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Detailed Version: Analyzing Direct Effects in
Randomized Trials with Secondary

Interventions: An Application to HIV
Prevention Trials

Michael A. Rosenblum, Nicholas P. Jewell, Mark J. van der Laan, Stephen
Shiboski, Ariane van der Straten, and Nancy Padian

Abstract

This is the detailed technical report that accompanies the paper “Analyzing Di-
rect Effects in Randomized Trials with Secondary Interventions: An Application
to HIV Prevention Trials” (an unpublished, technical report version of which is
available online at http://www.bepress.com/ucbbiostat/paper223).

The version here gives full details of the models for the time-dependent analy-
sis, and presents further results in the data analysis section. The Methods for
Improving Reproductive Health in Africa (MIRA) trial is a recently completed
randomized trial that investigated the effect of diaphragm and lubricant gel use in
reducing HIV infection among susceptible women. 5,045 women were randomly
assigned to either the active treatment arm or not. Additionally, all subjects in
both arms received intensive condom counselling and provision, the ”gold stan-
dard” HIV prevention barrier method.

There was much lower reported condom use in the intervention arm than in the
control arm, making it difficult to answer important public health questions based
solely on the intention-to-treat analysis.

We adapt an analysis technique from causal inference to estimate the ”direct ef-
fects” of assignment to the diaphragm arm, adjusting for condom use in an appro-
priate sense.



Issues raised in the MIRA trial apply to other trials of HIV prevention methods,
some of which are currently being conducted or designed.



1. Introduction

This is the detailed technical report that accompanies the paper “Analyzing Direct Effects
in Randomized Trials with Secondary Interventions: An Application to HIV Prevention
Trials” (an unpublished, technical report version of which is available online–see Rosenblum
et al. (2007) in the bibliography for the web-address). The version here gives full details of
the models for the time-dependent analysis, and presents further results in the data analysis
section.

Randomized controlled trials play a critical role in the assessment of public health in-
terventions to prevent and treat disease. Standard intention-to-treat analyses, which are
straightforward comparisons of aggregate outcomes in the treatment and control groups,
are widely assumed to be the most appropriate method for analyzing and reporting trial
results. However, in intervention trials, ethical considerations generally require provision of
currently accepted disease prevention methods to all participants as a secondary interven-
tion, irrespective of study arm assignment. For example, in randomized controlled trials
of new HIV prevention methods, provision of condoms with counselling is required for all
study participants to meet human subjects protection requirements. In such cases, the stan-
dard intention-to-treat analysis may not adequately answer important questions of public
health interest. In particular, in these cases it may not address the effectiveness of the new
prevention method in the absence of the secondary intervention. Also, it may give severely
biased estimates of study product efficacy, even in blinded trials with relatively high rates of
compliance to the primary intervention (Trussell and Dominik, 2005). The situation is even
worse in unblinded trials of new HIV prevention methods; for example, in the MIRA trial
of latex diaphragms and gel, the frequency of condom use was different in the treatment
and control arms, making it quite difficult to draw conclusions about diaphragm and gel
efficacy based only on the intention-to-treat analysis (Padian et al., 2007). In this paper,
we highlight limitations in relying solely on standard analyses of randomized trials with sec-
ondary interventions such as condom counselling, and we propose a supplemental analysis
technique. Our intent is to stimulate debate on additional design and analysis approaches.
Improved methods tailored to HIV prevention trials are urgently needed, since many of
these trials are currently being conducted or planned. We focus on supplemental analy-
sis approaches throughout this paper, but briefly consider design issues in the discussion
section.

We describe a causal inference technique, called a direct effects analysis, that attempts
to isolate the effects of the secondary intervention, thereby providing more information
about primary treatment efficacy. This technique can be applied in situations where a
secondary intervention affects the primary outcome only through a measured covariate or
set of covariates. For example, in HIV prevention trials, it is thought that condom provision
and counselling affect HIV risk primarily through their impact on condom use, which is often
measured in these trials. Unlike standard time-dependent regression techniques to adjust for
time-dependent confounders, the direct effects analysis adequately handles time-dependent
confounders measured in a trial. We illustrate the benefits and limitations of our direct
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effects analysis by applying it to the trial entitled “Methods for Improving Reproductive
Health in Africa” (MIRA) (Padian et al., 2007), a randomized controlled trial investigating
the effect of providing diaphragm and non-contraceptive, lubricant gel (Replens), on male-
to-female HIV transmission.

For simplicity, we consider randomized controlled trials with two arms, in which a pri-
mary intervention is provided only to the treatment arm, and a secondary intervention
(such as condom provision and counselling) is given to both treatment and control arms.
This design is currently used in virtually all trials that evaluate new HIV prevention meth-
ods. Examples include trials evaluating the effects of microbicides (Mantell et al., 2005),
male circumcision (Auvert et al., 2005; Bailey et al., 2007; Gray et al., 2007), and woman-
controlled barrier methods (Padian et al., 2007). In such trials, one risks overlooking and
perhaps dismissing effective new HIV prevention methods when interpretations of trial re-
sults are based solely on a standard intention-to-treat analysis. It is also possible that an
intention-to-treat analysis would overstate the benefits of an intervention, were it deployed
in a different setting than that of the study. Direct effects analyses can provide useful,
supplemental information to help identify whether a secondary intervention may be having
these effects.

We focus primarily on unblinded trials (where participants know which study arm they
are in), since here the problems in interpreting the intention-to-treat estimator can be worse
than in blinded trials. Unblinding may be a necessary part of a trial design, for example in
trials of barrier methods or male circumcision where no placebo is used; some unintended
unblinding may also occur in trials with placebo (Friedman et al., 1998). Though we
concentrate on unblinded trials with secondary interventions, such as the MIRA trial, we
also discuss analogous issues in blinded trials. In particular, we briefly describe problems in
interpreting the intention-to-treat analysis in blinded trials, and also explain how a direct
effects analysis can be applied to obtain useful information in blinded trials in the discussion
section of the paper.

Unblinding leaves open the possibility that differences in average outcomes between the
two study arms could be due to factors (such as behaviour change in response to treatment
assignment) other than efficacy of the treatment being studied. Also, with unblinding,
average outcomes that are equal in the two study arms do not rule out the treatment
being efficacious. For example, in the MIRA trial, which is unblinded, the fact that the
HIV infection rates in the two study arms were nearly identical does not necessarily mean
that latex diaphragms offer no protection against HIV; an alternative explanation, whose
plausibility we explore in this paper, is that being assigned to the diaphragm arm resulted
in significantly less condom use, which may have cancelled out a protective effect from
diaphragms. A direct effects analysis aims to isolate the effect of a suspected alternative
causal pathway connecting treatment assignment to outcome, in order to help assess whether
such alternative explanations are plausible. Our approach is based on a method of direct
effects analysis from Robins and Greenland (1992) and Pearl (2000b). This method is also
discussed in Petersen et al. (2006), under a different set of assumptions.

Our paper is organized as follows: We describe the MIRA trial in Section 2. In Sec-
tion 3 we discuss the limitations of intention-to-treat analyses in the presence of secondary
interventions or unblinding. In Section 4 we introduce direct effects, and in Sections 5 and
6 we present estimators of direct effects, and the assumptions needed for these estimators
to be valid. In Section 7, we provide summary data from the MIRA trial, and then examine
the results of standard intention-to-treat analyses as well as direct effects analyses. Lastly,
in Section 8 we interpret the results of the direct effects analysis, discuss its limitations as
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well as other settings where it can be applied, and then consider alternative analysis and
design approaches.

2. The MIRA Trial

We briefly describe the MIRA trial, used throughout the paper to illustrate a direct effects
analysis and its interpretation. The MIRA trial is a randomized controlled trial with two
arms. In the “diaphragm arm,” each subject was instructed to use a fitted Ortho All
Flex diaphragm, Replens non-contraceptive, lubricant gel, and condoms at all sex acts, and
were supplied with these products. In the “control arm,” each subject was instructed to
use condoms at all sex acts, and was supplied with condoms. Additionally, in both arms,
subjects were given intensive condom counselling, as well as diagnosis and treatment of
sexually transmitted infections. The eligibility criteria for enrolment in the study included
being a woman 18-49 years old, HIV-negative at baseline, sexually active, and non-pregnant.
5,045 women were enrolled at three sites in South Africa and Zimbabwe from September
2003 until September 2005. Participants were assessed at quarterly clinic visits with a goal
of following each participant for two years. The median follow-up period was 21 months.

Before we looked at any HIV outcome data, we chose as measure of a subject’s condom
use over the period since her last visit to be the participant’s response to the question:
“Did you use a condom at your last sexual intercourse?” This choice was based in part
on a growing literature regarding accurate measures of condom use based on self-reporting
questionnaires (Anderson et al., 1998). Reported condom use at last sex, recorded at
each follow-up visit, averaged 53.5% across all visits in the diaphragm arm and 85.1% in
the control arm. (Note that other data show an increase in overall condom uptake after
recruitment in both arms–see Padian et al. (2007)).

Diaphragm use, based on self-reports of use at last sex at each clinic visit, averaged
73% in the diaphragm arm. Diaphragm use at last sex was reported at only 0.15% of visits
by participants in the control arm. For a detailed description of subject recruitment and
retention, eligibility, survey instruments and data collection, see Padian et al. (2007).

A key public health question is how much, if any, protection diaphragms provide against
male-to-female HIV infection in a community—as compared to a research—setting. Another
important question is how much protection consistent diaphragm and gel use (but no con-
dom use) provide, compared to unprotected sex. As further discussed in Section 3, neither
of these public health questions is answered adequately by a standard intention-to-treat
comparison of HIV infection rates between study arms.

3. Intention-To-Treat Analysis

The simplest intention-to-treat analysis of a randomized controlled trial compares the av-
erage outcome for the treatment group to that for the control group. For example, in the
MIRA trial, this would be a comparison of HIV incidence between the diaphragm arm and
control arm. Such an analysis may also include this comparison stratified by pre-specified
covariates measured before randomization. The advantages of an intention-to-treat analysis
in many types of randomized controlled trials include:

(a) An intention-to-treat analysis is completely protected from confounding, since it does
not involve any measurements made after randomization (e.g. adherence to treatment)
except for the outcomes of interest.
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(b) An intention-to-treat analysis unequivocally answers a specific causal question via its
simplest interpretation: specifically, it estimates the effect of the primary intervention
in the study setting. We refer to the relative risk of infection between treatment and
control arms in a particular setting (e.g. in a community setting, in a study setting)
as the treatment “effectiveness.”

(c) An intention-to-treat analysis gives a conservative approximation of treatment efficacy.
Treatment efficacy, the effect one would observe if treatment were given in an ideal
setting where full adherence were guaranteed, is likely to be greater than the effect
measured under non-ideal conditions of the trial where there is non-compliance.

Before presenting limitations of the usefulness of the intention-to-treat estimator in the
setting of trials with secondary interventions, we briefly review the limitations with relying
solely on this estimator that have been pointed out in other settings. Sheiner et al. (1995)
point out problems in interpreting the intention-to-treat analysis under non-compliance
to assigned treatment, and argue that further analyses are needed to understand study
product effectiveness and efficacy. Frangakis and Rubin (1999) show that the intention-
to-treat estimator can be a biased estimator of product effectiveness in the presence of
non-compliance followed by missing outcomes. Hirano et al. (2000) present an example of
an unblinded randomized trial with a strongly positive intention-to-treat result, but argue
based on further analyses that this result may be more likely due to the encouragement to
take the treatment than to the treatment itself.

In prevention trials with a secondary intervention or unblinding, the advantages (b) and
(c) listed above may be of little value in answering the most important public health ques-
tions related to the primary intervention. First, the simple intention-to-treat comparison
may differ substantially from the same comparison in other populations whose members are
both subject to different information on the possible efficacy of diaphragms, and who are not
provided with free condoms coupled with intensive counselling; this type of limitation of the
intention-to-treat estimator has been pointed out by Feinstein (1985), Sheiner et al. (1995)
and Friedman et al. (1998). Also, while it is well known that in blinded trials, standard
intention-to-treat analyses may underestimate product efficacy (Feinstein, 1985; Sheiner
et al., 1995; Friedman et al., 1998), these analyses may be even less informative in the pres-
ence of a secondary intervention such as condom provision and counselling (Trussell and
Dominik, 2005). This can occur, for example, when the secondary intervention differentially
affects adherers and non-adherers to the primary study product. See the Appendix for an
example from Trussell and Dominik (2005), except modified so that compliance is roughly
at the level observed in the MIRA trial, illustrating this phenomenon in a blinded trial. In
short, the question definitively addressed by the standard intention-to-treat analysis may
not be of major public health interest.

Second, in unblinded trials, the intention-to-treat analysis may be severely impacted
when the primary intervention results in unintended behaviour changes. For example,
in the MIRA trial, those randomized to the diaphragm arm reported much less condom
use, as compared to the control arm. Without considering the impact of this differential
condom use, an intention-to-treat result of no difference in HIV infections between study
arms would be consistent with both (i) the diaphragm being not efficacious, but also (ii)
the diaphragm providing some protection that may have been cancelled out by additional
infections due to decreased condom use in the diaphragm arm. Unintended effects of study
arm assignment are illustrated in the causal diagram of Figure 1 which shows schematically
how the overall causal effect of study arm assignment can be viewed as having two distinct
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causal pathways: (i) a direct effect of treatment on HIV infection (the top arrow), and
(ii) an indirect effect through condom use that, in turn, affects the risk of infection (the
indirect effect of treatment assignment). Causal diagrams represent sets of assumed causal
relationships: for an introduction to causal diagrams and their interpretation see Pearl
(2000a) or Chapter 8.2 of Jewell (2004).

CONDOM
USE (C)

(R)
STUDY ARM HIV STATUS

(I)

Figure 2: Direct Effects Causal Diagram
with Pre−Treatment Confounder W

PRE−TREATMENT
CONFOUNDER (W)

(R)
STUDY ARM

CONDOM
USE (C)

HIV STATUS
(I)

Figure 1: Direct Effects Causal Diagram

Figures 1 and 2

4. Direct Effects Analysis: Overview, Definitions and Causal Interpretation

Given the large difference in reported condom use between the two study arms in the MIRA
trial (53.5% in the diaphragm arm vs. 85.1% in the control arm), we would like to better
understand the role of condom use in mediating the effect of treatment assignment on HIV
outcome. For the MIRA trial, we decided to focus on condom use as a mediator for two
reasons. First, the condom provision and intensive counselling intervention was believed
primarily to affect condom use, and not to affect other HIV risk factors, and it is of major
public health interest what the effect of diaphragms would be in the absence of condom
counselling, where condom use is generally quite low. Second, except for diaphragm use,
condom use was the only time-dependent variable measured in the MIRA trial that was
meaningfully different in the two study arms. Variables such as number of other partners
and frequency of sex were measured but each showed less than a 5% difference between the
two arms.

4.1. Direct Effects Defined through Hypothetical Randomized Trials
Ideally, we would like to know what the infection rates would be in a hypothetical ran-
domized trial in which the diaphragm intervention were given to one arm, and in which
all participants were constrained never to use condoms. Such a trial is highly unethical so
cannot be conducted. In our direct effects analysis, we attempt to approximate the results
of such a trial, using data from the MIRA study. If we are successful, this would shed light
on the efficacy of diaphragms. For example, if we conclude that in this hypothetical trial
there would be no benefit of the diaphragm intervention, this would be strong evidence that
the diaphragm was not efficacious in preventing HIV infections (unless actual diaphragm
use is much lower than what subjects reported). Alternatively, if we would conclude that in
such a trial there would be a strong benefit of the diaphragm intervention, then this would
be evidence in favour of diaphragm efficacy.
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We describe several hypothetical scenarios below, in which we talk about how many new
HIV infections would have occurred had all study subjects been constrained to either never
use condoms or always use condoms. It has been argued that in order for such hypothetical
scenarios to be well defined, it must be possible, at least in principle, to imagine interventions
that would lead to such constraints being enforced (Frangakis and Rubin, 2002). We think
the constraint on never using condoms could be approximately established by a hypothetical
(unethical) intervention. In general, without condom counselling and provision, condom use
is quite low and it is possible to imagine an intervention (that of course should never be
done) discouraging condom use that would reduce this further and not much affect HIV risk
factors in any other way. Similarly, in theory, an intervention is possible that would result
in condoms almost always being used. We argue that our estimator based on data collected
in the MIRA trial gives consistent, asymptotically normal estimates of the infection rates
in these hypothetical scenarios, under a set of strong assumptions described in Sections 5
and 6 below. The validity of these assumptions is discussed in detail in Section 8; there, we
describe significant sources of bias in our estimator, including reporting bias in condom use
and other data, and unmeasured confounders such as male partner characteristics.

Consider what the infection rate would be in the following two hypothetical scenarios:
(1) all subjects in the MIRA trial are assigned to the diaphragm arm and are constrained
to use condoms every time they have sex; (2) all subjects in the MIRA trial are assigned to
the control arm and are constrained to use condoms every time they have sex. We call the
ratio of infection rates in the two scenarios the “direct effects relative risk” of treatment
assignment with condom use fixed at “always.” The ratio of infection rates in the same
pair of hypothetical scenarios, except with all subjects constrained to never use condoms,
gives the direct effects relative risk with condom use fixed at “never.” This definition of
direct effects relative risk corresponds to Type I (“controlled”) direct effects in Petersen
et al. (2006). The main challenge in a direct effects analysis is to estimate these quantities
using data collected from a randomized trial in which subjects themselves (or their partners)
decided when to use condoms, and where condom use is not objectively measured but is
self-reported.

4.2. Direct Effects in terms of Potential Outcomes
The above definitions can be written in terms of potential outcomes. The potential outcomes
viewpoint has a long history related to work by Fisher and Neyman (Angrist et al., 1996),
and later extended by Rubin (Rubin, 1974) and Robins (Robins, 1986), though it is not
universally accepted (see e.g. Dawid (2000)). In this setting, a potential outcome Irc is
defined for each subject in the population under each of the four possible combinations of
r ∈ {0, 1}, c ∈ {0, 1}. Let r = 0 indicate the control arm, and r = 1 indicate the diaphragm
arm; similarly, c = 0 indicates never using condoms, and c = 1 indicates always using
condoms. For a given subject, Irc represents whether that subject would have become
infected with HIV had she been assigned to study arm r and been constrained to use
condoms at level c. Irc can either be 0 indicating no HIV infection, or 1 indicating HIV
infection. The direct effects analysis involves estimating the probability of HIV infection,
prc := Pr(Irc = 1) for a randomly chosen subject from the MIRA study, would she have
been assigned to arm r and simultaneously constrained to use condoms at fixed level c, for
r ∈ {0, 1} and c ∈ {0, 1}. These probabilities can then be combined to make appropriate
causal comparisons; for example, we can compute the ratio p1c/p0c to get the direct effects
relative risk of treatment for condom use fixed at level c.
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We now describe how the potential outcomes {Irc} connect to the observed data in the
MIRA trial. For each study subject, the study arm assignment she received in the trial is
denoted by R, with R = 0 indicating the control arm and R = 1 indicating the diaphragm
arm. For the time being we assume that use of condoms is simply recorded as C = 1 for use
and C = 0 for non-use. We discuss more precisely how measurement of C was done in the
MIRA trial, and in particular how it was measured over time, in Section 6. Let I indicate
HIV status at the end of the trial, with I = 0 indicating not infected, and I = 1 indicating
infected. We emphasize the distinction between potential (generally unobserved) outcomes
Irc and the observed quantities (R, C, I) for each subject. The “consistency assumption”
connects the observed data (including R, C, I) to the set of potential outcomes {Irc}. It
states that the observed infection status I is equal to the potential outcome Irc when
observed study arm assignment R = r and observed condom use C = c. We consider the
other, unrealized potential outcomes for each subject as missing data, and apply causal
inference methodology of van der Laan and Robins (2003) accordingly.

It is important to note the asymmetry here between the two variables R and C in
that the former refers to assignment to a study arm (but not necessarily use of the study
product) and the latter refers to actual use of condoms. Thus, direct effects relative risks do
not measure, for example, effectiveness of the diaphragm intervention in a setting in which
condom use is merely encouraged; they measure effectiveness of the diaphragm intervention
in a setting in which condom use is constrained at a fixed level.

Direct effects analyses provide valuable information for understanding the efficacy of the
primary treatment. Though our direct effects relative risks are not targeted at estimating
treatment efficacy, and so give biased estimates of efficacy, they do peel away a layer of
distortion that results from using the intention-to-treat estimator as an estimate of efficacy.
The direct effects analysis removes distortion caused by both (i) the effect of treatment
assignment on HIV infection through changing condom use and (ii) the effect of a secondary
treatment on HIV infection, insofar as this is captured through changed condom use. The
direct effects estimate may give better (though still biased) estimates of efficacy than an
intention-to-treat estimator, when the effects in (i) or (ii) are strong, and the remaining
effect of treatment assignment on HIV outcome is due primarily to use of the primary
study product. The effects of (i) and (ii) are believed to be strong in the case of the MIRA
trial, and all data collected indicate that no other measured HIV risk factors (e.g. number
of partners, frequency of sex) were affected by treatment assignment. However, it is quite
possible that there are HIV risk factors affected by study arm assignment not captured by
the study data; this would result in additional bias when direct effects estimates are used
as (conservative) estimates of study product efficacy.

Direct effects analyses may also be useful in formulating prevention messages to the
community. If justified by the direct effects analysis of the MIRA trial and well supported
by evidence from other trials, it would be important to communicate, for example, that for
those using condoms consistently, diaphragms offer limited additional protection against
HIV infection, but for those never using condoms, diaphragms have an effectiveness of x%.
Alternatively, findings may indicate that assignment to diaphragms are similarly beneficial
across all levels of condom use (i.e. their benefit is additive to condoms on a multiplicative
scale, say). Such a finding would have different implications for the promotion of diaphragm
use and integration of their value into public health messages about HIV prevention.
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5. Estimating Direct Effects in a Single Time Point Setting

We describe how to estimate direct effects in what we call the “single time point setting,”
for the MIRA trial. We categorize all participants, based on their self-reported condom use
at last sex at each of the first 3 visits. “Infrequent users” (C = 0) are those who reported
condom use at last sex in at most one out of the first three visits, and “frequent users”
(C = 1) are those who reported condom use at last sex in all of the first three visits. We
let I represent HIV status at the end of the trial (which consists of a total of eight visits,
though some women were not followed-up for the full eight visits). Participants who became
infected with HIV in the first three visits were not included in this single time point analysis;
even though the number of HIV infections in each arm by the end of the first three visits
was nearly identical (84 in the diaphragm arm, 81 in the control arm), excluding these early
infections still could potentially lead to bias.

A naive analysis that ignores confounding variables is subject to bias since condom use
was not constrained by the experimenters, but depends on the individual circumstances and
choices of the trial subjects. In order to obtain consistent, asymptotically normal estimates
of the direct effect of assignment to the diaphragm arm from observed data, all confounders
of the effect of condom use on HIV status must be measured. For example, a possible
confounder is number of male sex partners. This is a risk factor for HIV infection and
may influence frequency of condom use (for example, if condoms are rarely used in marital
relationships but routinely used with other partners).

Potential confounders measured in the MIRA trial can be categorized as either baseline
factors (denoted by W ) or time-dependent measurements (denoted by D). Baseline factors
measured included (i) personal characteristics (employment status, living with husband,
age, ever pregnant, HSV-2 status); (ii) regular partner’s characteristics (partner ever tested
HIV-positive, partner’s age and employment status, whether subject or her partner makes
condom use decision); (iii) sexual habits (number of lifetime male partners, frequency of
intercourse, other contraceptive use, whether had sex under influence of alcohol in past 3
months, condom use at last sex); and (iv) study site. Time-dependent confounders included
diaphragm use at last sex, sexual abstinence since last visit, HSV-2 incidence, and whether
sexual partners were known to have multiple partners during the previous three months.

In Sections 5.1 and 5.2, we describe how to estimate the HIV infection probabilities
prc = Pr(Irc = 1), for all four combinations of r ∈ {0, 1}, c ∈ {0, 1}; these estimates can then
be combined to estimate direct effects relative risks. To present the simplest case of a direct
effects analysis, in Section 5.1 we describe this analysis assuming all potential confounders
are measured before randomization. In Section 5.2, we extend the estimation techniques to
cover confounding variables that are measured post-randomization and may lie on a causal
pathway between study arm assignment and condom use. In Section 6, we deal with time-
dependent measurements, including time-dependent confounding. In all of these sections, we
present the inverse probability of treatment weighted (IPTW) estimator for the direct effects
of study arm assignment (R) on HIV status (I), with condom use “fixed” at a particular
level. In particular, we describe a set of assumptions that guarantee the IPTW estimator
will give a consistent and asymptotically normal estimate of these direct effects, and then
show how to compute the IPTW estimator. Consistency implies the estimator converges in
probability to the correct value, and asymptotic normality allows for asymptotically valid
confidence intervals. The proofs that our assumptions imply consistency and asymptotic
normality follow directly from arguments in van der Laan and Robins (2003). For all of
the discussion below, we assume that the data observed on each subject can be viewed as
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random draw from a hypothetical, infinite population of subjects.

5.1. Estimation of Direct Effects When All Confounders Can Be Measured Prior to Ran-
domization

We consider the case in which all confounders of the effect of condom use on HIV sta-
tus are measured before study arm assignment. Such a setting is depicted in Figure 2 of
Section 3 above, in which the variable W denotes pre-treatment (baseline) confounders.
The proposed estimator of prc is an example of the class of inverse probability of treat-
ment weighted (IPTW) estimators described in Robins and Finkelstein (2000). The IPTW
estimator requires a correctly specified model for the probability of condom use C, given
baseline confounders W and study arm assignment R. In Section 6 we explain why we chose
to use the IPTW estimator instead of other possible estimators (including G-computation
estimators (Robins, 1986), doubly robust estimators (van der Laan and Robins, 2003), and
targeted maximum likelihood estimators (van der Laan and Rubin, 2006)).

Before presenting the IPTW estimator, we state assumptions under which it gives con-
sistent, asymptotically normal estimates of the direct effects relative risks. First, we make
the following conditional independence assumption, sometimes referred to as the “random-
ization assumption” (van der Laan and Robins, 2003),

C ⊥⊥ {Irc}|W, R. (1)

That is, condom use C is independent of the potential outcomes {Irc}, conditional on
baseline confounders W and study arm assignment R. Intuitively, this means that, within
strata having the same study arm R and the same baseline measurements W , the decision
to use condoms is not an indicator of underlying HIV risk (e.g. due to having high-risk
partners, many partners, or having other STIs). This assumption implies that there are no
unmeasured confounders of condom use and HIV infection.

We make the following assumption, called the experimental treatment assignment (ETA)
assumption: For all r, c, w, Pr(C = c|R = r, W = w) > 0. That is, no stratum of treatment
assignment and baseline confounders precludes the possibility of using condoms at any
specific level. If this assumption is false, direct effects will not be identifiable from the
data alone, unless further model assumptions are made. We also make the consistency
assumption introduced in Section 4.2.

We can connect the probabilities of specific potential outcomes that we ultimately care
about to quantities that can be estimated from the observed data using the following chain
of equalities:

Pr(Irc = 1) =
∑

w

Pr(Irc = 1|W = w)Pr(W = w)

=
∑

w

Pr(Irc = 1|W = w, R = r, C = c)Pr(W = w)

=
∑

w

Pr(I = 1|W = w, R = r, C = c)Pr(W = w)

=
∑

w

Pr(I = 1, R = r, C = c, W = w)

Pr(R = r|W = w)Pr(C = c|W = w, R = r)
. (2)

The second equality follows from Assumption (1) and the fact that R is randomized (so
R ⊥⊥ {Irc}|W ); the third equality follows from the consistency assumption described in
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Section 4 above; and the last equality follows by basic rules of probability. The experimental
treatment assignment (ETA) assumption insures that all the terms in (2) are well-defined.
Note that once we get estimates for the left hand side of this equation, for all values of r, c,
we can estimate the direct effects relative risks Pr(I1c = 1)/Pr(I0c = 1) for each fixed level
of condom use c. We also point out that estimating Pr(Irc = 1) using (2) is equivalent to
solving the following estimating equation:

E

(

1

Pr(R|W )Pr(C|W, R)
(I − m(R, C|β))

)

= 0, (3)

where m(r, c|β) denotes a saturated (non-parametric) model for the unknown probability
Pr(Irc = 1).

To estimate (2), we first estimate its numerator using the empirical distribution of the
data. The first term in the denominator of (2), Pr(R = r|W = w), equals 1/2 since R
was randomized. The second term in the denominator can be estimated by the empirical
distribution if W is low-dimensional, or using a logistic regression model, for example, if W
is high-dimensional. Substituting such estimates for the quantities in the right hand side of
(2), and summing over w, we get what is referred to as the inverse probability of treatment
weighted (IPTW) estimator for Pr(Irc = 1). We use the bootstrap, as described in Efron
and Tibshirani (1993), to generate confidence intervals for direct effects relative risks based
on these estimators. Alternatively, the influence curve for the estimator could be used for
statistical inference, as described in van der Laan and Robins (2003).

The argument above assumed that all confounders were measured at baseline, prior to
randomization. In the next section, we treat the case in which there are confounders of
condom use and HIV status that are themselves affected by study arm assignment.

(R)
STUDY ARM

CONDOM USE
(C)

HIV STATUS
(I)

CAUSAL
INTERMEDIATE (D)

Figure 3: Direct Effects Diagram with Confounder as Causal Intermediate

5.2. Estimation of Direct Effects With Confounding by Causal Intermediates
In the MIRA trial, there are potential confounders of condom use and HIV status that
are themselves affected by study arm assignment. Such confounders are called “causal
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intermediates,” and are denoted by D. This situation is illustrated in the causal diagram
of Figure 3, where for clarity, pre-randomization potential confounders W are not shown.
For an example of a potential confounder that may be a causal intermediate, consider
diaphragm use, defined similarly to condom use for the single time point case above–that
is, diaphragm use is a dichotomized summary measure, based on self-reports of use at last
sex at the initial three visits. Diaphragm use may affect the decision to use condoms and it
also may affect HIV infection (by possibly acting as a physical barrier); thus, diaphragm use
may be a confounder that is a causal intermediate. In general, the set of confounders that
are causal intermediates will be a vector D including more variables than just diaphragm
use (e.g. frequency of sex, number of partners). For concreteness in our explanations, we
assume diaphragm use is the only confounder that is a causal intermediate; however in our
statistical analyses, we included all the time-dependent variables listed in Section 5. Note
that diaphragm use will be “never” (D = 0) for virtually all participants in the control arm,
except the few who obtained and used diaphragms on their own.

A single regression (e.g. regressing I on R, D, C) cannot be used to estimate the direct
effects of R on I , fixing C, in the presence of confounding by causal intermediate D as in
Figure 3 (Rosenbaum, 1984; Robins, 1997; Hernan et al., 2000; Petersen et al., 2006). The
problem is that if one controls for such a causal intermediate in the regression analysis, one
blocks a causal pathway of interest; in the above diagram, by controlling for diaphragm use
D, one would block the causal pathway from study arm R through diaphragm use D to HIV
status I , which is an important part of what we are trying to estimate. Alternatively, by not
controlling for such a causal intermediate, one’s estimates may be biased due to confounding
from the causal intermediate. The analysis we outline below adequately handles confounding
by measured causal intermediates.

In the presence of confounding by causal intermediates, the randomization assumption
analogous to assumption (1) of Section 5.1 is more complicated. It involves not only po-
tential HIV outcomes Irc under different scenarios for study arm assignment r and condom
use c, but also potential outcomes for diaphragm use under different possible study arm
assignments. We let Dr represent what an individual’s diaphragm use would be, would she
have been assigned to study arm r. The randomization assumption analogous to (1) now
takes the form,

C ⊥⊥ {Irc, Dr}|W, R, D. (4)

Intuitively, given knowledge of a subject’s baseline measurements W , study arm assignment
R, and diaphragm use D, her observed condom use gives no additional information as to
either (1) her risk of HIV infection would she have been assigned to arm r and would she
have used condoms at fixed level c or (2) her diaphragm use were she assigned to the other
study arm R = r.

In the case here of confounding by causal intermediates, the experimental treatment
assignment assumption is that for each possible w, r, c, d, we have Pr(C = c|R = r, D =
d, W = w) > 0. That is, no strata of treatment assignment, diaphragm use, and baseline
confounders precludes the possibility of using condoms at any specific level. The consistency
assumption in this setting connects the observed data (including W, R, D, C, I) to the set of
potential outcomes {Irc, Dr}. It states that the observed diaphragm use D is equal to the
potential outcome Dr when R = r; furthermore, it states that infection status I is equal
to the potential outcome Irc when observed study arm assignment R = r and observed
condom use C = c.

Analogous to the derivation in Section 5.1, the assumption (4), the consistency assump-

Hosted by The Berkeley Electronic Press



12

tion, and the experimental treatment assignment assumption imply:

Pr(Irc = 1) =
∑

w,d

Pr(I = 1, R = r, C = c, D = d, W = w)

Pr(R = r|W = w)Pr(C = c|W = w, R = r, D = d)
(5)

Estimating Pr(Irc = 1) using (5) is equivalent to solving the following estimating equation:

E

(

1

Pr(R|W )Pr(C|W, R, D)
(I − m(R, C|β))

)

= 0 (6)

where m(r, c|β) denotes a saturated (non-parametric) model for the unknown probability
Pr(Irc = 1).

Here, as in Section 5.1, we estimate the numerator in the right hand side of Equation 5 by
the empirical distribution of the data, and the denominator by fitting a logistic regression
model for Pr(C = c|W = w, R = r, D = d). We again use the bootstrap to generate
confidence intervals for such estimates.

6. Time-dependent analysis

We have so far discussed estimating direct effects only in the single time point scenario,
in which baseline covariates W are measured, followed by assignment to a study arm R,
followed by further measurements D and C, and lastly outcome I is measured. One striking
disadvantage of this simple approach is that the intermediate variable condom use is based
on a single summary whereas actual condom use varies over time. This is also the case
for measures of diaphragm use as a confounding variable of condom use as discussed in
Section 5.2. In this section, we extend the IPTW estimators of Section 5 to provide a
time-dependent analysis of direct effects, again using the MIRA trial as an illustration.
The description below is an application of the estimation methodology for causal inference
based on longitudinal data given in Section 6.4 of van der Laan and Robins (2003). Note
that a single time-dependent regression equation adjusting for causal intermediates would
suffer from the problem of confounding by causal intermediates discussed is Section 5.2 at
every time point. The analysis presented in this section adequately deals with measured,
time-dependent confounders.

In this section, we first describe why we chose to use the IPTW estimator to estimate
direct effects in the MIRA trial. Then we describe exactly what time-dependent observations
are made for each subject in the MIRA trial. Next, we link the observed data to potential
outcomes. In terms of these potential outcomes, we present the main assumptions needed
for our estimator to give a consistent estimate of the effect of study arm assignment on
HIV infection, for fixed patterns of condom use over time. We then present a model for
the hazard of HIV infection at each visit, capitalizing on information about the time lag
between HIV infection and when antibodies are detectable. Finally, we give the proposed
direct effects estimators with brief details about implementation.

6.1. Why We Chose the Inverse Probability of Treatment Weighted (IPTW) Estimator
We chose to use the IPTW estimator rather than other possible estimators (including G-
computation estimators (Robins, 1986), doubly robust estimators (van der Laan and Robins,
2003), and targeted maximum likelihood estimators (van der Laan and Rubin, 2006)). The
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decision of which estimator is most appropriate for a given data analysis requires knowledge
of which parts of the data generating distribution can most reliably be modelled and esti-
mated from the available data. Our decision to use the IPTW estimator was based on the
fact that it only requires correct specification of models for the probability of condom use at
visit v, given observed covariates at or before visit v. In contrast, the G-computation esti-
mator would require correct models for the probability of HIV infection given past covariates
and, at each visit v, models for the joint probability of all time-dependent confounders mea-
sured at visit v given past covariates. The doubly robust estimator and targeted maximum
likelihood estimator would require models for all of the aforementioned probabilities (but
are robust to incorrect specification of some of these models).

In consultation with the investigators in the MIRA trial, we decided that the models
required for the IPTW estimator could be more reliably specified and estimated than the
other models mentioned above. One reason is that in our data, among individuals with a
given covariate history, there often are many subject-visits at which condoms were used, as
well as many subject-visits where condoms were not used; this provided adequate data for
estimating the probability of condom use given covariate history. In contrast, HIV infections
were relatively rare, as were some values of time-dependent confounders (such as having
multiple partners), so data for estimating their probabilities was sparse.

6.2. Observed Data
At enrolment, each subject’s baseline covariates W (as listed in Section 5) were measured,
prior to study arm assignment. At each of up to 8 follow-up visits v, the following potential
time-dependent confounders (as listed in Section 5) were measured:

• S(v), the self-report of whether subject had sex at all over last three months (1
indicates had sex at least once, 0 indicates was abstinent).

• D(v), the vector of indicators recording diaphragm use at last sex, HSV-2 incidence,
and whether sexual partners were known to have multiple partners over last three
months.

• C(v), condom use at last sex.

Ignoring missing data for the moment, data collected on a single participant from enrolment
(v = 0) through the last follow-up visit (v = 8) is then represented as:

O = (W, R, S(0), D(0), C(0), I(0), . . . , S(8), D(8), C(8), I(8)) . (7)

Note that since HIV infection is permanent, we have that if someone is uninfected at visit
v (I(v) = 0) then she must have been uninfected at all previous visits (I(v − 1), I(v −
2), . . . , I(0) all equal 0). Based on this data, the goal is estimation of the effect of study
arm assignment on the hazard of HIV infection, under fixed patterns of condom use over
time.

The time-ordering implied by our representation (7) of each participant’s data have
important consequences. If these variables do not actually occur in this order, our analysis
will be biased. For example, if a participant’s decision to use a diaphragm at last sex before
visit 1 (represented by D(1)) occurred after the decision to use a condom (represented
by C(1)), then our ordering would be incorrect leading to bias in our estimator. Our
assumption that the decision to use a diaphragm at a given sex act precedes the decision to
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use a condom is based on the fact that the diaphragm can be inserted up to 24 hours prior to
sex, while a condom must be put on immediately before sex; however, this is no guarantee
that our assumption is correct. As a sensitivity analysis to our time-ordering assumption,
we also ran our direct effect analyses using a time-ordering in which C(i) precedes D(i),
and got nearly identical results to the analysis using the time-ordering (7). However, in
reality the decision to use condoms and/or diaphragms will be more complex; whether such
a decision is adequately captured by our time ordering assumption is, unfortunately, not
testable from the data collected.

Also, we need to lag all measurements except our HIV status measure by one visit, since
HIV infection is detectable by the tests used in the study within a 3 month window, and
usually takes at least 3 weeks to be detectable. Though this lag was included in our data
analyses, we omit it in explanations of our estimator below for clarity.

We record C(v) as 2, to represent “undefined,” if the participant did not have sex in the
previous three months S(v) = 0.

We represent the set of observations of condom use over all visits C(0), C(1), . . . , C(8)
by the more compact notation C̄, and similarly for S̄, D̄ and Ī . We use the notational
convention that the first k components of a vector Ā is represented by Ā(k); that is, Ā(k) =
(A(1), . . . , A(k)). We denote the vector of length 8 of all 0’s by 0̄, and the corresponding
vector of all 1’s by 1̄.

6.3. Potential Outcomes
As done for the single time point case in Section 4.2, we define direct effects in terms of
potential outcomes. For each possible combination of fixed treatment assignment, r, and
condom use over time c̄, we let Irs̄c̄(v) represent whether a subject would be HIV-infected
by visit v were her study arm, abstinence or not, and condom use constrained to r, s̄
and c̄, respectively. This is only defined for s̄, c̄ such that s(v) = 0 implies c(v) = 2 (the
coding for “undefined”), to avoid nonsensical potential outcomes, such as s(1) = 0, c(1) = 1,
which would mean abstinence and condom use simultaneously. Similarly, we define Drs̄c̄(v)
whether a subject would use a diaphragm at last sex before visit v were her study arm,
abstinence or not, and condom use constrained to r, s̄ and c̄, respectively. Note that Drs̄c̄(v)
is only defined for s(v) = 1, which is reflected in our model in Section 6.5.

We can formulate our parameters of interest in terms of potential outcomes. We are
aiming to estimate the probabilities of HIV infection by the end of the trial for each study
arm, were all subjects constrained to have sex at least once between quarterly visits, and to
either (1) always use condoms at last sex before each quarterly visit or (2) never use condoms
at last sex before each quarterly visit. That is, we want to estimate prc̄ := Pr(Irs̄c̄(8) = 1)
for s̄ = 1̄, r ∈ {0, 1} and c̄ ∈ {0̄, 1̄}. We can then take the appropriate ratios of these
quantities to get the relevant direct effects relative risks. Note that it is not possible to
directly identify from the data the probabilities of the simpler potential outcomes that
ignore sexual abstinence: Pr(Irc̄(8) = 1), since we never observe these potential outcomes
when subjects abstain from sex between visits; our estimators of this simpler quantity would
violate the ETA assumption, so we incorporated s̄ into our model to avoid this problem.

6.4. Main Assumptions: Consistency, No Unmeasured Confounders and ETA
We make the following assumptions, which together imply that our direct effects estimator
will be consistent and asymptotically normal. First, the consistency assumption is that
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at each visit v, (1) observed infection status I(v) equals the potential outcome Irs̄c̄(v)
whenever a subject’s arm assignment R = r, abstinence or not S̄ = s̄ and condom use over
time C̄ = c̄ and (2) observed diaphragm use D(v) equals the potential outcome Drs̄c̄(v)
whenever R = r, S̄ = s̄ and C̄ = c̄.

Second, we make a conditional independence assumption that implies there are no un-
measured confounders of the relationship between abstinence and HIV infection over the
visits v. We assume that

S(v) ⊥⊥ {Irs̄c̄, Drs̄c̄}|W, R, S̄(v − 1), D̄(v − 1), C̄(v − 1), I(v − 1) = 0. (8)

Third, we make the following conditional independence assumption that implies there
are no unmeasured confounders of the relationship between condom use and HIV infection
over the visits v. We assume

C(v) ⊥⊥ {Irs̄c̄, Drs̄c̄}|W, R, S̄(v − 1), S(v) = 1, D̄(v), C̄(v − 1), I(v − 1) = 0. (9)

We include diaphragm use at visit v in our set of observations that precede condom use
at visit v since we think diaphragm use is determined before condom use, as discussed
in Section 6.2 above. Also, we only have to assume the conditional independence given
S(v) = 1, since C(v) is automatically 2 (“undefined”) if S(v) = 0. (9) is a generalization of
the assumptions (1) and (4) from the single time point case. The same is true for (8).

Fourth, we make the so-called experimental treatment assignment (ETA) assumption
that the probabilities Pr

(

C(v) = 1|W, R, S̄(v − 1), S(v) = 1, D̄(v), C̄(v − 1), I(v − 1) = 0
)

do not equal 0 or 1, almost surely, for any values of W, R, S̄(v − 1), D̄(v), C̄(v − 1).

Finally, we make a time-ordering assumption for our potential outcomes. This assump-
tion is that for each visit v, the potential outcomes for that visit do not depend on the
prescribed abstinence or condom use at future visits; only the past and present constraints
affect the present HIV outcome. Formally, the assumption is that Irs̄c̄(v) and Drs̄c̄(v) only
depend on r, s̄(v), and c̄(v), and not on s(v + 1), . . . , s(8) or c(v + 1), . . . , c(8).

6.5. Model for the Hazard of HIV Infection
Some type of modelling is necessary to avoid extremely high variance in our estimator of the
direct effects of treatment assignment fixing condom use at “never.” This is due to there
being only 488 subjects who reported not using condoms at last sex, at all visits. Assuming
a model, as we do below, will lead to some bias due to model misspecification. However, we
are able to take advantage of important subject matter knowledge in creating the model;
in particular, our model incorporates the known time lag between when an infection occurs
and when it is detectable.

We now present the complete details of the model we used for the hazard of infection in
our analyses, which we call mfull. This model incorporates the following information: visit
number, study arm assignment, abstinence, condom use, and study site. There were three
study sites (two in South Africa and one in Zimbabwe), which we represent in our model
by two indicator variables: W1, W2, indicating the first two study sites, respectively. Note
that these variables are a subset ofthe baseline covariates W . Subjects were asked at each
quarterly visit if they abstained from sex over the last three months. Their response was
recorded in the varible S(v), for each visit v; 1 indicates sex at least once over the last three
months, and 0 indicates abstinence from sex over the last three months.
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In our analysis of direct effects, we only use subject-visits for which the subject had sex
at least once over the previous three months (that is, s(v) = 1), since otherwise the subject
would not have been exposed to HIV. We model the following conditional probability of
potential outcomes, for s(v) = 1:

Pr(Irc̄s̄(v) = 1|Irc̄s̄(v−1) = 0, W1 = w1, W2 = w2) = mfull(v, r, c̄(v), s̄(v), w1, w2|β
0), (10)

for all v, r, c̄(v), s̄(v − 1), s(v) = 1, w1, w2. We call the model mfull to distinguish it from
the simpler model m in a different version of this paper.

In our particular choice below for a low-dimensional model mfull, we exploit the following
information about the test for HIV infection: HIV infection will, with high probability, be
detectable within a 3 month window, and usually takes at least 3 weeks to be detectable.
Therefore, (1) condom use measured at the current visit should not have an effect on the
outcome of the HIV test at that visit and (2) condom use in the previous 3 months may
have a large effect on whether HIV is detected at a given visit, compared to condom use
farther in the past. Condom use in the past cannot be completely ignored, since it may
impact future behaviour, such as future diaphragm use. We incorporated (1) and (2) into
the model by collapsing information about an entire condom use history into just the most
recent reported condom use and a single number giving the average condom use before this.

Now we specify precisely how mfull depends v, r, c̄, s̄, w1, w2, β. Let 1x=y be the indicator
function that is 1 if x = y, and is 0 otherwise, for x, y any mathematical expressions. For
example, 1r=1 is 1 if r = 1, and is 0 otherwise. Define the function a (for “average”) that
summarizes information in a vector, such as vector of condom use history (or of abstinence
from sex), as a(c̄(v)) =

∑v

v′=0 c(v′)/(v + 1). Define expit(x) = exp(x)/(1 + exp(x)).
Since we stated above that our model for visit v is only defined for s(v) = 1 (since other-

wise there is no exposure to HIV) we need only specify the model mfull(v, r, c̄(v), s̄(v), w1, w2|β)
for s(v) = 1. In this case, we define

mfull(v, r, c̄(v), s̄(v), w1, w2|β) :=

1c(v)=0,r=0expit {β00 + β01v + β02w1 + β03w2 + β04a(c̄(v − 1)) + β05a(s̄(v − 1))}

+ 1c(v)=1,r=0expit {β10 + β11v + β12w1 + β13w2 + β14a(c̄(v − 1)) + β15a(s̄(v − 1))}

+ 1c(v)=0,r=1expit {β20 + β21v + β22w1 + β23w2 + β24a(c̄(v − 1)) + β25a(s̄(v − 1))}

+ 1c(v)=1,r=1expit {β30 + β31v + β32w1 + β33w2 + β34a(c̄(v − 1)) + β35a(s̄(v − 1))} ,(11)

where β is an unknown, time-invariant, population parameter vector. This is an example of
a marginal structural model (Robins, 1998). There are 24 parameters (the different βij ’s)
in this model. We denote the vector of variables appearing as arguments in the functions
expit above as H(v, s̄(v − 1), c̄(v − 1), w1, w2) = (1, v, w1, w2, a(c̄(v − 1)), a(s̄(v − 1))).

The model we used, in effect, stratifies by condom use over the previous 3 months and
by study arm. For example, we only use data from participants who used condoms at visit
1 and were in the diaphragm arm, to estimate the hazard of infection at visit 1 for condom
use set to 1 and arm set to 1; that is, we don’t extrapolate from non-condom users at a
particular visit to estimate hazard of infection for condom-users. The resulting model is less
dependent on model assumptions than a simple logistic model expit(βX) that incorporates
arm r and condom use at visit v as terms in X ; however, our larger model yields wider
confidence intervals than this simpler model.
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Once we estimate the parameter β, as described in the next section, we can use it
to estimate the probabilities prc̄ using the product integral (Andersen et al., 1993) for
calculating the cumulative survival probability from discrete hazards, as follows (where
s̄ = 1̄):

prc̄ := Pr(Irs̄c̄(8) = 1)

=
∑

w1,w2

P (W1 = w1, W2 = w2)Pr(Irs̄c̄(8) = 1|W1 = w1, W2 = w2).

=
∑

w1,w2

P (W1 = w1, W2 = w2)

[

1 −

8
∏

v=1

{

1 − mfull(v, r, s̄, c̄(v), w1, w2|β
0)

}

]

,(12)

where β0 is the true value of the model parameter. Here, we are combining hazards over all
visits for each site separately, and then weighting each site-specific, estimated probability
of infection by the size of that site.

6.6. Direct Effects Estimator in the Time-Dependent Setting
In this section, we present the estimating equation for the time-dependent setting that
we use to estimate the parameter β of the model in (10), which is then used to estimate
direct effects relative risks. The estimating equation uses “stabilized inverse probability
of treatment weights (IPTW),” (which we refer to more concisely as “stabilized weights”),
which are a generalization of standard inverse probability of treatment weights. In our
estimating equation, individual subjects contribute information for all visits except those
occurring after HIV seroconversion.

It turns out that solving this estimating equation is equivalent to solving a weighted
logistic regression, which can be done with standard statistical software. The details of
how to solve this type of estimating equation using weighted logistic regression are given in
Section 6.4 of van der Laan and Robins (2003).

6.6.1. Stabilized Weights

Before giving the estimating equation used to estimate β, we describe the stabilized weights
that will be used in this estimating equation. First, consider what the standard (non-
stabilized) inverse probability of treatment weights would be in the time-dependent setting.
For each visit v, the standard IPTW weight is the reciprocal of the product of the following
three quantities:

Pr(R|W ),
∏

v′≤v

Pr
(

S(v′)|W, R, S̄(v′ − 1), D̄(v′ − 1), C̄(v′ − 1), I(v′ − 1) = 0
)

,

∏

v′≤v

Pr
(

C(v′)|W, R, S̄(v′), D̄(v′), C̄(v′ − 1), I(v′ − 1) = 0
)

.

We condition on the subject being not HIV infected at the previous visit (I(v′ − 1) = 0),
since otherwise the subject’s visit is excluded from the analysis, as explained in the next
section. For subject-visits where S(v) = 0, that is, where the subject abstained from sex
over the previous three months, the last quantity above equals 1; this follows since if the
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participant did not have sex, then condom use at last sex is coded as “undefined” (C(v) = 2),
which occurs with probability 1 given no sex over last three months. Note that the IPTW
weights used for the single time point estimating equations (3) and (6) in Sections 5.1 and
5.2 are special cases (with v = 1) of this general formula.

Stabilized weights are a modification of the standard IPTW weights. Stabilized weights
include a numerator term that can only depend on the terms included in the model (10),
which include v, R, S̄(v), and C̄(v), W1, W2 (but not, for example, D̄). They are called
“stabilized” since the hope is that for large values of the standard IPTW weights, which
correspond to small values in the denominator, the numerator terms will be small; in this
case, one would prevent single observations from having a disproportionate amount of weight
in the estimation procedure. The stabilized weights are similar to the standard IPTW
weights given above, except they have the product of the following three functions in the
numerator, for each visit v:

Pr(R|W1, W2),
∏

v′≤v

Pr
(

S(v′)|W1, W2, R, S̄(v′ − 1), C̄(v′ − 1), I(v′ − 1) = 0
)

,

∏

v′≤v

Pr
(

C(v′)|W1, W2, R, S̄(v′), C̄(v′ − 1), I(v′ − 1) = 0
)

.

Thus, the stabilized weights sw
(

v, W, R, S̄(v), D̄(v), C̄(v), Ī(v − 1)
)

for each subject-visit v at which I(v − 1) = 0 are defined as the product of following two
fractions:

∏

v′≤v Pr
(

S(v′)|W1, W2, R, S̄(v′ − 1), C̄(v′ − 1), I(v′ − 1) = 0
)

∏

v′≤v Pr
(

S(v′)|W, R, S̄(v′ − 1), D̄(v′ − 1), C̄(v′ − 1), I(v′ − 1) = 0
) (13)

∏

v′≤v Pr
(

C(v′)|W1, W2, R, S̄(v′), C̄(v′ − 1), I(v′ − 1) = 0
)

∏

v′≤v Pr
(

C(v′)|W, R, S̄(v′), D̄(v′), C̄(v′ − 1), I(v′ − 1) = 0
) . (14)

Note that by randomization, Pr(R|W ) = Pr(R|W1, W2) = 1/2, which cancelled out in the
numerator and denominator above.

Just as in Sections 5.1 and 5.2, we use logistic regression models to estimate the IPTW
weights. We estimate each term in the product in the numerators of (13) and (14) by
fitting a separate logistic regression model; we do the same for each term in the product
in the denominator. Since for each subject, their weights at a particular visit v are only
used in the estimating equation we give below if they are not HIV infected at the previous
visits (I(v − 1) = 0), we only have to estimate the above weights at each visit v for the
subpopulation who have I(v − 1) = 0. Also, we only need to model the probability that
C(v) = 1 conditional on the event S(v) = 1, since otherwise C(v) is deterministic (coded as
2 to represent “undefined”). In deciding which variables to put in the logistic regressions
models for estimating the stabilized weights, we use the assumption that abstinence at visit
v and condom use at visit v are more influenced by variables measured at the previous visit
than by variables measured further in the past. This model assumption is incorporated into
the logistic regression models by including all variables measured in the past visit, but only
summary measures of the variables measured at earlier visits.

To estimate the stabilized weights for each subject, we need models for the terms in the
products in the numerators and denominators of (13) and (14) . We construct a separate
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set of models for each study arm, since we think the mechanism connecting past behavior
to current abstinence and condom use may be quite different depending on whether one
received the diaphragm intervention or not; thus, each model below is fit first using only
subject-visits from the diaphragm arm, and then separately using only subject-visits from
the control arm. We suppress the dependence of the model on study arm for clarity. First
consider the terms in the numerators above. For each visit v, we model

Pr
(

S(v)|W1, W2, R, S̄(v − 1), C̄(v − 1), I(v − 1) = 0
)

by a logistic regression model g1v, with only main terms; these main terms are W1, W2, S(v−
1), a(S̄(v − 2)), C(v − 1), a(C̄(v − 2)). Similarly, we model

Pr
(

C(v)|W1, W2, R, S(v) = 1, S̄(v − 1), C̄(v − 1), I(v − 1) = 0
)

by a logistic regression model g2v, with only main terms; these main terms are the following:
W1, W2, S(v−1), a(S̄(v−2)), C(v−1), a(C̄(v−2)); since only subject-vists for which S(v) =
1 are used in the estimating equation below, when fitting this model we restrict to the
subpopulation for which S(v) = 1.

Next, consider the terms in the denominators of (13) and (14) above. We only need
models for the case in which I(v− 1) = 0, since we only use subject-visits in the estimating
equation below for which infection has not yet occurred. We model

Pr
(

S(v)|W, R, S̄(v − 1), D̄(v − 1), C̄(v − 1), I(v − 1) = 0
)

by a logistic regression model g′
1v, with only main terms; these main terms are W, S(v −

1), a(S̄(v−2)), D(v−1), a(D̄(v−2)), C(v−1), a(C̄(v−2)), where W is the list of all baseline
variables (including site: W1, W2) given in Section 5. Note that in the control arm, D(v) = 0
at almost all subject-visits, so is redundant in the model. Similarly, we model

Pr
(

C(v)|W, R, S(v) = 1, S̄(v − 1), D̄(v), C̄(v − 1), I(v − 1) = 0
)

by a logistic regression model g′
2v, with only main terms; these main terms are W, a(S̄(v −

1)), D(v), a(D̄(v − 1)), C(v − 1), a(C̄(v − 2)); since only subject-vists for which S(v) =
1 are used in the estimating equation below, when fitting this model we restrict to the
subpopulation for which S(v) = 1.

Denote the above fitted logistic regression models g1v, g2v, g
′
1v, g

′
2v by ĝ1v, ĝ2v, ĝ

′
1v, ĝ

′
2v

respectively.
The estimated stabilized weight for each subject-visit, which is a function of an individ-

ual’s history at and before that visit, is then computed as:
ŝw

(

v, W, R, S̄(v), D̄(v), C̄(v), Ī(v − 1)
)

=

∏v

v′=1 ĝ1v′(v′, W, R, S̄(v′), C̄(v′ − 1)) ĝ2v′(v′, W, R, S̄(v′), D̄(v′), C̄(v′))
∏v

v′=1 ĝ′1v′(v′, W, R, S̄(v′), D̄(v′), C̄(v′ − 1)) ĝ′
2v′(v′, W, R, S̄(v′), D̄(v′), C̄(v′))

, (15)

where each occurrence of a fitted model in the above equation denotes the value obtained by
substituting the values recorded for the individual subject (v, W, R, S̄(v), D̄(v), C̄(v), Ī(v −
1)) into the fit model; thus, each occurrence of a fitted model represents a number between
0 and 1, indicating the corresponding probability of abstinence/condom use given that
individual’s past covariates.

An additional model assumption we made is that no stabilized weight is larger than 25,
which we incorporated by truncating all estimated stabilized weights from (15) at 25; this
assumption, qualitatively, is that there are no sets of covariates for which the probability of
condom use at last sex is very close to 0 or to 1.
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6.6.2. Estimating Equation

Having defined the stabilized weights for each subject-visit, we now can construct the esti-
mating equation we use to fit the model mfull in (10). Let Oi denote the entire set of data
collected on the ith subject enrolled in the study, and let n denote the number of subjects
in the study. Recall that H(v, S̄(v − 1), C̄(v − 1), W1, W2)

t, which we denote by H t below,
denotes the column vector of basis functions used in the model mfull in (10) above. Below
we omit the subscript “full” on mfull so the equation will fit on a single line. The estimating
equation corresponding to the IPTW estimator with stabilized weights is given by

n
∑

i=1

8
∑

v=1

1S(v)=1,I(v−1)=0sw
(

v, W, R, S̄(v), D̄(v), C̄(v), Ī(v − 1)
)

×

{

I(v) − m(v, R, C̄(v), S̄(v), W1, W2, β)
}

Ht = 0

Note the similarity in form to the simpler estimating equations (3) and (6). Details and
proof that this estimating equation indeed has mean 0 at the true β under the assumptions
given in Sections 6.2-6.5 are given in Section 6.4 of van der Laan and Robins (2003).

The above estimating equation is solved in practice by substituting the estimated sta-
bilized weights ŝw from (15) for sw for each subject-visit in the equation above, and then
solving this estimating equation for β.

Once we obtain a solution β̂ to the above estimating equation, we can use it to generate
estimates p̂rc̄ for the probability of HIV infection by the end of the trial for a randomly
chosen subject in the study, would she have been assigned to study arm r and have had
condom use profile set to c̄, for s̄ = 1̄. Following (12) above, we have

p̂rc̄ =
∑

w1,w2

P̂ r(W1 = w1, W2 = w2)

[

1 −

8
∏

v=1

(

1 − mfull(v, r, c̄(v), s̄(v), w1, w2|β̂)
)

]

, (16)

where P̂ r(W1 = w1, W2 = w2) denote the empirical probabilities of being at each of the
three sites; these are just the proportion of subjects at each site.

6.6.3. Solving the Estimating Equation with Standard Statistical Software

We now discuss how this estimating equation is equivalent to fitting a weighted logistic re-
gression model, that can be solved with standard statistical software. First, we fit the mod-
els g1v, g2v, g

′
1v, g

′
2v defined above, and use them to calculate estimated stabilized weights

according to (15) for each subject-visit at which the subject is at risk for HIV infection
(that is, for which I(v − 1) = 0 and S(v) = 1). Solving the above estimating equation is
then equivalent to doing maximum likelihood estimation separately on four weighted lo-
gistic regression models, as we now explain. The first weighted logistic regression model
will correspond to r = 0, c(v) = 0 (the first line in the definition of the model mfull in
(11). Consider just the subject-visits in the control arm (R = 0) in which S(v) = 1 and
I(v − 1) = 0, but condoms were not used at last sex (C(v) = 0). We fit a weighted logistic
regression model

Pr(I(v) = 1|R = 0, W1, W2, I(v − 1) = 0, S(v) = 1, S̄(v − 1), C(v) = 0, C̄(v − 1))

= expit {β00 + β01v + β02w1 + β03w2 + β04a(c̄(v − 1)) + β05a(s̄(v − 1))} ,
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with weights for each subject-visit the stabilized weights (15), and restricted to subject-
visits at which R = 0,S(v) = 1,I(v−1) = 0, and C(v) = 0. This can be done with standard
logistic regression software, using a pooled sample in which each subject contributes multiple
observations, and assigning each subject’s v−specific observation the weight

1S(v)=1,I(v−1)=0ŝw
(

v, W, R, S̄(v), D̄(v), C̄(v), Ī(v − 1)
)

(17)

In other words, we first create a data set with a single record for each subject-visit; each
subject will contribute up to eight records, one for each visit, where a record contains the
visit number v, and the subject’s study arm, HIV status, abstinece history and condom use
history through visit v. If a subject becomes HIV positive during the trial, we only use her
subject-visits through the visit at which she seroconverted; also we only use subject-visits
at which the subject had sex at least once over the previous three 3 months.

We repeat the procedure above three more times, corresponding to the last three lines
in the definition of the model mfull in (11). That is, we do it for the set of subject-visits
for which R = 1, C(v) = 0,then the set of subject-visits for which R = 0, C(v) = 1,then
the set of subject-visits for which R = 1, C(v) = 1. At the end we have fit four weighted
logistic regression models, giving estimates for all the parameters β in mfull. We use the
product integral in (16) above to then separately construct estimates of prc̄ for r ∈ {0, 1}
and c̄ ∈ {0̄, 1̄}.

We can then construct estimates of direct effects relative risks by taking ratios of the
estimates p̂rc̄. The direct effects relative risk estimate with condom use fixed at “never” is
p̂10̄/p̂00̄. (Recall that 0̄ denotes the vector of length 8 of all 0’s.) The direct direct effects
relative risk estimate with condom use fixed at “always” is p̂11̄/p̂01̄. We point out that the
estimators in Sections 5.1 and 5.2 differ from the estimator for the time-dependent case
described in this section in that the former do not assume a model on potential outcomes.
Here, we assumed the model mfull in (10), to deal with the high-dimensional nature of the
time-dependent data.

We used the bootstrap percentile method for constructing confidence intervals for these
direct effects relative risk estimates, where replicates were selected using subjects (not
subject-visits) as the experimental unit. Each bootstrap replicate requires not only refitting
the model mfull, but also the models g1v, g2v, g

′
1v, g

′
2v, using the resampled population.

7. Analysis of HIV Infection in the MIRA Trial

In this section, we give summary statistics for the MIRA trial and then the results of
the single time point analysis, followed by the time-dependent analysis. In both types of
analysis, there are no significant results, and confidence intervals are too wide to provide any
information about the effectiveness of the diaphragm intervention at fixed levels of condom
use.

7.1. Summary Statistics
Table 1 below gives the distribution of the two arms of the study with regard to the number
of seroconversions to HIV during follow-up. The intention-to-treat relative risk of HIV
infection by the end of the trial is 158/151 = 1.05 (95% CI: 0.84,1.30). 6% of participants
in the diaphragm arm and 5% of the participants in the control arm were lost to follow-up.

We now present the results of the time-dependent direct effects analysis. The time-
dependent direct effects analysis was based on a discrete time scale made up of the eight
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Table 1. SUMMARY OF HIV SEROCONVERSIONS BY STUDY ARM

Number of Seroconversions Woman-years Incidence Rate
Participants (percent of group) of Follow-up (per 100 woman-years)

Total 4948 309 (6.2%) 7702 4.0

Intervention 2472 158 (6.4%) 3835 4.1

Control 2476 151 (6.1%) 3867 3.9

quarterly visits by each participant, in addition to an initial enrolment visit (visit 0). For
individuals who seroconverted, the (discrete) time to seroconversion was defined as the visit
number at the time of the first positive HIV test. For participants who missed one or more
visits between the last negative and first positive test, the seroconversion time was defined
as the visit number covering the midpoint between the two discordant tests. Covariates were
imputed by carrying forward the most recently observed value; for example, if a subject
came to visit 3 but missed visits 4 and 5, her covariates for visits 4 and 5 were imputed to
be what was recorded at visit 3.

Before calculating the direct effects relative risks of study arm assignment on HIV infec-
tion with condom use fixed, we looked at whether the MIRA trial data were consistent with
reported condom use being causally related to HIV infections. If it were not, then a direct
effects analysis fixing reported condom use would probably not be of much use. We did a
causal analysis of the effect of condom use at last sex on subsequent HIV seroconversion,
within each study arm separately. We did this by estimating prc̄ for r ∈ {0, 1}, c̄ ∈ {0̄, 1̄}
as described in Section 6. But instead of looking at the direct effects relative risks hold-
ing condom use fixed as described in that section, we looked at the following relative risk:
prc̄/prc̄′ , first for r = 0, c̄ = 1̄, c̄′ = 0̄, which is the relative risk of HIV infection compar-
ing always to never condom use in the control arm. We then calculated this relative risk
prc̄/prc̄′ , except setting r = 1, c̄ = 1̄, c̄′ = 0̄, which gives the relative risk for the diaphragm
arm. The estimates for these measures of condom efficacy are: 0.33 (95% CI 0.16, 2.33)
for the control arm and 0.54 (95% CI: 0.30, 0.98) for the diaphragm arm, indicating a sta-
tistically significant protective effect in the diaphragm arm but no statistically significant
result in the control arm; here, confidence intervals were calculated using non-parametric
bootstrap percentile method. One reason for the larger confidence intervals in the control
arm is that there were fewer instances of non-condom use in this arm, so the denominator
of the relative risk was more variable. The relative protection corresponding to the point
estimate for each arm is 1 − 0.33 = 67% for the control arm and 1 − 0.54 = 46% for the
diaphragm arm. This protection against HIV infection is less than the approximately 80%
relative protection normally ascribed to condom use (Weller and Davis-Beaty, 2002). The
lower protection reflected in the above estimates may be due to overreporting of condom use
due to social desirability bias, which would dilute the measured effectiveness of condoms.

Consider the following set of facts: (i) infection rates are similar in the two arms, (ii)
reported condom use is much lower in the diaphragm arm compared to the control arm,
and (iii) the data is consistent with condom use at last sex (as measured by self-report)
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protecting against HIV infection. Together, these facts seem to suggest that the direct effect
of assignment to the diaphragm arm that is not mediated through condom use patterns,
may turn out to be positive.

7.2. Single Time Point Data Analysis
We start, for simplicity, with a simple time-fixed measure of condom use (C) to apply the
methods of Section 5, and then turn to the more informative setting where C is allowed
to vary over time (visits). We use a fixed condom use measure that describes average use
over the first three visits in the trial, and look at time to seroconversion for those who were
uninfected by the end of the third visit. In this point-treatment analysis, we ignore condom
use after the third visit. We will use condom measurements at all visits when we consider
the time-dependent analysis later in this section.

Trial participants were divided into three categories based on the frequency of their
positive response to the “condom use at last sex” question at each of the first three clinic
visits. Some participants missed one or more of their initial visits, and so we categorized
them based on the percent of unmissed visits among the first three visits at which they said
they used condoms at last sex. Low condom users were defined to be those who responded
positively less than 50% of the times questioned; medium condom users responded positively
between 50–99% of the time, and high condom users responded positively 100% of the time.
Among participants in the diaphragm arm, 49%, 28%, and 23% were low, medium and high
condom users, respectively. In contrast, among those in the control arm, 11%, 32%, and
57% were low, medium and high condom users, respectively.

To estimate P (Irc = 1) for a particular choice of r.c using (5) we need a model for
P (C = c|W = w, R = r, D = d). Here, we used multinomial logistic regression models given
the three categories for C. Baseline confounders W were entered additively and included
all baseline factors listed in Section 5. The set of counfounders D were the following: (1)
average diaphragm use (a continuous variable, defined as the fraction of visits among the
first three at which a subject said she used diaphragms at last sex), (2) fraction of visits
among first three at which a subject said she had sex at least once over past three months,
and (3) fraction of visits at which a subject said her partner had had multiple partners over
the past three months.

The identity (5), in particular, allows estimation of both P (I1c = 1) and P (I0c = 1)
separately with their ratio yielding an estimated direct effects relative risk of assignment to
the treatment arm for each of the three values of c. 10,000 bootstrap samples were used to
provide estimates of the variability of these estimated direct effects relative risks, yielding
95% confidence intervals using the percentile method. The results are shown in Table 2.
We point out that a similar analysis, except where participants were classified into low,
medium, and high condom users based not on reported condom use at the first three visits
but on condom use at all visits, yields qualitatively similar results.

7.3. Time Dependent Data Analysis
We now present the results of the time-dependent direct effects analysis described in Section
6. The list of baseline and time-dependent confounders included in the analyses are those
listed in Section 5. Using the methods from Section 6, we can generate an estimate of prc̄
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Table 2. (INTENT TO TREAT) ESTIMATES OF THE DIRECT EFFECTS OF AS-
SIGNMENT TO TREATMENT ARM ON HIV INFECTION FOR VARIOUS FIXED CAT-
EGORIES OF CONDOM USE

Condom Use Relative Risk of HIV Infection 95% Confidence Interval
(R = 1 vs. R = 0)

Low 1.32 (0.63, 2.86)

Medium 0.93 (0.46, 1.48)

High 0.68 (0.43, 1.48)

for r = 0, 1 and any specific pattern of condom use reported over the 8 possible visits, which
is denoted by c̄. Here we focus on two extreme patterns of condom use: (i) condoms used
at last sex at all visits, so that c(v) = 1 for all v, and (ii) condoms not used at last sex at
all visits, so that c(v) = 0 for all v. The methods can be used to estimate the direct effects
for other condom use patterns as well.

Tables 2 and 4 give the results for these two extreme patterns of condom use. Table 2
gives the estimated direct effects of assignment to the diaphragm arm vs. control arm, for
condom use set to “no” at all 8 visits. First, the direct effects relative risk 0.59(95% CI:
0.26, 4.56) is given; this is an estimate of p1c̄/p0c̄ for c̄ = 0̄. We also give the direct effects
cumulative survival difference 0.10(95% CI:−0.13, 0.33), which is an estimate of (1− p1c̄)−
(1−p0c̄) for c̄ = 0̄. Table 3 gives the estimated direct effect of assignment to the diaphragm
arm vs. control arm, for condom use set to “yes” at all 8 visits, using the same format
as Table 3. All confidence intervals were calculated with the non-parametric bootstrap
percentile method, using 10,000 iterations.

Though both point estimates are in the direction of assignment to the diaphragm arm
being protective in these scenarios, neither is close to statistical significance. Also, based
on the bootstrap estimates of standard errors, both of the direct effects relative risk point
estimates are within one standard error of the value corresponding to no effect of assignment
to the diaphragm arm. We therefore conclude that the direct effects analysis provides no
evidence in support of, nor in refutation of, diaphragms providing a protective effect against
HIV infection.

As a sensitivity analysis to determine if the large confidence intervals in Tables 3 and 4
were a result of our stabilized weights, we ran our time-dependent analysis with no weights
at all (that is, all weights = 1). The confidence intervals were still quite large; for example,
the 95% confidence intervals for the direct effects relative risks were (0.348, 2.12) for condm
use set to “never” and (0.55, 1.18) for condom use set to “always.” We conclude that that
the large confidence intervals are not due primarily to the stabilized weights we used.

8. Discussion

The analysis above, due to large confidence intervals, does not provide information as to
whether providing latex diaphragm and gel is protective against HIV, at the fixed levels
of condom use we considered. At first glance, this seems irreconcilable with the following
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Table 3. ESTIMATES OF THE DIRECT EFFECT OF ASSIGNMENT TO STUDY ARM ON HIV INFECTION

USING A TIME-DEPENDENT ANALYSIS, FOR CONDOM USE SET TO “NO” FOR ALL VISITS

Relative Risk of HIV Infection 95% CI Cumulative Survival Difference 95% CI
by Visit 8 through Visit 8

0.59 (0.26, 4.56) 0.10 (-0.13, 0.33)

Table 4. ESTIMATES OF THE DIRECT EFFECT OF ASSIGNMENT TO STUDY ARM ON HIV INFECTION

USING A TIME-DEPENDENT ANALYSIS, FOR CONDOM USE SET TO “YES” FOR ALL VISITS

Relative Risk of HIV Infection 95% CI Cumulative Survival Difference 95% CI
by Visit 8 through Visit 8

0.96 (0.59, 1.45) 0.00 (-0.03, 0.04)

facts: (i) infection rates are similar in the two arms, (ii) reported condom use is much
lower in the diaphragm arm compared to the control arm, and (iii) the data is consistent
with condom use at last sex (as measured by self-report) protecting against HIV infection.
However, the direct effects analysis and these facts are perfectly consistent with each other;
the illusory contradiction disappears once we consider more closely how many infections
the differential condom use would likely have prevented, compared to the difference in HIV
infections between arms required to achieve statistical significance in a trial of this size.

We present a simple, crude adjustment for the differential reported condom use of 53.5%
in the diaphragm arm and 85% in the control arm. We emphasize that this crude analysis
is highly susceptible to confounding (which is why we did the direct effects analysis), but
it sheds light on the apparent contradiction in the previous paragraph. We estimate, quite
roughly, the number of infections that would have been prevented had condom use been
increased in the diaphragm arm to the level observed in the control arm. That is, we
estimate the number of infections that would have been prevented, had an additional (85%
- 53.5%) = 31.6% of the 2472 subjects in the diaphragm arm used condoms consistently;
31.6% of 2472 subjects is about 781 subjects. First, we calculate how many infections we
would expect among 781 randomly chosen subjects among those in the diaphragm arm who
never used condoms. Based on the observed infection rate in the diaphragm arm among
subject-visits in which women reported no condom use at last sex (4.2% new infections
per woman-year), and the mean length of time subjects were followed-up (1.6 years), we
would expect (781 × 1.6) woman-years × 4.2% new infections per woman-year ≈ 51 of
these 781 subjects to become infected with HIV by the end of the trial. Next, we estimate
how many of these 51 infections would have been prevented had these 51 subjects instead
used condoms consistently. Assuming that reported condom use offers (100% - 54%) = 46%
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protection against HIV infection, as was estimated from the data in the diaphragm arm and
explained in Section 7 above, a crude estimate of the number of infections that would have
been prevented is 46% of 51 ≈ 23 infections prevented. However, this is much lower than
the number of prevented infections required to achieve a statistically significant difference
between the two study arms, at significance level α = 0.05 (two-tailed); given that there
were 151 infections in the control arm and 158 infections in the diaphragm arm, the required
difference in infections is 39. Thus, based on this crude analysis, adjusting for the number
of infections attributed to the observed difference in reported condom use between arms
does not lead to a statistically significant difference in infections between the arms. The
direct effects analysis can be viewed as an attempt to more carefully carry out the above
crude analysis, adequately dealing with confounders and the time-dependent nature of the
data.

The direct effects estimator we used, based on the inverse probability of treatment
weighted (IPTW) estimator, could be biased if (1) there are unmeasured confounders (e.g.
characteristics of male partners associated with their condom use and HIV status); (2) there
is measurement error in reported condom use (for example, due to social desirability bias,
or if quarterly reported condom use at last sex is not sufficiently informative about overall
condom use) or measurement error in confounders; (3) the models for condom use or hazard
of HIV infection are not correctly specified; (4) missing data values are very different from
observed values; (5) the experimental treatment assignment assumption is violated (see
Section 6.4); or (6) the consistency assumption or time-ordering assumption is violated. All
of these biases may exist to some degree, with (1) and (2) being of particular concern in
the context of the MIRA trial. (1) is important since partners, who are believed to control
condom use much of the time, may be associated with important unmeasured confounding.
(2) is important since condom use by self-report is likely to be inflated upward, and this is
consistent with our causal analysis of condom use in Section 7. We treat the point estimates
for direct effects relative risks with a good deal of scepticism for these reasons.

However, the wide confidence intervals in the direct effects analysis allow us to make
the following valuable conclusion: The data in the MIRA trial do not contain enough
information to determine whether differential condom use may have masked a possibly
protective effect of study arm assignment on HIV infection. This was not evident from
a first look at the intention-to-treat results and the large difference in reported condom
use, which on their face seemed, to the contrary, to imply that there might be enough
information in the MIRA trial data to adjust for condom use and show a positive effect of
diaphragms. The crude analysis at the beginning of this section, though suggestive, does
not account for confounding or the time-dependent nature of the data; an analysis taking
these into account (such as our direct effects analysis) was required to determine if there
was enough information in the MIRA trial data to adjust for condom use and possibly
uncover a positive effect of diaphragms. Without such an analysis, readers of the Lancet
article reporting only the MIRA trial intention-to-treat results and differential condom use
(Padian et al., 2007) may continue to wonder whether there was evidence in the trial data
for a benefit of the diaphragm intervention.

We briefly discuss some alternative analyses that could be done to answer some im-
portant public health questions related to the MIRA trial. For example, one could try to
estimate diaphragm efficacy at a fixed level of condom use, that is, the effect of diaphragm
use D on HIV status I , fixing condom use C. We expect this would differ from what we
estimated using direct effects, which involved the effect of being assigned to the diaphragm
arm. An analysis of the effect of diaphragm use D on I , fixing condom use C would require
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additional assumptions than our direct effects analysis, since one would have to deal with
time-dependent confounding of the effect of diaphragm use on HIV status. This highlights
an advantage of doing a direct effects analysis of treatment assignment in a randomized trial,
as we did in this paper: there cannot be confounders of (randomized) treatment assignment
and primary outcome.

Another type of causal analysis that could be applied to the MIRA trial is principal
stratification (Frangakis and Rubin, 2002). It could be used, for example to estimate the
effect of study arm assignment for just the group of women who would not have used
condoms regardless of which study arm they had been assigned to. This parameter may shed
light on the important public health question of whether a diaphragm intervention would
provide protection against HIV for women who cannot get their partners to consistently use
male condoms, or sustain high levels of condom use over time. A different set of assumptions
than for the direct effects analysis would be necessary to estimate this parameter (Frangakis
and Rubin, 2002); also, R cannot be assumed to be an instrumental variable, since R
potentially influences I through the separate causal pathway involving C.

The direct effects analysis can also be applied in trials with blinding, to try to remove
distortion caused by a secondary intervention given to both arms. For example, consider
microbicide trials in which a placebo (an inactive gel) is used, and participants cannot dis-
tinguish whether they are using the active microbicide or placebo, as discussed in Mantell
et al. (2005) and Trussell and Dominik (2005). In a truly blinded trial, assignment to differ-
ent study arms cannot affect the outcome through systematically modifying subjects’ risk
behaviours (such as condom use). But even in blinded trials, secondary interventions can
affect the intention-to-treat estimator, pushing it either toward or away from the efficacy
of the study product, as shown in Trussell and Dominik (2005). A direct effects analysis
can remove some of this distortion caused by a secondary intervention, if this secondary
intervention influences the outcome only through a measured, potentially controllable be-
haviour (e.g. condom use). A direct effects analysis produces an estimate of what the effect
of treatment assignment would have been, had subjects been constrained in this behaviour.
This information could be useful, for example, in a blinded microbicide trial with a strongly
positive intention-to-treat result; here, a direct effects analysis could try to uncover whether
intervention effectiveness might be very different in a setting without condom counselling in
which condom use were quite low. Similarly, in a blinded microbicide trial that resulted in
a null intention-to-treat result, the direct effects analysis could elucidate whether condom
counselling could have pushed the intention-to-treat result far away from actual microbicide
efficacy.

Changes to the MIRA trial design could help alleviate some of the difficulties discussed
in this paper. For example, more resources could be put into recruiting participants whose
partners refuse to use condoms. This is the population for which the diaphragm intervention
was initially conceived, but in practice is difficult to recruit. Such a population would have
low condom use in both arms in the presence of intensive condom counselling, obviating
some of the problems discussed in this paper. To identify such subjects, recruiters could
screen for women having covariates that in the MIRA trial were highly predictive of low
condom use. There is much need for trial designs that are better able to target efficacy and
effectiveness of new HIV prevention methods.
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9. Appendix: Example of Intention-to-Treat Estimator Severely Underestimating Ef-
ficacy of Primary Treatment in a Blinded Trial, Due to a Secondary Intervention

Here we give an example illustrating how a study product could be less effective in an
environment of intensive condom counselling compared to an environment of no condom
counselling, in a blinded trial with relatively high adherence (75%) to the assigned product.
This example is derived from Trussell and Dominik (2005), who gives very similar examples.
We will use the example of a microbicide being the study product, where the control arm
gets a placebo (an inactive gel). Since the trial is blinded, subjects do not know which arm
they are in. We use the term “assigned product” to denote the microbicide for subjects in
the treatment arm, and the inactive gel for those in the control arm.

Consider the following two hypothetical randomized trials: The first trial is carried out
in an environment of no condom counselling, and the second in the presence of intensive
condom counselling. For simplicity, we make the following assumptions:

(a) In both arms of both hypothetical trials, 75% of the subjects adhere to the assigned
product.

(b) The microbicide offers 20% relative protection against HIV infection for all subjects
who use it–that is, the chance of infection for someone using the microbicide is (100%-
20% = 80%) of what it would have been had they not used the microbicide; the placebo
(inactive gel) gives no protection.

(c) Condoms offer 80% relative protection against HIV (independent of microbicide use).
(d) In the first trial (with no condom counselling) no one uses condoms, and in the second

trial (with intensive condom counselling) all and only the adherers to assigned product
(microbicide or placebo) also use condoms.

This information is depicted in the figure below, where the set of subjects in each
arm is broken into fourths, each represented by a rectangle. Shading represents subjects
who adhere to the assigned product, and hashing represents subjects who use condoms.
(Shading and hashing that overlap indicate subjects who use both the assigned product and
condoms.) In the diagram, numbers below the rectangles indicate the number of infections
corresponding to the particular group of subjects. We first arbitrarily set the number of
infections for those represented by a single rectangle, and who use neither the assigned
product nor condoms, to be 50. By assumption, there are 20% fewer infections (so 40
infections) among the same number of people using the microbicide. Also by assumption,
there are 80% fewer infections (so 10 infections) among the same number of people when
they use only condoms (or condoms plus inactive gel); there are 20% * 80% * 50 = 8
infections among the same number of people using both condoms and the microbicide.
In the first hypothetical trial (that is, with no condom counselling), the relative risk of
infection is then 170/200 = 0.85. In the second hypothetical randomized trial (that is, with
intensive condom counselling), the relative risk of HIV infection is RR=74/80 = 0.93. Thus,
in our artificial example, the study product is about half as effective in the environment of
intensive condom counselling as in the environment of no condom counselling. In a similar
scenario, but in which intensive condom counselling influences primarily those who don’t
use the assigned product to use condoms, the study product would be more effective in an
environment of intensive condom counselling.
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