1. Finally, we generate a

censoring time for each patient. We consider no censoring, 20%, and 30% expected censoring. Since

the maximum log survival time is ≈ 10, we generate the censoring times log C from U(0, 10/q)),

where q is the expected fraction of patients we wish to have censored.

5.2 Method

We use the clustering algorithm PAM (Kaufman & Rousseeuw(1990)) throughout the simula-

tions. The emphasis in this paper is not on the choice of algorithm, but rather on the transformation

method. We like PAM for our purposes, because it allows any user-supplied distance metric and

the medoids (elements themselves) are robust representations of the clusters. We follow the rec-

ommendation of Kaufman & Rousseeuw(1990)) and chose the number of clusters by maximizing

average silhouette, a measure of how well matched elements are to their own cluster versus the

next closest cluster. We use Euclidean distance, which is capable of detecting differences between

groups of genes differing in mean expression.

First, we cluster genes using the gene expression data X only. Next, we fit a linear regression

model for log T and each gene’s expression. We look at which genes have t-statistics larger than

expected using a simple Bonferoni adjustment. In the uncensored data simulation, we are able to

compute the residual transformation X̃ directly. We then calculate the Euclidean distance matrix

from X̃ and cluster genes.

In the simulations with censoring, we use IPCW estimators for the mean and covariance of X̃

to calculate the gene Euclidean distance matrix. We use a Cox proportional hazards model for

the censoring mechanism. Since we know that none of the gene’s are associated with censoring,

we choose to use only g1 to fit the model for pr(C > t | X). Gene g1 is a sensible choice, because

its expression is most associated with survival time so that by including it in the model for the

censoring mechanism we gain efficiency (van der Laan & Robins(2003)), p.135). We cluster genes

using the transformed gene Euclidean distance matrix.

5.3 Results

For comparative purposes, we first describe the results of applying standard unsupervised clus-

tering to the simulated data. Then, the results from supervised clsutering are presented.

11
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Gene Expression Only. Average silhouette suggests that there are two clusters in the gene

expression data. We apply PAM with k = 2 and find that these are the over and under expressed

genes (means less than and greater than zero). When we also try k = 8 clusters, PAM identifies

the eight groups based on means.

Residual Transformation. We apply the residual transformatin approach to simulated data

without censoring and with right censoring of 20% or 30% of subjects.

1. Without Censoring:

• There are two gene clusters, which correspond exactly to g1’s group (C1) and the rest

of the genes (C2).

• Figure 1 illustrates the presence of two patient subpopulations in C1. This separation

of the patients into subpopulations is not evident when all genes are used nor when

the genes in C1 are used but the distance matrix is calculated from gene expression

alone. This result highlights a situation where we can identify an interesting patient

subpopulation which would not have been evident without a sensible transformation.

[Figure 1 about here.]

2. With Censoring (using IPCW estimators):

• First, we consider C distributed U(0, 50), so that about one fifth of the patients are

censored. There are two clusters, which correspond with g1’s group plus nine other

genes (C1) versus the rest of the genes (C2).

• With C distributed U(0, 30), the gene distance matrix computed from the IPCW mean

and covariance estimates again has two clusters. The cluster with g1’s group now con-

tains 50 genes, indicating that for n = 30 and 30% censoring it is harder to estimate

the transformed data matrix than with only 20% censoring. Figure 2 shows the two

distance matrices.

• When the number of subjects is increased to n = 100, g1’s group is identified exactly as

one cluster, even with 30% censoring.

[Figure 2 about here.]
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6. Data Analysis

We apply the methodology proposed in this paper to a puclically available data set that includes

measures of gene expression and survival for 92 patients with mantle cell lymphoma (MCL), a non-

Hodgkin’s lymphoma Rosenwald et al.(2003)Rosenwald, Wright, Wiestner, Chan, Conors et al.).

All patients were cyclin D1 negative. Sixty-four of the patients died during the course of the study,

while the remaining 28 patients were right-censored. Expression data was available for 8810 genes.

Based on previous studies and this data, the authors identify a set of genes (the ”proliferation

signature”) that are involved in cell proliferation and are predictive of survival. The data set

includes the mean expression profile for this set of genes.

6.1 Gene Filtering

We first screen out any genes that do not show an assoication with survival. One might explore

a number of gene selection strategies. Here, we follow the simulations and fit a linear model for

log survival time as a function of the expression profile of each gene. Then, for each gene, we test

the significance of the association between that gene’s expression and survival time in the fitted

model using a standard t-test. We select for cluster analysis any gene with p-value p < 0.01. This

produces a set of 750 genes.

One could, of course, fit other models for survival and use alternative filtering procedures. Each

choice of model and procedure would produce a potentially different set of genes for clustering.

For example, one might choose to use a more non-parametric test that accounts for multiple testing.

Several options are implemented in the R multtest package available at http://bioconductor.org

(Pollard & van der Laan(2004) Dudoit et al.(2004)Dudoit, van der Laan & Pollard). Since our goal

here is simply to reduce the number of genes for clustering in a straightforward and computationally

easy way, the t-test is a reasonable choice.

6.2 Supervised Clustering

Next, we compute an IPCW estimator of the Euclidean gene × gene distance matrix based on

the residual transformation. This distance matrix is appropriate for grouping genes based on the

mean association between expression level and survival time. In particular, the association profiles

for a patient reflect how that patient’s genes predict their survival.

Given IPCW estimators (µ̂, Σ̂) of the mean and covariance of the transformed data (matrix of

residuals), we can compute the estimated supervised Euclidean distance matrix D̄ using Equation 1.
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Estimation of (µ̂, Σ̂) is based on Equations 2 and 3. We estimate the censoring mechanism, Ḡn(Y |

X, Y ) using Kaplan-Meier (i.e. without using gene expression). A more efficient estimator could be

employed if needed. We also explored fitting a Cox proportional hazards model with gene expression

as a predictor. Because the gene expression data is so high-dimensional, this involves some model

selection or prior knowledge about which genes to include in the model. One sensible option in

this data set is to use the mean expression profile of the proliferation signature as predictor. The

proliferation signature is a reasonable summary of the full data set X, since the authors identified

this variable as predictive of survival. We found that the proliferation signature was only weakly

associated with censoring time (coefficient = 0.68, p = 0.055). The censoring mechanism based on

the estimated survival function from this Cox model is similar to that from Kaplan-Meier. Hence,

we used the simpler Kaplan-Meier estimated censoring mechanism to form our estimator D̄.

[Figure 3 about here.]

Any choice of clustering algorithm can now be applied to D̄. Here, we use the same general

approach (using the PAM algorithm) that we employed in the simulations. Average silhouette

suggests that there are between 2 and 7 clusters (these produce roughly equal values of average

silhouette). An alternative criteria, median split silhouette (van der Laan & Pollard(2003))),

indicates that there are 7 clusters. Furthermore, results with only a few large clusters are typically

difficult to interpret. So, we chose to apply PAM with k = 7 clusters. Figure 3 shows D̄ with genes

ordered by cluster.

The seven genes in the smallest cluster (cluster 7, the last one in the lower right) are very

similar to one another in terms of their association with survival. The residuals for all nine genes

show the same gradient across patients. The subset of patients with small residuals represent a

sub-population for which these genes are very predictive of survival in the corresponding fitted

linear models. This cluster includes a heat shock protein, a splicing factor, a polyprymidine tract

binding protein, a zinc finger protein, RNU2, and two hypothetical proteins. It would be interest-

ing to investigate the roles of these genes in MCL. Several other clusters, in particular cluster 6

(also in the lower right), are also fairly striking in terms of the similarity of residual profiles across

patients. These clusters provide candidates for studying the coordinated involvement of genes in

MCL.
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7. Discussion

We have proposed several transformations of a gene expression matrix and an outcome and illus-

trated that standard clustering methods for gene expression data can be applied to the transformed

data matrix in order to discover groups of genes with similar association profiles. This approach

can easily adjust for covariates by including these variables in the models for the outcome. Us-

ing a simulation, we illustrated the usefulness of the transformation method in a case where two

subpopulations have the same gene expression profile for a set of genes, while this set of genes

has a different relationship to the outcome in each subpopulation. Therefore, clustering based on

distances between gene expression is simply the wrong distance for the purpose of finding such

subpopulations.

We have also presented a method for IPCW estimation of the supervised distance matrix and

associated clustering parameters when the outcome is right censored. In the simulation, we found

that even with sample sizes as small as n = 30, we can identify interesting clusters of genes with

the IPCW estimators with reasonable amounts of censoring. With more censoring, the genes of

interest are still identified, but there are other genes in their cluster as well. Increasing the sample

size to n = 100 results in these extra genes no longer being clustered with the causal gene, even with

as much as 30% censoring. This finding illustrates how simulations can be used to investigate the

asymptotic behavior of transformed data clustering parameters (with and without censoring). It is

important to understand the true parameters (n →∞) separately from the problem of estimation

in a finite sample.

This IPCW methodology was illustrated on an MCL gene expression data set. The proposed

approach allowed us to cluster genes based on their association with survival, even when nearly a

third of patients were right-censored. We identified seven distinct groups of genes based on their

association profiles. Several of these clusters contain genes with very similar residuals in a model of

log survival time as a function of gene expression. In studies with additional clinical information on

patients, these clinical variables could be included in the model for survival, producing a supervised

distance matrix based on adjusted gene expression association profiles.

Often when one conducts a gene expression study, the goal is to discover underlying causal
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relationships and thereby learn transcriptional networks. The method we have presented identifies

genes with similar association profiles. The usual caveats about association not implying causation

apply in this setting. Investigation of this approach with causal models is a topic for future research.

We have focused on gene expression as a predictor of an outcome, such as survival. The methods

we propose can also be applied to study gene expression as an outcome with a treatment or time

variable as predictor. In this case, the roles of Y and Xj are reversed in the linear model. Then,

the supervised distance matrix D based on the residual transformation and correlation distance is

equivalent to the partial correlation between Xj and Xj′ adjusting for Y .

While the emphasis in this paper has been on estimation of clustering parameters, it is important

to also estimate the variability of these parameter estimates. We previously proposed a statistical

framework for analysis of gene expression data and suggested bootstrap methods for statistical

inference in this setting (van der Laan & Bryan(2001); Pollard & van der Laan(2002); van der Laan

& Pollard(2003)). Since the transformations presented in this paper are deterministic functions

of the data generating distribution, this framework for clustering a gene expression matrix can

be applied directly to the transformed matrices. The ability to assess reliability is particularly

crucial with the high dimensional data structures and relatively small samples in gene expression

experiments.
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Appendix A

Efficient influence curve transformation for linear regression

The influence function for an estimator β̂j of βj in the regression model Y = m(Xj |βj) + εj with

E(εj |Xj) = 0 is defined as the solution of

n∑
i=1

h(X(i, j), Y |βj)) = 0

where h(Xj , Y | βj) = h(Xj)(Y −m(Xj |βj)) is the estimating function. The influence function is:

IC(Xj , Y ) = −
{

d

dβj
E(h(Xj , Y | βj))

}−1

h(Xj , Y | βj).

The efficient influence function uses the optimal estimating function hopt (Bickel et al.(1993)Bickel,

Klaassen, Ritov & Wellner). For example, in the case of linear regression, the optimal estimating

equation is defined by hopt(Xj) = (1Xj)>/E(ε2j (β) | Xj). Then,

0 =
n∑

i=1

(1X(i, j))>

E(ε2j (β) | X(i, j))
ε(β)(i, j),

which corresponds with weighted least squares. For unweighted least squares σ2(Xj) = E(ε2j (β) |

Xj) = 1, so the estimating function is simply (1Xj)>εj(β).

We now consider the linear regression model E(Y | Xj) = βj0 + βj1Xj with the intercept βj0

known in order to see that under a certain model we can view the influence curve for βj1 as a

subject-specific slope. Under weak regularity conditions, we have that an efficient estimator β̂j1 of

βj1 is asymptotically linear with an influence curve IC such that

β̂j1 − βj1 =
1
n

n∑
i=1

IC(X(i, j), Yi) + oP (1/
√

n).

The efficient influence curve for the slope βj1 is

IC(Xj , Y ) =
1

E(X2
j /V (Xj))

Xj

V (Xj)
εj(β),

where V (Xj) = VAR(Y | Xj). In other words, in first order approximation we have:

β̂j1 ≈
1
n

n∑
i=1

{βj1 + IC(X(i, j), Yi)},

which shows that we might be able to view βj1 + IC(X(i, j), Yi) as a subject-specific regression

coefficient, whose average across subjects gives the overall regression coefficient.
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To confirm this result, suppose Yi = βj0 + B1(i, j)X(i, j) (with no error) and βj1 is the overall

regression coefficient. Then, ε(β)(i, j) = (B1(i, j) − βj1)X(i, j). So, the standardized residual

transformation Wj = εj(β)/Xj is equal to B1(i, j) − βj1, which is the difference between the

subject-specific slope and the overall slope. This provides some insight into the standardized

residual transformation as an association profile, and provides a link between it and the influence

curve for βj1. Returning to the influence curve transformation, we have

V (X(i, j)) = E(ε2j (β) | X(i, j))

= X(i, j)2E(B1(i, j)− βj1)2

≡ X(i, j)2σ2
j (B).

So E(X2
j /V (Xj)) = 1/σ2

j (B) and Xj/V (Xj) = 1/(Xjσ
2
j (B)). In this case IC(X(i, j), Yi | βj) =

(B1(i, j)− βj1). Thus, βj1 + IC(X(i, j), Yi | βj) = B1(i, j), the subject-specific slope in the model

Yi = βj0 + B1(i, j)X(i, j) with no error. Note that this subject-specific contribution B1(i, j) =

(Yi − βj0)/X(i, j) is independent of βj1. So even when the sample size is low so that β̂j1 is a bad

estimator of βj1 we will still obtain the exact subject-specific regression coefficient B1(i, j).

A similar calculation can be done for the influence curve in the model where both βj0 and βj1

are unknown.

Appendix B

Efficient influence function transformation for generalized linear regression

Suppose E(Y | Xj) = m(Xj | βj), where βj = (βj0, βj1). Since βj0 is treated fixed in the following,

for notational convenience, let m(Xj | βj1) denote m(Xj | βj) and m1(Xj | βj1) = d
dβj1

m(Xj | βj1).

The efficient influence curve of βj1 in the model with βj0 known is given by:

IC(Xj , Y | βj1) =
1

E(hopt(Xj)m1(Xj | βj1))
hopt(Xj)εj(βj1),

where hopt(Xj) ≡ m1(Xj |βj1)

E(ε2j (βj1)|Xj)
. Suppose Yi = m(X(i, j) | B1(i, j)), where B1(i, j) is a random

subject-specific coefficient whose variance we denote with σ2
j (B1). Then

εij(βj1) = m(X(i, j) | B1(i, j))−m(X(i, j) | βj1)

= m1(X(i, j) | βj1)(B1(i, j)− βj1) + oP (| B1(i, j)− βj1 |).
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So, in first order, E(ε2j (βj1) | Xj) = σ2
j (B1)

{
m1(Xj | βj1)

}2. This shows that hopt(Xj) ≈ 1
σ2

j (B1)m1(Xj |βj1)

and, since E(hopt(Xj)m1(Xj | βj1)) = 1/σ2
j (B1), this proves IC(X(i, j), Yi | βj1) ≈ B1(i, j) − βj1.

Thus, to a first order approximation, βj1 +IC(X(i, j), Yi) can again be viewed as a subject-specific

regression coefficient. Furthermore, for subject i the simple transformation Wj = εj(β)/m1(Xj | βj)

is approximately equal to B1(i, j) − βj1, again suggesting an association profile that measures

subject-specific deviations from the overall association βj1.

Appendix C

Results for uncensored data

The proof of Theorem 1 for the residual transformation relies on convergence of Ŵ to W, which

we prove first.

Lemma 1. Let Wj = Y − (βj0 + βj1Xj), and suppose |Xj | ≤ M for a constant M > 0 and for

j = 1, . . . , p. If supj |β̂j − βj |
P−−−−−→

n
log p

→∞
0, then

sup
j
|Ŵj −Wj |

P−−−−−→
n

log p
→∞

0.

Proof.

Ŵj −Wj

= Wj(β̂j)−Wj(βj)

= Y − (β̂j0 + β̂j1Xj)− {Y − (βj0 + βj1Xj)}

= (βj0 − β̂j0) + (βj1 − β̂j1)Xj

≤ sup
j
|βj0 − β̂j0|+ sup

j
|Xj | ∗ sup

j
|βj1 − β̂j1|

≤ sup
j
|βj0 − β̂j0|+ M ∗ sup

j
|βj1 − β̂j1|

P−−−−−→
n

log p
→∞

0.

So, supj |Ŵj −Wj |
P−−−−−→

n
log p

→∞
0.

Proof of Theorem 1: Residual transformation

Let Wj = Y − (βj0 + βj1Xj), where Y is not censored. Suppose |Xj | ≤ M for a constant M > 0,

j = 1, . . . , p. If supj |β̂j − βj |
P−−−−−→

n
log p

→∞
0, then supj,j′ |D̂(j, j′)−D(j, j′)| P−−−−−→

n
log p

→∞
0.
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Proof. The theorem follow directly from Lemma 1, since D is a deterministic function of W and

D̂ is a deterministic function of Ŵ.

Proof of Theorem 3:

Let Wj = Y − (βj0 + βj1Xj), where Y is not censored. Consider the estimator D̄ = D(µ̂, Σ̂) of

D = D(µ,Σ), defined above. Suppose |Xj | ≤ M , |Y | ≤ M , |Wj | ≤ M , |βj | ≤ M , and |β̂j | ≤ M for

a constant M > 0, j = 1, . . . , p. If the variance of Xj is bounded away from zero uniformly in j,

then supj,j′ |D̄(jj′)−D(jj′)| P−−−−−→
n

log p
→∞

0.

Proof. Recall that µj = E(Wj) and σjj′ = E(WjWj′). Consider two estimators for each of these

moments of the distribution of Wj : (i) the empirical estimate based on the true transformation

(i.e. if the regression coefficients are known) and (ii) the empirical estimate based on an estimated

transformation (i.e. if the regression coefficients are estimated). Denote these estimators by

µ̃j =
1
n

n∑
i=1

W(i, j) =
1
n

n∑
i=1

W(β)(i, j)

σ̃jj′ =
1
n

n∑
i=1

W(i, j)W(i, j′) =
1
n

n∑
i=1

W(β)(i, j)W(β)(i, j′)

for the true transformation W = W(β) and

µ̂j =
1
n

n∑
i=1

Ŵ(i, j) =
1
n

n∑
i=1

W(β̂)(i, j)

σ̂jj′ =
1
n

n∑
i=1

Ŵ(i, j)Ŵ(i, j′) =
1
n

n∑
i=1

W(β̂)(i, j)W(β̂)(i, j′)

for the estimated transformation Ŵ = W(β̂). We need to show that under the conditions of the

theorem:

1. supj |µ̂j − µj |
P−−−−−→

n
log p

→∞
0,

2. supj,j′ |σ̂jj′ − σjj′ | P−−−−−→
n

log p
→∞

0.

Then, the result of the theorem follows, since D and D̄ are deterministic functions of (µ,Σ) and

(µ̂, Σ̂), respectively.
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Proof of 1:

µ̂j − µj

= (µ̂j − µ̃j) + (µ̃j − µj)

=
1
n

n∑
i=1

{
W(β̂)(i, j)−W(β)(i, j)

}
+ (µ̃j − µj)

=
1
n

n∑
i=1

{
(Yi − β̂j0 − β̂j1X(i, j))− (Yi − βj0 − βj1X(i, j))

}
+ (µ̃j − µj)

=
1
n

n∑
i=1

{
(βj0 − β̂j0) + X(i, j)(βj1 − β̂j1)

}
+ (µ̃j − µj)

≤ sup
j

X̄j ∗

{
sup

j
|βj0 − β̂j0|+ sup

j
|βj1 − β̂j1|

}
+ sup

j
|µ̃j − µj |

≤ M ∗

{
sup

j
|βj0 − β̂j0|+ sup

j
|βj1 − β̂j1|

}
+ sup

j
|µ̃j − µj |

P−−−−−→
n

log p
→∞

0.

For a proof of the convergence of supj |βj0 − β̂j0| and supj |βj1 − β̂j1| we refer the reader to

Bryan(2001)) (p.52-53). The convergence of supj |µ̃j − µj | follows a similar Berstein’s inequal-

ity argument. Since µ̂j − µj converges to zero, so does supj |µ̂j − µj |, completing the proof.
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Proof of 2:

σ̂jj′ − σjj′

= (σ̂jj′ − σ̃jj′) + (σ̃jj′ − σjj′)

=
1
n

n∑
i=1

{
W(β̂)(i, j)W(β̂)(i, j′)−W(β)(i, j)W(β)(i, j′)

}
+ (σ̃jj′ − σjj′)

=
1
n

n∑
i=1

{
(Yi − β̂j0 − β̂j1X(i, j))(Yi − β̂j′0 − β̂j′1X(i, j′))

}
− 1

n

n∑
i=1

{
(Yi − βj0 − βj1X(i, j))(Yi − βj′0 − βj′1X(i, j′))

}
+(σ̃jj′ − σjj′)

=
1
n

n∑
i=1

Yi

{
(βj0 − β̂j0) + (βj′0 − β̂j′0) + X(i, j)(βj1 − β̂j1) + X(i, j′)(βj′1 − β̂j′1)

}
− 1

n

n∑
i=1

{
X(i, j′)(βj0βj′1 − β̂j0β̂j′1) + X(i, j)(βj′0βj1 − β̂j′0β̂j1) + X(i, j)X(i, j′)(βj1βj′1 − β̂j1β̂j′1)

}
−(βj0βj′0 − β̂j0β̂j′0) + (σ̃jj′ − σjj′)

≤ 2M ∗ sup
j
|β̂j0 − βj0|+ 2M2 ∗ sup

j
|β̂j1 − βj1|+ (β̂j0 − β̂j1X̄j)(β̂j′0 − β̂j′1X̄j′)

−(βj0 − βj1X̄j)(βj′0 − βj′1X̄j′) + (σ̃jj′ − σjj′)

≤ 2M ∗ sup
j
|β̂j0 − βj0|+ 2M2 ∗ sup

j
|β̂j1 − βj1|+ 2M2 + 4M3 + 2M4 + (σ̃jj′ − σjj′)

P−−−−−→
n

log p
→∞

0.

So, supj,j′ |σ̂jj′ − σjj′ | P−−−−−→
n

log p
→∞

0. Again, we repeatedly use the Bernstein’s inequality result from

Bryan(2001))(p.52-53). The requirement that var(Xj) be bounded away from zero is needed for

distances, such as correlation distance, where one must divide by σjj′ .

Appendix D

Results for censored data

Proof of Theorem 4:

Let Wj = Y − (βj0 + βj1Xj), where Y is right-censored. Consider the estimator D̄ = D(µ̂, Σ̂) of

D = D(µ,Σ), defined above. Suppose |Xj | ≤ M , |Y | ≤ M , |Wj | ≤ M , |βj | ≤ M , and |β̂j | ≤ M
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for a constant M > 0, j = 1, . . . , p. Also suppose the variance of Xj is bounded away from zero

uniformly in j. Assume that (i) C ⊥ Y |X, (ii) sup |Ḡn(Y |X, Y ) − Ḡ(Y |X, Y )| P−→ 0 where the

supremum is over the support of the distribution of (X, Y ), and (iii) Ḡ(Y |X, Y ) > δ > 0 for a.e.

(X, Y ), where Ḡ(t|X, Y ) = Pr(C > t|X, Y ). Then, supj,j′ |D̄(j, j′)−D(j, j′)| P−−−−−→
n

log p
→∞

0.

Proof. We need the same two convergence conditions as in the proof of Theorem 3 where (µ,Σ)

are now estimated by the IPCW estimators of Equations 2 and 3 and Wj is not observed for all

subjects. In otherwords, we need to show:

1. supj |µ̂j − µj | = supj | 1n
∑n

i=1
∆iW(β̂)(i,j)
Ḡn(Yi|X,Y )

− µj |
P−−−−−→

n
log p

→∞
0,

2. supjj′ |σ̂jj′ − σjj′ | = supj,j′ | 1n
∑n

i=1
∆iW(β̂)(i,j)W(β̂)(i,j′)

Ḡn(Yi|X,Y )
− σjj′ |

P−−−−−→
n

log p
→∞

0.

Then, the theorem follows, since D and D̄ are deterministic functions of (µ,Σ) and (µ̂, Σ̂), respec-

tively.
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Proof of 1:

µ̂j − µj

=
1
n

n∑
i=1

{
∆i

Ḡn(Yi|X, Y )
(W(β̂)(i, j)−W(β)(i, j))

}
+

1
n

n∑
i=1

{
∆iW(β)(i, j)
Ḡn(Yi|X, Y )

− µj

}

=
1
n

n∑
i=1

{
∆i

Ḡn(Yi|X, Y )
(β̂j0 − βj0 + X(i, j)(β̂j1 − βj1))

}
+

1
n

n∑
i=1

{
∆iW(β)(i, j)
Ḡn(Yi|X, Y )

− µj

}

= (β̂j0 − βj0) ∗
1
n

n∑
i=1

∆i

Ḡn(Yi|X, Y )
+ (β̂j1 − βj1) ∗

1
n

n∑
i=1

∆iX(i, j)
Ḡn(Yi|X, Y )

+
1
n

n∑
i=1

{
∆iW(β)(i, j)
Ḡn(Yi|X, Y )

− µj

}

= (β̂j0 − βj0) ∗
1
n

n∑
i=1

∆i

Ḡn(Yi|X, Y )
+ (β̂j1 − βj1) ∗

1
n

n∑
i=1

∆iX(i, j)
Ḡn(Yi|X, Y )

+
1
n

n∑
i=1

{
∆iW(β)(i, j)

(
1

Ḡn(Yi|X, Y )
− 1

Ḡ(Yi|X, Y )

)}
+

n∑
i=1

{
∆iW(β)(i, j)
Ḡ(Yi|X, Y )

− µj

}

= (β̂j0 − βj0) ∗
1
n

n∑
i=1

∆i

Ḡn(Yi|X, Y )
+ (β̂j1 − βj1) ∗

1
n

n∑
i=1

∆iX(i, j)
Ḡn(Yi|X, Y )

+
1
n

n∑
i=1

{
∆iW(β)(i, j)

Ḡ(Yi|X, Y )− Ḡn(Yi|X, Y )
Ḡn(Yi|X, Y )Ḡ(Yi|X, Y )

}
+ (µ̃j − µj)

By our assumptions

Pr

(
1
n

n∑
i=1

∆iX(i, j)
Ḡn(Yi|X, Y )

< C

)
→ 1

and

Pr

(
1
n

n∑
i=1

∆i

Ḡn(Yi|X, Y )
< C

)
→ 1

for some C < ∞. So, we have:

µ̂j − µj

≤ C ∗ (sup
j
|βj0 − β̂j0|+ sup

j
|βj1 − β̂j1|) + sup

j

∣∣∣∣Ḡn(Y |X, Y )− Ḡ(Y |X, Y )
Ḡn(Yi|X, Y )Ḡ(Yi|X, Y )

∣∣∣∣ ∗ 1
n

n∑
i=1

|∆iW(β)(i, j)|

+sup
j
|µ̃j − µj |

≤ C ∗ (sup
j
|βj0 − β̂j0|+ sup

j
|βj1 − β̂j1|) + sup

j
|W(β)(i, j)| ∗Op(1/

√
n) + sup

j
|µ̃j − µj |

≤ C ∗ (sup
j
|βj0 − β̂j0|+ sup

j
|βj1 − β̂j1|) + M ∗Op(1/

√
n) + sup

j
|µ̃j − µj |

P−−−−−→
n

log p
→∞

0.

25

Hosted by The Berkeley Electronic Press



Again, the convergence of supj |βj0− β̂j0|, supj |βj1− β̂j1| and supj |µ̃j−µj | follow from Bernstein’s

inequality.

We omit the proof of part 2 (second moments). The argument combines the ideas from the

proof of part 1 of this theorem with those of part 2 of Theorem 3. Again, Bernstein’s inequality is

used repeatedly.
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Figure 1. Plots of the residuals in simulated data. Residuals for each patient are computed

from the regression of two different genes on log T , one depicted in each panel. The top panel is the

medoid gene for the small cluster identified in the analysis of residual transformed data (containing

the causal gene). The bottom panel is the medoid gene for the larger cluster from that analysis.

The patients separate clearly into two groups in the top panel, but not the bottom panel.
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Figure 2. Distance matrices from simulated censored data. Euclidean gene × gene

distance matrices, with genes ordered by clusters. Each pairwise distance is represented by a color

on the red-white scale, with bright red corresponding to the smallest distance. Both panels are

from the analysis of the residual transformed data with the PAM clustering algorithm. There are

k = 2 clusters in each panel. The left panel is the IPCW estimated matrix with ≈ 20% censoring.

The right panel is with ≈ 30% censoring. The clusters are less distinct with more censoring.
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Figure 3. Distance matrix from MCL censored data. Euclidean gene × gene distance

matrices, with genes ordered by clusters. Distance matrix is based on the residual transformation

and is estimated with IPCW estimators, due to 30.4% censoring. There are k = 7 clusters, whose

boundaries are marked with dashed lines. The color scheme is the same as in Figure 2.
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Transformation Inspiration Notes

βj1 Regression coefficient Scalar, not n-vector

εj Residuals

1
E(X2

j /V (Xj))

Xj

V (Xj)
εj Influence curve V (Xj) = VAR(Y |Xj)

εj/X̃j Standardized residuals X̃j is Xj , possibly bounded away from 0

Table 1

Examples of transformations Wj = Wj(X, Y ) for the linear regression model Y = βj0 +βj1Xj + εj.
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