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Comparative Genomic Hybridization Array
Analysis

Annette M. Molinaro, Mark J. van der Laan, and Dan H. Moore

Abstract

At the present time, there is increasing evidence that cancer may be regulated
by the number of copies of genes in tumor cells. Through microarray technology
it is now possible to measure the number of copies of thousands of genes and gene
segments in samples of chromosomal DNA. Microarray comparative genomic hy-
bridization (array CGH) provides the opportunity to both measure DNA sequence
copy number gains and losses and map these aberrations to the genomic sequence.
Gains can signify the over-expression of oncogenes, genes which stimulate cell
growth and have become hyperactive, while losses can signify under-expression
of tumor suppressor genes, genes whose activity stops the formation of tumors. In
order to better understand the progression of cancer and the differences between
cancer and non-cancer tissue it is of great importance to fully understand what is
happening at the chromosomal level. In the hopes of finding a genetic signature
for subtypes of cancer, it is our intention to explore statistical approaches to array
CGH data. The Waldman Lab at UCSF-CCC graciously allowed us to access data
from their renal cancer study. This project was designed to determine whether
microarray information on copy number of genes could be used to discriminate
among four subtypes of renal cancer.



1 Introduction

At the present time, there is increasing evidence that cancer may be regu-
lated by the number of copies of genes in tumor cells. Through microarray
technology it is now possible to measure the number of copies of thousands of
genes and gene segments in samples of chromosomal DNA. Microarray com-
parative genomic hybridization (array CGH), as described in Section 3.1,
provides the opportunity to both measure DNA sequence copy number gains
and losses and map these aberrations to the genomic sequence. Gains can
signify the over-expression of oncogenes, genes which stimulate cell growth
and have become hyperactive, while losses can signify under-expression of
tumor suppressor genes, genes whose activity stops the formation of tumors.
In order to better understand the progression of cancer and the differences
between cancer and non-cancer tissue it is of great importance to fully un-
derstand what is happening at the chromosomal level.

In the hopes of finding a genetic signature for subtypes of cancer, it
is our intention to explore statistical approaches to array CGH data. The
Waldman Lab at UCSF-CCC graciously allowed us access data to their renal
cancer study. This project was designed to determine whether microarray
information on copy number of genes could be used to discriminate among
four subtypes of renal cancer.

2 Question of Interest

A study utilizing CGH technology results in thousands of covariates (mea-
sured by bacterial artificial chromosomes (BACs)) and a relatively small num-
ber of observations, i.e., large p and small n. Given this data our goal is to
find a way of accurately classifying observations into predefined subtypes of
cancer. Thus, there are two questions: “What is the best subset of BACs
with which to build a classification rule?” and “Given a subset of BACs,
what is the best classification rule one can build?”

The purpose of this manuscript is twofold: First, we examine several ap-
proaches for subsetting the given set of BACs and subsequently we explore
a clustering technique to classify the subtypes of cancer based on the pre-
viously defined subset of BACs. Lastly, we will assess the accuracy of this
classification.

Section 3.1 provides a general description of CGH data and technology. In
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Section 3.2 the renal data as provided by the Waldman Lab is described. In
Section 4 a sampling of subset rules for decreasing the number of covariates,
i.e., BACs, are presented. One of the subset rules is Significance Tests,
i.e., to choose the BACs which are significant as defined by a parametric or
non-parametric test. This choice leads to the question of how to deal with
the multiple testing issue. Four possible approaches to multiple testing are
addressed in Section 4.2. In Section 5 a clustering algorithm is explained.
This algorithm is used to classify the tumors based on subsets of BACs as
chosen by the aforementioned subset rules. The classifications are assessed
by how many misclassifications are made. A final discussion of the subset
and classification rules is in Section 6.

3 Data

3.1 Comparative Genomic Hybridization

Prior to entering mitosis and undergoing division, a cell must exactly repli-
cate its genome by synthesizing a new copy of each chromosome, using the
existing DNA as a template (Figure 1). During this process several types
of large-scale chromosomal alterations can occur. Regions of DNA can be
deleted or fail to be replicated, resulting in a loss at that chromosomal lo-
cus. Conversely, regions can be duplicated or multiplied, resulting in a gain
of copy number or amplification. Furthermore, entire segments of chromo-
somes can be inappropriately fused with other chromosomes in a process
called translocation. These mutations are illustrated in Figure 2.

Healthy cells maintain checkpoints to monitor and correct this genomic
instability. Mutations can be repaired, or the cell can undergo programmed
cell death (apoptosis) to prevent the mutations from being passed to daugh-
ter cells. However, if the mutation is not detected, or if a checkpoint has
been inactivated by mutation, the cell can survive in its altered state. A
particular danger exists if genomic alterations predispose a cell to uncon-
trolled proliferation. If an oncogene, a gene which stimulates cell growth and
has become hyperactive, is housed in an area which has been amplified, that
oncogene may be over-expressed. On the other hand, the loss of a region
that houses a tumor suppressor gene, a gene whose activity opposes uncon-
trolled cell growth (e.g., p53), will result in the inactivation of that gene.
Such regional alterations in copy number are a characteristic of solid tumors.
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The Central Dogma of Molecular Biology

Replication
DNA duplicates

Transcription
RNA synthesis

Translation
Protein synthesis
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(Andy Vierstraete 1999)

Figure 1: The Central Dogma of Molecular Biology. During the cell cycle
DNA duplicates (Replication), RNA synthesizes (Transcription), and protein
synthesizes (Translation).
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Possible Mutations

•Deletion (loss)

•Duplication (gain)

•Translocation

Figure 2: Possible Mutations that can occur during the cell cycle. There
are three chromosomal abberations of interest: deletion resulting in a loss
of copy number for a chromosomal region, duplication resulting in a gain in
copy number, and translocation involving both gains and losses for different
chromosomal regions.

It is hypothesized that this genomic instability is key to allowing cancerous
growth to progress. Thus, there is an inherent need to track and understand
these mutations.

Comparative Genomic Hybridization (CGH) was developed as a method
for detecting and mapping such alterations in the genome. The basic proce-
dure of CGH begins with purifying genomic DNA from samples of cancer-
ous and normal control tissue (e.g., lymphocytes from a healthy individual).
These two DNA preparations are labeled with different fluorochromes which
will emit light at easily distinguishable wavelengths–generally red and green.
The samples are then mixed and allowed to competitively hybridize to immo-
bilized normal DNA. In regions where there are no amplifications or deletions
in the cancer genome, binding of both samples will be equal, and the equal
emission of light from both fluorochromes will result in a perceived yellow
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Figure 3: Microarray-based CGH (array CGH). In this procedure, probes
that map to evenly spaced loci along the entire length of the genome are
printed onto glass slides and used as targets for the hybridization of fluores-
cent DNA.

fluorescence. However, where there are losses in copy number in the cancer
DNA, the color with which the normal DNA was labeled (e.g., red) will pre-
dominate. Similarly, in regions of DNA copy number gain, the color with
which the tumor DNA was labeled (e.g., green) will be apparent. These
variations can be seen in Figure 3.

Initially genomic instability was measured with chromosomal-CGH, in
which intact chromosomes were used as hybridization targets to map gains
and losses of DNA copy number (Figure 4). The resolution of this assay
was relatively low, allowing for the detection only of comparatively large
gains or losses, and with little information about the locations of the ends
of the altered regions. However, recent improvements in the resolution and
sensitivity of CGH have been achieved with microarray-based CGH (array
CGH). In this procedure, probes that map to evenly spaced loci along the
entire length of the genome are printed onto glass slides and used as targets
for the hybridization of fluorescent DNA. Array CGH has greater resolution

5
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Figure 4: Hybridization targets for CGH analysis. Initially measured with
chromosomal-CGH now array CGH offers greater resolution and more precise
measurements.

than chromosomal CGH, allowing for the detection of smaller amplifications
and deletions, and more precise measurements of how these regions are de-
limited. Additionally, array CGH allows a genome-wide analysis of DNA
sequence copy number in a single experiment (Pinkel et al. (1998) Snijders
et al. (2001)). Coupled with a physical map of the genome, these data allow
more efficient identification of genes that may be involved in cancer progres-
sion.

Several types of clones can be used to make the arrays. The UCSF-CCC
primarily uses bacterial artificial chromosomes (BACs). While the human
haploid genome has 3 billion pairs of bases, each BAC consists of a smaller
100-200 kilobase (kb) region of the DNA. These BAC clones are grown in
bacteria, purified, and spotted onto slides by a robot.

In carcinogenesis, researchers compare tumor samples to normal samples
in order to examine hypothesized cancer related aberrations of the genome.
By comparing test (tumor) to reference (normal) samples, they can iden-
tify regions which differ (by loss or gain of copy number) and elucidate the
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particular genes housed in those loci.

Method The CGH procedure consists of labeling genomic material from
a test sample, i.e. tumor, and a reference sample, i.e. lymphocytes from
healthy persons, with different fluorochromes. These fluorochromes are com-
pletely distinguishable with no spectral overlap. The two samples are then
hybridized to an array containing clones which are designed to cover certain
areas of the genome or the entire genome.

Once the area of the genome is decided, these BACs are placed on the
arrays to measure the test to reference ratio. The BACs are duplicated
thousands of times and then fragmented. Several hundred thousand kb are
deposited in each spot of an array, enough DNA to represent the BAC sev-
eral thousand times. Once the test and reference samples are hybridized
to the BAC arrays, it is possible to quantify the signal intensities of the
fluorochromes.

1. The background signal intensity is calculated and each fluorochrome is
adjusted in each pixel in each spot.

2. The fluorescence ratios on each spot are calculated (e.g. the ratio of
means of all pixels in a spot)

3. The ratios on the replicate spots are averaged

4. Ratios of test to reference samples are standardized by dividing by the
median of all BACs in the sample

5. The X chromosome can be an internal control

Once these ratios are calculated, missing data is imputed and a log trans-
formation is taken. The data is then examined to find pertinent gains (in-
creases in copy number) and losses (decreases in copy number). For example,
Figure 5 displays the results from an array CGH experiment. The x-axis is
the chromosomes ordered from 1 to 22 and then X, the sex chromosome.
The y-axis is the log2 ratio. From this graph an increase in copy number is
apparent for all of chromosomes 2 and 21.
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Figure 5: Plot of array CGH analysis. The chromosomes are ordered along
the x-axis and the log2 ratio on the y-axis.

8

http://biostats.bepress.com/ucbbiostat/paper106



3.2 Renal Cancer Study

The data set provided by the Waldman Lab at UCSF-CCC consists of con-
trol tissue (N) and four sub-types of renal neoplasms: Chromophobe (CH),
Conventional (CO), Papillary (PA), and Oncocytoma (ON, benign). Each of
the respective tumors was measured over 91 BACs representing various areas
of each chromosome. There are 5 tumors representing CH, 16 for CO, 13 for
PA, 6 for ON, and 2 controls (N) for a total of 42 samples. For this anal-
ysis, the oncocytoma sub-type was combined with the control tissue unless
otherwise stated.

As described in Veltman et al. (2002), the test sample was made with
genomic DNA from 42 renal tumor and normal samples . The 42 samples
were derived from frozen tissue or short-term cell cultures and previously
histologically characterized. The reference sample was made from normal
DNA isolated from lymphocytes of healthy persons.

Methods were similar to those outlined in Pinkel et al. (1998). The array
consisted of 93 clones (6 cosmids, 20 BACs and 67 P1 clones). The selected
clones represent all 22 autosomal chromosomes and the X-chromosome. The
majority of the other targets chosen represent those chromosomes most fre-
quently altered in renal cancer. There was an average coefficient of variation
of 3% for the test to reference (T/R) intensity ratio for the quadruplicate
spots of each target.

For each set of arrays, six to eight normal vs. normal hybridizations were
performed in order to define the normal variation in T/R ratio for each of
the target clones. The average T/R ratio of the quadruplicate of each clone
was calculated and divided by the median T/R ratio of all targets present
on the array in order to normalize the mean T/R value to 1.0. A slight
clone to clone variability in the intensity ratios was observed which proved
to be reproducible in the normal vs. normal hybridizations. The variability
was corrected for by dividing each T/R ratio by the mean T/R ratio of the
normal vs. normal hybridizations. The normal range for the T/R ratio for
each target was calculated as 2 times the standard deviation (taken from the
normal vs. normal hybridizations) from the mean of one. Figure 6 shows
the mean gain/loss for each subtype over all of the BACs. In this figure
fluorescent green represents CO, dark green represents PA, red represents
CH, and blue represents ON.
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Figure 6: Mean Gain/Loss for each renal cancer subtype.

4 Subsets and Subset Rules

As mentioned in Section 2, our first goal is to identify the best, or target,
subset of BACs. This target subset is defined as the set of BACs which most
accurately predict the cancer classification. In addition to fine-tuning the
group of BACs for analysis, this decrease in the size of p (the number of
BACs) will help to alleviate computational and multiple testing burdens. If
we let X be a p-dimensional vector of T/R ratios, then we observe n i.i.d.
tumor samples X1, X2, . . . , Xn. That is, for each of the n tumor samples we
have p BACs measured. For any missing measurements, we impute the data
with the mean of the BAC within each subtype. Since a k-fold gain is the
opposite of a k-fold loss, we use the log transformation Yj = log(Xj), where
j = 1, . . . , p. At this point we can denote the expectation, covariance and
correlation of Y by µ, Σ, and ρ, respectively. Further, the data is denoted
as (µ, Σ), the target subset as S, and the mapping which produces S as a
subset rule (van der Laan and Bryan, 2001).

Given a data set denoted by (µ, Σ), there are numerous mappings, or
subset rules, which result in target subsets, S. In the following sections we
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shall explore three such subsetting rules: arbitrary cut-offs; significance tests;
and variable importance as measured by regression trees. We will compare
these three rules to the subset of BACs which itself includes all of the BACs,
referred to as All BACs.

4.1 Arbitrary Cut-Offs

One approach to selecting subsets of BACs is to decide on a descriptive
measure of the data (e.g., mean) and a cut-off value, M , where M ∈ [0, 1].
Then one can choose M ∗ 100% of the descriptive measure. For this data
set, we chose M = 0.5 and looked at the variances and the absolute value of
the means. After ranking both the variances and the means from largest to
smallest, we chose the top 50%. For the means, this results in the 50% of
the BACs with the greatest gains and losses and for the variances, the 50%
of the BACs with the largest spread.

4.2 Significance Testing

A second approach to finding a subset of BACs is to identify the BACs which
are significantly different from each other between subtypes of renal cancer.
Significantly different BACs can be found by comparing measures of location
(e.g., the mean abberation of CO vs. that of CH) or distributions of the
subtypes of renal cancer.

There are numerous significance tests which can be administered for dif-
ferentiating the significant BACs from the non-significant. These tests can be
parametric or non-parametric. As such, we selected a sampling of both. In
the following sections the t-test (with equal and non-equal variance assump-
tions), Wilcoxon Rank Sum Test, Hollander Test of Extreme Reactions, and
Kruskal-Wallis are described and implemented.

Given any of these tests and a large number of BACs we are conducting
numerous univariate analysis. If a significance level unadjusted for multiple
comparisons is used, numerous BACs which do not have copy number aber-
rations may be identified. These BACs are referred to as “false positives”. In
order to accommodate for a multiple comparisons issue three different meth-
ods are examined: the Bonferroni adjustment, the non-parametric bootstrap,
and a permutation test. These three are described in the following para-
graphs. For each of the significance test, adjusting for multiple comparisons
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via these methods is compared to no adjustment, i.e., a significance level
α = 0.05.

A conventional method for dealing with the multiple testing issue is to
use the Bonferroni adjustment. This method entails dividing the significance
level α by the number of tests k, e.g., if α = 0.05 and 90 tests are evaluated
the Bonferroni significance level is α/k = .05/90 = .0005. This adjustment
tends toward conservative if the individual tests are independent, i.e., not
correlated. Thus, if the tests are correlated the chance of a Type II error,
accepting a false null hypothesis, increases. Given the nature of the CGH
data, it seems unwise to make the assumption of independence as several
of the BACs are located on the same arm of a chromosome increasing the
correlation.

An alternative, the non-parametric bootstrap, is to construct a null distri-
bution with means equal to zero and the observed covariance structure. First,
the data is centered by subtracting the subtype specific mean and then this
centered-data is used to generate a large number of bootstrap samples. Here
the tumors are sampled. From this null distribution, a cut-off value is as-
sessed such that no more than 1− α

2
of the samples have any BACs with copy

number aberrations. This method is less conservative than the Bonferroni
adjustment, yet, statistically accommodates for multiple comparisons.

Another alternative, a permutation test, is to determine the distribution
of a test statistic under the null hypothesis that there is no association be-
tween a BAC and tumor subtype. In this method, the subtype identifier, e.g.,
CO, for each tumor is permuted in order to destroy any relationship between
BAC and subtype. For each permutation, the test statistic is repeated. Once
a large number of test statistics are generated, the cut-off value is assessed
by examining the 95% quantile of the test statistics. The advantage of this
method, as well as the non-parametric bootstrap, is that it allows the ob-
served covariance structure to remain intact while making no distribution
assumptions.

In order to find potential target subsets, we implemented the t-test (with
equal and non-equal variance assumptions), Wilcoxon Rank Sum Test, Hol-
lander Test of Extreme Reactions, and Kruskal-Wallis. Each of these tests
was used to compare the six combinations of renal subtypes, i.e., CO vs.
N/ON, CH vs. N/ON, P vs. N/ON, CO vs. CH, CO vs. P, and CH vs. P.
To address the multiple testing issue we chose from the aforementioned ap-
proaches based on the inherent nature or limitation of each test. In addition
to using one or two of these approaches, we also looked at simply ignoring
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the multiple comparison issue. For each significance test, a BAC qualified
for the target subset if and only if it was univariately significant in one of
the six combinations.

1. t-test

The t-test is a procedure to test the null hypothesis of an equal pop-
ulation location parameter, µ. Under the following assumptions the t
statistic has a known and tabulated distribution, the t distribution:

• The data consist of a random sample of n observations x1, x2, . . . , xn

from one population and m observations y1, y2, . . . , ym from an-
other population.

• The two samples are independent.

• The measurement scale employed is at least ordinal.

This implies:

• The observed variable is a continuous random variable.

• The measurement scale employed is at least ordinal.

• The distribution functions of the two populations are normal and
differ only with respect to location.

There are two ways to estimate the denominator of the t-test based on
the equality of population variances.

Equal Variances

For the assumption of equal variances, the statistical package, R (Ihaka
and Gentlemen (1996)), uses the following formula to calculate the t-
test statistic for two samples X = (x1, . . . , xn) and Y = (y1, . . . , ym)
:

t =
x̄ − ȳ√

(n−1)σx+(m−1)σy

n+m−2

√
1
n

+ 1
m

,

where x̄ = 1
n

∑n
i=1 xi, ȳ = 1

m

∑m
i=1 yi, σx = 1

n

∑n
i=1 xi − x̄, and σy =

1
m

∑m
i=1 yi − ȳ.

This t-test statistic has n + m − 2 degrees of freedom.

In the following, the three methods for approaching the multiple com-
parisons issue for the t-test with equal variances are compared.
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Table 1: t-test with equal variances: No adjustment for MC.

Sub-type Test Cut-Off df Sig BACs
1 CO vs. N/ON 2.074 22 11
2 CH vs. N/ON 2.201 11 29
3 P vs. N/ON 2.093 19 31
4 CO vs. CH 2.093 19 32
5 CO vs. P 2.052 27 40
6 CH vs. P 2.119 16 40

Table 2: t-test with equal variances: Bonferroni adjustment for MC.

Sub-type Test Cut-Off df Sig BACs
1 CO vs. N/ON 4.077 22 2
2 CH vs. N/ON 4.863 11 9
3 P vs. N/ON 4.187 19 10
4 CO vs. CH 4.187 19 14
5 CO vs. P 3.954 27 19
6 CH vs. P 4.346 16 18

• No adjustment For the empirical data, the absolute value of
the t-tests with the assumption of equal variances at α = 0.05
(equivalent to a two-sided cut-off for the observed t-statistic with
α/2), the degrees of freedom, and the number of significant BACs
are shown in Table 1. There are 62 BACs which are significant in
one or more of these subtypes.

• Bonferroni Adjustment The Bonferroni adjustment with the
absolute value of the t-tests, given the assumption of equal vari-
ances with α = 0.05 for the global, and αbonf = α/(2 ∗ p) =
0.05/176 = 0.0003 for the marginal level provides the results
shown in Table 2. There are 32 BACs which are significant in
one or more of these subtypes.

• Non-parametric Bootstrap To form a null distribution, the
subtype-specific mean was subtracted from each of the BACs. The
tumor samples in this null distribution were bootstrapped 1,000
times. Each time the t-test statistics were recalculated. The cut-
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Table 3: t-test with equal variances: Non-parametric Bootstrap adjustment
for MC.

Sub-type Test Sig/1000 Cut-Off Sig BACs
1 CO vs. N/ON .049 5.84 1
2 CH vs. N/ON .05 16.72 0
3 P vs. N/ON .05 8.15 3
4 CO vs. CH .05 8.89 1
5 CO vs. P .05 5.97 8
6 CH vs. P .047 19.02 0

offs for each group which corresponded to having 950 of the 1,000
samples with no significant t-test statistics are shown in Table 3.
There are 8 BACs which are significant in one or more of these
subtypes.

Unequal Variances

For the assumption of unequal variances, R uses the following formula
to calculate the t-test statistic for two samples X = (x1, . . . , xn) and
Y = (y1, . . . , ym) :

t =
x̄ − ȳ√
σx

n
+ σy

m

For this t-test statistic we used degrees of freedom equivalent to the
smaller of the two sample sizes minus one (i.e., min(n, m) − 1). R cal-
culates the degrees of freedom using the Welch modification; however,
this changes for each test and is not convenient for the purposes of this
exercise. By using the min(n,m) − 1, we are allowing a possibly more
conservative cut-off than that calculated by R.

• No adjustment For the empirical data, the absolute value of
the t-tests with the assumption of unequal variances at α = 0.05
provides the cut-offs shown in Table 4. There are 54 BACs which
are significant in one or more of these subtypes.
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Table 4: t-test with unequal variances: No adjustment for MC.

Sub-type Test Test Statistic df Sig BACs
1 CO vs. N/ON 2.365 7 7
2 CH vs. N/ON 2.776 4 24
3 P vs. N/ON 2.365 7 26
4 CO vs. CH 2.776 4 26
5 CO vs. P 2.1179 12 36
6 CH vs. P 2.776 4 31

Table 5: t-test with unequal variances: Bonferroni adjustment for MC.

Sub-type Test Test Statistic df Sig BACs
1 CO vs. N/ON 6.082 7 1
2 CH vs. N/ON 10.307 4 0
3 P vs. N/ON 6.082 7 6
4 CO vs. CH 10.307 4 1
5 CO vs. P 4.716 12 12
6 CH vs. P 10.307 4 4

• Bonferroni Adjustment For the empirical data, the Bonferroni
adjustment with the absolute value of the t-tests, the assumption
of unequal variances at α = 0.05 for the global, and αbonf =
0.05/(2 ∗ 88) = 0.0003 for the marginal level, provides the cut-offs
in Table 5. There are 13 BACs which are significant in one or
more of these subtypes.

• Non-parametric Bootstrap To form a null distribution, the
subtype-specific mean was subtracted from each of the BACs. The
tumor samples from this null distribution were bootstrapped 1,000
times. Each time the t-test statistics were recalculated. The cut-
offs for each group which corresponded to having 950 of the 1,000
samples with no significant t-test statistics are shown in Table 6.
There are 8 BACs which are significant in one or more of these
subtypes.
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Table 6: t-test with unequal variances: Non-parametric Bootstrap adjustment
for MC.

Sub-type Test Sig/1000 Cut-Off Sig BACs
1 CO vs. N/ON .05 6.24 1
2 CH vs. N/ON .048 19.75 0
3 P vs. N/ON .049 8.48 3
4 CO vs. CH .05 10.58 1
5 CO vs. P .049 6.1 8
6 CH vs. P .049 22.35 0

Comments on the t-test Results In theory, the bootstrap of the
null distribution should be more conservative than no adjustment at
all and less conservative than the Bonferroni adjustment. However, as
seen in the t-test results with the assumption of equal variances and
unequal variances, this is not the case. In both of these scenarios the
number of BACs selected with the non-parametric bootstrap is less that
the number selected with the Bonferroni adjustment. Possible reasons
are:

(a) t-test makes the assumption that the empirical means of the two
samples are normally distributed, which is violated in this data.

(b) All of the methods give a common cut-off value. Due to the na-
ture of this data, it might be possible that individual cut-offs are
required.

Potential remedies:

(a) Use non-parametric tests with no assumptions on the empirical
means, e.g. Median test, Wilcoxon Rank-Sum, Tukey’s Quick
Test, or Hollander’s extreme.

(b) Investigate different methods for getting cut-off values, e.g., per-
mutations tests.

(c) Examine tests which are based on maximum gain and loss which
may better fit this data. For instance, instead of testing the dif-
ference between means, we could test the difference between the
minimums and/or maximums.
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2. Wilcoxon Rank Sum Test The Wilcoxon Rank Sum Test is a
procedure for testing the null hypothesis of equal population location
parameters. This test is the non-parametric alternative to the t-test.
The advantage it has is not assuming that the empirical means for
each sample are normally distributed. However, it does assume that
the distribution functions for both samples are the same except for
under the null hypothesis. The assumptions made by this procedure
are:

• The data consist of a random sample of n observations x1, x2, . . . , xn

from one population and m observations y1, y2, . . . , ym from an-
other population.

• The two samples are independent.

• The observed variable is a continuous random variable.

• The measurement scale employed is at least ordinal.

• The distribution functions of the two populations differ only with
respect to location, if they differ at all.

The hypotheses can either be set up as one or two sided. That is:

H0: The populations have identical distributions
vs.

H1: The populations differ with respect to location
for the two-sided alternative hypothesis

or
H1: The X’s tend to be smaller/larger than the Y ’s.

for the one-sided alternative hypothesis

The test statistic is computed by combining the two samples and rank-
ing all sample observations from smallest to largest. Tied observations
are given the value of the mean of the rank positions had there been
no ties. The sum of the ranks for the X’s, is calculated and denoted
by R. The Wilcoxon Rank Sum Statistic is:

W = R − n(n − 1)

2
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The decision rule is based on the alternative hypothesis. If it is a two-
sided test then H0 is rejected for either a sufficiently small or large
value of W at the α level of significance. That is if:

w1−α
2

< T < wα
2

Here w1−α
2

= nm−wα
2

where wα
2

is the critical value of W as given by
the Wilcoxon Distribution.

The decision rule for the one-sided H1 is based on either a sufficiently
small or large value of W according to the sign of the alternative hy-
pothesis.

Initially we implemented the two-sided hypothesis. However, as the α
level decreases when multiple comparisons are adjusted for multiple test
statistics drop to 0 for the left side of the test. This was most evident
with the non-parametric bootstrap adjustment. With this adjustment
more than 600 samples have significant test statistics up to 0, and
then at 0 there are no significant samples. Thus, we replaced the two-
sided hypothesis with the one-sided. In this hypothesis the X’s denote
the cancer sub-types (e.g., XCO, XCH , XP ) and the Y ’s represent the
control-benign observations (YN) or the opposing subtype (XCH , XP ) .

The alternative hypotheses are:

(a) H1: The XCO’s tend to be smaller than the YN ’s

(b) H1: The XCH ’s tend to be larger than the YN ’s

(c) H1: The XP ’s tend to be smaller than the YN ’s

(d) H1: The XCO’s tend to be smaller than the YCH ’s

(e) H1: The XCO’s tend to be smaller than the YP ’s

(f) H1: The XCH ’s tend to be larger than the YP ’s

These alternative hypotheses are based on plots of the data where each
subtype is compared to the opposing subtype. A difficulty with this
approach is that the alternative hypotheses may fit a proportion of the
BACs but not all. Both gains and losses are expected in comparison
to the controls and possibly to the other subtypes.

For the Wilcoxon Rank Sum Test we looked at no adjustment, the
Bonferroni adjustment and the non-parametric bootstrap adjustment
for multiple comparisons.
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Table 7: Wilcoxon Rank Sum Test: No adjustment for MC.

Subtype Test Cut-Off Sig BACs
1 CO vs. N/ON 37 13
2 CH vs. N/ON 31 9
3 P vs. N/ON 29 21
4 CO vs. CH 20 13
5 CO vs. P 66 32
6 CH vs. P 49 13

Table 8: Wilcoxon Rank Sum Test: Bonferroni adjustment for MC.

Subtype Test Cut-Off Sig BACs
1 CO vs. N/ON 14 2
2 CH vs. N/ON 40 0
3 P vs. N/ON 10 4
4 CO vs. CH 4 1
5 CO vs. P 33 18
6 CH vs. P 62 2

• No adjustment For the empirical data, the W statistic at α =
0.05 provides the cut-offs shown in table 7. There are 59 BACs
which are significant in one or more of these subtypes.

• Bonferroni adjustment For the empirical data, the Bonferroni
adjustment with the W statistic at α = 0.05 for the global and
αbonf = 0.05/88 = 0.0005 for the marginal level provides the cut-
offs shown in table 8. There are 24 BACs which are significant in
one or more of these subtypes.

• Non-parametric Bootstrap adjustment The results of boot-
strapping the null distribution are shown in table 9. There are 7
BACs which are significant in one or more of the subtypes.

3. Hollander Test of Extreme Reactions Thus far, we have
looked at tests of location which do not show much of a significant dif-
ference between the average responses of subtypes and controls. Hol-
lander proposed the Test of Extreme Reactions to detect differences
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Table 9: Wilcoxon Rank Sum Test: Non-parametric Bootstrap adjustment
for MC.

Subtype Test Sig/1000 Cut-Off Sig BACs
1 CO vs. N/ON .46 6 1
2 CH vs. N/ON 0 40 0
3 P vs. N/ON 0 0 0
4 CO vs. CH 0 0 0
5 CO vs. P .45 8 7
6 CH vs. P 0 65 0

between control and experimental subjects when some of the latter
are expected to react in one way and the others in the opposite way
(Hollander, 1963).

The assumptions for this test are as follows:

• The data consist of two independent random samples X1, X2, . . . , Xn

and
Y1, Y2, . . . , Ym of control and experimental subjects, respectively.

• The variable of interest is continuous.

• The strength of the measurement is at least ordinal.

The hypotheses:

H0: The two samples may be considered as having been
drawn from the same population.

vs.
H1: One population consists of observations resulting

from extreme reactions in both directions.

The test statistic, G, is computed by combining the observations from
both samples and ordering them from smallest to largest, while keeping
track of which are X’s and which are Y ’s. Then:

G =
n∑

i=1

(ri − r̄)2,
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Table 10: Hollander Test of Extremes: No adjustment for MC.

Subtype Test Cut-Off Sig BACs
1 CO vs. N/ON 129.9 6
2 CH vs. N/ON 63.88 27
3 P vs. N/ON 129.9 31
4 CO vs. CH 44.8 21
5 CO vs. P 267.7 13
6 CH vs. P 224.9 31

where ri is the rank of the ith largest X value and r̄ is the mean of the

ranks assigned to the n X values (i.e., r̄ =
∑n

i=1 ri

n
).

If the reactions of the experimental subjects are extreme, the responses
of the control subjects tend to be compressed with respect to their
ranks, and G is relatively small.

The null hypothesis is rejected if the computed value of G is less than
or equal to Cα given by the tabled values for this test. Because the
published tabled values are only for α = 0.05 and α = 0.01 we can-
not estimate the Bonferroni adjustment. The cut-off values based on
these two α (No adjustment and Limited Adjustment) as well as the
permutation test are reported.

• No Adjustment For the empirical data, the G statistic at α =
0.05 provides the cut-offs shown in table 10. There are 61 BACs
which are significant in one or more of these subtypes.

• Limited Adjustment at α = 0.01 For the empirical data, the
G statistic at α = 0.01 provides cut-offs as shown in table 11.
There are 41 BACs which are significant in one or more of these
subtypes.

• Permutation Test The permutation test of the G statistic pro-
vides the cut-offs shown in table 12. There are 56 BACs which
are significant in one or more of these subtypes.

4. Kruskal-Wallis one-way analysis of variance by ranks
An alternative to six individual tests is to test the null hypothesis that
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Table 11: Hollander Test of Extremes: Limited Adjustment at α = 0.01 for
MC.

Subtype Test Cut-Off Sig BACs
1 CO vs. N/ON 91.88 3
2 CH vs. N/ON 49.88 16
3 P vs. N/ON 91.88 17
4 CO vs. CH 23.2 12
5 CO vs. P 222.9 10
6 CH vs. P 190.9 14

Table 12: Hollander Test of Extremes: Permutation Test Adjustment for
MC.

Subtype Test Cut-Off Sig BACs
1 CO vs. N/ON 102.9 3
2 CH vs. N/ON 25.88 0
3 P vs. N/ON 76.4 15
4 CO vs. CH 47.2 22
5 CO vs. P 552.9 37
6 CH vs. P 242.9 35

23

Hosted by The Berkeley Electronic Press



several samples have been drawn from the same or identical samples.
This test is the Kruskal-Wallis one-way analysis of variance by ranks.

The assumptions for this test are as follows:

• The data consist of k samples of sizes n1, n2, . . . , nk.

• The observations are independent both within and among sam-
ples.

• The variable of interest is continuous.

• The strength of the measurement is at least ordinal.

• The populations are identical except for a possible difference in
location for at least one population.

The hypotheses:

H0: The k population distribution functions are identical.
vs.

H1: The k populations do not all have the same median.

The test statistic, H, is computed by combining the observations from
all k samples and ordering them from smallest to largest, while keeping
track from which sample the observations originate. Then:

H =
12

N(N + 1)

k∑
i=1

1

ni

[
Ri − ni(N + 1)

2

]2

where Ri is the sum of the ranks assigned to observations in the ith
sample, and ni(N + 1)/2 is the expected sum of ranks. If the null
hypothesis is true, we expect the k sum of ranks to be about equal
when adjusted for unequal sample sizes. This test statistic is a weighted
sum of squares of deviations of sums of ranks from the expected sum
of ranks, using reciprocals of sample sizes as the weights.

Kruskal (1952) showed that for large ni (ni > 5)and k, H is distributed
approximately as chi-square with k − 1 degrees of freedom.

Given the nature of the test a permutation test approach to multiple
comparisons is compared to no adjustment.
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Table 13: Kruskal-Wallis one-way ANOVA by ranks: Permutation Test ad-
justment and No adjustment for MC.

Test α Cut-Off Sig BACs
No Adjustment 0.05 7.814 53

Permutation Test NA 14.85 26

Table 14: Number of BACs selected by each significance test and MC proce-
dure.

Test T-test T-test Wilcoxon Hollander Kruskal
Equal Var Non-equal Var Rank-Sum Test Wallis

No Adj 62 54 59 61 52
Bonferroni Adj 32 13 24 41 NA
Bootstrap/Perm 8 8 7 56 26

• Permutation Test and No Adjustment For the empirical
data, the H statistic at α = 0.05 with the chi-square distribu-
tion and the H statistic with the permutation test adjustment
and no adjustment provide the cut-offs shown in table 13.

4.2.1 Results of Significance Testing

In Table 14 the number of significant BACs selected by each test and multiple
comparisons procedure is displayed. This table illustrates the fluctuations in
number of BACs selected relative to which adjustment is made for multiple
comparisons. Interestingly, Hollander’s Test of Extreme Reactions appears
to be the least conservative.

4.3 Variable Importance as Measured by Regression
Trees

A third approach to finding subsets is to evaluate variable, i.e., BAC, im-
portance as measured by a regression tree algorithm. Possible algorithms
include Classification and Regression Trees (CART) (Breiman et al., 1984)
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and Random Forests (Breiman, 2001). For purposes of this project we chose
to look at Random Forests.

Random Forest constructs trees by first obtaining a root node which is a
bootstrap sample of the original data. The user provides an integer K, which
is the number of variables (BACs) which will be randomly selected at each
node. These K variables are used to find the best binary split, defined as
a split such that the two resulting nodes are as homogeneous as possible in
regard to subtype. This random selection of variables and best split continues
until the largest tree possible is grown and not pruned. Eventually, N trees
are grown, all with different bootstrap samples of the original data for root
nodes. Once the “forest” is complete, the observations left out of each tree
are classified by running those observations down their respective trees and
getting a classification. The forest then chooses the classification having the
most out of N votes. An internal error rate is computed by comparing the
tree’s classification to that which is known.

In order to estimate variable importance, in the left out observations for
the wth tree, the values of this mth variable are randomly permuted. The
“new” covariate values are put down the tree and classifications are made.
Another internal error rate is computed and the mth variable is rated by how
much the new error rate exceeds the original.

Implementing the Random Forest’s algorithm with 5, 000 trees provided
a list of 23 BACs deemed most important. The internal error rate for this
“forest” was 14.83.

5 Clustering for Classification

Once potential target subsets have been identified, the next goal is to cluster
those subsets for purposes of classification. Here we want to identify groups
of BACs which can be used to classify the subtypes of cancer. A target subset
of BACs can be defined by arbitrary cut-offs, significance tests, or variable
importance as measured by tree regression. In this section we will explain the
algorithm(s) implemented for clustering and subsequently detail the results
of this clustering based on target subsets of BACs previously found in Section
4.

Algorithm The primary algorithm we used is partitioning around the
medoids (PAM). This algorithm, described in Kaufman and Rousseeuw (1990),
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takes as input a dissimilarity matrix and user-defined number of clusters, k.
It first finds the k data points which are most centered in relation to the
rest of the data and defines those as the medoids. Next, each data point is
measured in relation to those medoids and put into a cluster with the medoid
with the minimum distance from the data point. To compare different clus-
terings we are interested in the average silhouette width, a type of goodness
of fit. The average silhouette width is calculated by comparing the distance
of the data point to the elements in its neighbor cluster in relation to the
elements in its own cluster. The silhouette width is evaluated as follows:

sj =
aj − bj

max(aj, bj)
,

where sj ∈ [−1, 1], aj is the average of dissimilarity of j to all other objects
in its cluster and bj is the minimum of the average of dissimilarity of j with
objects in neighboring clusters. When sj is close to 1 it implies that the
within dissimilarity aj is much smaller than bj the smallest of the between
dissimilarities; thus, j is well classified. On the other hand, when sj is close
to 0 then aj and bj are approximately equal and hence it is not clear at all
whether the observation should be in the same cluster or a neighbor. The
worst case scenario is when sj is close to 1. Then aj is much bigger than bj

so the observation lies on the average much closer to a neighbor cluster than
to cluster it is in; thus, j is misclassified.

In addition to using PAM on its own, we worked with hierarchical clus-
tering with PAM, as described in van der Laan and Pollard (2001). The
function we used from this hierarchical clustering was RunDownConverge,
which takes the initial clustering from PAM and then tries to split and col-
lapse the clusters with the goal of maximizing the average silhouette width.
Initially RunDownCollapse was run up to the second level of clustering.

As mentioned above, PAM takes as arguments k and a dissimilarity ma-
trix. This matrix is defined by a distance measure (Kaufman and Rousseeuw,
1990). Potential distance metrics are:

Euclidean: di,j =
√

(xi1, xj1)2 + (xi2, xj2)2 + . . . + (xip, xjp)2

Manhattan: di,j =| xi1 − xj1 | + | xi2 − xj2 | + . . . + | xip − xjp |
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Table 15: Average Silhouette widths and Cluster Size by Distance Metric with
All BACs.

Rule Euc Clus Abs Euc Clus Eis Clus Abs Eis Clus
All BACs 0.180 3 0.177 3 0.160 5 0.159 5

Cosines of the Angle: di,j = 1 −
1
n

∑n
k=1 xkixkj√

1
n

∑n
k=1 x2

ki × 1
n

∑n
k=1 x2

kj

To evaluate the contribution of different measures, we ran PAM for k =
2, ..., 6 with each of the following distance metrics: Euclidean, absolute Eu-
clidean, cosine of the angle, and absolute cosine of the angle. After the
initial cluster, RunDownConverge was employed for hierarchical clustering
(HC). For each of these attempts the average silhouette width and number
of clusters have been reported.

Each clustering attempt was done with all 42 tumors which includes the
cancer subtypes and control tissue. In order to visualize the clustering results
and gain an initial assessment of classification accuracy, a plot is drawn
with the axis representing tumor labels and lines showing the separation of
clusters. Within each cluster the tumor to the farthest left is the chosen
medoid and the tumors to its right are ordered closest to farthest to that
cluster’s medoid. The gradation in color represents the “distance” of a tumor
to the remaining tumors. Bright red signifies tumors in closest proximity,
while bright green represents tumors farthest away.

In the following sections, clustering was performed using each distance
metric for each target subset.

5.1 All BACs

A subset of all 88 BACs is in fact the entire set of 88 BACs. As a means
of comparison for how well smaller target subsets do to not subsetting, we
included the clustering of all BACs. The average silhouette widths for each of
the distance measures as well as number of clusters chosen (from k = 2, . . . , 6)
for the respective distance measure is shown in the Table 15.
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Table 16: Average Silhouette widths and Cluster Size by Distance Metric with
Arbitrary Cut-Offs.

Rule Euc Clus Abs Euc Clus Eis Clus Abs Eis Clus
Larg Abs Mean 0.226 3 0.224 3 0.148 3 0.147 3
Larg Var 0.249 4 0.242 4 0.216 5 0.215 5

Although we did use both RunDownCollapse and RunDownConverge
functions, neither improved on the clustering results and, thus, we have not
included those results. For the initial level of PAM, the Euclidean distance
measure provides the highest average silhouette width with three clusters.
The cosine of the angle and absolute cosine of the angle distance allowed for
more than three clusters for a total of five. Figures 7 and 8 show the plots
for these distances at the initial level of PAM.

In Figure 7, the chromophobes are almost all separated out from the rest,
while the majority of papillaries are apart from the conventionals. Due to
the intermingling of the normals and benigns, this clustering is not sufficient
for our purposes. In Figure 8, we can see that all five chromophobes group
together into one cluster and the papillaries are together in a cluster with
a few other subtypes. However, the differentiation of the conventionals, be-
nigns, and normals is not sufficient. Thus, the subset of all BACs is not
acceptable for classifying the subtypes.

5.2 Arbitrary Cut-off

The arbitrary cut-offs that we chose were the largest absolute BAC means
and variances. The results of each distance metric at the initial level of PAM
are shown in Table 16.

For both of these cut-offs, the RunDownCollapse function did not make a
substantial improvement, if an improvement at all. In comparing the silhou-
ette widths it appears as though the Euclidean measure did the best for both
cut-offs. Figures 9 and 10 show the clustering results for the Euclidean and
cosine of the angle metrics for the absolute means. In the first, it is apparent
that the only advantage this cut-off and metric offer are to almost separate
out the papillaries. In the second, we can see a fairly strong clustering of the
papillaries and a few chromophobes. However, neither of these two clustering
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Figure 7: All BACs with Euclidean measure.
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Figure 8: All BACs with Cosines of the Angle Distance.
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Figure 9: Largest absolute mean with Euclidean measure.
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Figure 10: Largest absolute means with cosines of the angle distance.
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Figure 11: Largest variances with Euclidean measure.
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Figure 12: Largest variances with cosines of the angle distance.
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results is satisfactory.
Figures 11 and 12 show the clustering for the largest variances with the

Euclidean and cosine of angle metrics, respectively. The first demonstrates a
nice separation of chromophobes and all but two papillaries with the conven-
tionals mixed together with the normals and benigns. This offers a definite
improvement over the absolute means with the same metric. The second plot
is by far the best thus far. The chromophobes are clustered together, all but
one of the papillaries are together in one cluster, and four of the benigns are
separated out, while the conventionals are mixed with the remaining normals
and benigns.

5.3 Significance Test

As described in Section 4.2, we looked at several significance test including
the t-test (for equal and unequal variance assumptions), Wilcoxon Rank Sum
test, Hollander’s test of extremes, and Kruskal-Wallis test. The results of
clustering each with the initial level of PAM, all four distance metrics, and
three adjustments for the multiple comparisons problem are in Table 5.3.

For the t-test with equal variances, the Euclidean metric with the non-
parametric bootstrap adjustment has an average silhouette width of 0.421
with four clusters. This plot shows the best differentiation of this group’s
plots. It only misclassified three of the conventionals and puts them with
the benign/normal cluster. Figure 13 shows the plot of this clustering.

Similarly, for the t-test for which unequal variances are assumed, the
Euclidean metric is employed, and the non-parametric bootstrap adjustment,
we again get the best result of the group’s clusterings. Figure 14 shows
the results of this clustering, where all but four conventionals are properly
clustered.

For the Wilcoxon Rank Sum test, the Bonferroni adjustment with the
cosine angle metric has an average silhouette width of 0.256 with six clusters.
Figure 15 shows the results of this clustering where only three tumors are
misclassified. Interestingly, the conventional are split into two clusters as
well as the normal/benign. For comparisons, we have included the plot for
the Wilcoxon Rank Sum test where no adjustment is made and the cosine
angle metric is employed. This plot is shown in Figure 16. Here, six tumors
are misclassified.

When reviewing the results from the Hollander’s Test of Extreme Re-
actions, the best plot for classification is that with α = 0.01 and absolute
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Table 17: Average Silhouette widths and Cluster Size by Distance Metric with
Significance Tests

Rule Adjustment Euc Clus Abs Euc Clus Eis Clus Abs Eis Clus
t-test No adj. .218 3 .234 3 .185 4 .185 4
Equal Bonferroni .326 3 .316 3 .257 3 .243 5
Var NP Bootstrap .421 4 .419 2 .466 3 .397 2

t-test No adj. .255 3 .249 3 .203 4 .201 4
Unequal Bonferroni .372 2 .360 2 .365 3 .307 3
Var NP Bootstrap .421 4 .419 2 .466 3 .397 2

No adj. .231 2 .246 4 .194 5 .194 5
Wilcoxon Bonferroni .328 2 .294 2 .256 6 .243 6
Rank Sum NP Bootstrap .231 2 .246 4 .194 5 .194 5

No adj. .210 2 .247 4 .181 4 .180 4
Hollander α = 0.01 .307 3 .300 3 .25 6 .25 6

Perm. Test .204 2 .251 4 .207 5 .207 5
Kruskal- No adj. .26 3 .256 3 .226 6 .226 6
Wallis Perm. Test .348 3 .334 3 .275 6 .259 6

34

http://biostats.bepress.com/ucbbiostat/paper106



ch1

ch3

ch5

co12

co10

n2

n1

on1

on5

co8

co15

co7

co4

co9

co13

p9

p3

p4

p2

p7

p5

p1
3

p5 p6 p7 p1
2

p2 p1 p4 p1
1

p3 p8 p9 p1
0

co
13

co
11

co
9

co
6

co
4

co
5

co
7

co
14

co
15

co
2

co
8

co
3

on
5

on
6

on
1

co
16 n1 on
4

n2 co
1

co
10

on
3

co
12

on
2

ch
5

ch
2

ch
3

ch
4

ch
1

T-test Significant - Bootstrap adjustment
 Euclidean Distance

 Average Silhouette Width  0.421  for  4 clusters

Figure 13: t-test equal variance, Euclidean measure, and bootstrap adjust-
ment.
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Figure 14: t-test unequal variance, Euclidean measure, and bootstrap ad-
justment.
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Figure 15: Wilcoxon Rank Sum with cosine angle measure and Bonferroni
adjustment.
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Figure 16: Wilcoxon Rank Sum with cosine angle measure and no adjust-
ment.
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cosine angle distance metric. This plot is shown in Figure 17. Although
the conventional and normal/benign subtypes are split into two groups each,
there is only a total of one misclassification in the entire clustering.

The Kruskal Wallis test with the permutation test adjustment and cosine
angle metric also supersedes the previous results with only one misclassifica-
tion. As one can see in Figure 18, this clustering also splits the conventional
and normal/benign groups into two each.

5.4 Variable Importance as Measured by Regression
Trees

The result from clustering the 23 BACs chosen by the tree regression measure
for variable importance in 5,000 trees is shown in Figure 19. This clustering
employed the Euclidean metric and besides splitting the conventional and
chromophobe subtypes into two each, it has perfect classification.

6 Conclusions

The purpose of this exercise was to find a subset of BACs to classify chromo-
somal aberrations into tumor subtype with a CGH data set. We approached
this by applying standard statistical methods for subsetting and then using
hierarchical clustering for classification.

One of the most typical approaches to this type of data is to subset
using univariate tests between subtypes. However, as we have seen from the
results, the most favorable clusterings came from tests which took as much
data into account as possible (i.e., Kruskal Wallis and Random Forests).
Although, it should be noted that the Hollander Test of Extremes fared well
at the α = 0.01 level. Our inclination is, however, for the other two tests, as
the results from the Kruskal Wallis are based on a permutation test which
accommodates for the multiple comparisons problem and, by design, Random
Forests also does.

0This research has been supported by a grant from the Institute for Scientific Comput-
ing Research at Lawrence Livermore National Laboratory.
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Figure 17: Hollander’s test with absolute cosine angle measure and α = 0.01
adjustment.
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Figure 18: Kruskal Wallis with cosine angle measure and permutation test
adjustment.
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Figure 19: Random Forest, gini measure with the Euclidean metric.
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