
 

 
This work is licensed under a Creative Commons Attribution 4.0 International License. The license permits unrestricted 
use, distribution, and reproduction in any medium, on the condition that users give exact credit to the original author(s) 
and the source, provide a link to the Creative Commons license, and indicate if they made any changes. 
   

 

A Comparative Analysis of Programming Language Preferences 
Among Computer Science and Non-Computer Science Students 

Md Tohidul Islam    
Southwest Forestry University, China 

Md Rakibul Islam  
Hohai University, China 

Rokshana Akter Jhilik  
Hohai University, China 

Md Asraful Islam  
Nanjing University of Aeronautics and Astronautics, China 

Prodhan Md Safiq Raihan  
Hohai University, China 

Md Sabbir Faruque  
Hohai University, China 

Anik Md Shahjahan  
Shandong University of Technology, China 

 

Abstract: 
In the face of the growing importance of programming skills across 
various fields, understanding student preferences for programming 
languages becomes crucial. This study delves into this very topic, 
examining which languages resonate most with computer science 
majors and students from non-computer science backgrounds. We 
don’t just identify the popular choices; we also explore the 
underlying reasons behind these preferences through surveys. The 
analysis reveals a fascinating interplay between factors like a student’s 
learning experience, their career aspirations, and even their interests, 
all of which influence their preference for specific programming 
languages. This newfound knowledge empowers us to refine 
programming education for a diverse student body, ensuring they’re 

well-equipped for the demands of the digital world.  Our findings hold value for curriculum designers, 
educators, and industry professionals alike. By understanding the evolving demands and preferences of 
students, these stakeholders can craft more relevant and engaging programming education experiences. 
Ultimately, this fosters interdisciplinary collaboration in the digital age, a key element for success in 
today’s interconnected world.  This research not only contributes to the growing body of knowledge on 
programming language preferences but also offers practical insights for the betterment of programming 
instruction and the promotion of collaboration across disciplines within the digital landscape. 

 

Suggested Citation 
Islam, M.T., Islam, M.R., Jhilik, 
R.A., Islam, M.A., Raihan, P.M.S., 
Faruque, M.S., & Shahjahan, A.M. 
(2024). A Comparative Analysis of 
Programming Language 
Preferences Among Computer 
Science and Non-Computer 
Science Students. European Journal 
of Theoretical and Applied Sciences, 
2(3), 900-912.  
DOI: 10.59324/ejtas.2024.2(3).70 

 

mailto:tohidul29@outlook.com
https://orcid.org/0009-0002-4416-0076
https://orcid.org/0009-0009-6349-4021
https://orcid.org/0009-0000-6564-1894
https://orcid.org/0009-0001-4907-8429
https://orcid.org/0009-0005-7776-7394
https://orcid.org/0009-0004-2813-5895
https://orcid.org/0009-0002-7217-7764
https://doi.org/10.59324/ejtas.2024.2(3).70


 

   

          
www.ejtas.com                                                                     EJTAS                    2024 | Volume 2 | Number 3 

901  

Keywords: Programming Language, Computer Science (CS), Non-Computer Science (Non-CS), Python, JavaScript, C 
Programming, C++, C#, Java, Dart, R Language, Ruby, Swift, Go, Kotlin, Front-end, Back-end, Data Science. 

 

Introduction  
The digital age hums with the constant churn of 
code, the invisible language that orchestrates 
everything from groundbreaking scientific 
simulations to the cat videos that dominate our 
social media feeds. As these compositional skills 
become increasingly valuable across all 
disciplines, a critical question emerges: how do 
students with diverse academic backgrounds 
approach the vast landscape of programming 
languages? This research dives headfirst into this 
very question, conducting a comparative analysis 
of programming language preferences among 
Computer Science (CS) majors and students 
from Non-Computer Science (Non-CS) 
disciplines. We don’t just aim to identify the 
most popular choices; we delve deeper, 
exploring the underlying motivations that shape 
these preferences. By unraveling the factors that 
influence students’ decisions, we hope to 
illuminate a clearer picture of the intricate 
relationship between programming education 
and academic diversity.  

This newfound knowledge can empower 
educators and curriculum designers to tailor 
their instruction to resonate with a wider range 
of students, fostering a more inclusive and 
engaging learning environment. Ultimately, this 
research aspires to contribute to a future where 
the symphony of the digital age is enriched by 
the unique contributions of students from all 
walks of academic life. 

 

Literature Review 
The landscape of programming education is 
undergoing a significant shift. With the 
increasing pervasiveness of computational 
thinking across various disciplines, the focus is 
no longer solely on training professional 
programmers within CS programs. This has 
sparked a growing interest in understanding the 
factors that influence programming language 
preference among students from diverse 

academic backgrounds. Existing research has 
explored the impact of learning experiences on 
language adoption, highlighting how 
introductory courses can shape students’ 
perceptions of languages like Python, Java, 
JavaScript, C Programming, C++, C#, PHP, 
Dart, and R Language. Additionally, studies have 
investigated the role of career aspirations in 
language selection, demonstrating that students 
often gravitate towards languages relevant to 
their desired career paths. For instance, a student 
interested in web development might favor 
JavaScript and PHP, while someone drawn to 
data analysis might lean towards Python or R 
Language. However, a gap remains in our 
understanding of how these factors interact and 
influence the preferences of Non-CS students 
compared to their CS counterparts. 

This research aims to bridge this gap by 
conducting a comparative analysis of 
programming language preferences among these 
two distinct student populations. To achieve 
this, we have developed a survey instrument 
using Google Forms. This online survey will be 
distributed to a diverse group of participants, 
including both CS majors and students from 
Non-CS disciplines. The survey will target your 
classmates and other friends, leveraging 
communication platforms like Facebook and 
WeChat to reach a wider audience that 
potentially includes a significant number of 
foreign students. By incorporating this 
international perspective, the study aims to 
capture a broader range of programming 
language preferences and the factors influencing 
those choices across different educational and 
cultural contexts. 

By delving deeper into the motivations behind 
language choices through this survey data, we 
hope to contribute valuable insights for tailoring 
programming education to better serve the 
needs of a wider student body and prepare them 
for the evolving demands of the digital world. 

 



 

   

          
www.ejtas.com                                                                     EJTAS                    2024 | Volume 2 | Number 3 

902  

Methodology 
Research Design 

This study adopts a quantitative research design 
aimed at conducting a comparative analysis of 
programming language preferences among CS 
and Non-CS students. The research leverages 
the diverse international student population at 
our institution to gather comprehensive data 
across various cultural and educational 
backgrounds. 

Participants 

A total of 500 students participated in this 
questionery survey. The participants were 
categorized based on their continent of origin 
and their academic major. This categorization 
enabled us to examine the potential influence of 
geographic and disciplinary backgrounds on 
programming language preferences. The 
participant demographics were divided into the 
following groups: 

• Continent: Participants were 
categorized as either Asian or Non-Asian. 

• Academic Major: Participants were 
classified based on their major into two 
categories - Computer Science and Non-
Computer Science. 

Data Collection 

Data were collected via a structured online 
survey administered through Google Forms. 
The survey link was distributed using popular 
social media platforms, WeChat and Messenger, 
to ensure broad accessibility and participation. 
The survey consisted of four key questions: 

• Name: Participants were asked to provide 
their names for individual response tracking. 
During data analysis, names were anonymized to 
ensure privacy. 

• Continent of Origin: This question 
aimed to categorize participants based on their 
geographic background, with the options being 
“Asian” and “Non-Asian.” 

• Academic Major: Participants were 
asked to indicate their major, categorized as 

“Computer Science” or “Non-Computer 
Science.” 

• Programming Language Preference: 
Participants selected the programming language 
they are most familiar with or use most 
frequently. The options included Python, C 
Programming, C++, C#, Java, JavaScript, PHP, 
R Language, Dart, and an “Others” category for 
additional programming languages. 

Data Analysis 

Data analysis was performed using Python, a 
powerful programming language well-suited for 
data manipulation and visualization. The 
following steps were undertaken: 

• Data Cleaning: Initial responses were 
reviewed to identify and remove any duplicates 
or incomplete entries, ensuring the dataset’s 
integrity. 

• Data Categorization: The cleaned data 
were categorized based on participants’ 
continent of origin and academic major to 
facilitate comparative analysis. 

• Frequency Distribution: The frequency 
of each programming language preference was 
calculated separately for CS and Non-CS 
students. This step involved tallying the number 
of selections for each programming language 
within each group. 

• Comparative Analysis: Statistical 
techniques such as chi-square tests were 
employed to identify significant differences and 
trends in programming language preferences 
between the two groups. This analysis aimed to 
uncover patterns and correlations that might 
inform educational strategies and programming 
language curricula. 

• Visualization: Data were visualized using 
Python libraries such as Matplotlib and Seaborn. 
These visualizations included bar charts, pie 
charts, and histograms, providing a clear and 
accessible representation of the findings. 

 

 

 



 

   

          
www.ejtas.com                                                                     EJTAS                    2024 | Volume 2 | Number 3 

903  

Tools and Software 

• Google Forms: Used for creating and 
distributing the survey, enabling efficient and 
organized data collection. 

• WeChat and Messenger: These 
platforms facilitated the dissemination of the 
survey link, reaching a wide network of 
participants. 

• Visual Studio Code: Visual Studio Code, 
a popular code editor, was utilized for writing 
and refining the Python scripts used in data 
analysis. Its features, such as syntax highlighting, 
debugging capabilities, and extensions, 
significantly enhanced the efficiency and 
accuracy of the coding process. 

• Python: Python served as the primary tool 
for data analysis and visualization. Libraries such 
as Pandas were used for data manipulation, while 
Matplotlib and Seaborn were employed to 
generate visual representations of the data. 

Ethical Considerations 

To ensure ethical research practices, participants 
were informed about the study’s purpose and 
assured of their anonymity and the 
confidentiality of their responses. Informed 
consent was obtained from all participants 
before they participated in the survey. 
Additionally, data were securely stored and used 
exclusively for the research purposes outlined in 
this study. 

By adhering to this detailed methodology, the 
study aimed to collect accurate and 
representative data, providing valuable insights 
into the programming language preferences of 
CS and Non-CS students. This comprehensive 
approach facilitated a robust comparative 
analysis, contributing significantly to our 
understanding of programming language 
adoption and educational trends among diverse 
student populations. 

Results 
The results of this study are divided into three 
main parts: Continent of Origin, Academic 
Major, and Programming Language Preference. 
Each section provides a detailed analysis of the 
data collected from the 500 survey participants, 
utilizing Python for data processing and 
visualization. The aim is to understand the 
distribution of students based on their continent 
of origin, academic background, and preferred 
programming languages. 

Continent of Origin 

The survey collected data from a diverse group 
of 500 students, categorized based on their 
continent of origin. The options provided were 
“Asian” and “Non-Asian.” The analysis revealed 
that a significant majority of the participants, 
over 350 students, were from the Asian 
continent. Specifically, 75.60% of the 
respondents were from Asia, while 24.40% were 
from Non-Asian regions. 

To visualize this distribution, we used Python 
with the pandas and matplotlib libraries. The 
following code snippet demonstrates how the 
data was loaded and visualized using a pie chart 
(Figure 1). 

The resulting pie chart generated by the code is 
shown below (Figure 2). 

The pie chart (Figure 2) clearly illustrates that the 
majority of the students who participated in the 
survey are from the Asian continent, with 
75.60%, compared to 24.40% from Non-Asian 
regions. This distribution provides a context for 
understanding the geographic diversity of the 
survey respondents and sets the stage for further 
analysis of programming language preferences 
by academic major. 

 

 



 

   

          
www.ejtas.com                                                                     EJTAS                    2024 | Volume 2 | Number 3 

904  

 
Figure 1. Python Code Snippet for Loading and Visualizing the Continent of Origin Data 

 

 
Figure 2. Pie Chart Showing the Distribution of Students by Continent of Origin 

 

Academic Major 

Next, we examined the academic majors of the 
survey participants, distinguishing between CS 
and Non-CS majors. This categorization helps in 
understanding the demographic split between 
students with a technical background in 
computer science and those from other fields. 
The survey results show that 64.40% of the 
participants are from Non-CS majors, which 
means more than 300 students are pursuing 

fields other than computer science. In contrast, 
35.60% of the respondents are from CS majors. 

To visualize this data, a donut chart was created 
using Python with the pandas and matplotlib 
libraries. The code snippet for generating this 
chart is shown below (Figure 3). 

The resulting donut chart is shown below 
(Figure 4). 

 



 

   

          
www.ejtas.com                                                                     EJTAS                    2024 | Volume 2 | Number 3 

905  

 

 
Figure 3. Python Code Snippet for Loading and Visualizing the Academic Major Data 

 

 
Figure 4. Donut Chart Showing the Distribution of Students by Academic Major 

 



 

 
This work is licensed under a Creative Commons Attribution 4.0 International License. The license permits unrestricted 
use, distribution, and reproduction in any medium, on the condition that users give exact credit to the original author(s) 
and the source, provide a link to the Creative Commons license, and indicate if they made any changes. 
   

 

The donut chart (Figure 4) illustrates that a 
substantial proportion of the survey participants 
are from Non-CS majors (64.40%), while a 
smaller percentage (35.60%) are from CS majors. 
This breakdown highlights the diverse academic 
backgrounds of the respondents, providing a 
basis for comparing programming language 
preferences across different fields of study. 

Programming Language Preference 

The main focus of this study was to determine 
the programming language preferences among 
students from different academic backgrounds. 
The survey offered ten options: Python, C 
Programming, C++, C#, Java, JavaScript, PHP, 
R Language, Dart, and others. The analysis 
revealed a diverse range of preferences, 
providing insights into the programming trends 
among the student population. 

• Python emerged as the dominant 
choice, with more than half of the students (over 
250) selecting it. This preference underscores 
Python’s widespread popularity, likely due to its 
simplicity, versatility, and extensive use in fields 
such as data science, machine learning, and web 
development. The language’s vast libraries and 
supportive community make it a go-to for both 
beginners and experienced programmers. 

• JavaScript came in second, chosen by 
more than 80 but fewer than 100 students. 
JavaScript’s prominence can be attributed to its 
essential role in web development. As the 
backbone of front-end development, 
JavaScript’s ability to create interactive web 
pages and its growing use in back-end 
development with frameworks like Node.js 
make it a crucial skill for many students. 

• C Programming was the third most 
popular language, selected by more than 50 but 
fewer than 60 students. This reflects C’s 
foundational importance in computer science 
education. Known for its efficiency and control 
over system resources, C remains a vital language 
for understanding low-level programming 

concepts and developing performance-critical 
applications. 

• The “Others” category was chosen by 
more than 30 students, indicating a significant 
diversity in programming language preferences. 
This category includes languages such as Ruby, 
Swift, Go, and Kotlin. Ruby is favored for its 
elegant syntax and productivity, particularly in 
web development with the Ruby on Rails 
framework. Swift, developed by Apple, is 
popular for iOS and macOS app development. 
Go, known for its concurrency support and 
performance, is gaining traction in cloud 
computing and backend systems. Kotlin, fully 
interoperable with Java, is increasingly preferred 
for Android development. 

• C++ was selected by 27 students. 
Despite being a more complex language, C++ is 
valued for its high performance and is widely 
used in game development, systems 
programming, and applications requiring real-
time processing. 

• Java was chosen by 17 students, 
reflecting its continued relevance, particularly in 
enterprise environments and Android app 
development. Java’s robustness, portability, and 
extensive ecosystem contribute to its enduring 
popularity. 

• R Language was preferred by 12 
students, highlighting its niche but crucial role in 
statistical analysis and data visualization. R’s 
comprehensive statistical libraries make it 
indispensable in academia and research-focused 
roles. 

• Languages like C#, PHP, and Dart 
were each selected by fewer than 10 students. 
C# is well-regarded for developing Windows 
applications and games using the Unity engine. 
PHP remains a staple in server-side web 
development, especially for content 
management systems like WordPress. Dart, 
although less common, is growing in popularity 
due to its use in Flutter for cross-platform 
mobile app development. 



 

   

          
www.ejtas.com                                                                     EJTAS                    2024 | Volume 2 | Number 3 

907  

To visualize these preferences, a bar chart was 
created using Python. The following code 
snippet and resulting bar chart (Figures 5 and 6) 

provide a clear representation of the 
programming language preferences. 

 

 
Figure 5. Python Code Snippet for Loading and Visualizing  

Programming Language Preferences Data 

 

 
Figure 6. Bar Chart Showing Programming Language Preferences Among Students 

 



 

 
This work is licensed under a Creative Commons Attribution 4.0 International License. The license permits unrestricted 
use, distribution, and reproduction in any medium, on the condition that users give exact credit to the original author(s) 
and the source, provide a link to the Creative Commons license, and indicate if they made any changes. 
   

The resulting bar chart is shown below (Figure 
6). 

The bar chart (Figure 6) highlights that Python 
is the most widely used programming language 
among the respondents, followed by JavaScript 
and C Programming. The “others” category also 
indicates a notable diversity in language 
preferences, including Ruby, Swift, Go, and 
Kotlin, as well as languages such as Perl, Haskell, 
Rust, and Scala. This analysis provides valuable 
insights into the programming language trends 
among students from different academic 
backgrounds, highlighting the predominance of 
Python and the significant use of other 
languages. The range of programming languages 
selected by students underscores the importance 
of a broad curriculum that can cater to various 
interests and career paths within the field of 
computer science and beyond. 

 

Discussion 
The survey results offer a compelling snapshot 
of programming language preferences among 
students from diverse academic backgrounds. 
Python emerged as the dominant language, 
chosen by over half of the respondents. This 
preference reflects Python’s versatility, 
simplicity, and broad applicability across various 
fields, from web development and data analysis 
to artificial intelligence and scientific computing 
(van Rossum, 1991). Python’s readable syntax 
and extensive libraries make it an ideal language 
for beginners and experienced programmers 
alike. 

JavaScript, the second most popular choice, was 
selected by between 80 and 100 students. Its 
popularity can be attributed to its essential role 
in web development. JavaScript allows for 
interactive and dynamic web pages, which are 
crucial in today’s digital world (Eich, 1995). 
Moreover, the rise of frameworks like React, 
Angular, and Vue.js has cemented JavaScript’s 
position as a cornerstone of modern web 
development (Flanagan, 2006). 

C Programming, chosen by more than 50 but 
fewer than 60 students, holds a unique place in 
programming education. As one of the oldest 
high-level languages, C provides a strong 
foundation in programming concepts such as 
memory management and low-level system 
operations (Ritchie, 1972). Many students 
encounter C early in their studies because it helps 
them understand how software interacts with 
hardware (Kernighan & Ritchie, 1988). 

The category of “others,” selected by more than 
30 students, indicates a diverse interest in 
languages like Ruby, Swift, Go, and Kotlin. This 
diversity suggests that students are exploring 
languages tailored to specific niches, such as 
mobile app development (Swift and Kotlin) and 
concurrent programming (Go) (Apple Inc., 
2014; JetBrains, 2011; Google, 2009). 

C++, chosen by 27 students, remains a 
significant language in systems programming 
and game development. Its performance 
efficiency and object-oriented features make it 
suitable for applications requiring high 
performance and complex simulations 
(Stroustrup, 1985; Lippman et al., 2012). 

Java, with 17 students selecting it, continues to 
be a popular language for enterprise-level 
applications. Its platform independence and 
robust performance make it a reliable choice for 
building scalable server-side applications (Sun 
Microsystems, 1995; Bloch, 2008). 

R Language, preferred by 12 students, highlights 
its importance in data analysis and statistics. R’s 
extensive libraries for data manipulation and 
visualization make it a favorite among data 
scientists and statisticians (Ihaka & Gentleman, 
1990s; Wickham, 2016). 

Finally, C#, PHP, and Dart, each chosen by 
fewer than 10 students, reflect niche preferences. 
C# is primarily used in game development with 
Unity and enterprise applications on the .NET 
framework (Microsoft, 2000; Albahari & 
Albahari, 2017). PHP remains relevant in web 
development for server-side scripting (Lerdorf, 
1994; Tatroe et al., 2013), while Dart is gaining 
traction with the rise of Flutter for cross-



 

   

          
www.ejtas.com                                                                     EJTAS                    2024 | Volume 2 | Number 3 

909  

platform mobile app development (Google, 
2011; Anderson, 2015). 

History of the Programming Languages 

• Python: Created by Guido van Rossum and 
first released in 1991, Python was designed to 
emphasize code readability and simplicity. Its 
design philosophy promotes code readability 
with the use of significant indentation. Python’s 
comprehensive standard library and support for 
multiple programming paradigms have 
contributed to its widespread adoption (van 
Rossum, 1991). 

• JavaScript: Developed by Brendan Eich at 
Netscape and first released in 1995, JavaScript 
was initially intended to make web pages 
interactive. Over the years, JavaScript has 
evolved into a powerful, versatile language with 
applications beyond web development, thanks 
to the development of Node.js and various 
frameworks (Eich, 1995). 

• C Programming: Developed by Dennis 
Ritchie at Bell Labs in the early 1970s, C was 
designed for system programming and has had a 
profound influence on many later languages, 
including C++, C#, and Java. Its efficiency and 
control over system resources make it a 
foundational language in computer science 
education (Ritchie, 1972). 

• C++: Created by Bjarne Stroustrup in 1985, 
C++ was developed as an extension of C to 
include object-oriented features. It has been 
widely used in system/software, game 
development, and performance-critical 
applications (Stroustrup, 1985). 

• Java: Introduced by Sun Microsystems in 
1995, Java was designed to have as few 
implementation dependencies as possible, 
making it a “write once, run anywhere” language. 
Its robustness and portability have made it a 
staple in large-scale enterprise environments 
(Sun Microsystems, 1995). 

• R Language: Created by Ross Ihaka and 
Robert Gentleman in the early 1990s, R was 
designed for statistical computing and graphics. 
Its powerful data handling and visualization 

capabilities have made it essential for statisticians 
and data scientists (Ihaka & Gentleman, 1990s). 

• C#: Developed by Microsoft and released 
in 2000 as part of its .NET initiative, C# is a 
modern, object-oriented language designed for 
building a wide range of applications on the 
Microsoft platform (Microsoft, 2000). 

• PHP: Created by Rasmus Lerdorf in 1994, 
PHP originally stood for Personal Home Page 
but now stands for PHP: Hypertext 
Preprocessor. It is widely used for server-side 
scripting in web development (Lerdorf, 1994). 

• Dart: Developed by Google and released in 
2011, Dart is designed for building web, server, 
and mobile applications. Its strong support for 
asynchronous programming and modern 
language features make it a strong competitor in 
the cross-platform mobile development space 
(Google, 2011). 

Reasons for Popularity 

Python 

• Ease of Learning: Python’s simple and 
readable syntax lowers the barrier to entry for 
new programmers (van Rossum, 1991). 

• Versatility: Used in various domains such 
as web development, data science, machine 
learning, and automation. 

• Strong Community and Libraries: An 
extensive ecosystem of libraries and a supportive 
community facilitate development across 
multiple domains (Beazley & Jones, 2009). 

JavaScript 

• Web Development: Essential for front-
end development, enabling interactive and 
dynamic web pages (Eich, 1995). 

• Frameworks and Libraries: Popular 
frameworks like React, Angular, and Vue.js 
enhance productivity and ease development 
(Flanagan, 2006). 

• Ubiquity: Supported by all major web 
browsers, making it a universal language for web 
development. 

C Programming 



 

   

          
www.ejtas.com                                                                     EJTAS                    2024 | Volume 2 | Number 3 

910  

• Foundation in Computer Science: 
Teaches fundamental programming concepts 
and low-level memory management (Ritchie, 
1972; Kernighan & Ritchie, 1988). 

• Performance: Efficient and close to the 
hardware, making it ideal for system 
programming and embedded systems. 

The survey results underscore Python and 
JavaScript’s dominance due to their ease of use 
and wide-ranging applications, while C 
programming remains foundational for 
understanding core computing principles. 

Reasons for Less Popularity 

C++, while a powerful language, might be less 
popular among students due to its steep learning 
curve and complexities, particularly for 
beginners. Additionally, the rise of higher-level 
languages like Python and JavaScript, which 
offer similar functionalities with simpler syntax, 
might overshadow C++ in educational settings 
(Stroustrup, 1985; Lippman et al., 2012). Java, 
once widely popular, might be seeing a decline in 
popularity among students due to perceptions of 
it being verbose and having boilerplate code. 
However, it still maintains relevance in certain 
domains, especially in enterprise environments 
(Sun Microsystems, 1995; Bloch, 2008). R 
Language, despite its significance in data analysis 
and statistics, might not be as popular among 
students from non-technical backgrounds due to 
its specialized use cases and the dominance of 
Python in the field of data science (Ihaka & 
Gentleman, 1990s; Wickham, 2016). C# also 
faces competition from other languages, 
particularly in the realm of game development 
where Unity’s support for C# competes with 
other engines supporting different languages 
(Microsoft, 2000; Albahari & Albahari, 2017). 
PHP, while widely used in web development, 
might not be as appealing to students due to its 
reputation for inconsistent design and security 
vulnerabilities. However, its simplicity and ease 
of deployment still make it relevant, especially 
for smaller web projects (Lerdorf, 1994; Tatroe 
et al., 2013). Dart, as a relatively newer language, 
might be gaining traction slowly due to its 
association with the Flutter framework for 
mobile app development. Its adoption might 

increase as Flutter continues to gain popularity 
among developers for its cross-platform 
capabilities and performance (Google, 2011; 
Anderson, 2015). 

 

 

Conclusion 
This study provides a comprehensive look at the 
programming language preferences of students 
from both CS and Non-CS backgrounds. The 
findings highlight significant trends that can 
inform educational strategies and curriculum 
development to better meet the needs of a 
diverse student population. 

Python emerged as the most preferred 
programming language among students, favored 
for its simplicity, versatility, and applicability 
across various fields including data science, 
machine learning, and web development. This 
widespread preference underscores Python’s 
role as an accessible and powerful tool for both 
beginners and advanced programmers. 

JavaScript, the second most popular language, is 
crucial for web development, reflecting its 
importance in creating dynamic and interactive 
web pages. Its growing use in back-end 
development further cements its position as a 
vital skill for students aiming to enter the tech 
industry. 

The study also highlighted the foundational role 
of C programming in computer science 
education, emphasizing its importance in 
teaching low-level programming concepts and 
system-level development. The diversity in 
language preferences, with notable mentions of 
languages like Ruby, Swift, Go, and Kotlin, 
illustrates the varied interests and career 
aspirations of students. 

These insights reveal the necessity of a broad and 
flexible programming curriculum that can cater 
to different academic and professional goals. By 
understanding and addressing the preferences 
and motivations of students, educators can 
create more engaging and effective learning 
environments. This research not only 
contributes to the academic discussion on 



 

   

          
www.ejtas.com                                                                     EJTAS                    2024 | Volume 2 | Number 3 

911  

programming language education but also offers 
practical recommendations for enhancing the 
relevance and impact of programming courses 
across disciplines. 

In conclusion, fostering a diverse and inclusive 
approach to programming education will better 
prepare students for the multifaceted demands 
of the digital age, encouraging interdisciplinary 
collaboration and innovation. This approach will 
ultimately equip students with the skills and 
knowledge needed to succeed in an increasingly 
interconnected and technologically driven 
world. 

 

Authors Contribution 
Md Tohidul Islam: investigation, funding 
acquisition, data analysis, and writing - original 
draft preparation; Md Rakibul Islam: data 
analysis, writing - review, edit, and check the 
original draft; Rokshana Akter Jhilik: writing - 
review, edit, and check the original draft; Md 
Asraful Islam: data analysis, check the original 
draft; Prodhan Md Safiq Raihan, Md Sabbir 
Faruque, and Anik Md Shahjahan: check the 
original draft. 

All authors have accepted responsibility for the 
entire content of this manuscript and approved 
its submission. 

 

References 
Akinyemi, I., & Odejobi, O. (2014). 
Comparative Study of Programming Languages: 
A Case Study of Python and Java for Novice 
Programmers. International Journal of Computer 
Applications, 100(15), 7-13. 
https://doi.org/10.5120/17563-7910 

Albahari, J., & Albahari, B. (2017). C# 7.0 in a 
Nutshell: The Definitive Reference. O’Reilly Media. 

Anderson, T. (2015). Dart for Absolute Beginners. 
Apress. 

Apple Inc. (2014). Swift Programming 
Language. Apple Inc. Retrieved from 
https://developer.apple.com/swift/ 

Beazley, D. M., & Jones, B. K. (2009). Python 
Cookbook. O’Reilly Media. 

Bloch, J. (2008). Effective Java. Addison-Wesley. 

Denny, P., Luxton-Reilly, A., & Simon, B. 
(2019). Understanding the Adoption of Python 
by Non-Majors: A Survey. Proceedings of the 50th 
ACM Technical Symposium on Computer Science 
Education, 219-225. 
https://doi.org/10.1145/3287324.3287433 

Eich, B. (1995). JavaScript. Netscape 
Communications Corporation. Retrieved from 
https://developer.mozilla.org/en-
US/docs/Web/JavaScript 

Flanagan, D. (2006). JavaScript: The Definitive 
Guide. O’Reilly Media. 

Giannakos, M. N., Jaccheri, L., & Proto, R. 
(2013). Teachers’ and Students’ Perceptions of 
Serious Games: An Explorative Study. Journal of 
Computer Science and Technology, 28(5), 402-411. 
https://doi.org/10.1007/s11390-013-1354-7 

Google. (2009). Go Programming Language. 
Google LLC. Retrieved from 
https://golang.org/ 

Google. (2011). Dart Programming Language. 
Google LLC. Retrieved from https://dart.dev/ 

Gupta, R., & Chauhan, S. (2020). The Role of 
Programming Languages in Software 
Development. International Journal of Advanced 
Research in Computer Science, 11(7), 78-85. 
https://doi.org/10.26483/ijarcs.v11i7.6625 

Hartl, M. (2016). Ruby on Rails Tutorial: Learn Web 
Development with Rails. Addison-Wesley. 

Ihaka, R., & Gentleman, R. (1990s). R Language 
for Statistical Computing. The R Foundation. 
Retrieved from https://www.r-project.org/ 

JetBrains. (2011). Kotlin Programming 
Language. JetBrains. Retrieved from 
https://kotlinlang.org/ 

Kazmi, R., & Waheed, M. (2017). A 
Comparative Study of Programming Languages 
in Rosetta Code. Journal of Open Source Software, 
2(9), 1-10. https://doi.org/10.21105/joss.00384 

Kernighan, B. W., & Ritchie, D. M. (1988). The 
C Programming Language. Prentice Hall. 

https://doi.org/10.5120/17563-7910
https://developer.apple.com/swift/
https://doi.org/10.1145/3287324.3287433
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://doi.org/10.1007/s11390-013-1354-7
https://golang.org/
https://dart.dev/
https://doi.org/10.26483/ijarcs.v11i7.6625
https://www.r-project.org/
https://kotlinlang.org/
https://doi.org/10.21105/joss.00384


 

   

          
www.ejtas.com                                                                     EJTAS                    2024 | Volume 2 | Number 3 

912  

Kumar, S., & Sharma, R. (2018). Impact of 
Learning Programming Language on Students: 
A Survey. Journal of Computer Education, 25(4), 
213-226. 

Lerdorf, R. (1994). PHP: Hypertext 
Preprocessor. The PHP Group. Retrieved from 
https://www.php.net/ 

Lippman, S. B., Lajoie, J., & Moo, B. E. (2012). 
C++ Primer. Addison-Wesley. 

Microsoft. (2000). C# Programming Language. 
Microsoft Corporation. Retrieved from 
https://docs.microsoft.com/en-
us/dotnet/csharp/ 

Pilgrim, M. (2004). Dive into Python. Apress. 

Qian, K., & Lehman, J. (2017). The Impact of 
Programming Language on the Implementation 
of Software Systems: A Case Study. International 
Journal of Computer Applications, 165(6), 25-32. 
https://doi.org/10.5120/ijca2017914335 

Rabbani, M., & Rashid, M. (2015). A 
Comparative Analysis of Programming 
Languages: C, C++, Java, and Python. Journal of 
Software Engineering and Applications, 8(3), 109-117. 
https://doi.org/10.4236/jsea.2015.83012 

Ritchie, D. M. (1972). C Programming 
Language. Bell Labs. Retrieved from 
https://www.bell-labs.com/ 

Ruby. (1995). Ruby Programming Language. 
Ruby Community. Retrieved from 
https://www.ruby-lang.org/en/ 

Seibel, P. (2009). Coders at Work: Reflections on the 
Craft of Programming. Apress. 

Stroustrup, B. (1985). C++ Programming 
Language. Addison-Wesley. Retrieved from 
https://www.stroustrup.com/ 

Sun Microsystems. (1995). Java Programming 
Language. Oracle Corporation. Retrieved from 
https://www.oracle.com/java/ 

Tatroe, K., MacIntyre, P., & Lerdorf, R. (2013). 
Programming PHP. O’Reilly Media. 

van Rossum, G. (1991). Python Programming 
Language. Python Software Foundation. 
Retrieved from https://www.python.org/ 

Wickham, H. (2016). ggplot2: Elegant Graphics for 
Data Analysis. Springer-Verlag. 

 

https://www.php.net/
https://docs.microsoft.com/en-us/dotnet/csharp/
https://docs.microsoft.com/en-us/dotnet/csharp/
https://doi.org/10.5120/ijca2017914335
https://doi.org/10.4236/jsea.2015.83012
https://www.bell-labs.com/
https://www.ruby-lang.org/en/
https://www.stroustrup.com/
https://www.oracle.com/java/
https://www.python.org/

