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Multiple Testing Procedures and Applications
to Genomics

Merrill D. Birkner, Katherine S. Pollard, Mark J. van der Laan, and Sandrine
Dudoit

Abstract

This chapter proposes widely applicable resampling-based single-step and step-
wise multiple testing procedures (MTP) for controlling a broad class of Type I er-
ror rates, in testing problems involving general data generating distributions (with
arbitrary dependence structures among variables), null hypotheses, and test statis-
tics (Dudoit and van der Laan, 2005; Dudoit et al., 2004a,b; van der Laan et al.,
2004a,b; Pollard and van der Laan, 2004; Pollard et al., 2005). Procedures are pro-
vided to control Type I error rates defined as tail probabilities for arbitrary func-
tions of the numbers of Type I errors, V n, and rejected hypotheses, R n. These
error rates include: the generalized family-wise error rate, gFWER(k) = Pr(V n
> k), or chance of at least (k+1) false positives (the special case k=0 corresponds
to the usual family-wise error rate, FWER), and tail probabilities for the propor-
tion of false positives among the rejected hypotheses, TPPFP(q) = Pr(V n/R n
> q). Single-step and step-down common-cut-off (maxT) and common-quantile
(minP) procedures, that take into account the joint distribution of the test statis-
tics, are proposed to control the FWER. In addition, augmentation multiple testing
procedures are provided to control the gFWER and TPPFP, based on any initial
FWER-controlling procedure. The results of a multiple testing procedure can be
summarized using rejection regions for the test statistics, confidence regions for
the parameters of interest, or adjusted p-values. A key ingredient of our proposed
MTPs is the test statistics null distribution (and consistent bootstrap estimator
thereof) used to derive rejection regions and corresponding confidence regions
and adjusted p-values. This chapter illustrates an implementation in SAS (Ver-
sion 9) of the bootstrap-based single-step maxT procedure and of the gFWER- and
TPPFP-controlling augmentation procedures. These multiple testing procedures
are applied to an HIV-1 sequence dataset to identify codon positions associated
with viral replication capacity.
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1 Introduction

1.1 Motivation

Current statistical inference problems in areas such as genomics, astronomy,
and marketing routinely involve the simultaneous test of thousands, or even
millions, of null hypotheses. Examples of testing problems in genomics in-
clude:

• the identification of differentially expressed genes in microarray ex-
periments, i.e., genes whose expression measures are associated with
possibly censored responses or covariates;

• tests of association between gene expression measures and Gene Ontol-
ogy (GO) annotation (www.geneontology.org);

• the identification of transcription factor binding sites in ChIP-Chip ex-
periments, where chromatin immunoprecipitation (ChIP) of transcrip-
tion factor bound DNA is followed by microarray hybridization (Chip)
of the IP-enriched DNA (Keleş et al., 2004);

• the genetic mapping of complex traits using single nucleotide polymor-
phisms (SNP).

The above testing problems share the following general characteristics:

• inference for high-dimensional multivariate distributions, with complex
and unknown dependence structures among variables;

• broad range of parameters of interest, such as, regression coefficients
in model relating patient survival to genome-wide transcript levels or
DNA copy numbers, pairwise gene correlations between transcript lev-
els;

• many null hypotheses, in the thousands or even millions;

• complex dependence structures among test statistics, e.g., implied by
the directed acyclic graph (DAG) structure of GO terms.

Motivated by these applications, we have developed and implemented
(in R and SAS) resampling-based single-step and stepwise multiple testing
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procedures (MTP) for controlling a broad class of Type I error rates, in test-
ing problems involving general data generating distributions (with arbitrary
dependence structures among variables), null hypotheses (defined in terms
of submodels for the data generating distribution), and test statistics (e.g.,
t-statistics, F -statistics). The different components of our multiple testing
methodology are treated in detail in the collection of related articles summa-
rized below.

The early article of Pollard and van der Laan (2004) and subsequent
article of Dudoit et al. (2004b) establish a general statistical framework for
multiple hypothesis testing. A key feature of the proposed MTPs is the test
statistics null distribution (rather than data generating null distribution) used
to derive rejection regions (i.e., cut-offs) for the test statistics and resulting
confidence regions and adjusted p-values. For Type I error rates defined as
arbitrary parameters θ(FVn) of the distribution of the number of Type I errors
Vn (e.g., generalized family-wise error rate, gFWER(k), or chance of at least
(k + 1) false positives), this null distribution is the asymptotic distribution
of the vector of null value shifted and scaled test statistics. Resampling
procedures (e.g., based on the non-parametric or model-based bootstrap) are
proposed to conveniently obtain consistent estimators of the null distribution
and the corresponding test statistic cut-offs and adjusted p-values (Dudoit
and van der Laan, 2005; Dudoit et al., 2004b; van der Laan et al., 2004b;
Pollard and van der Laan, 2004).

Pollard and van der Laan (2004) and Dudoit et al. (2004b) also derive
single-step common-cut-off and common-quantile procedures for controlling
general Type I error rates of the form θ(FVn).

van der Laan et al. (2004b) focus on control of the family-wise error
rate, FWER = gFWER(0), and provide step-down common-cut-off and
common-quantile procedures, based on maxima of test statistics (maxT) and
minima of unadjusted p-values (minP), respectively.

van der Laan et al. (2004a), and subsequently Dudoit and van der Laan
(2005) and Dudoit et al. (2004a), propose general classes of augmentation
multiple testing procedures (AMTP), obtained by adding suitably chosen null
hypotheses to the set of null hypotheses already rejected by an initial MTP.
In particular, given any FWER-controlling procedure, they show how one
can trivially obtain augmentation procedures controlling tail probabilities
for the number (gFWER) and proportion (TPPFP) of false positives among
the rejected hypotheses. The results of a simulation study comparing aug-
mentation procedures to existing gFWER- and TPPFP-controlling MTPs
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are reported in Dudoit et al. (2004a).
The software implementation of the aforementioned MTPs in the R pack-

age multtest is discussed in Pollard et al. (2005).
Finally, the multiple testing methodology and applications to genomic

data analysis are the subject of a book in preparation for Springer (Dudoit
and van der Laan, 2005).

1.2 Outline

Section 2 provides a summary of our proposed multiple testing procedures.
Section 3 discusses their software implementation in a collection of SAS (Ver-
sion 9) macros. Specifically, macros are provided for the bootstrap estima-
tion of the test statistics null distribution, the FWER-controlling single-step
maxT procedure, and gFWER- and TPPFP-controlling augmentation pro-
cedures (full code available in the Appendix). Finally, Section 4 describes
the application of these MTPs to the HIV-1 sequence dataset of Segal et al.
(2004), with the aim of relating codon genotypes in the protease and reverse
transcriptase regions to viral replication capacity.

2 Multiple hypothesis testing methodology

2.1 Multiple hypothesis testing framework

Hypothesis testing is concerned with using observed data to test hypotheses,
i.e., make decisions, regarding properties of the unknown data generating
distribution. Below, we discuss in turn the main ingredients of a multiple
testing problem, namely: data, null and alternative hypotheses, test statis-
tics, multiple testing procedure, Type I and Type II errors, adjusted p-values,
test statistics null distribution, rejection regions. Further detail on each of
these components can be found in Dudoit and van der Laan (2005) and Du-
doit et al. (2004b); specific proposals of MTPs are given in Sections 2.4 – 2.6.

Data. Let X1, . . . , Xn be a random sample of n independent and identically
distributed (i.i.d.) random variables, X ∼ P ∈ M, where the data generat-
ing distribution P is an element of a particular statistical model M (i.e., a
set of possibly non-parametric distributions).
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Null and alternative hypotheses. In order to cover a broad class of test-
ing problems, define M null hypotheses in terms of a collection of submodels,
M(m) ⊆ M, m = 1, . . . ,M , for the data generating distribution P . The M
null hypotheses are defined as H0(m) ≡ I(P ∈ M(m)) and the corresponding
alternative hypotheses as H1(m) ≡ I(P /∈ M(m)).

In many testing problems, the submodels concern parameters, i.e., func-
tions of the data generating distribution P , Ψ(P ) = ψ = (ψ(m) : m =
1, . . . ,M), such as means, differences in means, correlation coefficients, and
regression parameters in linear models, generalized linear models, survival
models, time-series models, dose-response models, etc. One distinguishes
between two types of testing problems: one-sided tests, where H0(m) =
I(ψ(m) ≤ ψ0(m)), and two-sided tests, where H0(m) = I(ψ(m) = ψ0(m)).
The user-supplied hypothesized null values, ψ0(m), are frequently zero.

Let H0 = H0(P ) ≡ {m : H0(m) = 1} = {m : P ∈ M(m)} be the set of
h0 ≡ |H0| true null hypotheses, where we note that H0 depends on the data
generating distribution P . Let H1 = H1(P ) ≡ Hc

0(P ) = {m : H1(m) = 1} =
{m : P /∈ M(m)} be the set of h1 ≡ |H1| = M − h0 false null hypotheses,
i.e., true positives. The goal of a multiple testing procedure is to accurately
estimate the set H0, and thus its complement H1, while controlling proba-
bilistically the number of false positives.

Test statistics. A testing procedure is a data-driven rule for deciding
whether or not to reject each of the M null hypotheses H0(m), i.e., de-
clare that H0(m) is false (zero) and hence P /∈ M(m). The decisions to
reject or not the null hypotheses are based on an M–vector of test statistics,
Tn = (Tn(m) : m = 1, . . . ,M), that are functions Tn(m) = T (X1, . . . , Xn)(m)
of the data, X1, . . . , Xn. Denote the typically unknown (finite sample) joint
distribution of the test statistics Tn by Qn = Qn(P ).

Single-parameter null hypotheses are commonly tested using t-statistics,
i.e., standardized differences,

Tn(m) ≡ Estimator − Null value

Standard error
=

√
n
ψn(m) − ψ0(m)

σn(m)
. (1)

In general, the M–vector ψn = (ψn(m) : m = 1, . . . ,M) denotes an asymp-
totically linear estimator of the parameter M–vector ψ = (ψ(m) : m =
1, . . . ,M) and (σn(m)/

√
n : m = 1, . . . ,M) denote consistent estimators of

the standard errors of the components of ψn. For tests of means, one recovers
the usual one-sample and two-sample t-statistics, where ψn(m) and σn(m)
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are based on empirical means and variances, respectively (e.g., two-sample
t-statistic in Equation (24), p. 24, for the HIV-1 sequence data analysis of
Section 4). In some settings, it may be appropriate to use (unstandardized)
difference statistics, Tn(m) ≡ √

n(ψn(m)−ψ0(m)) (Pollard and van der Laan,
2004). Test statistics for other types of null hypotheses include F -statistics,
χ2-statistics, and likelihood ratio statistics.

Multiple testing procedure. A multiple testing procedure (MTP) provides
rejection regions, Cn(m), i.e., sets of values for each test statistic Tn(m) that
lead to the decision to reject the null hypothesis H0(m). In other words, a
MTP produces a random (i.e., data-dependent) subset Rn of rejected hy-
potheses that estimates H1, the set of true positives,

Rn = R(Tn, Q0n, α) ≡ {m : H0(m) is rejected} = {m : Tn(m) ∈ Cn(m)},
(2)

where Cn(m) = C(Tn, Q0n, α)(m), m = 1, . . . ,M , denote possibly random
rejection regions. The long notation R(Tn, Q0n, α) and C(Tn, Q0n, α)(m) em-
phasizes that the MTP depends on: (i) the data, X1, . . . , Xn, through the
M–vector of test statistics, Tn = (Tn(m) : m = 1, . . . ,M); (ii) a (estimated)
test statistics null distribution, Q0n, for deriving rejection regions for each
Tn(m) and the resulting adjusted p-values (Section 2.2); and (iii) the nomi-
nal level α, i.e., the desired upper bound for a suitably defined Type I error
rate.

Unless specified otherwise, it is assumed that large values of the test
statistic Tn(m) provide evidence against the corresponding null hypothesis
H0(m), that is, we consider rejection regions of the form Cn(m) = (cn(m),∞),
where cn(m) are to-be-determined critical values, or cut-offs, computed un-
der the null distribution Q0n for the test statistics Tn (Section 2.3).

Example: HIV-1 dataset. Suppose that, as in the analysis of the HIV-1
dataset of Section 4, one is interested in identifying codons in the protease
(PR) and reverse transcriptase (RT) regions that are significantly associated
with viral replication capacity (RC). The following data were collected on
each of n = 317 patients: a replication capacity outcome/phenotype Y and
an M = 282–dimensional covariate vector X = (X(m) : m = 1, . . . ,M), of
binary codon genotypes in the PR and RT regions (zero for wild-type codon
and one for mutant codon). For the mth codon (i.e., mth hypothesis), the
parameter of interest is the difference ψ(m) in mean replication capacity of
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viruses with mutant and wild-type codons, that is, ψ(m) ≡ E[Y |X(m) =
1] − E[Y |X(m) = 0], m = 1, . . . ,M . To identify codons that are associated
with viral replication capacity, one can perform two-sided tests of the null
hypotheses H0(m) = I(ψ(m) = 0) of no mean difference vs. the alterna-
tive hypotheses H1(m) = I(ψ(m) �= 0), using pooled-variance two-sample
t-statistics Tn(m) (Equation (24), p. 24). The null hypotheses are rejected,
i.e., the corresponding codon positions are declared significantly associated
with replication capacity, for large absolute values of the test statistics Tn(m).

Type I and Type II errors. In any testing situation, two types of errors
can be committed: a false positive, or Type I error, is committed by rejecting
a true null hypothesis, and a false negative, or Type II error, is committed
when the test procedure fails to reject a false null hypothesis. The situation
can be summarized by Table 1, below, where the number of Type I errors is
Vn ≡ |Rn∩H0| =

∑
m∈H0

I(Tn(m) ∈ Cn(m)) and the number of Type II errors
is Un ≡ |Rc

n ∩ H1| =
∑

m∈H1
I(Tn(m) /∈ Cn(m)). Note that both Un and Vn

depend on the unknown data generating distribution P through the unknown
set of true null hypotheses H0 = H0(P ). The numbers h0 = |H0| and
h1 = |H1| = M−h0 of true and false null hypotheses are unknown parameters,
the number of rejected hypotheses Rn ≡ |Rn| =

∑M
m=1 I(Tn(m) ∈ Cn(m)) is

an observable random variable, and the entries in the body of the table, Un,
h1 − Un, Vn, and h0 − Vn, are unobservable random variables (depending on
P through H0(P )).

Ideally, one would like to simultaneously minimize both the number of
Type I errors and the number of Type II errors. Unfortunately, this is not
feasible and one seeks a trade-off between the two types of errors. A stan-
dard approach is to specify an acceptable level α for the Type I error rate
and derive testing procedures, i.e., rejection regions, that aim to minimize
the Type II error rate, i.e., maximize power, within the class of procedures
with Type I error rate at most α.

Type I error rates. When testing multiple hypotheses, there are many
possible definitions for the Type I error rate (and power) of a test procedure.
Accordingly, we adopt the general framework proposed in Dudoit and van der
Laan (2005) and Dudoit et al. (2004b), and define Type I error rates as
parameters, θn = θ(FVn,Rn), of the joint distribution FVn,Rn of the numbers of
Type I errors Vn and rejected hypotheses Rn. Such a general representation
covers the following commonly-used Type I error rates.

7
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Generalized family-wise error rate (gFWER), or probability of at least (k+
1) Type I errors, k = 0, . . . , (h0 − 1),

gFWER(k) ≡ Pr(Vn > k) = 1 − FVn(k), (3)

where FVn is the discrete cumulative distribution function (c.d.f.) on
{0, . . . ,M} for the number of Type I errors, Vn. When k = 0, the
gFWER is the usual family-wise error rate (FWER), or probability of
at least one Type I error,

FWER ≡ Pr(Vn > 0) = 1 − FVn(0). (4)

The FWER is controlled, in particular, by the classical Bonferroni pro-
cedure.

Per-comparison error rate (PCER), or expected value of the proportion of
Type I errors among the M tests,

PCER ≡ 1

M
E[Vn] =

1

M

∫
vdFVn(v). (5)

Tail probabilities for the proportion of false positives (TPPFP) among the
rejected hypotheses,

TPPFP (q) ≡ Pr(Vn/Rn > q) = 1 − FVn/Rn(q), q ∈ (0, 1), (6)

where FVn/Rn is the c.d.f. for the proportion Vn/Rn of false positives
among the rejected hypotheses, with the convention that Vn/Rn ≡ 0 if
Rn = 0.

False discovery rate (FDR), or expected value of the proportion of false
positives among the rejected hypotheses,

FDR ≡ E[Vn/Rn] =

∫
qdFVn/Rn(q), (7)

again with the convention that Vn/Rn ≡ 0 if Rn = 0 (Benjamini and
Hochberg, 1995).

Note that while the gFWER is a parameter of only the marginal distri-
bution FVn of the number of Type I errors Vn (tail probability, or survivor
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function, for Vn), the TPPFP is a parameter of the joint distribution of
(Vn, Rn) (tail probability, or survivor function, for Vn/Rn). Error rates based
on the proportion of false positives (e.g., TPPFP and FDR) are especially
appealing for large-scale testing problems such as those encountered in ge-
nomics, compared to error rates based on the number of false positives (e.g.,
gFWER), as they do not increase exponentially with the number of tested
hypotheses.

The aforementioned error rates are part of the broad class of Type I er-
ror rates considered in Dudoit and van der Laan (2005) and Dudoit et al.
(2004a), and defined as tail probabilities Pr(g(Vn, Rn) > q) and expected
values E[g(Vn, Rn)] for an arbitrary function g(Vn, Rn) of the numbers of
false positives Vn and rejected hypotheses Rn. The gFWER and TPPFP
correspond to the special cases g(Vn, Rn) = Vn and g(Vn, Rn) = Vn/Rn, re-
spectively.

Adjusted p-values. The notion of p-value extends directly to multiple test-
ing problems, as follows. Given a MTP Rn(α) = R(Tn, Q0n, α), the adjusted

p-value P̃0n(m) = P̃ (Tn, Q0n)(m), for null hypothesis H0(m), is defined as
the smallest Type I error level α at which one would reject H0(m), that is,

P̃0n(m) ≡ inf {α ∈ [0, 1] : m ∈ Rn(α)} (8)

= inf {α ∈ [0, 1] : Tn(m) ∈ Cn(m)} , m = 1, . . . ,M.

Note that unadjusted or marginal p-values, for the test of a single hy-
pothesis, correspond to the special case M = 1. For a continuous null dis-
tribution Q0n, the unadjusted p-value for null hypothesis H0(m) is given by
P0n(m) = P (Tn(m), Q0n,m) = Q̄0n,m(Tn(m)), where Q0n,m and Q̄0n,m denote,
respectively, the marginal c.d.f.’s and survivor functions for Q0n. For exam-
ple, the adjusted p-values for the classical Bonferroni procedure for FWER
control are given by P̃0n(m) = min(MP0n(m), 1).

As in single hypothesis tests, the smaller the adjusted p-value, the stronger
the evidence against the corresponding null hypothesis. If Rn(α) is right-
continuous at α, in the sense that limα′↓α Rn(α′) = Rn(α), then one has two
equivalent representations for the MTP, in terms of rejection regions for the
test statistics and in terms of adjusted p-values,

Rn(α) = {m : Tn(m) ∈ Cn(m)} = {m : P̃0n(m) ≤ α}. (9)

Reporting the results of a MTP in terms of adjusted p-values, as opposed
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to only rejection or not of the hypotheses, offers several advantages. (i) Ad-
justed p-values can be defined for any Type I error rate (gFWER, TPPFP,
FDR, etc.). (ii) They reflect the strength of the evidence against each null
hypothesis in terms of the Type I error rate for the entire MTP. (iii) They are
flexible summaries of a MTP, in that results are supplied for all levels α, i.e.,
the level α need not be chosen ahead of time. (iv) Finally, adjusted p-values
provide convenient benchmarks to compare different MTPs, whereby smaller
adjusted p-values indicate a less conservative procedure.

Confidence regions. For the test of single-parameter null hypotheses and
for any Type I error rate of the form θ(FVn), Dudoit and van der Laan (2005)
and Pollard and van der Laan (2004) provide results on the correspondence
between single-step MTPs and θ–specific confidence regions.

2.2 Test statistics null distribution

2.2.1 Characterization of the test statistics null distribution

One of the main tasks in specifying a MTP is to derive rejection regions
for the test statistics such that the Type I error rate is controlled at a de-
sired level α, i.e., such that θ(FVn,Rn) ≤ α, for finite sample control, or
lim supn θ(FVn,Rn) ≤ α, for asymptotic control. It is common practice, espe-
cially for FWER control, to set α = 0.05. However, one is immediately faced
with the problem that the true distribution Qn = Qn(P ) of the test statistics
Tn is usually unknown, and hence, so are the distributions of the numbers
of Type I errors, Vn =

∑
m∈H0

I(Tn(m) ∈ Cn(m)), and rejected hypotheses,

Rn =
∑M

m=1 I(Tn(m) ∈ Cn(m)). In practice, the test statistics true distribu-
tion Qn(P ) is replaced by a null distribution Q0 (or estimate thereof, Q0n),
in order to derive rejection regions and resulting adjusted p-values.

The choice of null distribution Q0 is crucial, in order to ensure that (finite
sample or asymptotic) control of the Type I error rate under the assumed
null distribution Q0 does indeed provide the required control under the true
distribution Qn(P ). For proper control, the null distribution Q0 must be such
that the Type I error rate under this assumed null distribution dominates the
Type I error rate under the true distribution Qn(P ). That is, one must have
θ(FVn,Rn) ≤ θ(FV0,R0), for finite sample control, and lim supn θ(FVn,Rn) ≤
θ(FV0,R0), for asymptotic control, where V0 and R0 denote, respectively, the
numbers of Type I errors and rejected hypotheses under the assumed null
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distribution Q0.
For error rates θ(FVn), defined as arbitrary parameters of the distribution

of the number of Type I errors Vn, we propose as null distribution the asymp-
totic distribution Q0 = Q0(P ) of the M–vector Zn of null value shifted and
scaled test statistics (Dudoit and van der Laan, 2005; Dudoit et al., 2004b;
van der Laan et al., 2004b; Pollard and van der Laan, 2004),

Zn(m) ≡
√

min

(
1,

τ0(m)

V ar[Tn(m)]

)(
Tn(m) + λ0(m) − E[Tn(m)]

)
. (10)

For the test of single-parameter null hypotheses using t-statistics, the null
values are λ0(m) = 0 and τ0(m) = 1. For testing the equality ofK population
means using F -statistics, the null values are λ0(m) = 1 and τ0(m) = 2/(K−
1), under the assumption of equal variances in the different populations.
Dudoit et al. (2004b) and van der Laan et al. (2004b) prove that this null
distribution does indeed provide the desired asymptotic control of the Type
I error rate θ(FVn), for general data generating distributions (with arbitrary
dependence structures among variables), null hypotheses (defined in terms
of submodels for the data generating distribution), and test statistics (e.g.,
t-statistics, F -statistics).

For a broad class of testing problems, such as the test of single-parameter
null hypotheses using t-statistics (as in Equation (1)), the null distributionQ0

is an M–variate Gaussian distribution with mean vector zero and covariance
matrix Σ∗(P ): Q0 = Q0(P ) ≡ N(0,Σ∗(P )). For tests of means, where the
parameter of interest is the M–dimensional mean vector Ψ(P ) = ψ = E[X],
the estimator ψn is simply the M–vector of sample averages and Σ∗(P ) is the
correlation matrix of X ∼ P , Cor[X]. More generally, for an asymptotically
linear estimator ψn, Σ∗(P ) is the correlation matrix of the vector influence
curve (IC).

Note that the following important points distinguish our approach from
existing approaches to Type I error rate control. Firstly, we are only con-
cerned with Type I error control under the true data generating distribution
P . The notions of weak and strong control (and associated subset pivotal-
ity, Westfall and Young (1993), p. 42–43) are therefore irrelevant to our
approach. Secondly, we propose a null distribution for the test statistics
(i.e., Tn ∼ Q0), and not a data generating null distribution (i.e., X ∼ P0 ∈
∩M

m=1M(m)). The latter practice does not necessarily provide proper Type
I error control, as the test statistics’ assumed null distribution Qn(P0) and
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their true distribution Qn(P ) may have different dependence structures (in
the limit) for the true null hypotheses H0.

2.2.2 Bootstrap estimation of the test statistics null distribution

In practice, since the data generating distribution P is unknown, then so is
the proposed null distribution Q0 = Q0(P ). Resampling procedures, such as
bootstrap Procedure 1, below, may be used to conveniently obtain consistent
estimators Q0n of the null distribution Q0 and of the corresponding test
statistic cut-offs and adjusted p-values. The reader is referred to our earlier
articles and a book in preparation for further detail on the choice of test
statistics Tn, null distribution Q0, and approaches for estimating this null
distribution (Dudoit and van der Laan, 2005; Dudoit et al., 2004b; van der
Laan et al., 2004b; Pollard and van der Laan, 2004). Accordingly, we take
the test statistics Tn and their null distribution Q0 (or estimate thereof,
Q0n) as given, and denote the set and number of rejected hypotheses by
Rn(α) = R(Tn, Q0n, α) and Rn(α) (or the shorter Rn and Rn), respectively,
to emphasize only the dependence on the nominal Type I error level α.
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Procedure 1 [Bootstrap estimation of the null distribution Q0]

1. Let P �
n denote an estimator of the data generating distribution P . For

the non-parametric bootstrap, P �
n is simply the empirical distribution

Pn, that is, samples of size n are drawn at random, with replacement
from the observed data, X1, . . . , Xn. For the model-based bootstrap,
P �

n is based on a model M for the data generating distribution P ,
such as the family of M–variate Gaussian distributions.

2. Generate B bootstrap samples, each consisting of n i.i.d. realizations
of a random variable X# ∼ P �

n .

3. For the bth bootstrap sample, b = 1, . . . , B, compute an M–vector
of test statistics, T#

n (·, b) = (T#
n (m, b) : m = 1, . . . ,M). Arrange

these bootstrap statistics in an M × B matrix, T#
n =

(
T#

n (m, b)
)
,

with rows corresponding to the M null hypotheses and columns to the
B bootstrap samples.

4. Compute row means, E[Tn
#(m, ·)], and row variances,

V ar[Tn
#(m, ·)], of the matrix T#

n , to yield estimates of the
true means E[Tn(m)] and variances V ar[Tn(m)] of the test statistics,
respectively.

5. Obtain an M×B matrix, Z#
n =

(
Z#

n (m, b)
)
, of null value shifted and

scaled bootstrap statistics Z#
n (m, b), by row-shifting and scaling the

matrix T#
n using the bootstrap estimates of E[Tn(m)] and V ar[Tn(m)]

and the user-supplied null values λ0(m) and τ0(m). That is, compute

Z#
n (m, b) ≡

√
min

(
1,

τ0(m)

V ar[Tn
#(m, ·)]

)
(11)

×
(
T#

n (m, b) + λ0(m) − E[Tn
#(m, ·)]

)
.

6. The bootstrap estimate Q0n of the null distribution Q0 is the empirical
distribution of the B columns Z#

n (·, b) of matrix Z#
n .
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2.3 Rejection regions

Having selected a suitable test statistics null distribution, there remains the
main task of specifying rejection regions for each null hypothesis, i.e., cut-offs
for each test statistic. Among the different approaches for defining rejection
regions, we distinguish between the following.

Common-cut-off vs. common-quantile multiple testing procedures.
In common-cut-off procedures, the same cut-off c0 is used for each test
statistic (cf. FWER-controlling maxT Procedures 2 and 4, based on
maxima of test statistics). In contrast, in common-quantile procedures,
the cut-offs are the δ0–quantiles of the marginal null distributions of the
test statistics (cf. FWER-controlling minP Procedures 3 and 5, based
on minima of unadjusted p-values). The latter procedures tend to be
more “balanced” than the former, as the transformation to p-values
places the null hypotheses on an equal footing. However, this comes at
the expense of increased computational complexity.

Single-step vs. stepwise multiple testing procedures. In single-step
procedures, each null hypothesis is evaluated using a rejection region
that is independent of the results of the tests of other hypotheses. Im-
provement in power, while preserving Type I error rate control, may
be achieved by stepwise procedures, in which rejection of a particular
null hypothesis depends on the outcome of the tests of other hypothe-
ses. That is, the (single-step) test procedure is applied to a sequence
of successively smaller nested random (i.e., data-dependent) subsets of
null hypotheses, defined by the ordering of the test statistics (common-
cut-off MTPs) or unadjusted p-values (common-quantile MTPs). In
step-down procedures, the hypotheses corresponding to the most sig-
nificant test statistics (i.e., largest absolute test statistics or smallest
unadjusted p-values) are considered successively, with further tests de-
pending on the outcome of earlier ones. As soon as one fails to reject
a null hypothesis, no further hypotheses are rejected. In contrast, for
step-up procedures, the hypotheses corresponding to the least signifi-
cant test statistics are considered successively, again with further tests
depending on the outcome of earlier ones. As soon as one hypothesis
is rejected, all remaining more significant hypotheses are rejected.

Marginal vs. joint multiple testing procedures. Marginal multi-
ple testing procedures are based solely on the marginal distributions
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of the test statistics, i.e., on cut-off rules for individual test statistics
or their corresponding unadjusted p-values (e.g., classical Bonferroni
FWER-controlling single-step procedure). In contrast, joint multiple
testing procedures take into account the dependence structure of the
test statistics (e.g., gFWER-controlling single-step common-cut-off and
common-quantile Procedures 2 and 3, based on maxima of test statis-
tics and minima of unadjusted p-values, respectively).

The next three sections summarize three general approaches for deriving
rejection regions and corresponding adjusted p-values. The main steps in
applying a multiple testing procedure are listed in the flowchart of Table 2.

Single-step common-cut-off and common-quantile procedures for
controlling general Type I error rates θ(FVn): Procedures 2 and
3, Section 2.4; details in Dudoit and van der Laan (2005), Dudoit et al.
(2004b), and Pollard and van der Laan (2004).

Step-down common-cut-off (maxT) and common-quantile (minP)
procedures for controlling the FWER: Procedures 4 and 5, Section
2.5; details in Dudoit and van der Laan (2005) and van der Laan et al.
(2004b).

Augmentation procedures for controlling the gFWER and TPPFP,
based on an initial FWER-controlling procedure: Procedures 6
and 7, Section 2.6; details and extensions in Dudoit and van der Laan
(2005), Dudoit et al. (2004a), and van der Laan et al. (2004a).

2.4 Single-step procedures for controlling general Type
I error rates θ(FVn

)

Dudoit et al. (2004b) and Pollard and van der Laan (2004) propose single-
step common-cut-off and common-quantile procedures for controlling arbi-
trary parameters θ(FVn) of the distribution of the number of Type I errors.
The main idea is to substitute control of the parameter θ(FVn), for the un-
known, true distribution FVn of the number of Type I errors, by control of the
corresponding parameter θ(FR0), for the known, null distribution FR0 of the
number of rejected hypotheses. That is, one considers single-step procedures
of the form Rn(α) ≡ {m : Tn(m) > cn(m)}, where the cut-offs cn(m) are
chosen so that θ(FR0) ≤ α, for R0 ≡ ∑M

m=1 I(Z(m) > cn(m)) and Z ∼ Q0.
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Among the class of MTPs that satisfy θ(FR0) ≤ α, Dudoit et al. (2004b) and
Pollard and van der Laan (2004) propose two procedures, based on common
cut-offs and common-quantile cut-offs, respectively (Procedures 2 and 1 of
Dudoit et al. (2004b)). The procedures are summarized below and the reader
is referred to the articles for proofs and details on the derivation of cut-offs
and adjusted p-values.

Procedure 2 [General θ–controlling single-step common-cut-off pro-
cedure] The set of rejected hypotheses for the general θ–controlling single-
step common-cut-off procedure is of the form Rn(α) ≡ {m : Tn(m) > c0},
where the common cut-off c0 is the smallest (i.e., least conservative) value
for which θ(FR0) ≤ α.

For gFWER(k) control (i.e., θ(FVn) = 1 − FVn(k)), the procedure is
based on the (k + 1)st ordered test statistic. The adjusted p-values for the
single-step T (k + 1) procedure are given by

p̃0n(m) = PrQ0 (Z◦(k + 1) ≥ tn(m)) , m = 1, . . . ,M, (12)

where Z◦(m) denotes the mth ordered component of Z = (Z(m) : m =
1, . . . ,M) ∼ Q0, so that Z◦(1) ≥ . . . ≥ Z◦(M).

For FWER control (k = 0), one recovers the single-step maxT procedure,
based on the maximum test statistic, Z◦(1) = maxm Z(m), with adjusted p-
values given by

p̃0n(m) = PrQ0

(
max

m∈{1,...,M}
Z(m) ≥ tn(m)

)
, m = 1, . . . ,M. (13)

Procedure 3 [General θ–controlling single-step common-quantile pro-
cedure] The set of rejected hypotheses for the general θ–controlling single-
step common-quantile procedure is of the form Rn(α) ≡ {m : Tn(m) >
c0(m)}, where c0(m) = Q−1

0,m(δ0) is the δ0–quantile of the marginal null distri-
bution Q0,m of the test statistic for the mth null hypothesis, i.e., the smallest
value c such that Q0,m(c) = PrQ0(Z(m) ≤ c) ≥ δ0 for Z ∼ Q0. Here, δ0 is
chosen as the smallest (i.e., least conservative) value for which θ(FR0) ≤ α.

For gFWER(k) control (i.e., θ(FVn) = 1−FVn(k)), the procedure is based
on the (k+1)st ordered unadjusted p-value. Specifically, let Q̄0,m ≡ 1−Q0,m

denote the survivor functions for the marginal null distributions Q0,m and
define unadjusted p-values P0(m) ≡ Q̄0,m(Z(m)) and P0n(m) ≡ Q̄0,m(Tn(m)),
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for Z ∼ Q0 and Tn ∼ Qn, respectively. The adjusted p-values for the single-
step P (k + 1) procedure are given by

p̃0n(m) = PrQ0 (P ◦
0 (k + 1) ≤ p0n(m)) , m = 1, . . . ,M, (14)

where P ◦
0 (m) denotes the mth ordered component of the M–vector of unad-

justed p-values P0 = (P0(m) : m = 1, . . . ,M), so that P ◦
0 (1) ≤ . . . ≤ P ◦

0 (M).
For FWER control (k = 0), one recovers the single-step minP proce-

dure, based on the minimum unadjusted p-value, P ◦
0 (1) = minm P0(m), with

adjusted p-values given by

p̃0n(m) = PrQ0

(
min

m∈{1,...,M}
P0(m) ≤ p0n(m)

)
, m = 1, . . . ,M. (15)

2.5 Step-down procedures for controlling the family-
wise error rate

van der Laan et al. (2004b) propose step-down common-cut-off (maxT) and
common-quantile (minP) procedures for controlling the family-wise error
rate, FWER. These procedures are similar in spirit to their single-step coun-
terparts in Section 2.4, for the special case θ(FVn) = 1 − FVn(0), with the
important step-down distinction that hypotheses are considered successively,
from most significant to least significant, with further tests depending on the
outcome of earlier ones. That is, the test procedure is applied to a sequence
of successively smaller nested random (i.e., data-dependent) subsets of null
hypotheses, defined by the ordering of the test statistics (common-cut-off
MTPs) or unadjusted p-values (common-quantile MTPs).

Procedure 4 [FWER-controlling step-down common-cut-off (maxT)
procedure] Let On(m) denote the indices for the ordered test statistics
Tn(m), so that Tn(On(1)) ≥ . . . ≥ Tn(On(M)). The step-down common-cut-
off (maxT) procedure is based on the distributions of maxima of test statistics
over the nested subsets of ordered null hypotheses On(h) ≡ {On(h), . . . , On(M)}.
The adjusted p-values are given by

p̃0n(on(m)) = max
h=1,...,m

{
PrQ0

(
max

l∈�n(h)
Z(l) ≥ tn(on(h))

)}
, (16)

where Z = (Z(m) : m = 1, . . . ,M) ∼ Q0.
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Thus, unlike single-step maxT Procedure 2, based solely on the distri-
bution of the maximum test statistic over all M hypotheses, the step-down
common cut-offs and corresponding adjusted p-values are based on the dis-
tributions of maxima of test statistics over successively smaller nested ran-
dom subsets of null hypotheses. Taking maxima of the probabilities over
h ∈ {1, . . . ,m} enforces monotonicity of the adjusted p-values and ensures
that the procedure is indeed step-down, that is, one can only reject a par-
ticular hypothesis provided all hypotheses with more significant (i.e., larger)
test statistics were rejected beforehand.

Likewise, the step-down common-quantile cut-offs and corresponding ad-
justed p-values are based on the distributions of minima of unadjusted p-
values over successively smaller nested random subsets of null hypotheses.

Procedure 5 [FWER-controlling step-down common-quantile (minP)
procedure] Let On(m) denote the indices for the ordered unadjusted p-
values P0n(m), so that P0n(On(1)) ≤ . . . ≤ P0n(On(M)). The step-down
common-quantile (minP) procedure is based on the distributions of min-
ima of unadjusted p-values over the nested subsets of ordered null hypotheses
On(h) ≡ {On(h), . . . , On(M)}. The adjusted p-values are given by

p̃0n(on(m)) = max
h=1,...,m

{
PrQ0

(
min

l∈�n(h)
P0(l) ≤ p0n(on(h))

)}
, (17)

where P0(m) ≡ Q̄0,m(Z(m)) and P0n(m) ≡ Q̄0,m(Tn(m)), for Z ∼ Q0 and
Tn ∼ Qn, respectively.

2.6 Augmentation multiple testing procedures for con-
trolling tail probability error rates

van der Laan et al. (2004a), and subsequently Dudoit and van der Laan
(2005) and Dudoit et al. (2004a), propose augmentation multiple testing pro-
cedures (AMTP), obtained by adding suitably chosen null hypotheses to the
set of null hypotheses already rejected by an initial MTP. Specifically, given
any initial procedure controlling the generalized family-wise error rate, aug-
mentation procedures are derived for controlling Type I error rates defined
as tail probabilities and expected values for arbitrary functions g(Vn, Rn)
of the numbers of Type I errors and rejected hypotheses (e.g., proportion
g(Vn, Rn) = Vn/Rn of false positives among the rejected hypotheses). Ad-
justed p-values for the AMTP are shown to be simply shifted versions of the
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adjusted p-values of the original MTP. The important practical implication
of these results is that any FWER-controlling MTP and its corresponding
adjusted p-values immediately provide multiple testing procedures control-
ling a broad class of Type I error rates and their adjusted p-values. One can
therefore build on the large pool of available FWER-controlling procedures,
such as the single-step and step-down maxT and minP procedures discussed
in Sections 2.4 and 2.5, above.

Augmentation procedures for controlling tail probabilities of the number
(gFWER) and proportion (TPPFP) of false positives, based on an initial
FWER-controlling procedure, are treated in detail in Dudoit et al. (2004a)
and van der Laan et al. (2004a) and are summarized below. The gFWER
and TPPFP correspond to the special cases g(Vn, Rn) = Vn and g(Vn, Rn) =
Vn/Rn, respectively.

Denote the adjusted p-values for the initial FWER-controlling procedure
by P̃0n(m). Order the M null hypotheses according to these p-values, from

smallest to largest, that is, define indices On(m), so that P̃0n(On(1)) ≤ . . . ≤
P̃0n(On(M)). Then, for a nominal level α test, the initial FWER-controlling
procedure rejects the Rn(α) null hypotheses

Rn(α) ≡ {m : P̃0n(m) ≤ α}. (18)

Procedure 6 [gFWER-controlling augmentation multiple testing pro-
cedure] For control of gFWER(k) at level α, given an initial FWER-
controlling procedure, reject the Rn(α) hypotheses specified by this MTP, as
well as the next An(α) most significant null hypotheses,

An(α) = min{k,M −Rn(α)}. (19)

The adjusted p-values P̃+
0n(On(m)) for the new gFWER-controlling AMTP

are simply k–shifted versions of the adjusted p-values of the initial FWER-
controlling MTP, with the first k adjusted p-values set to zero. That is,

P̃+
0n(On(m)) =

{
0, if m ≤ k

P̃0n(On(m− k)), if m > k
. (20)

The AMTP thus guarantees at least k rejected hypotheses.

Procedure 7 [TPPFP-controlling augmentation multiple testing pro-
cedure] For control of TPPFP (q) at level α, given an initial FWER-controlling
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procedure, reject the Rn(α) hypotheses specified by this MTP, as well as the
next An(α) most significant null hypotheses,

An(α) = max

{
m ∈ {0, . . . ,M −Rn(α)} :

m

m+Rn(α)
≤ q

}
(21)

= min

{⌊
qRn(α)

1 − q

⌋
,M −Rn(α)

}
,

where the floor �x� denotes the greatest integer less than or equal to x, i.e.,
�x� ≤ x < �x� + 1. That is, keep rejecting null hypotheses until the ratio
of additional rejections to the total number of rejections reaches the allowed
proportion q of false positives. The adjusted p-values P̃+

0n(On(m)) for the new
TPPFP-controlling AMTP are simply mq–shifted versions of the adjusted p-
values of the initial FWER-controlling MTP. That is,

P̃+
0n(On(m)) = P̃0n(On((1 − q)m�)), m = 1, . . . ,M, (22)

where the ceiling x� denotes the least integer greater than or equal to x, i.e.,
x� − 1 < x ≤ x�.
FDR-controlling procedures. Given any TPPFP-controlling procedure,
van der Laan et al. (2004a) derive two simple (conservative) FDR-controlling
procedures. The more general and conservative procedure controls the FDR
at nominal level α, by controlling TPPFP (α/2) at level α/2. The less
conservative procedure controls the FDR at nominal level α, by controlling
TPPFP (1 − √

1 − α) at level 1 − √
1 − α. The reader is referred to the

original article for details and proofs of FDR control (Section 2.4, Theorem
3).

3 Software implementation in SAS

This section discusses the software implementation in SAS (Version 9) of
the following three MTPs: the FWER-controlling single-step maxT Proce-
dure 2, the gFWER-controlling augmentation Procedure 6, and the TPPFP-
controlling augmentation Procedure 7. The SAS macros described below
were written to compute various components of a MTP, including test statis-
tics Tn, bootstrap estimates Q0n of the test statistics null distribution Q0

(Procedure 1), and adjusted p-values P̃0n(m). The full code is provided in
the Appendix and as a text file on the website www.stat.berkeley.edu/

~sandrine/publications.html.
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%lmt: The %lmt macro takes as input a SAS dataset of the form [y:X]

(e.g., resample.hivdata for the HIV-1 sequence analysis of Section
4), with records corresponding to n observations and with the first
column referring to an outcome Y and the remaining columns to an
M–dimensional covariate vector X = (X(m) : m = 1, . . . ,M). This
macro uses PROC REG to compute t-statistics Tn(m), for the univariate
linear regression of the outcome Y on each of the M covariates X(m),
m = 1, . . . ,M . The test statistics Tn are stored in the dataset tstats.

%boot: The %boot macro generates B (macro variable &boots) bootstrap
samples of the original dataset and computes M–vectors of test statis-
tics T#

n for each of these B bootstrapped datasets using the macro
%lmt. Specifically, the rows of the dataset [y:X] are sampled at ran-
dom, with replacement using PROC SURVEYSELECT. Note that PROC
SURVEYSELECT uses the bootstrap iteration index as the seed and the
method=urs command for “unrestricted random sampling”, i.e., sam-
pling at random, with replacement. The bootstrap test statistics T#

n

are stored in the dataset tstatsB.

%bootnull: The %bootnull macro reads in the B bootstrap M–vectors
of test statistics T#

n produced by the %boot macro and stored in the
dataset tstatsB. PROC IML is used to compute B M–vectors of cor-
responding null value shifted test statistics Z#

n , which are then stored
in the dataset Qo. The empirical distribution of these new M–vectors
of test statistics Z#

n yields a bootstrap estimate Q0n of the null distri-
bution (Procedure 1).

%ssmaxT: The %ssmaxT macro takes as input the M–vector of test statistics
Tn for the original data (i.e., dataset tstats from macro %lmt) and
B M–vectors of null value shifted test statistics Z#

n , corresponding to
a bootstrap estimate Q0n of the null distribution (i.e., dataset Qo of
dimension BM from macro %bootnull). For each of the B bootstrap
samples, the maximum of theM test statistics is computed using PROC
IML (i.e., row maxima of the B ×M matrix obtained from the dataset
Qo). Single-step maxT adjusted p-values are computed for each of the
M hypotheses as the proportions of the B maxima that exceed the
corresponding test statistics for the original dataset (Equation (13),
Procedure 2). The adjusted p-values are stored in the dataset fwer.
Note that the current implementation of %ssmaxT provides p-values
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for two-sided tests only (i.e., based on the absolute values of the test
statistics).

%gfwer: Given an allowed number k of false positives and adjusted p-values
for an arbitrary initial FWER-controlling MTP (e.g., dataset fwer from
macro %ssmaxT), the %gfwer macro uses PROC IML to compute ad-
justed p-values for the gFWER-controlling augmentation Procedure 6.

%tppfp: Given an allowed proportion q of false positives and adjusted p-
values for an arbitrary initial FWER-controlling MTP (e.g., dataset
fwer from macro %ssmaxT), the %tppfp macro uses PROC IML to com-
pute adjusted p-values for the TPPFP-controlling augmentation Pro-
cedure 7.

Note that the macros %fwer, %gfwer, and %tppfp return adjusted p-
values as datasets, as opposed to matrices, to facilitate the identification and
labeling of hypotheses (i.e., columns in the original dataset).

Our motivation for developing the above macros was the analysis of the
HIV-1 dataset discussed in Section 4, below. The user could easily modify
and extend this collection of macros to adapt to other data structures and/or
testing problems.

4 Application to HIV-1 sequence data

In this section, we apply the multiple testing procedures implemented in the
SAS macros of Section 3 to the HIV-1 dataset of Segal et al. (2004), with the
aim of relating HIV-1 sequence variation to viral replication capacity. Specif-
ically, multiple testing procedures are applied to identify codons which are
significantly associated with viral replication capacity, based on t-statistics
for the univariate linear regression of the replication capacity phenotype on
individual codon genotypes. Brief descriptions of the HIV-1 dataset, multi-
ple testing procedures, software implementation in SAS, and results are given
next.
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4.1 HIV-1 dataset

4.1.1 HIV-1 sequence variation and replication capacity

Studying sequence variation for the Human Immunodeficiency Virus Type
1 (HIV-1) genome could potentially give important insight into genotype–
phenotype associations for the Acquired Immune Deficiency Syndrome (AIDS).

In this context, a key phenotype is the replication capacity (RC) of HIV-1,
as it reflects the severity of the disease. A measure of replication capacity
may be obtained by monitoring viral replication in an ideal environment,
with many cellular targets, no exogenous or endogenous inhibitors, and no
immune system responses against the virus (Barbour et al., 2002; Segal et al.,
2004).

Genotypes of interest correspond to codons in the protease and reverse
transcriptase regions of the viral strand. The protease (PR) enzyme af-
fects the reproductive cycle of the virus by breaking protein peptide bonds
during viral replication. The reverse transcriptase (RT) enzyme synthesizes
double-stranded DNA from the virus’ single-stranded RNA genome, thereby
facilitating integration into the host’s chromosome. Since the PR and RT
regions are essential to viral replication, many antiretrovirals (protease in-
hibitors and reverse transcriptase inhibitors) have been developed to target
these specific genomic locations. Studying PR and RT genotypic variation in-
volves sequencing the corresponding HIV-1 genome regions and determining
the amino acids encoded by each codon (i.e., each nucleotide triplet).

4.1.2 Description of Segal et al. (2004) HIV-1 dataset

The HIV-1 sequence dataset consists of n = 317 records, linking viral repli-
cation capacity (RC) with protease (PR) and reverse transcriptase (RT) se-
quence data, from individuals participating in studies at the San Francisco
General Hospital and Gladstone Institute of Virology (Segal et al., 2004).
Protease codon positions 4 to 99 (i.e., pr4 – pr99) and reverse transcriptase
codon positions 38 to 223 (i.e., rt38 – rt223) of the viral strand are studied
in this analysis.

The outcome/phenotype of interest is the natural logarithm of a con-
tinuous measure of replication capacity, ranging from 0.261 to 151. The
M covariates correspond to the M = 96 + 186 = 282 codon positions in
the PR and RT regions, with the number of possible codons ranging from
one to ten at any given location. A majority of patients typically exhibit
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one codon at each position. Codons are therefore recoded as binary covari-
ates, with value of zero (or “wild-type”) corresponding to the most common
codon among the n = 317 patients and value of one (or “mutation”) for all
other codons. Previous biological research was used to confirm mutations
and hence provide accurate PR and RT codon genotypes for each patient
(hivdb.stanford.edu/cgi-bin/RTMut.cgi). The data for each of the n =
317 patients therefore consist of a replication capacity outcome/phenotype
Y and an M–dimensional covariate vector X = (X(m) : m = 1, . . . ,M) of
binary codon genotypes in the PR and RT HIV-1 regions.

4.2 Multiple testing procedures

The following three MTPs are applied to the HIV-1 dataset, with the aim
of identifying protease and reverse transcriptase codons significantly asso-
ciated with viral replication capacity: FWER-controlling single-step maxT
Procedure 2, gFWER-controlling augmentation Procedure 6, and TPPFP-
controlling augmentation Procedure 7.

Specifically, we wish to test for each of the M = 282 codon positions
whether viral replication capacity Y is associated with the corresponding
binary codon genotype, X(m) ∈ {0, 1}, m = 1, . . . ,M . For the mth codon
(i.e., mth hypothesis), the parameter of interest is the difference ψ(m) in
mean replication capacity of viruses with mutant and wild-type codons, that
is,

ψ(m) ≡ E[Y |X(m) = 1] − E[Y |X(m) = 0]. (23)

We consider two-sided tests of the null hypotheses H0(m) = I(ψ(m) = 0) of
no mean difference in RC vs. the alternative hypotheses H1(m) = I(ψ(m) �=
0) of different mean RC, based on pooled-variance two-sample t-statistics,

Tn(m) ≡ Ȳ1(m) − Ȳ0(m) − 0

sp(m)
√

1
n0(m)

+ 1
n1(m)

, (24)

s2
p(m) ≡ (n0(m) − 1)s2

0(m) + (n1(m) − 1)s2
1(m)

n0(m) + n1(m) − 2
,

where nk(m), Ȳk(m), and s2
k(m) denote, respectively, the sample sizes, sample

means, and sample variances for the RC of patients with codon genotype
X(m) = k ∈ {0, 1} at position m. The pooled variance estimator is denoted
by s2

p(m). The null hypotheses are rejected, i.e., the corresponding codons
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are declared significantly associated with RC, for large absolute values of the
test statistics Tn(m). Note that the above two-sample t-statistics correspond
to t-statistics for the univariate linear regression of the outcome Y on the
binary covariates X(m) (cf. one-way ANOVA).

Procedure 1 is applied to obtain a bootstrap estimate Q0n of the test
statistics null distribution Q0 (with B = 7, 500 bootstrap iterations). This es-
timated null distribution is used to compute adjusted p-values for the FWER-
controlling single-step maxT MTP (Equation (13), Procedure 2). These
FWER-controlling p-values are then used to obtain adjusted p-values for
augmentation procedures controlling gFWER (k = 5) and TPPFP (q = 0.1)
(for gFWER control, Equation (20), Procedure 6, and for TPPFP control,
Equation (22), Procedure 7).

4.3 Software implementation in SAS

The multiple testing procedures implemented in the SAS macros of Section
3 can be applied to the HIV-1 (or a similar) dataset as follows. The param-
eter values specified below are those for the particular analysis of the HIV-1
dataset reported in Section 4.4 (see code in the Appendix).

1. Read in the data in the form of a SAS dataset [y:X], with first col-
umn corresponding to an outcome Y (i.e., natural logarithm of viral
replication capacity measure) and M subsequent columns to an M–
dimensional covariate vector X = (X(m) : m = 1, . . . ,M) (i.e., binary
codon genotypes).

2. Define the following parameters:

– the number of rows (i.e., patients) for the dataset [y:X], n = 317
(macro variable &row);

– the number of columns, M + 1 = 283 (macro variable &col);

– the number of bootstrap iterations for estimating the test statistics
null distribution, B = 7, 500 (macro variable &boots);

– the allowed number of false positives for the gFWER-controlling
AMTP, k = 5 (macro variable &k);

– the allowed proportion of false positives for the TPPFP-controlling
AMTP, q = 0.1 (macro variable &q);
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– the number of hypotheses, M = 282 (macro variable &nt).

3. Apply the %lmt macro to compute M = 282 codon-specific t-statistics,
Tn.

4. Apply the %boot and %bootnull macros to create a bootstrap estimate
Q0n of the test statistics null distribution.

5. Compute adjusted p-values for FWER-controlling single-step maxT
Procedure 2 using the %ssmaxT macro.

6. Given the adjusted p-values for the initial FWER-controlling MTP,
apply the %gfwer and %tppfp macros to obtain adjusted p-values for
augmentation procedures controlling gFWER (k = 5) and TPPFP (q =
0.1).

Note that the Type I error rate parameters k and q and the number
of bootstrap iterations B are user-supplied, in contrast to the other macro
variables which are pre-determined by the dataset under consideration. For
the HIV-1 dataset, the values k = 5, q = 0.1, and B = 7, 500 were selected
somewhat arbitrarily for illustration purposes.

4.4 Results

Table 3 displays the smallest 13 sorted adjusted p-values for MTPs controlling
the FWER, gFWER (k = 5), and TPPFP (q = 0.1). The total running time
for the analysis was approximately 34.5 hours (Dell GX270, Intel Pentium 4,
2.8GHz, 512MB RAM).

The multiple testing procedures identified several codon positions as sig-
nificantly associated with viral replication capacity. In particular, protease
positions pr32, pr34, pr43, pr46, pr47, pr54, pr55, pr82, and pr90, and re-
verse transcriptase positions rt41, rt184, and rt215, have been singled out
in previous research as related to replication capacity and/or antiretroviral
resistance (Birkner et al., 2004; Segal et al., 2004; Shafer et al., 2001). It is
interesting to note that the 13 codon positions with the smallest adjusted
p-values in Table 3 all have negative t-statistics, suggesting that mutated
codons (recoded as one) are associated with decreased viral replication ca-
pacity. Indeed, while mutations may allow the virus to become resistant to
antiretroviral therapies, this gain may come at the cost of a decrease in its
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replication capacity. The specific mutations observed in our dataset parallel
those found in the literature. For example, V pr32I, Mpr46I, Ipr54V/L/T ,
V pr82A/T/F/S, and Lpr90M , correspond to protease positions in which
mutations increase the resistance to various protease inhibitors. Here, the
nomenclature V pr32I refers to protease position pr32, with wild-type amino
acid V (Valine) and mutated amino acid I (Isoleucine). Mutations in sev-
eral of the identified codons also have an impact on the replication capacity
of the virus. Reverse transcriptase mutation at position rt41 (Mrt41L) in-
creases azidothymidine (AZT) resistance when present with Trt215Y/F , i.e.,
with a mutated Y or F amino acid at position rt215. In addition, mutation
Mrt184V/I suppresses the wild-type activity of Trt215Y , thus decreasing
AZT resistance (Shafer et al., 2001). AZT, also known as Zidovudine, is a
nucleoside reverse transcriptase inhibitor. It affects HIV’s ability to replicate
by producing faulty reverse transcriptase and hence inhibiting the transcrip-
tion of RNA to DNA.

As illustrated in the above HIV-1 data analysis, the multiple testing
methodology of Section 2 provides simple and flexible procedures for iden-
tifying specific codons, or areas on the viral strand, that are significantly
associated with replication capacity. Our results are consistent with previous
research and other analyses of this HIV-1 dataset. The reader is referred to
earlier articles by Birkner et al. (2004) and Segal et al. (2004) for alternative
statistical analyses and biological discussion of a related HIV-1 dataset. Re-
call that a crude binary (wild-type vs. mutated) coding was used for codon
genotypes; a more sensitive analysis may be achieved by using individual
amino acids or grouping amino acids based on their biochemical properties.

Other multiple testing software

A number of bootstrap- and permutation-based FWER-controlling MTPs
are implemented in PROC MULTTEST (SAS OnlineDoc, Version 9, v9doc.
sas.com/sasdoc).

The resampling-based multiple testing procedures discussed in this and
related articles (Dudoit and van der Laan, 2005; Dudoit et al., 2004a,b;
van der Laan et al., 2004a,b; Pollard and van der Laan, 2004) are imple-
mented in the open-source R package multtest, released as part of the Bio-
conductor Project (Pollard et al. (2005); multtest package Version 1.5.2, Bio-
conductor Release 1.5, www.bioconductor.org).
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Table 1: Type I and Type II errors in multiple hypothesis testing.

Null hypotheses
not rejected rejected

true |Rc
n ∩H0| Vn = |Rn ∩H0| h0 = |H0|

(Type I errors)
Null hypotheses

false Un = |Rc
n ∩H1| |Rn ∩H1| h1 = |H1|

(Type II errors)

M −Rn Rn = |Rn| M
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Table 2: Multiple hypothesis testing flowchart.

Define parameters of interest, ψ(m)
⇓

Define null and alternative hypotheses, H0(m) and H1(m)
⇓

Specify test statistics, Tn(m)
⇓

Estimate test statistics null distribution, Q0n

⇓
Select Type I error rate, θ(FVn,Rn)

⇓
Apply MTP

FWER Pr(Vn > 0) Single-step maxT Procedure 2
Single-step minP Procedure 3
Step-down maxT Procedure 4
Step-down minP Procedure 5

gFWER Pr(Vn > k) Single-step T (k + 1) Procedure 2
Single-step P (k + 1) Procedure 3
Augmentation Procedure 6

TPPFP Pr(Vn/Rn > q) Augmentation Procedure 7
General θ(FVn) Single-step common-cut-off Procedure 2

Single-step common-quantile Procedure 3
⇓

Summarize results
adjusted p-values, rejection regions, confidence regions.

31

Hosted by The Berkeley Electronic Press



Table 3: HIV-1 dataset. Sorted adjusted p-values and t-statistics for multiple
testing procedures controlling the FWER, gFWER (k = 5), and TPPFP
(q = 0.1).

Adjusted p-values
Codons t-statistics FWER gFWER (k = 5) TPPFP (q = 0.1)

SS maxT AMTP AMTP
pr32 -9.755 0.0001 0 0.0001
pr47 -9.579 0.00133 0 0.00133
pr34 -8.843 0.00867 0 0.00867
pr55 -8.15 0.0104 0 0.0104
pr90 -6.237 0.0396 0 0.0396
rt184 -6.162 0.0431 0.0001 0.0431
pr43 -6.118 0.0444 0.00133 0.0444
pr54 -5.539 0.078 0.00867 0.078
rt41 -5.225 0.978 0.0104 0.978
pr46 -5.224 0.098 0.0396 0.098
pr82 -4.521 0.1678 0.0431 0.0978
rt215 -4.479 0.174 0.0444 0.1678
rt121 -4.07 0.238 0.078 0.174
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Appendix: SAS code

/**************************************************************************/
/* Read in HIV-1 SAS dataset, [y:X] */

options nonotes;
%let row = 317; /* number of patients */
%let col = 283; /* first column corresponds to RC outcome, remaining columns to PR an
%let boots = 7500; /* number of bootsrap samples */
%let k = 5; /* number of allowed false positives for gFWER AMTP */
%let q = 0.05; /* proportion of allowed false positives for TPPFP AMTP */
%let nt= 282; /* number of tested hypotheses */

libname resample "c:\hivexample";

/**************************************************************************/
/* lmt: t-statistics for univariate linear regression model */

%macro lmt;
%do a = 2 %to &col;
proc reg data=resample.hivdata noprint outest=outest&a tableout;

model VAR1=VAR&a;
data outest&a(rename=(VAR&a=t)); set outest&a; where _type_=’T’; keep VAR&a;
proc append base=tstats data=outest&a;

%end;
%mend;
%lmt;
proc print data=tstats; title "t-statistics for data";
run;

/**************************************************************************/
/* boot and bootnull: Bootstrap test statistics null distribution */

%macro boot;
%do j=1 %to &boots;
proc surveyselect noprint data=resample.hivdata out=datanew

seed=&j
method=urs
rep=&row

33

Hosted by The Berkeley Electronic Press



sampsize=1
stats;

%do a = 2 %to &col;
proc reg data=datanew noprint outest=outest&a tableout;

model VAR1=VAR&a;
data outest&a(rename=(VAR&a=t)); set outest&a; where _type_=’T’; keep VAR&a;
proc append base=tstatsB data=outest&a;
%end;
%end;
%mend;
%boot;
quit;

/***********************/
%macro bootnull;
proc iml;

use tstatsB;
read all var {t} into x;
close tstatsB;
nt=&nt;
bt=&boots;
tB=shape(x,bt,nt);
b=tB[:,];
bb=J(bt,nt,0);
do i=1 to bt;

bb[i,]=(tB[i,] - b);
end;
bb2=shape(bb,bt*nt,1);
create Qo from bb2;
append from bb2;
close Qo;
quit;

%mend;
%bootnull;

/**************************************************************************/
/* ssmaxT: Single-step maxT procedure */

%macro ssmaxT;
proc iml;
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use Qo;
read all into bb;
close Qo;
nt=&nt;
bt=&boots;
Qo=shape(bb,bt,nt);
mx=J(1,bt,0);
do i=1 to bt;

mb=abs(Qo[i,]);
mx[,i]=max(mb);

end;
c=mx;
brank=rank(mx);
mx[brank]=c;
/*adjusted p-values*/
use tstats;
read all var {t} into t;
close tstats;
print t;
pval=J(1,nt,0);
do j=1 to nt;

tmp=J(1,bt,0);
do i=1 to bt;

if abs(t[j]) < mx[i] then tmp[i]=1;
end;
st=sum(tmp);
pval[j]=st/bt;

end;
create fwer from pval;
append from pval;
close fwer;
quit;

proc print data=fwer;
run;
%mend;
%ssmaxT;

/**************************************************************************/
/* gfwer: gFWER-controlling augmentation procedure */
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%macro gfwer;
proc iml;

use fwer;
read all into pval;
close fwer;
k=&k;
nt=&nt;
gp=J(1,nt,0);
j=k+1;
c=pval;
brank=rank(pval);
pval[brank]=c;
do i=1 to (nt-k);

gp[j]=pval[i];
j=j+1;

end;
gg=gp[brank];
gpval=shape(gg,1,nt);
create gfwer from gpval;
append from gpval;
close gfwer;
quit;

proc print data=gfwer;
run;
%mend;
%gfwer;

/**************************************************************************/
/* tppfp: TPPFP-controlling augmentation procedure */

%macro tppfp;
proc iml;

use fwer;
read all into pval;
close fwer;
q=&q;
nt=&nt;
c=pval;
brank=rank(pval);
pval[brank]=c;
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tp=J(1,nt,0);
do i=1 to nt;

m=ceil(i*(1-q));
tp[i]=pval[m];

end;
tt=tp[brank];
tpval=shape(tt,1,nt);
create tppfp from tpval;
append from tpval;
close tppfp;
quit;

proc print data=tppfp;
run;
%mend;
%tppfp;

/*************************************************************************/
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