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Efficacy Studies of Malaria Treatments in
Africa: Efficient Estimation with Missing

Indicators of Failure

Rhoderick N. Machekano, Grant Dorsey, and Alan E. Hubbard

Abstract

Efficacy studies of malaria treatments can be plagued by indeterminate outcomes
for some patients. The study motivating this paper defines the outcome of interest
(treatment failure) as recrudescence and for some subjects, it is unclear whether
a recurrence of malaria is due to that or new infection. This results in a specific
kind of missing data. The effect of missing data in causal inference problems is
widely recognized. Methods that adjust for possible bias from missing data in-
clude a variety of imputation procedures (extreme case analysis, hot-deck, single
and multiple imputation), inverse weighting methods, and likelihood based meth-
ods (data augmentation, EM procedures and their extensions). In this article, we
focus on multiple imputation, two inverse weighting procedures (the inverse prob-
ability of censoring weighted (IPCW) and the doubly robust (DR) estimators), and
a likelihood based methodology (G-computation), comparing the methods’ appli-
cability to the efficient estimation of malaria treatments effects. We present results
from a simulation study as well as results from a data analysis of malaria efficacy
studies from Uganda.



1 Introduction

Randomized controlled trials are pivotal to public health and medical decisions
because they have the potential to produce unbiased estimates of causal effects,
allowing appropriate evaluation of competing treatments or interventions. How-
ever, many trials often suffer from a number of complications, among them, missing
outcomes. Such data pathologies affect the estimation of causal effects, leading to
biased estimates if not properly addressed. A recent review of published randomized
controlled trials in major medical journals established that missing outcome data are
a common problem and are often inadequately handled in statistical analyses [16].

The statistical framework for causal inference that has been widely adopted
is one based on potential outcomes, originally introduced by Neyman (1923) for
randomized experiments, and generalized and extended by Rubin to non-randomized
studies. Now known as the ”Rubin Causal Model” [5], a study unit (e.g., a patient),
has the potential to be given any of the experimental treatments, and associated
with the treatments are the potential outcomes, defined as all the outcomes that
would be observed when each of the treatments would be applied to each of the
units [1]. The causal effect between two treatments is then a comparison of the
potential outcomes of the same group of units under the two treatment conditions.

Despite extensive studies of causal inference in the presence of missing data , sta-
tistical practice often excludes observations with any missing outcomes, simplifying
the analysis at the expense of increased bias and reduced efficiency due to reduced
sample sizes. Approaches that exclude observations with missing values (known as
complete case analysis) ignore the possibility of existence of systematic differences
between complete data cases and incomplete data cases, and that the resulting in-
ference may not be generalizable to the population, especially when the degree of
incompleteness is high. Another approach to analysis of missing data is to impute
missing values with worst-possible (or best-possible) values (also known as extreme
case analysis). This approach has no scientific merit except as a form of sensitivity
analysis [5]. Other imputation methods such as Rubin’s multiple imputation [4] are
more attractive under certain assumptions on the missing data mechanism.

Valid inferences in the presence of missing outcome data, require methods that re-
move the bias introduced by the association of missingness mechanism to outcomes.
Techniques that make assumptions about how the probability of an outcome being
missing relates to covariates and outcomes have been proposed, and these can yield
unbiased and efficient estimates under varying missingness types.

Malaria drug efficacy studies provide typical examples where missing outcomes
are common. In these studies, the objective is to compare the efficacy of different
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antimalarial treatments in curing malaria infection. The outcome, defined as the
success or failure of antimalarial drugs in eliminating malaria parasites in infected
individuals, can be clinically undetermined. In highly endemic areas where recurrent
disease following malaria therapy is common [13], it is clinically impossible to distin-
guish recrudescence (true treatment failure) from new infections. Molecular genotyp-
ing techniques have been used to distinguish between re-infection and recrudescence
[14]. The principle behind molecular genotyping is to compare genotyping patterns
based on highly polymorphic genes in pre- and post-treatment samples in patients
with recurrent malaria following treatment. Post-treatment samples containing only
parasite strains present in pre-treatment samples are generally classified as recrude-
scence of resistant parasites. Post-treatment samples containing only new parasite
strains not present in pre-treatment samples are generally classified as newly ac-
quired infections. However, a complex situation arises when post-treatment samples
contain some strains present in pre-treatment samples as well as new strains not
present in the pre-treatment samples - a mixed genotype result. Classifying mixed
genotyping results as either due to recrudescence or new infections likely over- or
under-estimates the true risk of treatment failure respectively. In circumstances like
these the mixed genotype is regarded as missing outcomes, complicating estimation
of treatment effects.

In this article we explore methods suitable for the estimation of treatment effects
in malaria studies in the presence of indeterminate outcomes (i.e. mixed genotypes).
We start by describing the structure of the data and notation we use, and reviewing
the types of missingness plausible in malaria studies. In section 2 we present methods
that can be used to estimate our parameter of interest, treatment specific failure rate.
In particular, we review two inverse probability weighting methods that have been
developed as tools to remove potential bias introduced through unequal distribution
of some factors (e.g. treatment, censoring and missingness). We also review the
multiple imputation procedure, a widely used likelihood-based technique for analysis
of missing data due to Rubin et al [4]. Finally, we will present the G-computation
method adapted to missing data problems. In section 3, we compare estimates
from the three procedures in addition to the extreme case (EC) analyses, in which all
missing data are given either the worst case outcome (i.e. mixed genotype = failure),
or the best case outcome (mixed genotype = non-failure) and the complete case (CC)
analyses using simulated data. We present results comparing the six approaches to
a full data (FD) analysis in which missingness in absent. In section 4, we apply the
methods to malaria-treatment efficacy studies from Uganda. We conclude the paper
with a discussion of our observations from the simulations and application to the
data. The R code used to run the simulations is included in the appendix.
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1.1 Data structure and notation

Let Y be the outcome of interest (in malaria studies,Y = 1 if recrudescence otherwise
Y = 0), W the vector of measured covariates and A the k -level treatment variable.
Let δ be the missingness indicator taking the value 1 if the outcome Y is observed
and 0 otherwise. The data we discuss consist of n iid copies of the observation
O = (W,A, δ, δY ). Let X = (Ya,W ), ∀a ∈ A, where A is the support of A, define
the full data structure, where Ya is the counterfactual outcome for treatment A = a.

Our goal is to use the observed data O = {Oi : i = 1, · · · , n} to estimate the
treatment specific failure rate pa = E(Ya) or functions of pa (e.g. Risk Difference
pa1 − pa0 or Risk Ratio

pa1

pa0
). Estimation methods of pa are associated with certain

assumptions on the underlying missingness pattern. We briefly state below the
different types of missingness.

1.2 Missingness Mechanisms

Rubin [9] defined the following missingness patterns based on how missing variable
indicators are related to the underlying values of the variables in the dataset. We can
describe the missing data mechanism by the conditional distribution of missingness
indictor, δ, given the complete data,Xcomp = (W,A, Y ), where data from every sub-
ject in the study is completely observed. Define π(W,A, Y ) = P (δ = 1|W,A, Y ) and
π(W,A, Y ) = P (δ = 0|W,A, Y ). Following Rotnitzky, Robins and Scharfstein [8],
we denote the model for the conditional probability of δ given A,W and Y by:

logit(π(W,A, Y )) = η(A,W ) + q(Y ), (1)

where η(A,W ) is an unknown frunction of A and W , and q(Y ) is a specified function
of Y .

Data are said to be ”missing completely at random” (MCAR) if the probability
of a missing outcome does not dependent on measured covariates and outcomes i.e.
π(W,A, Y ) = c for some constant c ∈ (0, 1). When q(Y ) equals 0, the data are said
to be ”missing at random” (MAR) i.e. the probability of missingness depends only
on measured covariates A and W . Data MAR are also said to be ”coarsened at
random” (CAR) [3], [2]. Finally, data are ”missing not at random” (MNAR) when
missingness additionally depends on unobserved data Y , (q(Y ) 6= c, c ∈ R) after
conditioning on the observed data.

3
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2 Estimation of pa

In this section, we discuss estimation of treatment specific failure rate, pa, when
treatment is randomized. Treatment assignment is said to be completely randomized
if, given the full data X, E[Y |A = a] = E[Ya]. The general case covering non-
randomized studies is presented in the appendix. In the following discussions we
assume model 1 with q(Y ) = 0 i.e. data are MAR or MCAR.

Although we are interested in estimating E[Ya], the covariates W can be used in
the estimation procedure to increase efficiency and reduce bias.

Let

E[Y |A = a] = m(a, β) (2)

where m is some known non-negative function and β is a k×1 vector of unknown
parameters. In the absence of missing data, estimation of E(Ya) can easily be
achieved by ordinary regression procedures. When the outcome Y is binary, the
logit function is a reasonable choice for m.

When data are assumed to be MCAR, the complete case analysis using ordinary
regression procedures (regressing Y on A) gives unbiased estimates of E(Ya) [15].
However, if the degree of missingness is high, ordinary regression on complete cases
can result in inefficient estimates. When data are MAR, estimates from ordinary
regression of Y on A can be biased and inefficient [15], [4]. The extent of the bias
depends on the proportion missing and the strength of the relationship between
missingness and covariates that maybe related to the outcome. Robust methods are
needed.

2.1 General Inverse Weighted Estimators

The class of inverse-weighted estimators have been extensively studied by Robins
and colleagues [15], [6], [7], [12]. The inverse weighted estimators are motivated by
ideas from efficiency theory of semiparametric models. Instead of using likelihood
based estimation to estimate parameters of interest, a general estimating function
methodology is preferred because it takes into account the coarsening mechanism
(known or estimated) and has been shown to produce estimates that perform better
in high-dimensional data sets with realistic sample sizes. These estimators seem to
tie in with ideas from survey theory that weighting observations by their proba-
bility of missingness creates a pseudo-population in which missingness is no longer
associated with failure.
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Consider the following class of estimating functions:

D(O, h, β, φ) =
δh(A)ε(β)

π(W,A, Y )
+

{
1− δ

π(W,A, Y )

}
φ(W,A, Y ) (3)

where ε(β) = Y − m(A|β) and h is some function of A and φ is some function of
the observed data. We have the following properties:

1. Regardless of the choice of φ, D(O, h, β, φ) has mean 0 provided missingness
model is correctly specified.

2. If φ(W,A, Y ) = h(A)(Q(A,W ) − m(a, β)), where Q(A,W ) is some estimate
of E[Y |A,W ], then D(O, h, β, φ) has mean 0 if either the missingness model
or Q(A,W ) is correctly specified.

2.2 Inverse Probability of Censoring Weighted Estimator
(IPCW)

In IPCW estimation, each complete observation is weighted with the inverse of the
probability of being observed and used in solving a set of estimating equations. Con-
sistent estimation of pa or β requires the estimation of the missingness mechanism,
π(W,A, Y ).

Assuming missingness is conditionally independent of failure Y given treatment
A and covariates W (CAR), δ ⊥ Y |(A,W ), implies missingness is determined only
by the assigned treatment and measured covariates and not on the unobserved out-
come variable Y . We further assume that π(A,W ) > 0 for all A and W .

From (3) above, let φ(W,A, Y ) = 0. The resulting estimating functions

{
Dh(O|β, g) =

δh(A)ε(β)

π(W,A, Y )
: h

}
(4)

satisfy properties 1 and 2 above. If the MAR assumption holds, and there is
positive probability of observing an outcome Y given covariates A,W , then for all
h ∈ H = {h(A)} we have the following:

E

(
δh(A)ε(β)

π(W,A, Y )

)
= 0, (5)

5
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Proof: By the MAR assumption,

E

(
δh(A)ε(β)

π(W,A, Y )

)
= E

(
δh(A)ε(β)

π(X)

)

= E

(
δh(A)(Y −m(A, β))

π(X)

)

= E

(
E

(
δh(A)(Y −m(A, β))

π(X)
|X

))

= E

(
h(A)(Y −m(A, β))

π(X)
|X

)
E(δ|X)

= E (h(A)(Y −m(A, β))|A)

= 0

Thus, from equation (5), we have unbiased estimating equations of the form,

1

n

n∑

i=1

δih(Ai)εi(β)

π(Ai,Wi)
= 0, (6)

Solving equation (6) gives the inverse probability of censoring weighted (IPCW)
estimator, β̂IPCW and is a consistent estimator of the true β for all h ∈ H. One
choice for h is h∗ = d

dβ
m(A, β)V ar(ε)−1. The implementation of the IPCW estima-

tor proceeds by first estimating the missingness mechanism pi(A,W ) and then using
the inverse estimated probabilities of missingness as weights in an ordinary regres-
sion. Since missingness is a binary variable, the probability of a missing outcome
is estimated using logistic regression. For consistency of the IPCW estimator, the
missigness mechanism π has to be correctly specified. We can gain efficiency from
using a bigger model for π(A,W ), for example, by using general additive models or
other modeling procedures [11]. Even if the Y is MCAR, we can model missingness
as a function of covariates W to gain efficiency.

2.2.1 Inference for IPCW estimator

If the MAR assumption holds and the missingness mechanism is correctly specified,
and if the distribution of the outcome Y is correctly specified by m(A,W, β), then
βIPCW is consistently asymptotically normal (CAN) i.e.

β̂IPCW − β ≈ 1

n

n∑

i=1

IC(Wi, δi, Yi) (7)
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where IC is the influence curve.
Under regularity conditions,

√
n(β̂IPCW −β) converges in distribution to a stan-

dard multivariate Normal Distribution with variance E[IC(O, δ)T IC(O, δ)] [15]. We
can obtain 95% confidence intervals for β̂IPCW using the .95-quantiles from the stan-
dard normal distribution and estimated standard errors from the diagonal elements

of E[ ̂IC(O, δ)
T ̂IC(O, δ)].

If π0 (true) is known, the the influence curve is

ICh(O) = − d

dβ
E(Dh(O, β|π0))

−1|β=β0Dh(O, β0|π0) (8)

This gives conservative inference if π is estimated with an efficient estimator. Other-
wise standard error estimates for β̂IPCW can be obtained using bootstrap methods.

2.3 IPCW Doubly Robust (IPCW-DR) Estimator

The consistency of the IPCW estimator depends on the correct specification of
the missingness mechanism,π(W,A, Y ), otherwise the parameter estimates can be
inconsistent. The IPCW estimator does not make use of all available data since
subjects with missing outcomes do not contribute. The efficiency of the IPCW
estimator can be improved by subtracting its projection on a nuisance score tangent
space [15].

Again, equation (3) and properties 1 and 2 imply

n∑

i=1

Dh(Oi|β̂DR, π̂, φ̂) = 0 (9)

for each h ∈ H and π. By setting φ(W,A, Y ) = h(A)(Q(A,W ) −m(a, β)), where
Q(A,W ) is a model forE[Y |A, W ], equation (9) holds if either the missingness
model or Q(A,W ) is correctly specified. Given MAR assumption, E[Y |A,W ] =
E[Y |A,W, δ = 1] and thus we can estimate Q(A,W ) using a regression of Y on A
and W only on the observed data (δ = 1). Solving the above equation gives the
doubly robust estimator β̂DR. The double robustness of the above estimate comes
from the fact that if Q(A,W ) or missingness mechanism π is correctly specified, the
estimate β̂DR is consistent and asymptotically normal (CAN) [15]. Moreover, if
both the failure model and the missingness mechanism are correctly specified β̂DR

is asymptotically efficient if the model for m(a|β) is nonparametric.
If the failure model and the missingness model are correctly specified, the in-

fluence function of β̂DR is [ d
dβ

E(D(O, h, α, β, φ))]−1D(O, h, α, φ) and the asymptotic

7
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variance is given by ˆE[D(O|β, π, φ)T D(O|β, π, φ)]. However, when either model is
misspecified, the variance of β̂DR is most easily estimated through bootstrapping.

2.4 Multiple Imputation (MI) Procedure

The multiple imputation procedure was introduced by Rubin [10], [4]. Multiple
imputation is a simulation based approach, where each missing value Ymis is replaced
with a vector of D > 1 plausible values, accounting for the uncertainty about the
right value to impute. The multiply imputed data sets are analyzed using standard
procedures for complete data and combining the results from these analyses.

Our problem of estimating treatment effects in the presence of extra covariate
information has been called ”uncongeniality” of the imputer’s and the user’s models
i.e. the imputation and analysis models are different. Our imputation model involves
fitting a logistic regression to estimate E[Y = 1|A,W ] using only the observed data.
From the resulting model, we estimate the probability of failure given covariates
P̂ [Y = 1|A,W ] for all the observations. We then impute the outcome Y for the
missing cases from these estimated probabilities. Using the completed data we
estimate that parameter of interest pa = E[Ya] by fitting the usual logistic regression
of Y on A. After sufficient repeated impute-estimation steps, we get an estimate
β̂MI by summarizing the D β̂s i.e.

pMI
a =

1

D

D∑

d=1

p(d)
a

If one does an infinite number of imputations, the multiple imputation procedure
converges to:

Ê(Ya) =

∑n
i=1 I(Ai = a) ∗

[
∆i ∗ Yi + (1−∆i) ∗ Ê(Yi | A = a,Wi)

]

∑n
i=1 I(Ai = a)

(10)

where Ê(Yi | A = a,Wi) is based on the model used to do the imputations.

2.5 G-computation

Under the randomization assumption (RA) and missing at random (MAR) assump-
tion, the likelihood of the observed data can be factored into a part that depends
only on the distribution of the full data X, and a part that equals the missingness
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mechanism π. Our parameter of interest can be calculated from the G-computation
formula as follows:

E(Ya)
RA
= EW (E(Ya|A = a,W ))

MAR
= EW (E(Y |A = a,W ))

estimated' 1

n

n∑

i=1

Ê(Y |A = a,Wi)

Thus the maximum likelihood estimate (MLE) is simply EW [W [Y |A,W, δ =
1]]. This procedure contrasts with the MI procedure since they both rely on the
consistency of the estimate Ê[Y |A,W ] and G-computation is more efficient. One
can think of the MI procedure as part G-computation (over the missing data) and
part simple averages of the Y’s, but only over the data where A = a. If one assumes
that the model Q(A,W ) is consistent, the G-computation estimate must be more
efficient, even after an infinite number of imputations. However, if Q(A,W ) is
misspecified the MI approach might be less biased if the proportion of missing data
is small.

3 Simulation Studies

In this section, we carry out simulation studies to compare estimators of the param-
eter pa and β obtained by:

• conventional regression analysis on complete cases only (CC).

• conventional regression on all cases where missing values have been imputed
using multiple imputation procedures.

• G-computation in which the parameter of interest is estimated by averaging
over the covariate.

• the IPCW estimator discussed in section (2.1) in which the naive estimating
equation is weighted according to estimated probability of missingness given
the observed data.

• the doubly robust estimator obtained by solving missingness-orthogonalized
estimating functions

• conventional regression analysis assuming all missing cases are non-failures.

9
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• conventional regression analysis assuming all missing cases are failures.

The simulations are motivated by malaria drug efficacy studies in which we would
like to estimate and compare treatment specific risks of failure when some outcomes
are indeterminate. We study the bias and efficiency of the estimators under different
missingness mechanisms and fitted models.

For each of the n observations, we generate a normally distributed covariate
W ∼ N(0, 1), a Bernoulli treatment variable A randomized with probability Pr(A =
1|W ) = 0.5, and a binary outcome variable Y with the logit of the probability of
failure equal to

logit[P (Y = 1|A = a,W = w)] = β0 + β1a + β2w + β3a× w (11)

at selected values of β = (β0, β1, β2, β3). Assuming outcomes are missing at ran-
dom, we generate a missingness indicator δ for each observation from the following
Bernoulli distribution:

logit[P (δ = 1|α, W,A)] = α0 + α1A + α2W + α3A×W (12)

The outcome Y is missing when δ = 0 and Y is observed when δ = 1.
Setting (α0, α1, α2, α3) = (−2, 2, 2, 0) 37% of the cases have missing outcomes -

30% missingness in treatment arm A = 0 and 45% missingness in treatment arm
A = 1. Choosing (β0, β1, β2, β3) = (0,−2, 2,−1), we have a a 50% (p0) failure rate
in the treatment arm A = 0 and a 16% (p1) failure rate in the treatment arm A = 1.

In the next set of simulations, we test the robustness of the estimators to mis-
specification of the conditional distribution of Y given treatment and covariates
and misspecification of the missingness mechanism. We misspecify the missingness
model in estimating weights by modeling the probability of being observed as a
function of treatment only.

For each set of simulations, we generated 1000 data sets of sample size n = 200.
The seven estimators of treatment effect were compared with the complete data
(without missingness) estimate by looking at the bias, standardized bias and the
root mean squared error. The standardized bias (STDBIAS) is given by

STDBIAS = 100× bias

standarderror

where bias is the deviation of the average estimate over the 1000 simulated data
sets from the true parameter and the standard deviation is the average deviation
of the 1000 estimates from their mean over the 1000 simulated data sets. The
simulation results are summarized in tables (1), (2), and (3) from which we conclude
the following:

10
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1. Under the correct conditional distribution of Y given treatment A and co-
variates W , and the missingness mechanism π(A,W ), the inverse weighted
methods (IPCW, DR), G-computation and multiple imputation have less bias
and lower variance compared to the complete case and extreme case estima-
tors.

2. Misspecifying conditional distribution of Y |A, W extremely biases G-computation
and multiple imputation, but not the Doubly Robust estimate

3. Misspecifying the missingness mechanism π(Xcomp) biases the IPCW estimate
more than it does the DR estimate

4. The risk differences do not differ substantially between estimators except under
the extreme case failures assumption.

5. Assuming all missing outcomes are failures, the causal effect is very biased,
indicating that there is no difference between treatments.

6. Overally, the Doubly Robust estimator is best since it is robust to model
misspecifications

7. The G-computation performs similarly to the Multiple Imputation procedures,
and since it is more efficient and requires the same assumptions (i.e. correct
model for E[Y |A,W ]), it is our preferred method.

4 Analysis of Uganda Malaria Data

We applied the methods discussed above to malaria data from randomized studies in
Uganda. The studies were designed to compare the effectiveness of three antimalar-
ial drug regimens. Malaria infected patients from regions of different transmission
intensities were randomized to three treatment arms : chloroquine plus sulfadoxine-
pyrimethamine (CQSP), ammodiaquine plus sulfadoxine-pyrimethamine (AQSP),
and ammodiaquine plus artesunate (AQAS). CQSP is the standard treatment and
has been widely used while AQSP and AQAS are the new treatments under clinical
investigation. Participants were evaluated for malaria infection at baseline (i.e. be-
fore treatment), 3, 7, 14, 21 and 28 days after start of treatment by looking at the
genotype of the infecting strains to see if treatment had been successful. Baseline
covariates include age, gender, parasite density, temperature and genotype.

11
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In this paper, the outcome of interest was infection status 28 days after start of
treatment and the analysis is restricted to two treatment arms (CQAS and AQSP).
The outcome could be classified as a treatment failure, success or indeterminate.
Overally, 25% of 2048 patients had indeterminate outcomes. 33% of the 1018 pa-
tients who received the standard of care treatment (CQSP) and 17% of 1030 who
received AQSP had indeterminate outcomes respectively. Among patients with ob-
served outcomes, 50% of patients receiving standard of care treatment (CQSP) failed
compared to a 18% failure rate among patients receiving the experimental treatment
(AQSP).

We estimated the probability of being observed using a logistic regression model
with treatment, age, gender, baseline temperature, log baseline parasite density,
baseline number of alleles (malaria strains), transmission intensity and time on
treatment as predictors. The weights were calculated by taking the inverse of the
probability. We estimated the marginal effect of treatment. 95% confidence inter-
vals were estimated from 1000 bootstrap samples of the data. Because missingness
was strongly associated with transmission intensity we investigated treatment effects
across different transmission intensities.

4.1 Results

Table 4 shows the estimated coefficients, corresponding treatment-specific failure
rates and associated 95% confidence intervals. The estimated treatment coefficients
for the experimental drug (AQSP) agree very well for all estimators except the two
extreme case estimators. However, the complete case estimate for CQSP differs
slightly from the MI, IPCW and DR estimators. This difference could be due to the
higher proportion of missing outcomes in the CQSP arm (33% compare to 17% in
the AQSP arm). Ignoring indeterminate outcomes results in underestimation of the
true failure rate by about two percentage points. There are significant differences in
failure rates between the two treatments. The experimental treatment (AQSP) is
almost three times more effective in preventing malaria reinfection than the standard
regimen (CQSP). Using any of the four non-extreme methods would result in similar
rate ratios (CC = 2.80, MI = 2.75, IPCW = 2.75, DR = 2.81) but the extreme case
methods would result in lower rate ratios (EC-NF = 2.26, EC-F = 2.10)

Table 5 gives the estimated risk of failure for each estimator by transmission
intensity. MI,IPCW and DR estimators have similar estimated failure risk at each
transmission intensity level for each antimalarial drug. Generally, the risk of treat-
ment failure appear to decrease with increasing transmission intensity, although
differences in failure risk are minor between mid-level transmission intensities (2-5).
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For CQSP, the DR estimates are closer to the EC-F estimates in low transmission
sites than high transmission sites. However, for AQSP, the DR estimates are closer
to EC-NF in high transmission sites than in low transmission sites.

5 Discussion

Our analysis demonstrates that in the presence of high degrees of missingness, ignor-
ing the missingness mechanism can result in biased estimates of treatment effects.
With a correct model for the probability of missingness, the inverse-probability
weighted estimators perform better than the complete case and multiple imputation
estimators. The double robust estimator is the most robust of all the estimators
discussed.

In malaria studies, transmission intensity significantly confounds treatment ef-
fect. Among patients treated with CQSP, missingness rates are higher compared
to those treated with AQSP, and the IPCW and DR estimates are much closer
to the extreme case estimator in which all mixed genotypes are treated as failures
in lower transmission sites whereas the IPCW and DR estimates are closer to the
extreme case estimator in which all mixed genotypes are treated as non-failures in
high transmission sites. Among AQSP treated patients, in almost all sites except
the site with the lowest transmission intensity, the IPCW and DR estimators are
closer to estimates where mixed genotypes are assumed to be non-failures. These
results seem to suggest that as you move from a poorly effective drug (CQSP) to
a more effective drug (AQSP), mixed genotypes are less likely to be recrudesences
(old infections). At the same time, as you move from low transmission sites to high
transmission sites, mixed genotypes are more likely to be new infections. Thus the
size and direction of bias in the extreme case estimators depends on drug as well as
transmission intensity.

The estimators we have discussed are all easily implemented using the free R
software. Our code is included in the appendix.
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Table 1: Simulation study comparing estimators

pa Estimator p̂a BIAS STDBIAS RMSE

CC 41.0% -8.8% -156.5 0.105

p0 = 49.9% MI 50.0% 0.1% 2.4 0.067

G-Comp 50.0% 0.1% 2.94 0.049

IPCW 49.6% -0.2% -4.1 0.062

DR 46.5% -3.4% -29.8 0.117

EC-NF 31.7% -18.2% -384.5 0.188

EC-F 54.4% 4.5% 91.3 0.067

CC 9.0% -6.6% -187.2 0.075

p1 = 15.7% MI 17.0% 1.3% 16.8 0.079

G-Comp 17.1% 0.1% 19.0 0.078

IPCW 15.0% -0.6% -6.2 0.101

DR 13.4% -2.3% -26.1 0.090

EC-NF 4.5% -11.2% -613.8 0.075

EC-F 54.4% 38.8% 783.9 0.391

CC = Complete Case, MI = Multiple Imputation, G-Comp = G-computation,
IPCW = Inverse Probability of Censoring Weighted, DR = Double Robust,
EC = Extreme Case
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Table 2: Causal Effect: Risk Difference and Relative Risk
Estimator Risk Difference Risk Ratio

E[Y0]− E[Y1]
E[Y0]
E[Y1]

Truth 34.2% 3.18

Complete Case 32.0% 4.56

Multiple Imputation 33.0% 2.94

G-Computation 32.9% 2.92

IPCW 34.6% 3.31

Doubly Robust 33.1% 3.47

EC - Non-failures 27.2% 7.04

EC - Failures 0% 1.00

Table 3: Robustness to model misspecifications
Estimator E(Y |A,W ) πn(A,W ) Performance

bias std. err bias std. err
MI -8.6% 5.7% 0.1% 5.3% poor,good
G-comp -8.6% 5.5% 0.1% 4.9% poor,good
IPCW -0.009% 6.0% -8.7% 5.6% good, poor
DR -0.1% 5.9% -2.0% 5.8% good,good
MI -7.0% 3.5% 0.9% 7.9% poor,good
G-comp -6.8% 3.4% 1.0% 7.6% poor,good
IPCW -1.5% 8.9% -6.6% 3.5% good, poor
DR -1.7% 7.9% -3.8% 4.9% good, fair
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Table 4: Estimated Treatment Coefficients and Failure Rates

Estimator CQSP AQSP

Complete Case
Coefficient -0.003 [-0.153 , 0.140] -1.523 [-1.748 , -1.306]
Failure Rate 0.499 [0.462 , 0.535] 0.178 [0.130 , 0.238]

Multiple Imputation
Coefficient 0.112 [-0.028 , 0.256] -1.552 [-1.753 , -1.313]
Failure Rate 0.528 [0.493 , 0.564] 0.192 [0.144 , 0.258]

G-Computation
Failure Rate 0.464 [0.493 , 0.564] 0.261 [0.144 , 0.258]

IPCW
Coefficient 0.125 [-0.008 , 0.270] -1.553 [-1.781 , -1.323]
Failure Rate 0.531 [0.498 , 0.567] 0.193 [0.143 , 0.259]

Doubly Robust
Coefficient 0.088 [-0.052 , 0.226] -1.560 [-1.786 , -1.332]
Failure Rate 0.522 [0.487 , 0.556] 0.186 [0.137 , 0.249]

Extreme Case - non failures
Coefficient -0.686 [-0.825 , -0.560] -1.060 [-1.268 , -0.863]
Failure Rate 0.335 [0.305 , 0.364] 0.148 [0.110 , 0.194]

Extreme Case - failures
Coefficient 0.681 [0.556 , 0.808] -1.451 [-1.632 , -0.271]
Failure Rate 0.664 [0.636 , 0.692] 0.316 [0.254 , 0.631]

IPCW = Inverse Probability of Censoring Weighted
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Table 5: Estimated Treatment specific Risk of Failure by transmission
intensity

Intensity∗

1 2 3 4 5 6
CQSP % missing 25 22 34 26 54 37

CC 0.708 0.459 0.479 0.469 0.581 0.304
MI 0.725 0.500 0.524 0.471 0.590 0.378

G-comp 0.649 0.428 0.454 0.412 0.508 0.334
IPCW 0.719 0.495 0.534 0.482 0.588 0.396
DR 0.718 0.491 0.510 0.481 0.583 0.395

EC-NF 0.532 0.359 0.318 0.349 0.265 0.190
EC-F 0.780 0.577 0.653 0.605 0.809 0.564

AQSP % missing 14 7 21 14 27 16
CC 0.359 0.134 0.144 0.131 0.216 0.083
MI 0.382 0.138 0.174 0.142 0.209 0.099

G-comp 0.485 0.223 0.256 0.189 0.312 0.131
IPCW 0.369 0.144 0.161 0.136 0.222 0.092
DR 0.367 0.143 0.151 0.135 0.220 0.087

EC-NF 0.307 0.124 0.113 0.112 0.158 0.069
EC-F 0.382 0.195 0.327 0.259 0.427 0.231

CC = Complete Case, MI = Multiple Imputation, IPCW = Inverse Proba-
bility of Censoring Weighted, DR = Double Robust, EC = Extreme Case
= 1-6 indicates increasing levels of transmission intensity
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6 Appendix

6.1 R Code

# Function to estimate coefficients under varying conditions

# 1. Complete Case estimator - delete all cases with indeterminate outcomes

# 2. Extreme Case estimator - recode all indeterminate as successes delta=0 if gmma==0

# 3. Extreme Case estimator - recode all indeterminate as failures delta=1 if gmma==0

# 4. IPCW estimator - inverse probability of missingness weighted estimating equations

# 5. DR - IPCW estimating equations projected onto the missingness nuisance

# tangent space

# 6. MI - multiply impute missing observations

library(gam)

estimates = function(xdata,ind) {

attach(xdata)

wtrt=as.data.frame(cbind(aqsp))

wcov=cbind(agedich,gender,temp0,logpara,tmn2,tmn3,tmn4,tmn5,tmn6,survival,bands0)

n=length(ind)

glm.0 = glm(delta~aqsp, data=wtrt,family="binomial")

delta[gmma==0]=0 # missing data

# missingness weights

glm.gmma = gam(gmma~aqsp+wcov, family=binomial)

vs.wt = gmma/predict.gam(glm.gmma,type="response")

# observed data

obs.dg = delta[gmma==1]

obs.wtrt = as.data.frame(cbind(aqsp[gmma==1]))

colnames(obs.wtrt)="aqsp"

obs.wg = wcov[gmma==1,]

# Fitting models

glm.1 = glm(obs.dg~aqsp, data=obs.wtrt, family=binomial)

glm.2 = glm(delta~aqsp, data=wtrt,family=binomial)

delta[gmma==0]=1

glm.3 = glm(delta~aqsp, data=wtrt, family=binomial)
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delta[gmma==0]=0

glm.4 = glm(delta~aqsp, data=wtrt, family=binomial, weights=vs.wt)

# Double Robust estimate - the idea is that the IPCW only uses observed data.

# But we could gain efficiency by using extra data from that with missing outcomes

piw = predict(glm.gmma, type="response")

# Estimate E[eps2|X*] using gam

initial.ipcw.estimate = glm(delta~aqsp, data=wtrt, family=binomial(), weights=vs.wt)

residuals.init.ipcw = delta - initial.ipcw.estimate$fitted

res.sqd = residuals.init.ipcw^2

res.gam = gam(res.sqd~aqsp, data=wtrt, weights=vs.wt)

predict.expect.res = predict.gam(res.gam, type="response")

# derivative matrix mdot = fn(W)*[1 a W]

xx.design.matrix = cbind(1,as.matrix(wtrt))

fntw = exp(-1*predict.glm(initial.ipcw.estimate))/(1+exp(-1*

predict.glm(initial.ipcw.estimate)))^2

mdot = fntw*xx.design.matrix

# h(X*) = mdot*1/E[eps2|X*]

hxstar = diag(1/predict.expect.res) %*% mdot

# Model E[gamma*h(X*)*eps(beta)/pi(w) |a w] each component

# this is the projection on to the nuisance tangent space

hxstar[gmma==0]=0

h1.proj = hxstar[,1]*residuals.init.ipcw*vs.wt

h2.proj = hxstar[,2]*residuals.init.ipcw*vs.wt

# h3.proj = hxstar[,3]*residuals.init.ipcw*vs.wt

h1.proj.gam = gam(h1.proj~aqsp+wcov, data=wtrt)

h2.proj.gam = gam(h2.proj~aqsp+wcov, data=wtrt)

# h3.proj.gam = gam(h3.proj~aqsp+wcov, data=wtrt)

h1.pred.gam=numeric(length(h1.proj))

h2.pred.gam=numeric(length(h1.proj))

# h3.pred.gam=numeric(length(h1.proj))

h1.pred.gam.temp = predict.gam(h1.proj.gam)
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h2.pred.gam.temp = predict.gam(h2.proj.gam)

# h3.pred.gam.temp = predict.gam(h3.proj.gam)

h1.pred.gam[as.numeric(names(h1.pred.gam.temp))] = h1.pred.gam.temp

h2.pred.gam[as.numeric(names(h2.pred.gam.temp))] = h2.pred.gam.temp

# h3.pred.gam[as.numeric(names(h3.pred.gam.temp))] = h3.pred.gam.temp

expect.hst.eps = cbind(h1.pred.gam,h2.pred.gam)

#Objective function

dr.objfn = function(theta) {

resa = as.vector(((delta - (1/(1+exp(-1*xx.design.matrix %*%

theta))))*gmma)/piw)

ic = resa * hxstar - ((gmma-piw)/piw)*expect.hst.eps

obj = sum(sqrt(sum(apply(ic,2,mean)^2)))

obj

}

# get parameter estimates using optim

vcoeff=as.vector(initial.ipcw.estimate$coeff)

beta.opt= optim(vcoeff,dr.objfn,method="BFGS",

control=list(abstol=0.000001, maxit=500))

dr.coeff = beta.opt$par

# Imputation

# Model P[delta = 1 | A, W] conditional distribution of failure using observed data

obs.wall = data.frame(obs.wtrt, obs.wg)

wall = data.frame(wtrt, wcov)

glm.delta = glm(obs.dg~aqsp+agedich+gender+temp0+logpara+survival+bands0+

tmn2+tmn3+tmn4+tmn5+tmn6, data=obs.wall, family=binomial())

# Estimated probabibility of failure

prob.delta.hat = predict.glm(glm.delta, newdata=wall, type="response")

imp.coeff.out=NULL

# generate new deltas repeatedly, estimate the coefficients, average
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for(j in 1:5) {

new.d = rbinom(length(prob.delta.hat),1,prob.delta.hat)

delta.n = delta

delta.n[gmma==0] = new.d[gmma==0]

imp.coeff.out = rbind(imp.coeff.out,

coefficients(glm(delta.n~aqsp, data=wtrt,

family=binomial())))

}

imp.coeff.mean = apply(imp.coeff.out,2,mean)

aqsp=c(0,1)

# aqas=c(0,0,1)

nmd=data.frame(cbind(aqsp))

p.0 = predict(glm.0, newdata=nmd, type="response")

p.1 = predict(glm.1, newdata=nmd, type="response")

p.2 = predict(glm.2, newdata=nmd, type="response")

p.3 = predict(glm.3, newdata=nmd, type="response")

p.4 = predict(glm.4, newdata=nmd, type="response")

p.imp = c(1/(1+exp(-(imp.coeff.mean[1]))),1/(1+exp(-(imp.coeff.mean[1]+imp.coeff.mean[2]))))

p.dr = c(1/(1+exp(-(dr.coeff[1]))),1/(1+exp(-(dr.coeff[1]+dr.coeff[2]))))

# return coefficients from all the procedures

txcoeff=as.vector(c(coefficients(glm.1),coefficients(glm.2), coefficients(glm.3),

imp.coeff.mean,coefficients(glm.4),dr.coeff,p.1,p.2,p.3,p.imp,p.4,p.dr))

return(txcoeff)

}

ind=mal2$id

txcoeff = estimates(mal2,ind)

# Bias and Variance estimation by Bootstrap

fname="c:/malaria/boot.out"

for (bs in 1:1000) {

boot.dat=mal2[sample(row.names(mal2), replace=TRUE),]

boot.beta.a = estimates(boot.dat,1:length(boot.dat))[1:12]

if (bs==1) {

cat(file=fname,boot.beta.a[1:12],"\n")

} else {

cat(file=fname,boot.beta.a[1:12],"\n",append=TRUE)

}

cat(bs,"\n")
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detach()

}

boot.beta = read.table("c:/malaria/boot.out",sep=" ")[1:12]

bt.st = apply(boot.beta,2,sort)

ci.95 = bt.st[c(25,975),]

cat(file="mal-analysis.out","\n\n", append=TRUE)

cat(file="mal-analysis.out","95% Confidence Interval","\n", append=TRUE)

cat(file="mal-analysis.out",ci.95,"\n", append=TRUE)

22

http://biostats.bepress.com/ucbbiostat/paper193



References

[1] Constantine E. Frangakis and Donald B. Rubin. Principal stratification in
causal inference. Biometrics, 58(1):21–29, 2002.

[2] Richard D. Gill, Mark J. van der Laan, and James M. Robins. Coarsening at
random: Characterizations, conjectures and counter-examples. In Proceedings
of the First Seattle Symposium in Biostatisticss, 1995, D.Y. Yin and T.R.
Fleming (eds), Lecture Notes in Statistics, pages 255–294. Springer, New York,
1997.

[3] Daniel F. Heitjan and Donald B. Rubin. Ignorability and coarse data. The
Annals of Statistics, 19:2244–2253, 1991.

[4] Roderick J. A. Little and Donald B. Rubin. Statistical Analysis with Missing
Data. John Wiley & Sons, 2002.

[5] Fabrizia Mealli and Donald B. Rubin. Assumptions when analyzing randomized
experiments with noncompliance and missing outcomes. Health Services &
Outcomes Research Methodogy, 3:225–232, 2002.

[6] James Robins and Andrea Rotnitzky. Estimation of treatment effects in ran-
domised trials with non-compliance and a dichotomous outcome using struc-
tural mean models. Biometrika, 91(4):763–783, 2004.

[7] James M. Robins. Comment on “Using inverse weighting and predictive in-
ference to estimate the effects of time-varying treatments on the discrete-time
hazard”(p1641-1661). Statistics in Medicine, 21(12):1663–1680, 2002.

[8] Andrea Rotnitzky, James M. Robins, and Daniel O. Scharfstein. Semiparamet-
ric regression for repeated outcomes with nonignorable nonresponse. Journal
of the American Statistical Association, 93:1321–1339, 1998.

[9] Donald B. Rubin. Inference and missing data. Biometrika, 63:581–590, 1976.

[10] Donald B. Rubin. Reply to comments on “Multiple imputation after 18+
years”. Journal of the American Statistical Association, 91:515–517, 1996.

[11] Daniel O. Scharfstein and Rafael A. Irizarry. Generalized additive selection
models for the analysis of Studies with potentially nonignorable missing out-
come data. Biometrics, 59(3):601–613, 2003.

23

Hosted by The Berkeley Electronic Press



[12] Daniel O. Scharfstein and James M. Robins. Estimation of the failure time
distribution in the presence of informative censoring. Biometrika, 89(3):617–
634, 2002.

[13] M. Slater, M. Kiggundu, C. Dokomajilar, MR. Kamya, N. Bakyaita, A. Tal-
isuna, PJ. Rosenthal, and G. Dorsey. Distinguishing recrudescences from new
infections in antimalarial clinical trials: major impact of interpretation of geno-
typing results on estimates of drug efficacy. American Journal of Tropical
Medicine and Hygiene, 73(2):256–262, 2005.

[14] G. Snounou and HP. Beck. The use of pcr-genotyping in the assessment of re-
crudesence or reinfection after antimalarial drug treatment. Parasitology Today,
14:462–467, 1998.

[15] Mark J. van der Laan and James M. Robins. Unified Methods for Censored
Longitudinal Data and Causality. Springer, 2002.

[16] Angela M Wood, Ian R White, and Simon G Thompson. Are missing outcome
data adequately handled? a review of published randomized controlled trials
in major medical journals. Clinical Trials, 1:368–376, 2004.

24

http://biostats.bepress.com/ucbbiostat/paper193


	text.pdf.1130961606.titlepage.pdf.jQDl8
	tmp.1130961606.pdf.Bz4A6

