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Issues of Processing and Multiple Testing of
SELDI-TOF MS Proteomic Data

Merrill D. Birkner, Alan E. Hubbard, Mark J. van der Laan, Christine F. Skibola,
Christine M. Hegedus, and Martyn T. Smith

Abstract

A new data filtering method for SELDI-TOF MS proteomic spectra data is de-
scribed. We examined technical repeats (2 per subject) of intensity versus m/z
(mass/charge) of bone marrow cell lysate for two groups of childhood leukemia
patients: acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL).
As others have noted, the type of data processing as well as experimental variabil-
ity can have a disproportionate impact on the list of “interesting” proteins (see
Baggerly et al. (2004)). We propose a list of processing and multiple testing tech-
niques to correct for 1) background drift; 2) filtering using smooth regression and
cross-validated bandwidth selection; 3) peak finding; and 4) methods to correct
for multiple testing (van der Laan et al. (2005)). The result is a list of proteins (in-
dexed by m/z) where average expression is significantly different among disease
(or treatment, etc.) groups. The procedures are intended to provide a sensible and
statistically driven algorithm, which we argue provides a list of proteins that have
a significant difference in expression. Given no sources of unmeasured bias (such
as confounding of experimental conditions with disease status), proteins found
to be statistically significant using this technique have a low probability of being
false positives.



1 Introduction

This study is based on the analysis of array-based proteomic data obtained
by surface enhanced laser desorption ionization mass spectrometry (SELDI-
TOF MS) of childhood leukemia samples. Two sets of samples of bone mar-
row cell lysate from children with acute myeloid leukemia (AML) and acute
lymphoblastic leukemia (ALL) were used, as originally described in Hegedus
et al. (2005). Leukemia is a group of cancers characterized by the uncon-
trolled proliferation of blood precursor cells of the myeloid or lymphoid lin-
eage. ALL and AML are the most common leukemias among children repre-
senting approximately 31 percent of cancers in children under 14 years of age
(Smith et al., 2005). These leukemias are further classified by immunopheno-
typic and cytogenetic characteristics. Cases with high hyperdiploidy (greater
than 50 chromosomes) and those harboring t(12;21) constitute a majority of
childhood ALL (Greaves, 2002). With the exception of a few known risk
factors such as benzene and radiation exposure, little is known about the
causes of leukemia. Researchers are interested in determining differences in
protein expression between leukemic subtypes in order to distinguish between
subtypes and investigate possible mechanisms of leukemogenesis. Previous
microarray and proteome studies have successfully identified such markers
(Golub et al., 1999; Valk et al., 2004; Ohmine et al., 2001; Kohlmann et al.,
2004; Yeoh et al., 2002; Ross et al., 2003, 2004; Cui et al., 2004, 2005; Hegedus
et al., 2005; Issaq et al., 2002). However, few studies have used SELDI-TOF
MS for proteomic analysis of bone marrow from childhood leukemia cases.
Here we have used raw data from SELDI-TOF MS analysis of bone mar-
row described in Hegedus et al. (2005). The bone marrow cell lysate from
ALL and AML cases was analyzed to generate data consisting of mass-to-
charge ratios (m/z) representing individual proteins and their corresponding
intensities, which represent the relative abundance.

This proteomic data is not a straightforward (exact) measurement of un-
derlying protein abundances and is victim to sources of experimental variabil-
ity (for instance, see Baggerly et al. (2004)), which are a nuisance to finding
which proteins are related to the question of interest. As vendors have done
(e.g., Ciphergen Biosystems), we provide a series of processing steps that
are meant to minimize the sources of nuisance variation. We rely on hav-
ing technical replicate measures of the samples on a child, which provide a
convenient motivation for choosing optimal processing parameters using sta-
tistical criteria. Although not discussed in this paper, optimal designs should
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insure that the data is not confounded by experimental variation, which is
most efficiently done by design (for instance, making sure that either exper-
imental conditions are homogenous for all samples or at least samples are
evenly distributed across experimental conditions with respect to the factors
of interest). Rarely (if ever) can a set of processing techniques overcome
unmeasured confounding.

We discuss two classes of data processing/filtering problems that are typ-
ical of genomic/proteomic data: pre-processing and selection of proteins of
interest by multiple testing. In Section 2 we first discuss our processing algo-
rithm and give some arguments why it should be relatively robust (provide
reproducible results) and also suggests augmentations that will make it more
flexible. We then follow with a discussion of multiple testing in general and a
newly introduced method that provides accurate and yet not overly conserv-
ative control for experimentwise (Type I) error rates. We conclude the paper
with the analysis of the childhood leukemia data and a short discussion.

2 Data Pre-Processing

In this section, we first give the specific structure of the leukemia, SELDI-
TOF MS spectral proteomic data for our childhood leukemia subjects. We
then discuss how this structure can be utilized for optimally smoothing the
intensity vs. m/z data to derive summary intensity measurements for each
child for a common set of m/z values.

2.1 Data Structure

The dataset consists of two replicates each of AML (n = 7) and ALL (n =
13). Each sample contained approximately 100 different m/z values and
respective intensity values. We are interested in obtaining an intensity value
for a specific number of unique m/z values, averaged over the replicates.

2.2 Background Drift Correction

For this type of proteomic data, there is often a drift in the apparent back-
ground values in raw m/z-intensity data (see top row of Figure 1 as an
example). Optimally, we would like the minimum value for all non-peak m/z
values to be at 0. In addition, a procedure should take advantage of the
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smoothness (in our case, the background declines in a linear fashion). That
is, a reasonable low-dimensional model can be fit to this minimum. Our solu-
tion is to use quantile regression, which models the trend in the pth quantile
of an outcome versus a predictor variable(s) (Koenker and Bassett, 1978):
F−1

Y |X(p | X = x) = g(x | β), where X is the explanatory variable, p is the

percentile ∈ (0, 1), FY |X(y | X = x) ≡ P (Y ≤ y | X = x) and g(x | β)
is some function of x and coefficients, β, for instance, g(x | β) = β0 + β1x,
X is the explanatory variable (in our case, m/z) and Y the outcome (in-
tensity). One can not model the minimum, so we have chosen a very small
quantile (p = 0.02) and in our case, we have modelled the background as a
linear decline, but in practice models of arbitrary complexity can be applied,
e.g., a high order polynomial basis. The background corrected intensities
are simply Y − (β̂0 + β̂1X), where Y is the original intensity and X is the
corresponding m/z ratio. The results are shown on the second line of Figure
1. Because this procedure can borrow information from adjacent m/z values
when determining the baseline correction at a particular m/z, and because
the baseline drift is typically quite smooth, this procedure should in theory
provide a relatively robust method for baseline-correction.

2.3 Smoothed Intensity

Because one can assume that the observed profile of intensity versus m/z
has both an element of signal (the “true” profile) and noise, filtering can
help to reduce the latter. Our method of filtering takes advantage of the
replicate nature of our design. Therefore, each biologic replicate is analyzed
twice resulting in two protein spectra per child. We want to filter, or smooth
the data in a way that emphasizes reproducible peaks, and does the opposite
for features that are unique to only one sample. To do so, we use an esti-
mate of the underlying true (noiseless) m/z curve on one sample to predict
intensities on the other sample. To form this estimate we used a rectangular
kernel smoother (Härdle, 1990). These smoothers estimating the curve at
a particular point can be thought of as a simple, local weighted average of
the intensities in a small neighborhood of m/z ratios defined by the width of
the neighborhood, referred to as the bandwidth. The nature of the weight
(that is, how the weighted average declines with distance from the estimation
point) is called a kernel. For very smooth functions, a typical kernel might
be a Gaussian function and the bandwidth is thus the standard deviation of
this function. However, our function is not smooth, but consist of a set of
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unpredictable peaks surrounded by flat areas with nearly no signal. Thus, a
natural choice of a kernel is a simple, uniform weight over a small box or rec-
tangular kernel. The width of the box is the bandwidth, and presumably the
width chosen will represent the measurement error on the m/z axis. Note,
we used the function ksmooth() in R (using a box kernel) to estimate the
kernel smooth.

The next problem is to choose the bandwidth, and that is where the
replicate samples become very useful. We invoke recently developed theory
for the optimality of cross-validation for choosing the “best” estimator from
a set of candidate estimators. The kernel bandwidth is chosen by using a
simple cross-validation technique on the replicates that attempts to minimize
the mean-squared error of prediction. Specifically, the smoothing algorithm
is trained, with a specific bandwidth, on one replicate of a biological sample
(subject) and is used to predict the intensities of its matched replicate. We
then reverse the roles of the two replicates and train the smoothing algo-
rithm on the second replicate and test it on the first replicate. The mean
squared error (MSE) is recorded each time the algorithm is trained on the
second replicate for each bandwidth. This is then repeated over all sam-
ples/replicates. The average MSE is calculated for each bandwidth and the
bandwidth with the smallest average MSE is chosen. In the case of the con-
stant bandwidth method, the bandwidths of 1-10 m/z were tested and the
minimum MSE was obtained with a bandwidth equal to 9.

2.3.1 Variable Bandwidth

To make the procedure more flexible, we also consider a cross-validation based
model selection routine that allows the bandwidth used from smoothing in-
tensities to vary by m/z value, based on the fact that the error in m/z might
not be constant, but itself have some drift. Although more complicated mod-
els can be used and also compete with simpler models, the simplest being a
constant bandwidth as discussed above, we choose to examine bandwidths
that changed linearly with m/z value:

h = β0 + β1m/z

where h is the bandwidth, and (β0 and β1) define the model. Both β0 and β1

are now chosen by cross-validation over a grid of possible values that include:
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β0 = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

β1 = (0.00001, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.15, 0.3).

For each combination of β0 and β1 the smoothing algorithm is trained on
one replicate of a biological sample (subject) and used to predict the inten-
sities of its matched replicate, just as done above (the constant bandwidth
choice is simply fixing β1 = 0 and selecting over the β0. We then reverse the
roles of the two replicates and train the smoothing algorithm on the second
replicate and test it on the first replicate. The mean squared error is recorded
each time the algorithm is trained on the second replicate for each combi-
nation of β0 and β1. This is then repeated over all samples/replicates. The
average MSE is calculated for each combination of β0 and β1 and the com-
bination with the smallest MSE is chosen, in our case (β0 = 2, β1 = 0.009).
The m/z vales are averaged within windows corresponding to the respective
bandwidth. Finally, the original data is reduced to a set of unique m/z ra-
tios. Although in our discussion focuses on a simple linear model (linear in
m/z), competing models of greater complexity can be used (e.g., higher order
polynomials) and the same technique can be used to choose the respective
parameters of the model using cross validation.

2.4 Defining Peaks and Creating Protein Expression
Data Matrix

The original data is reduced to a set of unique m/z ratios (that are non-zero
in at least one biological sample) and this is done by condensing any set of
unique m/z numbers within the chosen the bandwidth to a single value (the
average of them) and also averaging all peak values on the same sample to
get a single intensity per unique m/z. Finally, the two technical replicates
for each biological sample are averaged to get a single set of intensities for a
unique and common set of m/z values.

Finally, after smoothing, the replicate profiles are averaged to get one
protein expression/biologic replicate. For the leukemia data, the process-
ing stream, using a constant bandwidth, results in a data matrix with 204
unique protein intensities (the rows) for each of the 20 biologic samples (the
columns). The respective preprocessing steps are illustrated in Figure 1,

Hosted by The Berkeley Electronic Press



which correspond to one AML biological sample

3 Multiple Testing

The final step after creating a data matrix that consists of processed pro-
tein intensites for each independent biological sample (the columns) and each
unique m/z value is to select the m/z values that are significantly associated
with some phenotypic trait. In our case, we are interested in associating the
intensities of each m/z value with the type of leukemia (ALL vs. AML). We
want to chose those proteins for which we have relatively high confidence that
they are truly different (i.e., different in mean intensities) between the two
groups, using a multiple testing procedure (MTP). In general, MTP proce-
dures consist of 1) choosing an appropriate parameter of interest (e.g., mean
difference in intensities in the two groups); 2) specifying the null hypoth-
esis that relates this parameter to the question of interest (e.g., the mean
difference is 0); 3) specifying the test statistic for which the null distribu-
tion is known, at least asymptotically (e.g., the two-sample t-statistic); 4)
performing the test for each row (m/z value); 5) choosing an appropriate ex-
perimentwise error rate to control (e.g., the number of false positives or Type
I errors); and 7) choosing the method to control this rate (e.g., Bonferroni).
The parameters of interest, resulting null hypotheses, test statistic and Type
I error rate are choices for the investigator. Once these are chosen, one can
debate the merits of various MTPs, specifically, which provide accurate Type
I error control under assumptions the investigator is willing to make and 2)
among these, which have the greatest power.

There are several Type-I error rates: 1) The family wise error rate (FWER),
which controls the probability of rejecting more than one false positive; 2)
generalized family wise error rate (gFWER), which controls the probabil-
ity of rejecting more than a user defined number, k, false positives; 3) tail
probability of the proportion of false positives (TPPFP), which controls the
proportion of false positives to total rejections at a user defined value q,
q ∈ (0, 1); 4) False Discovery Rate (FDR), or controlling the mean of the
proportion of false positives to total rejections. FWER is a conservative er-
ror rate, and often too conservative for most biological applications; thus
less stringent methods which will allow some false positives, but at a given
number or proportion, may be more conducive to scientific application. A
method controlling the TPPFP is attractive especially since it deals with the
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proportion of false positives to total rejections, instead of an absolute number
of false rejections. It will allow some false positives as long as the probabil-
ity of the proportion of false positives to total rejections is small. Also, as
compared to the FDR methods, TPPFP controls the actual proportion of
false positives to total rejections, whereas the FDR controls that proportion
on average, therefore making a method controlling the TPPFP favorable in
some settings, particularly since the expected number of false positives can
be highly variable (e.g. when the test statistics are highly dependent).

This article presents a data application of the E-Bayes/Bootstrap TPPFP
approach, outlined in detail in van der Laan et al. (2005). This approach con-
trols the TPPFP at a user defined level q, with probability 1 − α. van der
Laan et al. (2005) outlines this procedure and provides finite and asymp-
totic rationale of the proposed procedure, as well as simulations showing the
method is more powerful and less conservative in the finite setting, relative
to competing TPPFP procedures. Since this method is less conservative, we
are apt to properly reject more null hypotheses at a nominal α level as com-
pared to other more conservative methods. In this article, this technique will
be applied to two separate datasets, which are described in detail in Section
4.

3.1 TPPFP

The E-Bayes/Bootstrap TPPFP method aims to control the proportion of
false positives to total rejections at a user defined level q, with probability
1 − α. As discussed in van der Laan et al. (2005), the recently developed,
resampling based E-Bayes/Bootstrap TPPFP approach has proven to be
less conservative and thus more powerful, as compared to other methods
such as the Augmentation approach outlined in van der Laan et al. (2004b),
and the Lehmann and Romano (2003) tppfp techniques. The procedure
involves 1) specifying a conditional distribution for a guessed set of true
nulls, given the data, which asymptotically is degenerate at the true set of
nulls; and 2) specifying a generally valid null distribution for the vector of
test-statistics proposed in Pollard and van der Laan (2003), and generalized
in subsequent articles Dudoit et al. (2004), van der Laan et al. (2004a),
and van der Laan et al. (2004b). The finite and asymptotic results are
outlined in the van der Laan et al. (2005) as well as relevant simulations,
which illustrate comparisons of the power and error rate of this procedure in
various situations.
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3.1.1 Augmentation Technique

An augmentation TPPFP procedure was also applied to the protein dataset
(van der Laan et al., 2004b). This augmentation corresponds to merely
adding the [ q

1−q
r0] most significant rejections to the rejection set of the FWER

method, where r0 is the set of initial rejections from the FWER procedure.
As with the FWER procedure, we use the single-step maxT based on the
resampling-based null distribution T̃n described above. Further detail of this
method can be found in Pollard and van der Laan (2003).

3.2 Adjusted p-values

A convenient way to display the results of a MTP is by reporting the adjusted
p-values in a ordered list corresponding to their relative significance. Both the
E-Bayes/Bootstrap TPPFP and Augmentation techniques provide adjusted
p-values as a summary measure for each test. Adjusted p-values provide a
measure of the probability of making a Type-I error taking into account that
one made multiple tests. The jth adjusted p-value can be interpreted as the
nominal alpha level one would use to just reject the jth specific test-statistic.
Displaying these adjusted p-values provide a summary measure of the tests
and therefore makes them easier to compare.

4 Data Applications

In the following section, we will then present the application of the E-
Bayes/Bootstrap TPPFP approach, as well as the van der Laan et al. (2004b)
Augmentation technique. Firstly, we will describe the results of the multiple
testing application to the dataset preprocessed with the constant bandwidth
method. This will be followed with the variable bandwidth results.

4.1 Application to AML/ALL data: Constant Band-
width Preprocessing

The difference in the mean intensities of the AML versus the ALL sam-
ples at each of the 204 m/z ratios is tested. The test-statistics will be

defined as: Tn(j) =
√

n (μAML(j)−μALL(j))
σAML/ALL(j)

, j = 1, ..., 204, where σ2
AML/ALL

is the pooled variance of the two samples. The null hypothesis is that
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Table 1: Constant Bandwidth: Adjusted p-values; Top 10 m/z Ratios:

m/z E-Bayes/Bootstrap TPPFP (q = 0.1) Augmentation (q = 0.1)
4968.104 0.039 0.051
3333.169 0.043 0.0595
4941.165 0.0491 0.1515
3201.327 0.215 0.352
8457.161 0.3197 0.437
3281.276 0.3404 0.4535
3908.681 0.3586 0.460
2908.314 0.3605 0.4615
10527.394 0.3897 0.467
10509.961 0.3999 0.467

(μAML−μALL) = 0 and the alternative hypothesis is that (μAML−μALL) �= 0.
The E-Bayes/Bootstrap TPPFP procedure is used to determine those m/z
ratios which have significantly different mean intensities between AML and
ALL, while controlling the proportion of false positives to total rejections at
a level q = 0.1, with probability 0.95 (α = 0.05).

There are 20 m/z values out of the 204 with an unadjusted p-value less
than α = 0.05. With the tppfp augmentation method no m/z are rejected
at an α = 0.05 and only one is rejected at an α = 0.1 level. The E-
Bayes/Bootstrap TPPFP rejects 3 m/z ratios at an α = 0.05 and also three
are rejected at an α = 0.1 level. Interestingly, the proprietary Biomarker
Wizard� software (Ciphergen Biosystems, Fremont, CA, USA) also found
these masses to be significant, based on another algorithm, not accounting
for multiple testing. These were found through the software’s autodetec-
tion; therefore anything with a signal to noise ratio greater than 2, the peak
had to be present in at least 25 percent of the samples, and the mass win-
dow of 0.8 percent mass. These results illustrate the importance of the
E-Bayes/Bootstrap TPPFP method, especially in the cases of few significant
associations in the data.

The mass to charge ratios have yet to be identified as unique proteins.
However, researchers plan to follow this analysis and identify the most sig-
nificant mass to charge ratios by purification and MS/MS.
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Table 2: Variable Bandwidth: Adjusted p-values; Top 6 m/z Ratios:

m/z E-Bayes/Bootstrap TPPFP (q = 0.1) Augmentation (q = 0.1)
4967.375 <0.0001 0.001
3336.293 0.051 0.089
2908.006 0.092 0.122
3201.008 0.156 0.291
5174.152 0.171 0.312
9956.193 0.238 0.340

4.2 Application to AML/ALL data: Variable Band-
width Preprocessing

The variable bandwidth preprocessing and multiple testing procedures were
also applied to the same AML/ALL dataset used with the constant band-
width method. The test statistics are created in the same manner, with the
only difference being the preprocessing steps. In total, there are 109 m/z
ratios which are tested between the AML and ALL samples.

There are 9 m/z values out of the 109 with an unadjusted p-value less than
α = 0.05. With the tppfp augmentation method one m/z is rejected at an
α = 0.05 and two are rejected at an α = 0.1 level. The E-Bayes/Bootstrap
TPPFP rejects two m/z ratios at an α = 0.05 and also four are rejected
at an α = 0.1 level. The results are displayed in Table 2. Similarly with
the previous example, the m/z ratios which are found to be significant with
this procedure are also found significant using the Biomarker Wizard� soft-
ware, though this software does not adjust for the multiplicity of the tests
performed. (Note that the variable bandwidth method as compared to the
constant bandwidth method has proven to be more consistent in finding
peaks similar to those peaks found using the Biomarker Wizard� software
(Ciphergen Biosystems, Fremont, CA, USA), with the accuracy increasing
as m/z increases. This can be attributed to the fact that the mass accuracy
of the machine is dependent on the mass of the protein and therefore the
variable bandwidth method incorporates the mass value when determining
the appropriate window over which to average).
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5 Discussion

Unless one knows the true underlying data-generating mechanism for their
particular technology and experimental design, it is hard to argue that one
set of processing steps yields universally superior results relative to a com-
petitor. However, we have proposed a series of processing steps and multiple
testing procedures that are flexible, take advantage of technical replicates
and have some optimal properties (e.g., cross-validation for bandwidth selec-
tion and the empirical Bayes approach for controlling TPPFP). In addition,
the TPPFP is an appropriate Type-I error rate to control in many biological
applications. This error rate is less conservative than the family-wise error
rate. The application of the E-Bayes/Bootstrap TPPFP approach resulted
in rejecting more m/z values as compared to the augmentation approach.
We suggest that the applied example as well as the simulations presented in
van der Laan et al. (2005) demonstrate that the E-Bayes/Bootstrap TPPFP
approach is a more powerful technique to control the proportion of false pos-
itives to total rejections at a given level q, as compared to various other
methods controlling the TPPFP. Finally, the significant m/z values found
with this analysis were also seen as significant peaks using the Biomarker
Wizard� software, though the latter procedure does not take into account
the multiplicity of the tests being performed. Again, we can not argue for the
universal optimality of our approach, but it has both worked well in practice,
has theoretical justification and controls for multiple testing without being
overly conservative.
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Figure 1: Preprocessing Steps
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