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Marginal Regression of Gaps Between
Recurrent Events

Yijian Huang and Ying Qing Chen

Abstract

Recurrent event data typically exhibit the phenomenon of intra-individual cor-
relation, owing to not only observed covariates but also random effects. In many
applications, the population can be reasonably postulated as a heterogeneous mix-
ture of individual renewal processes, and the inference of interest is the effect of
individual-level covariates. In this article, we suggest and investigate a marginal
proportional hazards model for gaps between recurrent events. A connection is es-
tablished between observed gap times and clustered survival data, however, with
informative cluster size. We then derive a novel and general inference procedure
for the latter, based on a functional formulation of standard Cox regression. Large-
sample theory is established for the proposed estimators of the regression coeffi-
cients and the baseline cumulative hazard function. Numerical studies demon-
strate that the procedure performs well under practical sample sizes. Application
to the well-known bladder tumor data is given as illustration



1. Introduction

Recurrent event data arise in longitudinal studies where each individual may experience
multiple episodes of the same event. Examples include machine breakdowns, hospitalizations,
and tumor recurrences. Various extensions of the original proportional hazards model (Cox,
1972) have been proposed for semiparametric regression analysis of recurrent events. Many
of them formulate the covariate effect on the event intensity function as conditioned on
the process history; see Andersen and Gill (1982), Prentice, Williams and Peterson (1981),
Chang and Hsiung (1994), and Chang and Wang (1999) among others. As a requirement,
these baseline processes are either Markov or semi-Markov. It is presumed that the intra-
individual correlation, as often evident from data, is due fully to the observed covariates.
For some of these models, Pepe and Cai (1993), Lawless and Nadeau (1995), and Lin et
al. (2000) relaxed the Markovian requirement, with the covariate effect formulated on the
marginal event rate instead (i.e., without conditioning on the complete process history).
Nevertheless, such a marginal rate function is necessarily a function of time from the study
origin. However, in many applications, gaps between recurrent events is a natural outcome
of interest. This article is focused on developing a marginal proportional hazards model for
time between recurrent events, which recognizes that intra-individual correlation may not
be fully explained by observed covariates.

Our investigation is motivated by the well-known bladder tumor study (Byar, 1980); see
also Wei, Lin and Weissfeld (1989). At the study enrollment, all participants had superficial
bladder tumors. After these tumors were removed transurethrally, the participants were
randomized to three treatment groups: placebo, pyridoxine, and thiotepa. During the study
follow-up, many participants had multiple tumor recurrences, and new tumors were removed
at each visit. One question of interest is the treatment effect on gaps between recurrent

tumors, as well as the effect of other baseline covariates. To be explicit on the data structure,
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let 7 =0,1,2,--- index the sequence of recurrent events for an individual, with the follow-
up initiating at event j = 0. Denote the gap time between events j — 1 and j by T
for j > 1. The recurrent event process can be represented by the collection T = {T};) :
j=1,2,---}. With follow-up time C, define the event index M such that Z]Agl T; <C
and Z;Vil Ty > C, where 2(1) = 0. Thus, M is the number of gaps observed, with the
first M — 1 complete and the last one censored at T(J;VI) =C - Z;\gl Ty Let Z be a
vector of time-independent covariates associated with the individual. The observed data
consist of {T¢;) : j =1,---,M; — 1;TZ?(LM1);Z,~}, ¢t = 1,---,n, which are n iid replicates of

{Tyy:5=1,---,M-1;,T

(M) Z}.

As a characteristic, a recurrent event process typically exhibits certain homogeneity

among gaps within an individual. Formally, we adopt the following assumption.

Assumption 1. Each individual recurrent event process is a renewal process. That is,

for given i, Ty, j = 1,2,-- -, are iid replicates of, say, T;.

Nevertheless, heterogeneity across individuals may exist, owing to individual-level random
effects in addition to observed covariates. We shall model the gap times marginally with the
observed covariates. Specifically, formulate a marginal proportional hazards model for the

cumulative hazard function of 7T; given Z;:

Assumption 2. A(-|Z;) = A(-) exp(BTZ;), where A(+) is a completely unspecified baseline

cumulative hazard function and B8 is the vector of regression coefficients.

The conventional independent censorship mechanism is assumed:

Assumption 3. Given Z, T is independent of C'.

The model specifies the recurrent event processes as a possibly heterogeneous mixture of

renewal processes, even when 8 = 0; note that this baseline setting was studied by Wang
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and Chang (1999) for one-sample nonparametric estimation. Section 5 will discuss possible
generalization of our model.

The underlying gap times show the structure of clustered survival times. But the two
have critical distinctions in observed data; see Chang and Wang (1999). The former is sub-
ject to serial censoring, whereas the latter is subject to parallel censoring in the sense that
each survival time has its own censoring time. Therefore, observed gap times cannot be
naively treated as clustered survival data in analysis. Nevertheless, in Section 2 we establish
a connection between a subset of the observed gap times and clustered survival times with
informative cluster size. We propose in Section 3 a novel and general inference procedure
for clustered survival data based on a functional formulation of Cox regression, after noting
that existing methods (e.g., Lee, Wei and Amato, 1992; Liang, Self and Chang, 1993) ac-
commodate only non-informative cluster size. Simulation studies and the application to the

bladder tumor data set are presented in Section 4. Section 5 concludes with discussion.

2. Connection with clustered survival data

Aalen and Husebye (1991) and Wang and Chang (1999) pointed out that recurrent event
data are frequently analyzed with inappropriate methods in medical research. To understand
the complexity of recurrent event data, we address two important statistical issues. First,
due to the between-individual heterogeneity from random effects, for any j > 2 the censoring
on 1), by C —T(qy —-+- — T(j_1), is induced to be dependent. Second, within an individual,
say, 4, neither uncensored intervals T;;), 7 = 1,---,M; — 1 nor the censored one Tjs,)
are representative of 7;. As Aalen and Husebye (1991) explained, given C; a longer gap is
more likely to contain the censoring time. Thus, Tja,) tends to be longer and in turn T,
j=1,---,M; — 1, tend to be shorter. These issues challenge the statistical analysis.

Our proposed inference is based on the establishment of a connection between a subset

of the observed gap times and clustered survival data. Observe that standard Cox regression
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can be applied to the time-to-the-first-event data for the inference of # and A(-). On the other
hand, one finds that for individual 7 the observed complete gaps, T;;), j = 1,---, M; —1, are
identically distributed conditional on C;, M;, and ,Tz'_(FMq;); indeed, T;;), j = 1,--- , M;—1, have
the same probability to take any permutation of the set of observed values. Essentially this
result was given in Wang and Chang (1999), as a direct consequence of Assumption 1. Thus,
given the exchangeability of the observed complete gaps it becomes intuitively clear that a
subset of the observed data can be treated as clustered survival data; however, apparently
the cluster size is informative. Specifically, for M; > 1 we remove the censored gap. Write
A, =I1(M; > 1), S; =max(M; —1,1), and
Ty ifA;=1

Xigg) = { +
T

) .:17"'751'7
if A; =0 J

where I(-) is the indicator function. The subset consists of {Xj;) : j = 1,---,Si; Ais Zs},

i=1,---,n, which are n iid replicates of, say, {X(;y : j =1,---,S; A; Z}.
3. The proposed inference

The inference of interest lies on B and A(-). Our proposal is developed from the functional
formulation of Cox regression by Huang and Wang (2000). To focus on the main ideas, the
large-sample arguments herewith are purposefully sketchy. Interested reader is referred to
Huang and Wang (2000) for additional technical details.

As mentioned earlier, the standard Cox regression procedure can be applied to data
{Xiq), Ai, Z}, i =1, - -+, n. Specifically, the (normalized) partial score function is given by

n n T
Uqy(b) =n" ; A; {Zz’ - Zi?fze;;féql?zzz)z}(f )((iz)(l)zijz;)) } I(Xiqy < 7),

with time limit 7 as a constant. For technical reasons, 7 satisfies Pr(X > 7) > 0, where

X is a random select from {X(;) : j = 1,---,5} and indeed it has the same distribution as

X(1)- The zero-crossing to ﬁ(l)(-), say, E(l), is known to be consistent. However, of concern
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is its efficiency, given that only the first gap time from each individual is used. In fact,
the structure of clustered survival data established in Section 2 suggests that the first gap
time may be replaced by a random choice from the same cluster. To be systematic, one may
generate [ [, S; different sets to replace {X;1) : ¢ = 1,--- ,n}. Naturally, it is expected that
the sum of these estimating functions might yield more efficient estimation. However, this
approach is too computationally overwhelming to be feasible. In the following, we propose
a different method.

With the functional representation of Huang and Wang (2000), reformulate

~ 5{Z exp bTZ) (Xi(l) > 8)}
Ty (b) = E{ZAT (X < 7)) — / AT EAAI(X ) < )}

where c‘/f; represents empirical average overi = 1,--- ,n. Asseen, ﬁ(l)(-) is a functional of four
empirical processes. Thus, its limit follows the same mapping, from the four corresponding
limits. Given that the consistency of 3(1) is determined by the limit of ﬁ(l)(-), we are
motivated to reconstruct the four empirical processes based on the clustered survival data,

while maintaining their limits. The resulting estimating function is given as follows,

Eii{Z: exp(bTZ:) (X5 > )}
5”{6Xp bTZ )I(XZ(J) Z 8)}

dE{AI (X < 5)},

(1)
where fij = é‘;g and 8 averages over j = ,S;. Like U(1 (b), U(b) is a monotone

T(b) = E{ZAT (X < 7)) — /

function of b. Thus, if attainable, the zero-crossing of U(-), say, ,B, is unique.

From the foregoing discussion, U(-) has the same limit as ﬁ(l)(-), under mild regularity
conditions. Thus, it is implied that E is consistent for 8. Now, denote expectation by
E. Write K(s) = E{AI(X < s)}, Go(s,b) = E{exp(b"Z)I(X > 5)}, and Gy(s,b) =
E{Zexp(bTZ)I(X > 5)}, which are the limits of K(s) = &;{AJ (X < 8)}, Gols,b) =
Ei{lexp(BTZ)I(Xi;y > 5)}, and Gy(s,b) = E;{Z;exp(bTZ;)I(Xy(;) > s)}, respectively.

The functional version of the Taylor expansion gives
018) = By (X 30 2) + o)
5
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where

w(X, A, Z) = /0 {z - %} [d{AI(X <)) %I(x > ) dK(s)] |

Therefore, n*/2U(B) is asymptotically normal with mean 0 and variance n% = E[{&;w(X i A, Z) 1.

This variance can be consistently estimated by nS = gi[{@w(Xi(j), A;, Z;)}?], where
(B'z)
exp(B Z; -
AT (X < 5} — Z2P 20 ]

(s,B)
Auz = = Xij ~ 8 dK (s
i )= /{ 05.3)} Go(s,B) 0= AR

We define f(b) = —dIAJ(b)/de, which converges to, say, I'(b). Given that ﬁ(b) is asymp-

totically linear at b = B, it follows that n'/? (B — B) is asymptotically normal with mean 0
and variance nI'(8) 'XI'(8) . Furthermore, the variance can be consistently estimated by

nﬁMF, where

Qur =T(8) 'ST(B) " )
Notice that Q mrF is a model-free variance estimator. That is, Q MF 1S a consistent variance
estimate of the zero-crossing to ﬁ(), even when Assumptions 1, 2, and 3 are violated.

We now examine the efficiency improvement of B over 3(1). Note that the asymptotic

variance of n!/2U(B),
nE = E{w(X, A, Z)*} - E[E{w(X (), A, Z) — Ew(X (), A, Z)Y].

Further, the asymptotic variance of nl/Q(E(l) —B) is T(B) &{w(X,A,Z)*}IT'(B)". Thus,
the asymptotic variance of B is no larger than 3(1)- Meanwhile, this relationship gives rise to
an alternative model-based variance estimate for B As well known, under the proportional

hazards model,

L(B) =&E{w(X, A, Z)Q}.
Therefore,
n[(B)'EL(B)™' =T(B)~' —T(B)'E[E{w (X (), A, Z) — Ew (X, A, Z)}T(B) ™!
6
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As a result, the asymptotic variance of n'/? (B — B) can be alternatively estimated by oy MB,

where
ﬁMB S F(ﬂ)_l _ f(ﬁ)_lé\i[é\j{ﬁ(Xi(j)’ A, Zi) — ij(Xi(j), A, ZZ)}z]f(,B)—l] . (3)

In contrast to the model-free variance estimate ﬁMF, the validity of Q mp depends on As-
sumptions 1, 2, and 3.

Next, we consider the estimation of the baseline cumulative hazard function A(-). Again,
we start with the standard Breslow estimator with the time-to-the-first-event data, along
with its functional representation given in Huang and Wang (2000):

- AT (X0 < t)
i=1 ) 1eXP(/§(T)Z' M (X)) > Xiy)

_ /t dé; {A I(Xiqy < 8)}
Ei{exp(B 1)Z )I(Xi(l) > s)}

Agy(t; By =

With the very same motivation for U(-), we suggest using the following estimator to take

advantage of the clustered survival data,
~ dEi { A, I( X5 <
R:5) - i <5}
Z]{exp ﬂ Z; ) (Xl(J) > 8)}

Note that, for the one-sample problem, i.e., in the absence of covariates Z, K(t; 0) is an

(4)

estimator proposed by Wang and Chang (1999). It can be shown that K(,E) is consistent
for A(-) on [0,7]. Further, n'/2{A(-;8) — A(-)} on [0, 7] converges weakly to a zero mean
Gaussian process. In addition, as expected, K(,B) is more efficient than K(l)(-;ﬁ(l)) in
general.

The focus of this article is on recurrent event data. Thus, the clustered survival data
under consideration are special in that the members in each cluster share the same censoring
indicator and the same covariates. Nevertheless, the inference procedure developed is by no
means limited to this special structure, and indeed can be applied generally. In the case of

uniform cluster size, our estimators reduce to those of Lee et al. (1992).

7
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4. Numerical studies

We have developed an inference procedure for recurrent event data. In this section, we
investigate its performance under practical sample sizes via Monte Carlo simulations and
illustrate the procedure through an application to the bladder tumor study. As a convention,
in our estimation the time limit 7 was set to be large enough to cover all the follow-up times.

Besides estimators B and B(l), for the purpose of comparison we also naively applied the
procedure of Lee et al. (1992) to the complete data set, {Tj;) :j=1,---, M; —1; j?(LMi); Z;},
i=1,---,n, and to the subset, {X;;) :j=1,---,5;;A4Z;},7=1,---,n. Denote the two
corresponding estimators by Ba and Bb. With respect to variance estimation, both model-free

and model-based methods are available for B and 3(1)- For Ba and ,Eb, only the model-free

variance estimate was considered.
4.1  Simulations

The following algorithm was adopted to generate a heterogeneous mixture of individual re-
newal processes, such that the baseline gap time has the standard exponential distribution
marginally. Let individual-specific A and episode-specific B be independent mean-zero nor-
mal random variables with variances p and 1 — p, respectively, for p € [0,1]. Within an
individual, a baseline gap time is set to —In{1 — ®(A + B)}, where ®(-) is the cumulative
density function of the standard normal distribution. Thus, marginally the gap time has
the standard exponential distribution. Meanwhile, the parameter p determines the level of
between-individual heterogeneity: p = 0 indicates the absence of such heterogeneity, i.e.,
semi-Markov baseline process; p = 1 corresponds to the situation that all episodes within
each individual are equal. Once the baseline recurrence processes are generated, covariate

effect under the marginal proportional hazards model can be easily mounted.

| Table 1 about here |
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We considered a single covariate with the standard normal distribution and 8 = 1.
The follow-up time C' was chosen to be uniformly distributed between 0 and an upper
limit. Various follow-up limits, values of heterogeneity parameter p, and sample sizes were
investigated. Note that p would not impact the performance of E(l), which only takes
advantage of the first gap times. Table 1 reports the summary statistics based on 1,000
iterations for each scenario. As shown, estimators Ba and Eb are in general biased, especially
when the between-individual heterogeneity becomes substantial. Somewhat unexpectedly,
their model-free standard errors also underestimate to a large extend, which might be due
to the large variation of cluster sizes in some situations. In contrast, both 3(1) and ,B exhibit
little bias under all these scenarios considered. Meanwhile, E is of better precision and its
improvement over 3(1) increases as the between-individual heterogeneity diminishes. Their
standard error estimates, both model-free and model-based, perform well, and the 95%
confidence intervals achieve accurate coverage probability. Comparatively, our simulations
suggest that the model-based estimate is a better choice over the model-free one, when the
model assumptions hold.

Simulations were also conducted for models with multiple covariates. The results are

similar and, therefore, omitted.
4.2  Application to the bladder tumor study

Now we return to the bladder tumor study discussed in Section 1. There are 118 individuals
in total: 48, 32, and 38 were randomized to placebo, pyridoxine, and thiotepa, respectively.
Overall, 189 tumor recurrences were observed in 62 participants: Among them, 23, 11, 8,
4, 8, 1, 1, 3, and 3 participants experienced from 1 to the maximum 9 tumor recurrences,
respectively. Initial examination of the data suggests that a renewable process may be a

reasonable assumption for each individual, with obvious between-individual heterogeneity.

| Table 2 about here |
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Figure 1 about here

We adopted the marginal proportional hazards model with four covariates considered:
pyridoxine and thiotepa indicators, initial tumor number, and initial tumor size. The results
on the estimation of regression coefficients are shown in Table 2. Not surprisingly, both Ba
and Bb deviate from Eu) and B substantially. Nevertheless, 3(1) and B have very similar
performance for this data set, in both point and standard error estimation. This suggests a
strong intra-individual correlation and so the efficiency gain of B over 3(1) is not apparent.
Also, we estimated the baseline cumulative hazard function using K(l) and K, as shown in
Figure 1. Again, the two estimates are similar to each other for this data set.

This bladder tumor data have been analyzed in the literature with other extensions of
the proportional hazards model. See, for example, Wei et al. (1989), who analyzed a subset
of the data, with the first four episodes in the placebo and thiotepa arms only. Taking gaps
between recurrent events as the outcome of interest, our approach complements the existing

methods.

5. Remarks

Recurrent event data are often encountered in practice. The analysis of gaps between recur-
rent events, however, has received relatively little development. In this article, we have
suggested and developed a marginal proportional hazards model which allows between-
individual heterogeneity arising from random effects. Our proposed inference is based on
an established connection between observed gap times and clustered survival data with
informative cluster size. Further, a novel and general inference procedure procedure for clus-
tered survival data has been proposed. The procedure is numerically stable and reliable for
practical use.

In our model, we have only considered individual-specific covariates. However, some

applications might also involve episode-specific covariates. For instance, Wang and Chen

10
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(2000) studied the trend effect over the number of episodes. As such, each individual re-
current process is no longer a renewal process. Furthermore, they showed that the observed
complete gaps from an individual may not be comparable in general (after the adjustment
of covariate effect), given that the observation is dictated by the follow-up time. Thus, the
structure of clustered survival times given in Section 2 no longer holds, unless additional
criteria are imposed in selecting cluster members. This is one of our current research topics.

Another feature of our covariates under consideration is their time-independence. In fact,
this may be relaxed to some extent. Specifically, if one considers covariates that depend on
time from the earlier episode and are uniform across all gaps, the model and inference
proposed in this article still apply. However, difficulties arise with more complicated time-

varying covariates when they are episode-specific.
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Figure caption

Figure 1: Estimators of the baseline cumulative hazard function.
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Table 1: Simulation Summary Statistics.

By B By B B. By, B B. B, B
p= .25 D .75
censoring time: Unif[0,1]
M 2.00 2.33 3.39
size=50
B 582 4.1 15.3 480 357 -37.9 54.3  -142.7 -146.2 64.8
D 313.7 245.1 247.4 279.3 313.0 303.3 291.0 420.9 402.2 303.6
Dur 2728 196.3 202.0 251.5 219.3 216.9 259.4 244.2 235.1 261.1
Cur 93.2 886 90.5 92.2 84.2 834 93.1 69.5 70.0 91.2
Dus 2956  — — 262.6 — — 2735 — — 2795
Cup 95.4 — — 930 — 047 — 043
size=100
B 370 93 -83 247 495 584 33.1  -198.2 -207.7 35.4
D 203.8 160.7 159.9 186.9 212.7 205.1 193.2 308.0 294.6 199.9
Dyr  187.6 139.2 139.8 173.0 164.3 158.9 177.8 195.7 187.6 181.8
Cur 92.7 89.6 90.6 93.1 83.9 83.8 92.2 66.8 65.5 91.6
Dys 1964  — — 178.8 — 1841 — 1889
Cup 94.9 —  — 932 — 937 — 940
censoring time: Unif[0,2]
M 3.00 3.74 5.72
size=50
B 411 254 -71.0 23.3 01.8 -134.9 36.7  -232.7 -268.2 29.3
D 255.0 195.5 191.6 219.5 959.2 248.3 224.3 362.6 349.1 246.9
Dur 2364 159.6 159.3 206.1 191.0 184.7 214.9 219.2 209.2 221.3
Curr 93.0 87.0 84.1 93.3 78.8 74.6 93.5 65.0 59.6 92.4
Dyg 2524 — — 215.9 2240 — 92341
Cup 95.2 —  — 939 —  — 934 — 937
size=100
B 182 -349 -86.3 12.9  -103.8 -152.9 20.4  -253.4 -292.8 20.2
D 174.2 135.1 131.6 149.5 195.4 186.6 160.3 205.1 284.6 163.8
Dyr  162.9 116.8 115.1 145.3 147.8 141.8 149.5 187.6 179.4 155.4
Cur 939 879 81.8 933 774 68.7 92.8 57.7 50.5 93.7
Dyg 1706 — — 1484 — 1548 — 1612
Cup 94.5 — — 933 —  — 932 — — 950

p determines between-individual heterogeneity. M: average number of observed gaps M;
B: Empirical bias (x1000); D: Empirical standard deviation (x1000); D / Dys: Empirical

average of the estimated model-free / model-based standard error (x1000); Cprr / Curs:

Empirical coverage (%) of the Wald-type 95% confidence interval based on Dur / Dus.

16
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Table 2: Analysis Results of the Bladder Tumor Study.

Estimate (SEr,SEvB)

Pyridoxine Thiotepa initial number initial size
B, 0.080 (0.230, —) -0.360 (0.205, —) 0.149 (0.046, —) 0.002 (0.048, —)
Bb 0.037 (0.219, —) -0.480 (0.236, —) 0.197 (0.049, —) 0.019 (0.054, —)
B/@) -0.343 (0.297,0.322) -0.540 (0.306,0.313) 0.250 (0.057,0.065) 0.055 (0.075,0.074)
B -0.297 (0.298,0.318) -0.531 (0.306,0.309) 0.258 (0.056,0.064) 0.056 (0.077,0.073)

Pyridoxine and Thiotepa are two treatment indicators, with Placebo as the reference.

Initial size is measured in centimeters.
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