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Abstract: 
Diphtheria, a bacterial infection caused by Corynebacterium 
diphtheriae, remains a significant public health concern worldwide. 
In this study, we employ mathematical modeling to analyze the 
spread and control of diphtheria, focusing on the efficacy of 
Diphtheria Antitoxin in mitigating the disease's impact. Through the 
development of compartmental models, system of differential 
equations governing the dynamics was formulated. Due to the 
complexity and non-linearity of the dynamics, a numerical solutions 
that utilizes Runge-Kutta Fehlberg order 4 and 5 method. The 
dynamics of diphtheria transmission and the potential impact of 

DAT administration on disease outcomes was investigate. Our findings highlight the critical role of 
Antitoxin efficiency in reducing disease burden, preventing severe cases, and containing epidemic spread. 
By exploring various scenarios and parameter sensitivities, we provide insights into optimal control 
strategies and intervention measures to combat diphtheria outbreaks effectively. This research 
contributes to a better understanding of diphtheria epidemiology and informs public health policies 
aimed at enhancing vaccination coverage and DAT availability to achieve sustainable disease control and 
prevention. 
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Introduction 
Diphtheria is an infectious disease caused by the 
strains of bacteria called Corynebacterium 
diphtheriae that makes a toxin which causes 
people to get very sick (CDC, 2021). It primarily 
affects the respiratory system but can also affect 
other parts of the body. Diphtheria is a 
potentially life-threatening condition that can 
lead to severe complications if left untreated. 
The symptoms usually start 2–5 days after 
exposure to the bacteria. Typical symptoms of 
the infection include sore throat, fever, swollen 
neck glands and weakness. Within 2-3 days, the 
dead tissue in the respiratory tract forms a thick, 
grey coating that can cover tissues in the nose, 

tonsils and throat making it hard to breathe and 
swallow (NHS, 2022). The bacteria spreads from 
person to person, usually through respiratory 
droplets like from coughing or sneezing. People 
can also get sick from touching infected sores or 
ulcers. Those at increased risk of getting sick 
include: people in the same household, people 
with a history of frequent or close contact with 
the patient (CDC, 2022). 

Treatment involves antibiotics and diphtheria 
antitoxin, while prevention relies on timely 
vaccination Lamichhane and Radhakrishnan 
(2022), Britannica (2023). Mathematical models 
aid in understanding transmission dynamics and 
shaping public health strategies Oli et al.  (2006), 
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Sweileh (2022). Various authors have explored 
diphtheria dynamics, noting the role of 
contaminated environments and the necessity of 
booster vaccines Islam (2018), Husain (2019), 
Izzati et al. (2020), Kanchanarat et al. (2022), 
Ghani et al. 2022, Akhi et al. (2023), Amalia 
(2022), Rahmi & Pratama (2023), Djaafara 
(2020).  

Statistics and findings from model calculations 
provided some information relevant for the 
spread of the disease, such as the incubation time 
being between 0 and 14 days and that the 
transmission time was found to be in an interval 
between 5 and 7 days. However, a method for 
determining what are the conditions for a mild 
or severe outcome of the infection has remained 
elusive (Famulare 2020; Ikejezie 2019). One of 
the criteria for measuring the spread of the 
disease established in the literature is the number 
of people infected by a previously infected 
person, known as the base reproduction number 
R. This estimates how fast the disease spreads 
and whether political decisions and measures are 
sufficient to limit its growth of the disease 
(Coburn et al. 2009; Delamater et al. 2019; Egger 
et al. 2017; Ferguson et al. 2006; Guerra et al. 
2017; Kucharski et al. 2015; Lipsitch et al. 2023; 
Milligan and Barrett 2015; Nishiura and Chowell 
2014; Thompson et al. 2019; Truelove et al. 
2020; Wallinga and Teunis 2004; Wu et al. 2020). 
For R > 1 the situation turns supercritical and 
the total number of infected individuals rises 
exponentially and without control. In order to be 
able to predict the time evolution of the 
pandemic we can make use of mathematical 
models that were developed for other epidemics, 
and the following describes some of the more 
common models. 

In the work of Amalia and Toaha (2022) 
diphtheria transmission dynamics in a particular 
region was examined, highlighting factors 
impacting disease spread. However, they do not 
delve into optimizing control strategies or 
incorporate multiple compartments and 
parameters in their model, while the 
mathematical model by Izzati (2020) addresses 
diphtheria transmission, emphasizing 
vaccination coverage and treatment 
effectiveness but neglects factors like partial 

immunity, progression rates, and compartment 
dynamics. 

Notably, some models omit environmental 
factors and vaccine booster effects Djaafara, et 
al. (2020) Kanchanarat (2022). Emphasizing 
childhood vaccination completion and booster 
shots for adolescents and adults is crucial to 
controlling the disease, given its environmental 
transmission component. It is important to 
emphasize that the vaccine for diphtheria is 
among the childhood vaccinations expected to 
be completed by five years of age which wanes 
off after ten years giving room for vaccine 
boosters for adolescents and adults. Also, the 
indirect transmission of diphtheria disease via a 
contaminated environment contributes to the 
spread of the disease. 

Therefore, aims to develop mathematical models 
analyzing factors contributing to diphtheria 
transmission and potential control strategies. 
This study is expected to enhance our scientific 
non-clinical understanding and policy response 
for tackling the persistent challenge of diphtheria 
prevalence. Insights from such models may 
guide evidence-based interventions to eliminate 
diphtheria worldwide.  

Hence, the work of Amalia and Toaha (2022) is 
considered a motivation for this study, and it will 
be extended in the following ways; 

• The vaccinated population will be split 
into two sub-populations, complete childhood 
vaccination and vaccine booster, 

• The inclusion of contaminated 
environment population with logistic growth, 
temporary immunity of vaccine booster and 
recovery of humans, 

• Inclusive of the global sensitivity analysis 
of the parameters on the transmission dynamics 
of the disease. 

 

Modeling of the Problem 
Considering the aforementioned extension 
conditions, divides the population into different 
compartments based on their disease status. This 
include susceptible individuals (S), exposed but 
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not yet infectious (Ha), latent/incubating 
infection (Hu), symptomatic infected (Is), 
asymptomatic infected (Ia), quarantined 
individuals (Q), recovered with partial immunity 
(Rp), and recovered with full immunity (Rf). The 
equations govern the rate of change of 
individuals in each compartment over time and 

the transitions between compartments are 
influenced by various parameters, including 
infection rates, recovery rates, and control 
measures including vaccination, treatment, 
exposure, latency, isolation, recovery, and 
progression rates. 

 

 
Figure 1. Compartmental Model of Diphtheria Transmission Dynamics 

 

Using the schematic model of diphtheria 
transmission depicted in Fig.1, the following set 
of differential equations are obtained: 

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐴𝐴 + 𝑏𝑏1𝑑𝑑𝑄𝑄𝑛𝑛 + 𝜂𝜂𝑅𝑅𝑝𝑝 − µ𝑑𝑑             

 −𝑇𝑇1𝐻𝐻𝑎𝑎 −  𝑇𝑇2𝐻𝐻𝑢𝑢 − 𝑢𝑢1𝑤𝑤𝑑𝑑
         (1) 

 

𝑑𝑑𝐻𝐻𝑢𝑢
𝑑𝑑𝑑𝑑

= 𝑇𝑇2𝐻𝐻𝑢𝑢 − µ𝐻𝐻𝑢𝑢 − 𝑛𝑛δ𝐻𝐻𝑢𝑢
−(1 − 𝑛𝑛)δ𝐻𝐻𝑢𝑢

                         (2) 

 

𝑑𝑑𝐻𝐻𝑎𝑎
𝑑𝑑𝑑𝑑

= 𝑇𝑇1𝐻𝐻𝑎𝑎 − µ𝐻𝐻𝑎𝑎 − 𝑏𝑏2𝐻𝐻𝑎𝑎                          (3) 

 

𝑑𝑑𝐼𝐼𝑠𝑠
𝑑𝑑𝑑𝑑

= 𝑛𝑛δ𝐻𝐻𝑢𝑢 − µ𝛼𝛼𝐼𝐼𝑠𝑠 − 𝑇𝑇3𝐼𝐼𝑠𝑠 − 𝑇𝑇4𝐼𝐼𝑠𝑠              (4) 

 

𝑑𝑑𝐼𝐼𝑎𝑎
𝑑𝑑𝑑𝑑

= (1 − 𝑛𝑛)δ𝐻𝐻𝑢𝑢 − 𝑇𝑇7𝐼𝐼𝑎𝑎 − µ𝐼𝐼𝑎𝑎        

−𝛾𝛾(1 + 𝑢𝑢2𝜏𝜏)𝐼𝐼𝑎𝑎
        (5) 

 

𝑑𝑑𝑄𝑄
𝑑𝑑𝑑𝑑

= 𝑏𝑏2𝐻𝐻𝑎𝑎 + 𝑇𝑇3𝐼𝐼𝑠𝑠 − (µ + 𝛼𝛼)𝑄𝑄

−𝑇𝑇5𝑄𝑄 − 𝑇𝑇6𝑄𝑄
                  (6) 

 

𝑑𝑑𝑄𝑄𝑛𝑛
𝑑𝑑𝑑𝑑

= 𝑇𝑇7𝐼𝐼𝑎𝑎 + 𝑇𝑇4𝐼𝐼𝑠𝑠 − 𝑏𝑏1𝑑𝑑𝑄𝑄𝑛𝑛                     

               −(1 − 𝑛𝑛)𝛾𝛾𝑄𝑄𝑛𝑛 − 𝛾𝛾𝑛𝑛𝑄𝑄𝑛𝑛 − µ𝑄𝑄𝑛𝑛
    (7) 
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𝑑𝑑𝑅𝑅𝑝𝑝
𝑑𝑑𝑑𝑑

= 𝛾𝛾(1 + 𝑢𝑢2𝜏𝜏)𝐼𝐼𝑎𝑎 + 𝑇𝑇5𝑄𝑄 + 𝜌𝜌𝑅𝑅𝑓𝑓            

+(1 − 𝛾𝛾)𝑄𝑄𝑛𝑛 − (𝜂𝜂 + µ)𝑅𝑅𝑝𝑝      
  (8) 

 

𝑑𝑑𝑅𝑅𝑓𝑓
𝑑𝑑𝑑𝑑

= 𝑢𝑢1𝑤𝑤𝑑𝑑 + 𝑇𝑇6𝑄𝑄 + 𝛾𝛾𝑄𝑄𝑛𝑛         

      −(𝜌𝜌 + µ)𝑅𝑅𝑓𝑓
                   (9) 

 

It is assumed that the initial conditions are  
𝑑𝑑(0) >  0,𝐻𝐻𝑎𝑎(0) > 0,𝐻𝐻𝑢𝑢(0) > 0, 𝐼𝐼𝑠𝑠(0) > 0,
𝐼𝐼𝑎𝑎(0) > 0,𝑄𝑄(0) > 0,𝑄𝑄𝑛𝑛(0) > 0,𝑅𝑅𝑝𝑝(0) >  0,
𝑅𝑅𝑓𝑓(0) >  0 and all parameters in Table 1 
(below) are positive. 

These new assumptions fill the gap in the 
existing literature by providing a more 
comprehensive framework for understanding 
and addressing diphtheria outbreaks in 
developing countries. The modification made in 
this model is expected to provide a better result 
in addressing diphtheria because it incorporates 
a multidimensional approach and optimization 
strategies. 

 

Table 1. Parameters and Their Meaning 
Parameter Meaning 

Λ recruitment rate 
u1 vaccination coverage 
u2 treatment coverage 
T1 exposure rate 
T2 latency rate 
T3 isolation rate 
T4 progression rate from symptomatically 

infected to not quarantined 
T5 recovery rate with treatment to partial 

immunity 
T6 recovery rate with treatment to full 

immunity 
T7 progression rate from asymptomatically 

infected to not quarantined 
b1 treatment success probability 
b2 progression rate from exposed to 

quarantined 
µ natural mortality rate 
α disease induced mortality rate 
ρ rate of losing immunity 
τ treatment effectiveness 

𝜂𝜂 rate of regaining susceptibility 
γ recovery rate without treatment 

δ progression rate from latent to infected 
w vaccine effectiveness 

𝑛𝑛𝑛𝑛 rate of infectiousness 
(1 –  𝑛𝑛) 𝑛𝑛 rate of asymptomatic infectiousness 

 

Analysis of the Model  
Qualitatively study the dynamical properties of 
the system of equations of the model (1) – (9) as 
examined through the following spectrum. 

Bound on the Solution Space 

The model assumes a closed population, where 
births, deaths and migration cancelled out. This 
assumption allows us to focus solely on the 
dynamics of diphtheria transmission within the 
population under consideration without the 
influence of external factors. Such that the total 
population is given by 𝑁𝑁(𝑑𝑑) = 𝑑𝑑(𝑑𝑑) +  𝐻𝐻𝑢𝑢(𝑑𝑑) +
 𝐻𝐻𝑎𝑎(𝑑𝑑) +  𝐼𝐼𝑎𝑎(𝑑𝑑) + 𝐼𝐼𝑆𝑆(𝑑𝑑) + 𝑄𝑄(𝑑𝑑) + 𝑄𝑄𝑛𝑛(𝑑𝑑) +
𝑅𝑅𝑃𝑃(𝑑𝑑) + 𝑅𝑅𝑓𝑓(𝑑𝑑) at any time 𝑑𝑑. 

Therefore, adding all the equations of the system 
together, gives 

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝐻𝐻𝑢𝑢
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝐻𝐻𝑎𝑎
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝐼𝐼𝑎𝑎
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝐼𝐼𝑠𝑠
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝑄𝑄
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝑄𝑄𝑛𝑛
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝑅𝑅𝑝𝑝
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝑅𝑅𝑓𝑓
𝑑𝑑𝑑𝑑

= Λ − µ𝑑𝑑 − µ𝐻𝐻𝑢𝑢 − µ𝐻𝐻𝑎𝑎
− µ𝛼𝛼𝐼𝐼𝑠𝑠 − µ𝐼𝐼𝑎𝑎 − (µ + 𝛼𝛼)𝑄𝑄
− µ𝑄𝑄𝑛𝑛 − (µ)𝑅𝑅𝑝𝑝  − (µ)𝑅𝑅𝑓𝑓 

That is 

 

𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑑𝑑(𝑑𝑑) + 𝐻𝐻𝑢𝑢(𝑑𝑑) +  𝐻𝐻𝑎𝑎(𝑑𝑑) +  𝐼𝐼𝑎𝑎(𝑑𝑑)          

+𝐼𝐼𝑆𝑆(𝑑𝑑) + 𝑄𝑄(𝑑𝑑) + 𝑄𝑄𝑛𝑛(𝑑𝑑) + 𝑅𝑅𝑃𝑃(𝑑𝑑) +𝑅𝑅𝑓𝑓(𝑑𝑑)�
=  Λ − µ(𝑑𝑑 + 𝐻𝐻𝑢𝑢 + 𝐻𝐻𝑎𝑎 + 𝐼𝐼𝑎𝑎 + 𝐼𝐼𝑠𝑠 + 𝑄𝑄

     +𝑄𝑄𝑛𝑛 + 𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑓𝑓 + µ(1 − 𝛼𝛼)𝐼𝐼𝑠𝑠 − (𝛼𝛼)𝑄𝑄 

(19) 

 

Such that 

𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑁𝑁(𝑑𝑑)� =  Λ − µ𝑁𝑁(𝑑𝑑)                   

                             +µ(1 − 𝛼𝛼)𝐼𝐼𝑠𝑠 − (𝛼𝛼)𝑄𝑄 
   (11) 
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Choosing the parameters µ and 𝛼𝛼 carefully such 
that µ(1 − 𝛼𝛼)𝐼𝐼𝑠𝑠 − (𝛼𝛼)𝑄𝑄 > 0,∀ 𝑑𝑑, Thus,  

 

𝑑𝑑𝑁𝑁(𝑑𝑑)
𝑑𝑑𝑑𝑑

≥  Λ − µ𝑁𝑁(𝑑𝑑)                                    (12) 

 

Integration (11) gives 

 

𝑁𝑁(𝑑𝑑) ≥
Λ
µ

+ 𝑘𝑘𝑒𝑒−µ𝑡𝑡                                    (13) 

 

But at 𝑑𝑑 = 0,   
 

𝑁𝑁(0) ≥
Λ
µ

+ 𝑘𝑘 ⟹ 

𝑁𝑁(𝑑𝑑) ≥
Λ
µ

+ �𝑁𝑁(0) −
Λ
µ
� 𝑒𝑒−Ω𝑡𝑡               (14) 

 

Positivity and Boundedness 

For the model to be epidemiologically 
meaningful and mathematically well posed, it is 
necessary to establish that all solutions of system 
with positive initial data will remain positive for 
all times 𝑑𝑑 >  0. This will be established in the 
following theorem. 

Theorem 3.1 (Positivity of Solution): 

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝐻𝐻𝑢𝑢
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝐻𝐻𝑎𝑎
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝐼𝐼𝑎𝑎
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝐼𝐼𝑠𝑠
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑄𝑄
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑄𝑄𝑛𝑛
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑅𝑅𝑝𝑝
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑅𝑅𝑓𝑓
𝑑𝑑𝑑𝑑

 

 

Suppose 𝛤𝛤 =
��𝑑𝑑,𝐻𝐻𝑢𝑢,𝐻𝐻𝑎𝑎, 𝐼𝐼𝑎𝑎 , 𝐼𝐼𝑆𝑆,𝑄𝑄,𝑄𝑄𝑛𝑛𝑅𝑅𝑃𝑃,𝑅𝑅𝑓𝑓� ∈ ℝ9: 𝑑𝑑 >
0,𝐻𝐻𝑢𝑢 > 0,𝐻𝐻𝑎𝑎 > 0, 𝐼𝐼𝑎𝑎 > 0, 𝐼𝐼𝑆𝑆 > 0,𝑄𝑄 > 0,
𝑄𝑄𝑛𝑛 > 0,𝑅𝑅𝑃𝑃 > 0,𝑅𝑅𝑓𝑓 > 0�, then the solution set 
{𝑑𝑑ℎ,𝐸𝐸ℎ, 𝐼𝐼ℎ,𝑇𝑇ℎ,𝑅𝑅ℎ,𝐸𝐸𝑣𝑣, 𝐿𝐿𝑣𝑣,𝑃𝑃𝑣𝑣, 𝑑𝑑𝑣𝑣, 𝐼𝐼𝑣𝑣} is positive 
for all 𝑑𝑑 ≥ 0. 

 

Proof: 

Observe that, 

𝑑𝑑𝐻𝐻𝑢𝑢
𝑑𝑑𝑑𝑑

= 𝑇𝑇2𝐻𝐻𝑢𝑢 − µ𝐻𝐻𝑢𝑢 − 𝑛𝑛δ𝐻𝐻𝑢𝑢 − (1 − 𝑛𝑛)δ𝐻𝐻𝑢𝑢
≥ −(µ + 𝑛𝑛 + (1 − 𝑛𝑛)δ)𝐻𝐻𝑢𝑢 

 

This implies 

𝑑𝑑𝐻𝐻𝑢𝑢
𝑑𝑑𝑑𝑑

≥ −(µ + 𝑛𝑛 + (1 − 𝑛𝑛)δ)𝐻𝐻𝑢𝑢 

 

From where, 

𝐻𝐻𝑢𝑢(𝑑𝑑) ≥ 𝐻𝐻𝑢𝑢(0)e−(µ+𝑛𝑛+(1−𝑛𝑛)δ)𝑡𝑡              (15) 

 

and 

𝑑𝑑𝐻𝐻𝑎𝑎
𝑑𝑑𝑑𝑑

= 𝑇𝑇1𝐻𝐻𝑎𝑎 − µ𝐻𝐻𝑎𝑎 − 𝑏𝑏1𝐻𝐻𝑎𝑎 ≥ −(µ + 𝑏𝑏1)𝐻𝐻𝑎𝑎 

 

That is 

𝐻𝐻𝑎𝑎(𝑑𝑑) ≥ 𝐻𝐻𝑎𝑎(0)𝑒𝑒−(µ+𝑏𝑏1)𝑡𝑡                            (16) 

 

And then 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐴𝐴 + 𝑏𝑏1𝑑𝑑𝑄𝑄𝑛𝑛 + 𝜂𝜂𝑅𝑅𝑝𝑝 − µ𝑑𝑑 − 𝑇𝑇1𝐻𝐻𝑎𝑎
− 𝑇𝑇2𝐻𝐻𝑢𝑢 − 𝑢𝑢1𝑤𝑤𝑑𝑑 ≥ −(µ + 𝑢𝑢1𝑤𝑤)𝑑𝑑

−𝑇𝑇1𝐻𝐻𝑎𝑎 −  𝑇𝑇2𝐻𝐻𝑢𝑢

          (17) 

 

𝑑𝑑(𝑑𝑑) ≥ �𝑑𝑑0 +
𝑇𝑇1𝐻𝐻𝑎𝑎(0)�1 − 𝑒𝑒(−(𝑏𝑏1−𝑢𝑢1𝑤𝑤)𝑡𝑡)�

𝑢𝑢1𝑤𝑤 − 𝑏𝑏1
+

𝑇𝑇2𝐻𝐻𝑢𝑢(0)�1 − 𝑒𝑒−(𝑢𝑢1𝑤𝑤−𝑛𝑛−(1−𝑛𝑛)δ)𝑡𝑡�
(𝑢𝑢1𝑤𝑤 − 𝑛𝑛 − (1 − 𝑛𝑛)δ) � 𝑒𝑒−(µ+𝑢𝑢1𝑤𝑤)𝑡𝑡

 

 

It should be noted that 

 

0 < exp(−(𝑏𝑏1 − 𝑢𝑢1𝑤𝑤)𝑑𝑑) , exp(−(𝑢𝑢1𝑤𝑤 − 𝑛𝑛
− (1 − 𝑛𝑛)δ)𝑑𝑑) , exp(−(µ
+ 𝑢𝑢1𝑤𝑤)𝑑𝑑) ≤ 1 
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Thus, 

 

𝑑𝑑(𝑑𝑑) ≥ 0 ∀ 𝑑𝑑                                                   (18)  
 

Similar procedures revealed that ,𝐸𝐸ℎ(𝑑𝑑) > 0,
𝐼𝐼ℎ(𝑑𝑑) > 0,𝑇𝑇ℎ(𝑑𝑑) > 0,𝑅𝑅ℎ(𝑑𝑑) > 0,𝐸𝐸𝑣𝑣(𝑑𝑑) > 0,
𝐿𝐿𝑣𝑣(𝑑𝑑) > 0,𝑃𝑃𝑣𝑣(𝑑𝑑) > 0, 𝑑𝑑𝑣𝑣(𝑑𝑑) > 0, 𝐼𝐼𝑣𝑣(𝑑𝑑) > 0. 
Hence by the condition of the theorem, the 
solution set {𝑑𝑑ℎ,𝐸𝐸ℎ, 𝐼𝐼ℎ,𝑇𝑇ℎ,𝑅𝑅ℎ,𝐸𝐸𝑣𝑣, 𝐿𝐿𝑣𝑣,𝑃𝑃𝑣𝑣 , 𝑑𝑑𝑣𝑣, 𝐼𝐼𝑣𝑣} 
is positive for all 𝑑𝑑 ≥ 0 

Equilibrium States 

The equilibrium point of the system denotes a 
time when the rate of change of the population 
is zero. In this case, we set 

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝐻𝐻𝑢𝑢
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝐻𝐻𝑎𝑎
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝐼𝐼𝑎𝑎
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝐼𝐼𝑠𝑠
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑄𝑄
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑄𝑄𝑛𝑛
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑅𝑅𝑝𝑝
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑅𝑅𝑓𝑓
𝑑𝑑𝑑𝑑

= 0 

The Disease-Free Equilibrium (DFE) 

At disease free equilibrium, 𝐻𝐻𝑢𝑢 = 𝐼𝐼𝑠𝑠 = 𝐼𝐼𝑎𝑎 = 0, 
thus system of the equation becomes 

 

Λ + 𝑏𝑏1𝑑𝑑𝑄𝑄𝑛𝑛 + 𝜂𝜂𝑅𝑅𝑝𝑝 − µ𝑑𝑑 − 𝑇𝑇1𝐻𝐻𝑎𝑎 − 𝑢𝑢1𝑤𝑤𝑑𝑑 = 0
                                   𝑇𝑇1𝐻𝐻𝑎𝑎 − µ𝐻𝐻𝑎𝑎 − 𝑏𝑏1𝐻𝐻𝑎𝑎 = 0
                                               −𝑇𝑇3𝑄𝑄 − 𝑇𝑇4𝑄𝑄𝑛𝑛 = 0
                                                                    𝑄𝑄𝑛𝑛 = 0
            𝑏𝑏2𝐻𝐻𝑎𝑎 − (µ + 𝛼𝛼)𝑄𝑄 − 𝑇𝑇5𝑅𝑅𝑝𝑝 − 𝑇𝑇6𝑅𝑅𝑓𝑓 = 0
                    −𝑏𝑏1𝑑𝑑𝑄𝑄𝑛𝑛 − (1 − 𝛾𝛾)𝑄𝑄𝑛𝑛 − 𝛾𝛾𝑄𝑄𝑛𝑛 = 0
                    −𝑏𝑏1𝑑𝑑𝑄𝑄𝑛𝑛 − (1 − 𝛾𝛾)𝑄𝑄𝑛𝑛 − 𝛾𝛾𝑄𝑄𝑛𝑛 = 0
    𝑇𝑇5𝑄𝑄 + 𝜌𝜌𝑅𝑅𝑓𝑓 + (1 − 𝛾𝛾)𝑄𝑄𝑛𝑛 − (𝜂𝜂 + µ)𝑅𝑅𝑝𝑝 = 0
             𝑢𝑢1𝑤𝑤𝑑𝑑 + 𝑇𝑇6𝑄𝑄 + 𝛾𝛾𝑄𝑄𝑛𝑛 − (𝜌𝜌 + µ)𝑅𝑅𝑓𝑓 = 0

  

 

Solving the above system, we have Disease free 
equilibrium (DFE) 

 

�𝑑𝑑,𝐻𝐻𝑢𝑢,𝐻𝐻𝑎𝑎, 𝐼𝐼𝑎𝑎, 𝐼𝐼𝑆𝑆,𝑄𝑄,𝑄𝑄𝑛𝑛,𝑅𝑅𝑝𝑝,𝑅𝑅𝑓𝑓�

= �
Λ

(µ + 𝑢𝑢1𝑤𝑤) , 0, 0, 0,0,0,0,0,0,0� 

 

The Endemic Equilibrium (EE) 

To obtain the endemic equilibrium, we solve the 
system of equation  

 

0 = 𝐴𝐴 + 𝑏𝑏1𝑑𝑑𝑄𝑄𝑛𝑛 + 𝜂𝜂𝑅𝑅𝑝𝑝 − µ𝑑𝑑        
−𝑇𝑇1𝐻𝐻𝑎𝑎 −  𝑇𝑇2𝐻𝐻𝑢𝑢 − 𝑢𝑢1𝑤𝑤𝑑𝑑                (19) 

 

0 = 𝑇𝑇2𝐻𝐻𝑢𝑢 − µ𝐻𝐻𝑢𝑢 − 𝑛𝑛δ𝐻𝐻𝑢𝑢
− (1 − 𝑛𝑛)δ𝐻𝐻𝑢𝑢                     (20) 

 

0 = 𝑇𝑇1𝐻𝐻𝑎𝑎 − µ𝐻𝐻𝑎𝑎
− 𝑏𝑏2𝐻𝐻𝑎𝑎                                  (21) 

 

0 = 𝑛𝑛δ𝐻𝐻𝑢𝑢 − µ𝛼𝛼𝐼𝐼𝑠𝑠 − 𝑇𝑇3𝐼𝐼𝑠𝑠
− 𝑇𝑇4𝐼𝐼𝑠𝑠                                    (22) 

 

0 = (1 − 𝑛𝑛)δ𝐻𝐻𝑢𝑢 − 𝑇𝑇7𝐼𝐼𝑎𝑎 − µ𝐼𝐼𝑎𝑎
−𝛾𝛾(1 + 𝑢𝑢2𝜏𝜏)𝐼𝐼𝑎𝑎

                       (23) 

 

0 = 𝑏𝑏2𝐻𝐻𝑎𝑎 + 𝑇𝑇3𝐼𝐼𝑠𝑠 − (µ + 𝛼𝛼)𝑄𝑄
−𝑇𝑇5𝑄𝑄 − 𝑇𝑇6𝑄𝑄

                        (24) 

 

0 = 𝑇𝑇7𝐼𝐼𝑎𝑎 + 𝑇𝑇4𝐼𝐼𝑠𝑠 − 𝑏𝑏1𝑑𝑑𝑄𝑄𝑛𝑛 − (1 − 𝑛𝑛)𝛾𝛾𝑄𝑄𝑛𝑛
−𝛾𝛾𝑛𝑛𝑄𝑄𝑛𝑛 − µ𝑄𝑄𝑛𝑛             (24) 

 

0 = 𝛾𝛾(1 + 𝑢𝑢2𝜏𝜏)𝐼𝐼𝑎𝑎 + 𝑇𝑇5𝑄𝑄 + 𝜌𝜌𝑅𝑅𝑓𝑓       
+(1 − 𝛾𝛾)𝑄𝑄𝑛𝑛 − (𝜂𝜂 + µ)𝑅𝑅𝑝𝑝               (26) 

 

0 = 𝑢𝑢1𝑤𝑤𝑑𝑑 + 𝑇𝑇6𝑄𝑄 + 𝛾𝛾𝑄𝑄𝑛𝑛
− (𝜌𝜌 + µ)𝑅𝑅𝑓𝑓                         (27) 

 

From equation (2) and (3) respectively, 

 

𝐻𝐻𝑢𝑢(𝑑𝑑) = 0 𝑎𝑎𝑛𝑛𝑑𝑑 𝐻𝐻𝑎𝑎(𝑑𝑑) = 0                          (28) 

 

Solving the equations, the critical points are 
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�𝑑𝑑(𝑑𝑑) =
Λ(𝜂𝜂 + 𝜇𝜇)(𝜇𝜇 + 𝜌𝜌)

𝜇𝜇�(𝑢𝑢1𝑤𝑤 + 𝜇𝜇)(𝜂𝜂 + 𝜇𝜇 + 𝜌𝜌) + 𝜂𝜂𝜌𝜌�
,

𝑄𝑄(𝑑𝑑) =  0,𝑄𝑄𝑛𝑛(𝑑𝑑) =  0,𝐻𝐻𝑢𝑢(𝑑𝑑) =  0,         

 𝑅𝑅𝑅𝑅(𝑑𝑑) =
Λ𝜌𝜌𝑢𝑢1𝑤𝑤

𝜇𝜇�(𝑢𝑢1𝑤𝑤 + 𝜇𝜇)(𝜂𝜂 + 𝜇𝜇 + 𝜌𝜌) + 𝜂𝜂𝜌𝜌�
,

𝐻𝐻𝑎𝑎(𝑑𝑑) =  0,𝐷𝐷𝑎𝑎(𝑑𝑑) =  0,𝐷𝐷𝐷𝐷(𝑑𝑑) =  0,             

𝑅𝑅𝑅𝑅(𝑑𝑑) =
Λ𝑢𝑢1𝑤𝑤(𝜂𝜂 + 𝜇𝜇)

𝜇𝜇�(𝑢𝑢1𝑤𝑤 + 𝜇𝜇)(𝜂𝜂 + 𝜇𝜇 + 𝜌𝜌) + 𝜂𝜂𝜌𝜌�
�

 

 

�𝑑𝑑(𝑑𝑑) =  −
𝛾𝛾 + 𝜇𝜇
𝑏𝑏1

,𝑄𝑄(𝑑𝑑) =  0,                         

 𝑄𝑄𝑛𝑛(𝑑𝑑) =
𝑑𝑑1 + Λ(𝜇𝜇 + 𝜌𝜌)𝑏𝑏1(𝜂𝜂 + 𝜇𝜇) + 𝑑𝑑2

𝑑𝑑3
,        

 𝐻𝐻𝑢𝑢(𝑑𝑑) =  0,𝐻𝐻𝑎𝑎(𝑑𝑑) =  0,𝐷𝐷𝑎𝑎(𝑑𝑑) =  0,𝐷𝐷𝐷𝐷(𝑑𝑑) =  0,

 𝑅𝑅𝑅𝑅(𝑑𝑑) = −
𝑑𝑑4 + Λ𝑏𝑏1𝛾𝛾𝜇𝜇𝑛𝑛 − 𝛬𝛬𝑏𝑏1𝛾𝛾(𝜇𝜇 + 𝜌𝜌) − 𝑑𝑑5

𝑑𝑑3
,

 

𝑅𝑅𝑅𝑅(𝑑𝑑) =
Λ𝑏𝑏1𝛾𝛾𝑛𝑛(𝜂𝜂 + 𝜇𝜇) + 𝑑𝑑6(𝛾𝛾 + 𝜇𝜇)

𝑑𝑑3
�                

 

 

Where (𝜇𝜇𝜂𝜂 + (𝜂𝜂 + 𝜇𝜇 + 𝜌𝜌)𝛾𝛾)𝜇𝜇𝑢𝑢1𝑤𝑤 + 𝜇𝜇2(𝜇𝜇 +
𝜌𝜌)𝑢𝑢1𝑤𝑤 = 𝑑𝑑1 

(𝜇𝜇 + 𝜌𝜌)𝜂𝜂𝛾𝛾𝜇𝜇 + (𝜇𝜇 + 𝜌𝜌)𝜇𝜇2(𝜂𝜂 + 𝛾𝛾 + 𝜇𝜇) = 𝑑𝑑2 

𝑏𝑏1𝜇𝜇�𝜂𝜂𝛾𝛾𝑛𝑛 + (𝜂𝜂 + 𝛾𝛾 + 𝜇𝜇)(𝜇𝜇 + 𝜌𝜌)� = 𝑑𝑑3 

𝜇𝜇(𝛾𝛾 + 𝜇𝜇)(𝛾𝛾𝑛𝑛(𝑢𝑢1𝑤𝑤 + 𝜇𝜇) + 𝜌𝜌𝑢𝑢1𝑤𝑤) = 𝑑𝑑4 

(𝛾𝛾𝜇𝜇𝑢𝑢1𝑤𝑤 + 𝛾𝛾𝜇𝜇 + 𝜌𝜌)𝜇𝜇(𝛾𝛾 + 𝜇𝜇) = 𝑑𝑑5 

𝛾𝛾𝜇𝜇𝑛𝑛(𝑢𝑢1𝑤𝑤 + 𝜂𝜂 + 𝜇𝜇) − (𝜂𝜂 + 𝛾𝛾 + 𝜇𝜇)𝜇𝜇𝑢𝑢1𝑤𝑤
= 𝑑𝑑6 

 

It should be noted that the second critical point 
is not feasible as 𝑑𝑑(𝑑𝑑) ≮ 0 

The Basic Reproduction Number (BRN) 

The epidemiologic concept of R naught (R0) is 
much in the news of late. This number, the basic 
reproduction number, is being used to calculate 
transmissibility of infectious diseases and is a key 
part of the discussion on effective strategies of 
control and prevention of diphtheria. The basic 
reproduction number, is one of the most 
fundamental and often-used metrics for the 
study of the way a disease spread. The symbol R 

represents the actual transmission rate of a 
disease and stands for reproduction. Naught, or 
zero, stands for the zeroth generation (patient 
zero). It refers to the first documented patient 
infected by a disease in an epidemic. R0 is an 
indicator of the contagiousness or 
transmissibility of infectious and parasitic agents 
and represent the number of new infections 
estimated to stem from a single case in a 
population that has never seen the disease 
before. If the R0 is 2, then one person is 
expected to infect, on average, two new people 
(Anastassopoulou et al., 2020). 

The Next Generation Matrix 

The Next Generation Matrix is a mathematical 
tool used in epidemiology to calculate the basic 
reproduction number (𝑅𝑅0) or the effective 
reproduction number (𝑅𝑅𝑡𝑡) of infectious diseases. 
It helps epidemiologists and researchers 
understand the dynamics of disease transmission 
within a population. 

Now, from 

 

𝑑𝑑𝐻𝐻𝑢𝑢
𝑑𝑑𝑑𝑑

= 𝑇𝑇2𝐻𝐻𝑢𝑢 − µ𝐻𝐻𝑢𝑢 − 𝑛𝑛δ𝐻𝐻𝑢𝑢 

−(1 − 𝑛𝑛)δ𝐻𝐻𝑢𝑢
                (29) 

 

𝑑𝑑𝐻𝐻𝑎𝑎
𝑑𝑑𝑑𝑑

= 𝑇𝑇1𝐻𝐻𝑎𝑎 − µ𝐻𝐻𝑎𝑎 − 𝑏𝑏2𝐻𝐻𝑎𝑎                    (30) 

 

𝑑𝑑𝐼𝐼𝑠𝑠
𝑑𝑑𝑑𝑑

= 𝑛𝑛δ𝐻𝐻𝑢𝑢 − µ𝛼𝛼𝐼𝐼𝑠𝑠 − 𝑇𝑇3𝐼𝐼𝑠𝑠 − 𝑇𝑇4𝐼𝐼𝑠𝑠         (31) 

 

𝑑𝑑𝐼𝐼𝑎𝑎
𝑑𝑑𝑑𝑑

= (1 − 𝑛𝑛)δ𝐻𝐻𝑢𝑢 − 𝑇𝑇7𝐼𝐼𝑎𝑎         

                  −µ𝐼𝐼𝑎𝑎 − 𝛾𝛾(1 + 𝑢𝑢2𝜏𝜏)𝐼𝐼𝑎𝑎
              (32) 

 

𝑑𝑑𝑄𝑄
𝑑𝑑𝑑𝑑

= 𝑏𝑏2𝐻𝐻𝑎𝑎 + 𝑇𝑇3𝐼𝐼𝑠𝑠 − (µ + 𝛼𝛼)𝑄𝑄 

−𝑇𝑇5𝑄𝑄 − 𝑇𝑇6𝑄𝑄             
           (33) 
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𝑑𝑑𝑄𝑄𝑛𝑛
𝑑𝑑𝑑𝑑

= 𝑇𝑇7𝐼𝐼𝑎𝑎 + 𝑇𝑇4𝐼𝐼𝑠𝑠 − 𝑏𝑏1𝑑𝑑𝑄𝑄𝑛𝑛             

            −(1 − 𝑛𝑛)𝛾𝛾𝑄𝑄𝑛𝑛 − 𝛾𝛾𝑛𝑛𝑄𝑄𝑛𝑛 − µ𝑄𝑄𝑛𝑛
     (34) 

 

𝐹𝐹 =
𝑑𝑑
𝑑𝑑𝑑𝑑

⎝

⎜
⎜
⎛

𝑇𝑇2𝐻𝐻𝑢𝑢
𝑇𝑇1𝐻𝐻𝑎𝑎
𝑛𝑛δ𝐻𝐻𝑢𝑢

(1 − 𝑛𝑛)δ𝐻𝐻𝑢𝑢
𝑏𝑏2𝐻𝐻𝑎𝑎 + 𝑇𝑇3𝐼𝐼𝑠𝑠
𝑇𝑇7𝐼𝐼𝑎𝑎 + 𝑇𝑇4𝐼𝐼𝑠𝑠 ⎠

⎟
⎟
⎞

=

⎝

⎜
⎜
⎛

𝑇𝑇2
0
𝑛𝑛δ

(1 − 𝑛𝑛)δ
0
0

     

0
𝑇𝑇1
0
0
𝑏𝑏2
0

     

0
0
0
0
𝑇𝑇3
𝑇𝑇7

         

0
0
0
0
0
𝑇𝑇4

     

0
0
0
0
0
0

     

0
0
0
0
0
𝑐𝑐0⎠

⎟
⎟
⎞

 

 

𝑉𝑉 =                                                                         

𝑑𝑑
𝑑𝑑𝑑𝑑

⎝

⎜
⎜
⎜
⎛

µ𝐻𝐻𝑢𝑢 + 𝑛𝑛δ𝐻𝐻𝑢𝑢 + (1 − 𝑛𝑛)δ𝐻𝐻𝑢𝑢
µ𝐻𝐻𝑎𝑎 + 𝑏𝑏2𝐻𝐻𝑎𝑎

µ𝛼𝛼𝐼𝐼𝑠𝑠 + 𝑇𝑇3𝐼𝐼𝑠𝑠 + 𝑇𝑇4𝐼𝐼𝑠𝑠
(1 − 𝑛𝑛)δ𝐻𝐻𝑢𝑢 + � 𝑇𝑇7 + µ + 𝛾𝛾(1 + 𝑢𝑢2𝜏𝜏)�𝐼𝐼𝑎𝑎

�(µ + 𝛼𝛼) + 𝑇𝑇5 + 𝑇𝑇6�𝑄𝑄
(𝑏𝑏1𝑑𝑑 + 𝛾𝛾 + µ)𝑄𝑄𝑛𝑛 ⎠

⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎛

𝑐𝑐1
0
0

(1 − 𝑛𝑛)δ
0
0

     

0
µ + 𝑏𝑏2

0
0
𝑏𝑏2
0

     

0
0
𝑐𝑐2
0
𝑇𝑇3
𝑇𝑇4

         

0
0
0
𝑐𝑐3
𝑐𝑐4
𝑇𝑇7

     

0
0
0
0
0
0

     

0
0
0
0
0
𝑐𝑐0⎠

⎟
⎟
⎞

 

 

 

V=  

 

𝑉𝑉−1 =  

 

Therefore,  

 

𝐹𝐹𝑉𝑉−1 =  
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where 

𝑐𝑐1 = µ + δ, c2 = µ𝛼𝛼 + 𝑇𝑇3 + 𝑇𝑇4,  
 

c3 = 𝑇𝑇7 + µ + 𝛾𝛾(1 + 𝑢𝑢2𝜏𝜏), 
 

c4 = (µ + 𝛼𝛼) + 𝑇𝑇5 + 𝑇𝑇6,  
 

c0 =
Λ(𝜂𝜂 + 𝜇𝜇)(𝜇𝜇 + 𝜌𝜌)𝑏𝑏1

𝜇𝜇�(𝑢𝑢1𝑤𝑤 + 𝜇𝜇)(𝜂𝜂 + 𝜇𝜇 + 𝜌𝜌) + 𝜂𝜂𝜌𝜌�
+ 𝛾𝛾

+ µ 

 

𝑐𝑐5  =
𝑏𝑏2𝑐𝑐3

( 𝜇𝜇 +  𝑏𝑏2)𝑐𝑐4(−1 +  𝑛𝑛)𝑛𝑛
,  

 

𝑐𝑐6  =
𝑇𝑇3𝑐𝑐3

𝑐𝑐2𝑐𝑐4(−1 +  𝑛𝑛)𝑛𝑛
, 𝑐𝑐7  =

1
(−1 +  𝑛𝑛)𝑛𝑛

, 

 

 𝑐𝑐8  =
𝑐𝑐3

𝑐𝑐4(−1 +  𝑛𝑛)𝑛𝑛
, 𝑐𝑐9  =  𝑣𝑣, 𝑐𝑐10  =  𝑣𝑣, 

 

 𝑐𝑐11  =

(𝑛𝑛𝜇𝜇𝑛𝑛𝑇𝑇3𝑇𝑇7 − 𝑛𝑛 𝜇𝜇𝑛𝑛𝑇𝑇4𝑐𝑐4 − 𝑛𝑛𝜇𝜇𝑇𝑇3𝑇𝑇7 
+  𝑛𝑛 𝜇𝜇 𝑇𝑇4𝑐𝑐4  −  𝑇𝑇3𝑐𝑐1𝑐𝑐3𝑐𝑐5)

𝑐𝑐2𝑐𝑐4(𝑛𝑛 − 1)𝑛𝑛 𝜇𝜇2
,  

 

𝑐𝑐12  =
𝑐𝑐5𝑐𝑐1

(−1 +  𝑛𝑛)𝑛𝑛 𝜇𝜇2
,  

 

𝑐𝑐13  =
 𝑛𝑛 𝜇𝜇 𝑛𝑛 𝑇𝑇7  −   𝑛𝑛 𝜇𝜇𝑇𝑇7  −  𝑐𝑐1𝑐𝑐3𝑐𝑐5

𝑐𝑐4(−1 +  𝑛𝑛)𝑛𝑛 𝜇𝜇2
, 

 

𝑐𝑐14  =
𝑏𝑏2𝑐𝑐3𝑐𝑐1

( 𝜇𝜇 + 𝑏𝑏2)𝑐𝑐4(−1 +  𝑛𝑛)𝑛𝑛 𝜇𝜇
,  

 

𝑐𝑐15  =
𝑇𝑇3𝑐𝑐3𝑐𝑐1

𝑐𝑐2𝑐𝑐4(−1 +  𝑛𝑛)𝑛𝑛 𝜇𝜇
, 

 

𝑐𝑐16  =
𝑐𝑐1

(−1 +  𝑛𝑛)𝑛𝑛 𝜇𝜇
, 𝑐𝑐17  

=
𝑐𝑐3𝑐𝑐1

𝑐𝑐4(−1 +  𝑛𝑛)𝑛𝑛 𝜇𝜇
, 

 

 𝑐𝑐18  =
𝑇𝑇2𝑏𝑏2𝑐𝑐3

( 𝜇𝜇 +  𝑏𝑏2)𝑐𝑐4(−1 +  𝑛𝑛)𝑛𝑛
, 

 

 𝑐𝑐19  =
𝑇𝑇2𝑇𝑇3𝑐𝑐3

𝑐𝑐2𝑐𝑐4(−1 +  𝑛𝑛)𝑛𝑛
, 

 

 𝑐𝑐20  =
𝑇𝑇2

(−1 +  𝑛𝑛)𝑛𝑛
, 𝑐𝑐21  =

𝑇𝑇2𝑐𝑐3
𝑐𝑐4(−1 +  𝑛𝑛)𝑛𝑛

,  

 

𝑐𝑐22  =
𝑇𝑇1

 𝜇𝜇 + 𝑏𝑏2
, 𝑐𝑐23  

=
𝑛𝑛𝑏𝑏2𝑐𝑐3

( 𝜇𝜇 + 𝑏𝑏2)𝑐𝑐4(−1 +  𝑛𝑛), 

 

 𝑐𝑐24  =
𝑛𝑛𝑇𝑇3𝑐𝑐3

𝑐𝑐2𝑐𝑐4(−1 +  𝑛𝑛) , 𝑐𝑐25  =
𝑛𝑛𝑐𝑐3

𝑐𝑐4(−1 +  𝑛𝑛), 

 

 𝑐𝑐26  =
(1 −  𝑛𝑛)𝑏𝑏2𝑐𝑐3

( 𝜇𝜇 +  𝑏𝑏2)𝑐𝑐4(−1 +  𝑛𝑛), 

 

 𝑐𝑐27  =
(1 −  𝑛𝑛)𝑇𝑇3𝑐𝑐3
𝑐𝑐2𝑐𝑐4(−1 +  𝑛𝑛),  

 

𝑐𝑐28  =
(1 −  𝑛𝑛)𝑐𝑐3
𝑐𝑐4(−1 +  𝑛𝑛) , 𝑐𝑐29  =

𝑏𝑏2
 𝜇𝜇 +  𝑏𝑏2

, 

 

  𝑐𝑐30  =
𝑇𝑇4𝑏𝑏2

( 𝜇𝜇 +  𝑏𝑏2)𝑐𝑐4
, 𝑐𝑐31  =

𝑇𝑇7
𝑐𝑐2
−
𝑇𝑇4𝑇𝑇3
𝑐𝑐2𝑐𝑐4

 

 

Therefore, the eigenvalue corresponds to the 
basic reproduction number 𝑅𝑅0, which is the 
average number of secondary infections caused 
by a single infected individual in a fully 
susceptible population is given by the dominant 
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eigenvalue 
Λ(𝜂𝜂 + 𝜇𝜇)(𝜇𝜇 + 𝜌𝜌) 𝜇𝜇�(𝑢𝑢1𝑤𝑤 + 𝜇𝜇)(𝜂𝜂 + 𝜇𝜇 + 𝜌𝜌) + 𝜂𝜂𝜌𝜌�⁄  

Therefore, 

 

𝑅𝑅0 =
Λ(𝜂𝜂 + 𝜇𝜇)(𝜇𝜇 + 𝜌𝜌)

𝜇𝜇�(𝑢𝑢1𝑤𝑤 + 𝜇𝜇)(𝜂𝜂 + 𝜇𝜇 + 𝜌𝜌) + 𝜂𝜂𝜌𝜌�
 

 

 followed, and structure this information as 
logically as possible.  

 

Results and Discussion 
Numerical Solution. The set of system of 
equations (1)-(9) is solve numerically using rkf45 
codes implemented by computational software 
Maple 2022.  The dsolve command with the 
numeric or type=numeric option and an initial 
value problem (IVP) finds a numerical solution 
for our ODE system IVP. The optional equation 
method=numericmethod (rkf45) is provided, 
and the Maple command “dsolve” uses that 
method to obtain the numerical solution. 

Model Validation 

To validate our computations, it could be 
observed that equations (2) and (3) are simple 
first order ode which are 

𝑑𝑑𝐻𝐻𝑢𝑢
𝑑𝑑𝑑𝑑

= 𝑇𝑇2𝐻𝐻𝑢𝑢 − µ𝐻𝐻𝑢𝑢 − 𝑛𝑛δ𝐻𝐻𝑢𝑢           

−(1 − 𝑛𝑛)δ𝐻𝐻𝑢𝑢
       (35) 

 

𝑑𝑑𝐻𝐻𝑎𝑎
𝑑𝑑𝑑𝑑

= 𝑇𝑇1𝐻𝐻𝑎𝑎 − µ𝐻𝐻𝑎𝑎 − 𝑏𝑏2𝐻𝐻𝑎𝑎                  (36) 

 

As such, integrating respectively 

 

𝐻𝐻𝑢𝑢(𝑑𝑑) = 𝐻𝐻𝑢𝑢(0) exp(−(µ + δ − 𝑇𝑇2)𝑑𝑑)
𝐻𝐻𝑎𝑎(𝑑𝑑) = 𝐻𝐻𝑎𝑎(0) exp(−(µ + b2 − 𝑇𝑇1)𝑑𝑑) (37) 

 

Comparing the above graphical representation 
to the one obtained by numerical computations 

as shown below reveal that the two results are in 
perfect agreement. 

 

 
Figure 2. Comparison between Analytical 
(solid black line) and Numerical (dash red 

line) solution for aware class (𝑯𝑯𝑯𝑯(𝒕𝒕)) 

 
Figure 3. Comparison between Analytical 
(solid black line) and Numerical (dash red 

line) solution for Unaware class 𝑯𝑯𝑯𝑯(𝒕𝒕) 

 

Parameter Effects on the BRN  

From the fact that 

𝑅𝑅0 =
Λ(𝜂𝜂 + 𝜇𝜇)(𝜇𝜇 + 𝜌𝜌)

𝜇𝜇�(𝑢𝑢1𝑤𝑤 + 𝜇𝜇)(𝜂𝜂 + 𝜇𝜇 + 𝜌𝜌) + 𝜂𝜂𝜌𝜌�
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The effect of each parameter on 𝑅𝑅0 is 
investigated. 
𝑑𝑑𝑅𝑅0
𝑑𝑑Λ

=
(𝜂𝜂 + 𝜇𝜇)(𝜇𝜇 + 𝜌𝜌)

𝜇𝜇(𝜂𝜂𝑢𝑢1𝑤𝑤 + 𝜇𝜇𝑢𝑢1𝑤𝑤 + 𝜌𝜌𝑢𝑢1𝑤𝑤 + 𝜂𝜂𝜇𝜇 + 𝜂𝜂𝜌𝜌 + 𝜇𝜇2 + 𝜇𝜇𝜌𝜌) 

 

𝜂𝜂𝜇𝜇 + 𝜂𝜂𝜌𝜌 + 𝜇𝜇2 + 𝜇𝜇𝜌𝜌
𝜇𝜇(𝜂𝜂𝑢𝑢1𝑤𝑤 + 𝜇𝜇𝑢𝑢1𝑤𝑤 + 𝜌𝜌𝑢𝑢1𝑤𝑤 + 𝜂𝜂𝜇𝜇 + 𝜂𝜂𝜌𝜌 + 𝜇𝜇2 + 𝜇𝜇𝜌𝜌)

< 1 

 

Implies 

 

𝜂𝜂𝜇𝜇 + 𝜂𝜂𝜌𝜌 + 𝜇𝜇2 + 𝜇𝜇𝜌𝜌
− �𝜇𝜇(𝜂𝜂𝜇𝜇 + 𝜂𝜂𝜌𝜌 + 𝜇𝜇2 + 𝜇𝜇𝜌𝜌)�
< 𝜇𝜇(𝜂𝜂 + 𝜇𝜇 + 𝜌𝜌)𝑢𝑢1𝑤𝑤 

𝜂𝜂𝜌𝜌
(1 − 𝜇𝜇)

(𝑢𝑢1𝑤𝑤 + 𝜇𝜇 − 1) < (𝜂𝜂𝜇𝜇 + 𝜇𝜇2 + 𝜇𝜇𝜌𝜌) 

 

That is 

 

𝜂𝜂𝜌𝜌
(𝜂𝜂𝜇𝜇 + 𝜇𝜇2 + 𝜇𝜇𝜌𝜌)

(1 − 𝜇𝜇)
(𝑢𝑢1𝑤𝑤 + 𝜇𝜇 − 1)

< 1                             
 

Also 

 

𝑑𝑑𝑅𝑅0
𝑑𝑑𝜂𝜂

=
Λ(𝜇𝜇 + 𝜌𝜌)

𝜇𝜇�(𝜂𝜂 + 𝜇𝜇 + 𝜌𝜌)𝑢𝑢1𝑤𝑤 + (𝜂𝜂 + 𝜇𝜇)(𝜇𝜇 + 𝜌𝜌)�
2

−
Λ(𝜂𝜂𝜇𝜇 + 𝜂𝜂𝜌𝜌 + 𝜇𝜇2 + 𝜇𝜇𝜌𝜌)(𝑢𝑢1𝑤𝑤 + 𝜇𝜇 + 𝜌𝜌)

𝜇𝜇�(𝜂𝜂 + 𝜇𝜇 + 𝜌𝜌)𝑢𝑢1𝑤𝑤 + (𝜂𝜂 + 𝜇𝜇)(𝜇𝜇 + 𝜌𝜌)�
2 

 

Which gives 

𝑑𝑑𝑅𝑅0
𝑑𝑑𝜂𝜂

=
Λ(𝜇𝜇 + 𝜌𝜌)Λ(𝜂𝜂𝜇𝜇 + 𝜂𝜂𝜌𝜌 + 𝜇𝜇2 + 𝜇𝜇𝜌𝜌)(𝑢𝑢1𝑤𝑤 + 𝜇𝜇 + 𝜌𝜌)

𝜇𝜇�(𝜂𝜂 + 𝜇𝜇 + 𝜌𝜌)𝑢𝑢1𝑤𝑤 + (𝜂𝜂 + 𝜇𝜇)(𝜇𝜇 + 𝜌𝜌)�2
 

 
𝑑𝑑𝑅𝑅0
𝑑𝑑𝜇𝜇

=
�

Λ(𝜂𝜂 + 𝜇𝜇) + Λ(𝜇𝜇 + 𝜌𝜌)
−Λ(𝜂𝜂 + 𝜇𝜇)(𝜇𝜇 + 𝜌𝜌)�1 + (𝑢𝑢1𝑤𝑤 + 𝜂𝜂 + 2𝜇𝜇 + 𝜌𝜌)��

𝜇𝜇�(𝜂𝜂 + 𝜇𝜇 + 𝜌𝜌)𝑢𝑢1𝑤𝑤 + (𝜂𝜂 + 𝜇𝜇)(𝜇𝜇 + 𝜌𝜌)�2
 

 

𝑑𝑑𝑅𝑅0
𝑑𝑑𝜌𝜌

=
Λ(𝜂𝜂 + 𝜇𝜇)

𝜇𝜇�(𝜂𝜂 + 𝜇𝜇 + 𝜌𝜌)𝑢𝑢1𝑤𝑤 + (𝜂𝜂 + 𝜇𝜇)(𝜇𝜇 + 𝜌𝜌)�
2

−
Λ(𝜂𝜂𝜇𝜇 + 𝜂𝜂𝜌𝜌 + 𝜇𝜇2 + 𝜇𝜇𝜌𝜌)(𝑢𝑢1𝑤𝑤 + 𝜂𝜂 + 𝜇𝜇)

𝜇𝜇�(𝜂𝜂 + 𝜇𝜇 + 𝜌𝜌)𝑢𝑢1𝑤𝑤 + (𝜂𝜂 + 𝜇𝜇)(𝜇𝜇 + 𝜌𝜌)�
2 

 

Which implies 

 
𝑑𝑑𝑅𝑅0
𝑑𝑑𝜌𝜌

=
Λ(𝜂𝜂 + 𝜇𝜇) − Λ(𝜂𝜂𝜇𝜇 + 𝜂𝜂𝜌𝜌 + 𝜇𝜇2 + 𝜇𝜇𝜌𝜌)(𝑢𝑢1𝑤𝑤 + 𝜂𝜂 + 𝜇𝜇)

𝜇𝜇�(𝜂𝜂 + 𝜇𝜇 + 𝜌𝜌)𝑢𝑢1𝑤𝑤 + (𝜂𝜂 + 𝜇𝜇)(𝜇𝜇 + 𝜌𝜌)�2
 

 

𝑑𝑑𝑅𝑅0
𝑑𝑑𝑢𝑢1

= −
Λ(𝜂𝜂𝜇𝜇 + 𝜂𝜂𝜌𝜌 + 𝜇𝜇2 + 𝜇𝜇𝜌𝜌)(𝜂𝜂𝑤𝑤 + 𝜇𝜇𝑤𝑤 + 𝜌𝜌𝑤𝑤)

𝜇𝜇�(𝜂𝜂 + 𝜇𝜇 + 𝜌𝜌)𝑢𝑢1𝑤𝑤 + (𝜂𝜂 + 𝜇𝜇)(𝜇𝜇 + 𝜌𝜌)�
2    

 
𝑑𝑑𝑅𝑅0
𝑑𝑑𝑤𝑤

= −
Λ(𝜂𝜂𝜇𝜇 + 𝜂𝜂𝜌𝜌 + 𝜇𝜇2 + 𝜇𝜇𝜌𝜌)(𝜂𝜂𝑢𝑢1 + 𝜇𝜇𝑢𝑢1 + 𝜌𝜌𝑢𝑢1)

𝜇𝜇�(𝜂𝜂 + 𝜇𝜇 + 𝜌𝜌)𝑢𝑢1𝑤𝑤 + (𝜂𝜂 + 𝜇𝜇)(𝜇𝜇 + 𝜌𝜌)�
2  

 

Sensitivity Analysis 

Now examine the sensitivity of the parameters 
on Basic reproduction number. we analyze the 



 

   

          
www.ejtas.com                                                                     EJTAS                    2024 | Volume 2 | Number 3 

163  

sensitivity of the parameters of the basic 
reproduction 
number (𝑅𝑅0). We employ the approach used by 
Kizito and Tumwiine (2018) to compute the 
sensitivity of the parameters of 𝑅𝑅0. The 
sensitivity of a parameter, say µ, of 𝑅𝑅0 is defned 
as 

 

𝜍𝜍µ
𝑅𝑅0  =

𝜕𝜕𝑅𝑅0
𝜕𝜕µ

 ×
µ
𝑅𝑅0

.                                       (38) 

 

The sensitivity indices of the parameters are 
presented as follows: 

 

𝜍𝜍Λ
𝑅𝑅0  =

𝜕𝜕𝑅𝑅0
𝜕𝜕Λ

 ×
Λ
𝑅𝑅0

= 1        

 

𝜍𝜍𝜂𝜂
𝑅𝑅0  =

𝜕𝜕𝑅𝑅0
𝜕𝜕𝜂𝜂

 ×
𝜂𝜂
𝑅𝑅0

.

=
𝑢𝑢1𝑤𝑤𝜌𝜌𝜂𝜂

�
(𝑤𝑤𝑢𝑢1 +  𝜇𝜇 +  𝜌𝜌)𝜂𝜂

+( 𝜇𝜇 +  𝜌𝜌)(𝑤𝑤𝑢𝑢1 +  𝜇𝜇)� ( 𝜂𝜂 +  𝜇𝜇)
 

 

𝜍𝜍µ
𝑅𝑅0  =

𝜕𝜕𝑅𝑅0
𝜕𝜕𝜇𝜇

 ×
𝜇𝜇
𝑅𝑅0

= −                                             

�
 𝜇𝜇4 + 2( 𝜂𝜂 + 𝜌𝜌)𝜇𝜇3 + 2 𝜂𝜂 𝜌𝜌𝜇𝜇2

+2 𝜂𝜂 𝜌𝜌(𝑤𝑤𝑢𝑢1 +  𝜂𝜂 +  𝜌𝜌)𝜇𝜇 + ( 𝜂𝜂 + 𝜌𝜌)𝜇𝜇2
+ 𝜌𝜌(𝑤𝑤𝑢𝑢1(𝜂𝜂 + 𝜌𝜌) +  𝜌𝜌𝜂𝜂)𝜂𝜂

�

�( 𝜇𝜇 +  𝜌𝜌) � 𝜇𝜇2 + (𝑤𝑤𝑢𝑢1 +  𝜂𝜂 +  𝜌𝜌)𝜇𝜇
+(𝑤𝑤𝑢𝑢1 +  𝜌𝜌)𝜂𝜂 +  𝜌𝜌𝑤𝑤𝑢𝑢1

� ( 𝜂𝜂 +  𝜇𝜇)�

                                                                        < 0

 

 

𝜍𝜍𝜌𝜌
𝑅𝑅0  =

𝜕𝜕𝑅𝑅0
𝜕𝜕𝜌𝜌

 ×
𝜌𝜌
𝑅𝑅0

=
𝑢𝑢1𝑤𝑤𝜌𝜌𝜂𝜂

( 𝜇𝜇 +  𝜌𝜌) �
(𝑤𝑤𝑢𝑢1 +  𝜂𝜂 +  𝜇𝜇)𝜌𝜌

+( 𝜂𝜂 +  𝜇𝜇)(𝑤𝑤𝑢𝑢1 +  𝜇𝜇)�
 

 

𝜍𝜍w
𝑅𝑅0  =

𝜕𝜕𝑅𝑅0
𝜕𝜕𝑤𝑤

 ×
𝑤𝑤
𝑅𝑅0

= −
𝑢𝑢1( 𝜂𝜂 +  𝜇𝜇 +  𝜌𝜌)𝑤𝑤

(𝑤𝑤𝑢𝑢1  +  𝜇𝜇)( 𝜂𝜂 +  𝜇𝜇 +  𝜌𝜌) +  𝜂𝜂 𝜌𝜌
< 0            

 

𝜍𝜍𝑢𝑢1
𝑅𝑅0  =

𝜕𝜕𝑅𝑅0
𝜕𝜕𝑢𝑢1

 ×
𝑢𝑢1
𝑅𝑅0

= −
𝑢𝑢1( 𝜂𝜂 +  𝜇𝜇 +  𝜌𝜌)𝑤𝑤

(𝑤𝑤𝑢𝑢1  +  𝜇𝜇)( 𝜂𝜂 +  𝜇𝜇 +  𝜌𝜌) +  𝜂𝜂 𝜌𝜌
< 0 

 

Table 2. Table of Sensitivity Index 
Parameter Rate of change Sensitivity 

Λ 5.668934240  1 
𝜌𝜌 0.52105784   0 
𝜂𝜂 −1.0 × 10−9  −0.71 × 10−10 
𝑤𝑤 −0.3213681542   −0.0227 
𝑢𝑢1 −12.85472617 −0.0227 
𝜇𝜇  −32.13681543   −.9773 

 

The analysis revealed that the positively sensitive 
parameter of the basic reproduction number, 𝑅𝑅𝟎𝟎, 
is the recruitment rate (Λ) into the susceptible 
class, Thus, reducing the number of susceptible 
individuals, effectively restricting infected 
humans from adding to the pathogen 
population, and ensuring that protected 
individuals remain protected can greatly lower 
the value of the basic reproduction number (𝑅𝑅𝟎𝟎) 
and thereby increasing the stability of the 
disease-free equilibrium. Increasing the value of 
the positively sensitive parameter has the effect 
of increasing the value of the basic reproduction 
number (𝑅𝑅𝟎𝟎), which is not a desired condition. 
Whereas, the negatively sensitive parameters are 
the mortality rate (µ), Vaccine coverage (𝑢𝑢1), 
rate of losing immunity (𝜌𝜌), vaccine effectiveness 
(𝑤𝑤) and rate of regaining susceptibility (𝜂𝜂). 
Increasing the values of these negatively 
sensitive parameters, reduces the value of the 
basic reproduction number (R0), which is the 
desired condition. 

 

 

 



 

   

          
www.ejtas.com                                                                     EJTAS                    2024 | Volume 2 | Number 3 

164  

Discussions 
In this section, we provide the analytical 
solutions for the system of ode. In order to 
analyze the outcome very succinctly, we explore 
the effect of variation of each of the parameters 
and displayed the graphs for corresponding 
discussion.  

A population-time graph represents the change 
in a population over time, with the x-axis 
indicating time and the y-axis showing 
population size as seen in Fig. 4. An upward-
sloping trend indicates population growth, while 
a downward slope shows a decline. Fluctuations 
in the graph may suggest varying birth rates, 
death rates, or migration patterns. Exponential 
growth is depicted by an upward curve, whereas 
a leveling off indicates a carrying capacity or 
logistic growth. These graphs are used in various 
fields, including ecology, demography, and 
public health, to understand and manage 
population dynamics. As shown in Fig. 5, the 
recruitment rate, Λ represents the rate at which 
new individuals enter a particular class, such as 
the susceptible class in epidemiological models. 
Directly, an increase in Λ generally leads to more 
individuals entering the susceptible class while a 
decrease in Λ results in fewer individuals 
entering the susceptible class. Indirectly, changes 
in Λ can affect downstream variables in the 
system. For example, if the system involves 
transitions from the susceptible class to other 
classes, an increased recruitment rate can lead to 
more individuals transitioning, affecting overall 
system dynamics which could impact the rate of 
spread in an epidemiological context, increasing 
the chances of transmission due to a larger 
susceptible population. Also, the equilibrium 
state of the system can be influenced by the 
recruitment rate reason being that if the 
recruitment rate is high, the system may reach a 
new equilibrium with a larger susceptible 
population thereby affecting stability. Treatment 
success as seen in Fig. 6 and 7 reduces the rate at 
which susceptible individuals become infected, 
lowering transmission risk. By effectively 
treating infected individuals, the infectious 
period is shortened, resulting in fewer people in 
the not-quarantined class (those who aren't 
isolated). This reduction in infection rates and 

quicker recovery means fewer transitions from 
the susceptible to the infected class, ultimately 
slowing disease spread. Successful treatment also 
increases the recovered population, contributing 
to herd immunity and reducing overall 
transmission.  

From Fig 8 and 9 respectively, the rate of 
regaining susceptibility profoundly impacts both 
the "Recovered with partial immunity" and 
susceptible classes in epidemiological models. 
For the "Recovered with partial immunity" class, 
a slower rate means individuals retain partial 
immunity for longer periods, acting as a natural 
brake on disease transmission and aiding 
epidemic control by reducing the pool of 
susceptible individuals. However, this also 
prolongs the period during which they remain 
vulnerable to reinfection.  

Meanwhile, for the susceptible class, a slower 
rate translates to a delayed replenishment of 
individuals who are fully susceptible to the 
disease, slowing down the rate of new infections 
and potentially extending the epidemic duration. 

  
Figure 4. Model Population Time Graph 

 

Consequently, understanding and accurately 
modeling the rate of regaining susceptibility is 
crucial for assessing disease dynamics and 
designing effective intervention strategies to 
mitigate the spread of infectious diseases. It 
could be observed that as the rate increases, 
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recovered with partial immunity declines while 
susceptible class is enhanced. 

 
Figгку 5. Impact of Recruitment Rate  

of the Susceptible Class 

 

 
Figure 6. Effect Treatment Success 
Probability on the Suceptible Class 

 
Figure 7 Effect Treatment Success 

Probability on Quarantined Population 

 
Fig. 8 Impact of Rate of Regaining 

Susceptibility on Recovered with Partial 
Immunity Class 

 

 

 
Figure 9. Impact of Rate of Regaining 

Susceptibility on Susceptible Class 

 

The impact of the progression rate from 
symptomatically infected to not quarantined is 
reflected in the speed at which individuals 
transition from being actively contagious within 
the community, potentially leading to increased 
transmission rates and challenges in containment 
efforts as displayed in Fig 10. While in Fig 11, 
the impact of isolation rate on the 
symptomatically infected population directly 
influences the effectiveness of containing 
disease transmission within the community, 
potentially reducing the spread of infection and 
mitigating the burden on healthcare systems. 
The effect of exposure rate on the exposed but 
not yet infectious class determines the pace at 
which individuals transition to becoming 
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infectious, influencing the overall rate of disease 
transmission within the population. This, as 
displayed in Fig 12 is observed to enhanced the 
uninfected exposed subclass of the population 
while, the reverse is the observed trend in 
susceptible class as shown in Fig 13. In such 
case, the effect of exposure rate on the 
susceptible class dictates the speed at which 
individuals become exposed to the infectious 
agent, impacting the rate of new infections and 
the overall progression of the epidemic. 

From Figs. 14 and 15, the influence of latency on 
both susceptible and incubating infections are 
displayed. The latency period indirectly affects 
the susceptible class by determining the duration 
individuals remain in this state before being 
exposed to the infectious agent. A shorter 
latency period means individuals transition more 
quickly from being susceptible to being exposed, 
potentially leading to a faster rate of new 
infections within the population. For individuals 
in the incubating infections class, the latency 
period directly determines the duration between 
exposure to the pathogen and the onset of 
infectiousness. A longer latency period means 
individuals spend more time in the incubating 
stage before becoming infectious, impacting the 
timing and pace of disease transmission within 
the population. Additionally, the duration of the 
latency period can affect the effectiveness of 
control measures, as it influences the window of 
time during which individuals may be infectious 
but not yet showing symptoms. 

The progression rate from exposed to 
quarantined determines how quickly individuals 
identified as exposed are isolated from the 
general population, Fig 16. A higher progression 
rate facilitates prompt quarantine of exposed 
individuals, which helps prevent them from 
potentially infecting others during the latent 
period of the disease. This rapid isolation is 
crucial for breaking chains of transmission and 
reducing the overall spread of the infection 
within the community. Additionally, efficient 
quarantine measures can alleviate strain on 
healthcare systems by reducing the number of 
severe cases requiring medical attention, thus 
ensuring resources are available for those who 
need them most. Therefore, the progression rate 

from exposed to quarantined plays a critical role 
in controlling disease transmission and 
managing the impact of an epidemic. In Fig 17, 
we displayed the impact of wanning immunity 
rate on recovered with full immunity class. The 
waning immunity rate directly influences the 
duration of protection individuals in the 
Recovered with full immunity class have against 
reinfection. A faster waning immunity rate 
means individuals lose their immunity more 
quickly, leaving them susceptible to contracting 
the disease again. This can lead to an increase in 
the number of previously immune individuals 
becoming susceptible, potentially contributing 
to resurgence or secondary outbreaks of the 
disease over time. Moreover, the waning 
immunity rate impacts public health strategies, as 
it informs decisions regarding vaccination 
schedules and booster doses to maintain 
population-level immunity. Therefore, 
understanding the dynamics of waning immunity 
is crucial for long-term epidemic control and 
vaccine policy planning.  

The impact of the recovery rate with treatment 
to partial immunity on both the Quarantine and 
partial recovery classes is significant and 
nuanced. A higher recovery rate with treatment 
among individuals in the Quarantine class 
accelerates their transition to partial immunity, 
reducing the duration they remain isolated and 
potentially contagious, Fig 18 and 19. This can 
alleviate the burden on quarantine facilities and 
healthcare systems while contributing to the 
development of herd immunity. However, if the 
recovery rate is too rapid, there's a risk of 
premature release from quarantine, potentially 
leading to continued transmission. Meanwhile, 
for individuals in the partial recovery class, a 
higher recovery rate with treatment means a 
quicker transition to full recovery, reducing the 
duration they remain partially immune. This may 
affect the dynamics of disease transmission and 
the overall effectiveness of public health 
interventions aimed at controlling the spread of 
infectious diseases. Therefore, optimizing the 
recovery rate with treatment is crucial for 
balancing the need to alleviate the burden on 
healthcare systems with the imperative of 
minimizing transmission risks. 
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Fig. 20 and 21 explains the impact of the 
recovery rate with treatment to full immunity on 
both the partial recovery and quarantine classes 
is pivotal for epidemic management. A higher 
recovery rate with treatment among individuals 
in the partial recovery class accelerates their 
transition to full immunity, reducing the 
duration they remain partially immune and 
potentially susceptible to reinfection. This may 
contribute to building population-level 
immunity and slowing disease transmission. 
However, if the recovery rate is too rapid, there's 
a risk of individuals being prematurely released 
from partial recovery, potentially leading to 
relapse or continued transmission. Conversely, 
in the quarantine class, a higher recovery rate 
means individuals are more swiftly removed 
from quarantine upon full recovery, reducing the 
burden on quarantine facilities and enabling 
resources to be reallocated efficiently. However, 
if the recovery rate is too slow, it prolongs the 
duration of quarantine, potentially straining 
healthcare systems and impeding epidemic 
control efforts. Therefore, striking the right 
balance in the recovery rate with treatment to 
full immunity is crucial for optimizing both 
individual health outcomes and epidemic 
containment strategies. 

 

 
Figure 10. Impact of Progression Rate  

from Symptomatically Infected  
to not Quarantined 

 
Figure 11. Impact of Isolation Rate 

 on Symptomatically Infected Population 

 

 
Figure 12. Effect of Exposure Rate  

on the Exposed but not yet Infectious Class 

 

 
Fig 13: Effect of exposure rate of the 

susceptible Class 
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Figure 14. Imapct of Latency Rate  

on the Suceptible Class 

 

 
Figure 15. Influence of Latency Rate  

on 𝑯𝑯𝑯𝑯 Class 

 

 
Figure 16. Impact of Progression Rate 

 from Exposed to qQuarantined 

 
Figure 17. Impact of Wanning Immunity 
Rate on Recovered with Full Immunity 

Class 

 

 
Figure 18. Impact of Recovery Rate with 

Treatment to Partial Smmunity  
on Quarantine Class 

 

 
Figure 19. Impact of Recovery Rate with 
Treatment to Partial Immunity on Partial 

Recovery Class 
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Figure 2.: Impact of Recovery Rate with 
Treatment to Full Immunity on Partial 

Recovery 

 

 
Figure 21. Impact of Recovery Rate with 

Treatment to Full Immunity on Quarantine 
Class 

 

Conclusion 
This mathematical analysis of the dynamics of 
diphtheria transmission and the effectiveness of 
diphtheria anti-toxin (DAT) as a control 
measure was studied in this paper. The dynamics 
of disease spread, as depicted in population-time 
graphs and influenced by factors such as 
recruitment rate, loss of immunity, treatment 
success, regaining susceptibility, latency rate, 
natural death rate, exposure rate, and vaccination 
coverage, underscore the complexity of 
managing and controlling infectious diseases like 
diphtheria. While successful treatment and 
vaccination coverage can mitigate transmission 

risk and bolster herd immunity, factors such as 
loss of immunity and exposure rate can challenge 
these efforts by increasing the susceptible 
population and fostering conditions for 
outbreaks. Public health interventions must 
navigate these interconnected variables to 
effectively control disease spread, emphasizing 
the need for comprehensive strategies that 
address not only treatment and vaccination but 
also population dynamics and immunity 
management. The following were deduced from 
this work: 

Population-time graphs depict changes in 
population size over time, with trends indicating 
growth, decline, or fluctuations due to factors 
like birth rates, death rates, or migration 
patterns. 

The recruitment rate (Λ) represents the rate at 
which new individuals enter the susceptible 
class, affecting both the susceptible class size and 
downstream variables, impacting disease spread 
and equilibrium states. 

Treatment success reduces the rate at which 
susceptible individuals become infected, leading 
to fewer transitions to the infected class, 
ultimately slowing disease spread and increasing 
the recovered population. 

The rate of regaining susceptibility affects the 
duration of partial immunity in the recovered 
class and the replenishment of the susceptible 
class, influencing disease transmission dynamics 
and epidemic duration. 

The progression rate from symptomatically 
infected to not quarantined impacts 
transmission rates and containment efforts, 
while the isolation rate directly influences disease 
transmission containment within the 
community. 

Exposure rate affects transitions to 
infectiousness and new infections, influencing 
epidemic progression. 

Latency period duration impacts transitions 
from susceptibility to exposure and the timing of 
infectiousness onset, affecting disease 
transmission and control measures' 
effectiveness. 
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The progression rate from exposed to 
quarantined is crucial for timely isolation, 
preventing further transmission, and reducing 
strain on healthcare systems. 

Waning immunity rate affects the duration of 
protection against reinfection in the recovered 
class, impacting disease resurgence and vaccine 
policy decisions. 

The recovery rate with treatment to partial 
immunity affects transitions from quarantine to 
partial immunity and from partial recovery to full 
immunity, balancing containment efforts and 
transmission risks. 

The recovery rate with treatment to full 
immunity influences transitions to full immunity 
from both partial recovery and quarantine, 
optimizing individual health outcomes and 
epidemic containment strategies. 

The findings from this research are believed to 
have significant implications for public health 
policies and strategies aimed at controlling 
diphtheria. 
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