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Cross-Validating and Bagging Partitioning
Algorithms with Variable Importance

Annette M. Molinaro and Mark J. van der Laan

Abstract

We present a cross-validated bagging scheme in the context of partitioning al-
gorithms. To explore the benefits of the various bagging scheme, we compare via
simulations the predictive ability of single Classification and Regression (CART)
Tree with several previously suggested bagging schemes and with our proposed
approach. Additionally, a variable importance measure is explained and illus-
trated.



1 Introduction

Clinicians aim toward a more preventative model of attacking cancer by
pinpointing and targeting specific early events in disease development.
These early events can be measured as genomic, proteomic, epidemio-
logic, and/or clinical variables, using expression or Comparative Genomic
Hybridization (CGH) microarrays, SELDI-TOF/mass spectra, patient his-
tories, and pathology and histology reports. These measurements are then
used to predict clinical outcomes such as time to primary occurrence, re-
currence, metastasis, or mortality.

In such analyses, the primary goal is to unearth biologically driven
associations between variables and clinical outcomes. Additionally, statis-
ticians must be able to quantify the interactions between different types of
variables and the effects of those interactions on the clinical outcome. The
subsequent challenge is to assess how well a selected model will predict
outcomes in an independent validation sample, i.e., in future data sets.

Recursive partitioning seeks to explain the individual contributions of
various covariates as well as their interactions for the purposes of pre-
dicting outcomes, either continuous or categorical. As such, one might
choose to use Classification and Regression Trees (CART), a binary recur-
sive partitioning algorithm, to generate said sieves (Breiman et al., 1984).
Another option is the Partitioning Deletion/Substitution/Addition (Part-
DSA) algorithm which builds ’and’ and ’or’ statements (Molinaro and van
der Laan, 2004). This algorithm not only splits regions (nodes in tree esti-
mation) it also combines and substitutes regions. These additional moves
allow us to unearth intricate correlation patterns and further elucidate in-
teractions in addition to main effects.

An important consideration when using recursive binary partitioning
is the stability of the resulting predictor. Algorithms such as CART are
sensitive to data fluctuations and, thus, given a perturbation will poten-
tially build a different predictor than that built on the original data. This
calls into question the generalizability of these predictors to independent
data sets.

Various methods have been suggested to improve the prediction and
classification accuracy of a single recursive partitioning tree. Breiman [1994,
1996] suggested bootstrap aggregating, or bagging, for stabilizing predic-
tors. In bagging, numerous trees are grown each with a random selection
(with replacement), i.e. a bootstrap sample, from the learning set. The
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resulting aggregated predictor for a continuous outcome is the average pre-
diction over all trees, while the resulting classification is that class which
receives the majority vote.

Aggregated predictors are a promising approach to the motivating prob-
lem of predicting outcomes based on hundreds or thousands of variables
many of which are measured on different scales. In addition to stabilizing
a single predictor, aggregated predictors accumulate much more informa-
tion. For example, a single regression tree represents a collection of esti-
mators indexed by the number of terminal nodes k, where k = 1, . . . , K.
In CART, the best k, or level of the tree, is chosen via cross-validation. The
chosen level then represents the minimizer of the sum of squared regres-
sion specific residuals over all regressions which are linear combinations
of a maximum number of levels K.

As a single tree this results in a linear combination of very few parti-
tions. In most applications one expects that the true regression equals a
linear combination of thousands (or an infinite number) of partitions with
many very small coefficients. Different from the single tree, the bagged
trees average regression estimators based on multiple partitions of size k.
As a consequence, the aggregated estimator equals a linear combination of
possibly thousands of partitions with many very small coefficients. Thus,
we believe that these bagged estimators correspond with sensible fits in
numerous applications.

There have been several suggestions for bagging. In Breiman’s initial
approach, for each bootstrap sample, v-fold cross-validation is employed
to prune, i.e. select the best level of the tree (Breiman [1994]). We will
refer to this initial approach as Breiman VFOLD. Subsequently, Breiman
suggested using a test set to pick the level of the tree [Breiman, 1996]. In
this approach a bootstrap sample from the learning set is used to grow a
tree and then the prediction error is estimated with the entire learning set.
The chosen ’best’ level of the tree corresponds with the one with minimal
prediction error. We will refer to this approach as Test Tree.

In a later paper, Breiman suggested growing a full tree for each boot-
strap sample avoiding any model selection [Breiman, 1999]. As such, the
full tree is assumed to be the best model, or level of the tree, for each boot-
strap sample. We will refer to this approach as Full Tree.

While cross-validation may not be entirely tolerant of perturbations in
the data (e.g. Breiman VFOLD), we maintain that it is the best method
for estimator selection given a collection of plausible estimators. Here, we
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propose to first build candidate predictors and then chose the ’best’ via
v-fold cross-validation. Thus, our class of estimators is the collection of
aggregate predictors spanning the possible number of partitions. We then
choose the best number of partitions (or level of the tree) by minimizing
the cross-validated error. In comparison to Breiman’s approaches, this can
be viewed as an ’external’ cross-validation where the level of the tree is
selected subsequent to aggregating the predictors. As a result our class of
candidate estimators differs from those produced by Breiman’s methods.
Where we use cross-validation as an estimator selection tool he uses it to
build estimators and then averages over said estimators. As a result his
class of estimators includes a sole estimator.

Although Breiman’s VFOLD approach may provide the right selection
among the estimators by trading off bias and variance it may not perform
well in terms of the bagged estimator’s prediction accuracy. The reason
for this is that the bagged estimator should be less variable as a result of
the averaging, although more biased. This increase in bias is due to two
(possibly cumulative) sources: first, the bias introduced by applying an
estimator to a bootstrap sample relative to the empirical sample; and sec-
ond, the bias introduced by applying the estimator to the empirical sample
relative to the truth.

We contend that cross-validation is immensely important for the proper
selection of estimators. Although the VFOLD approach employs cross-
validation it occurs within each bootstrap sample. The resulting increase
in bias will tend toward underfitting. On the other hand, the Full Tree and
Test Tree methods and lack of honest cross-validation will tend toward
overfitting. The Test Tree approach provides an interesting mix between
a resubstitution and an independent test set estimate of prediction error.
The resubstitution estimate pertains to the ≈ 0.628 unique observations in
the learning set which comprise the bootstrap sample, while the≈ .368 ob-
servations not included in the bootstrap sample offsets the overfitting and
acts as the independent test set. We anticipate that neither of these meth-
ods will perform well in the situation where a small or medium sized tree
is most appropriate. Their inherent nature will always overfit and lacks
the ability for correction.

Our proposed cross-validated bagged estimator also corresponds to
overfitting; however, we expect that the ’external’ cross-validation will
prove to be more flexible and, if not improve the generalizability error,
it will be equivalent to the best of the previously suggested schemes.

3
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A large number of available variables will be included in this bagged
linear regression fit, and, as such, a measure of variable importance can
be assessed. One such measure is the partial derivative with respect to
each variable, averaged over all observed covariate values. This variable
importance measure provides a relevant and useful summary measure of
the actual regression fit.

The next section elaborates on the setting and methods for our pro-
posed cross-validated bagged estimators. The main steps for our approach
are detailed and contrasted to Breiman’s bagging approach and in Section
2.4 the suggested variable importance measures are explained. In Section
3 we compare our approach to Breiman’s via simulations and in Section 4
via a publicly available data set. On the latter we also illustrate the vari-
able importance measure.

2 Methods

This section elaborates on the setting and methods for our proposed cross-
validated bagged estimators. We begin by detailing the data structure, em-
phasizing the choice of a loss function, and describing piecewise constant
estimators, both CART and Part-DSA. The main steps for our approach are
detailed and contrasted to Breiman’s bagging approaches. Our suggested
variable importance measures are motivated and explained as well as how
to accommodate censored data.

The observed data structure can be written as an i. i. d. sample O1, . . . , On,
where O includes an outcome T and baseline covariates W, i.e., O =
(T,W). For the time being we will consider the observed data to be com-
plete and thus equivalent to the full data structure, i.e., no missingness on
covariates nor outcomes. See Section 2.3 for references with consideration
of censored outcomes. The data generating distribution of O is denoted
with P0 and the empirical probability distribution with Pn. Assume that
P0 ∈ M for some model M, and let Ψ : M→ (D(S)) be the parameter of
interest. The parameter ψ0 is defined in terms of a loss function, L(O, ψ), as
the minimizer of the expected loss, or risk. We can write ψ0 as:

ψ0 = Ψ(P0) = arg min
ψ∈Ψ

∫
L(o, ψ)dP0(o)

over a parameter space Ψ ⊂ D(S). The purpose of the loss function L is to
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quantify performance. Thus, depending on the parameter of interest, there
could be numerous loss functions from which to choose. In regression
trees with a continuous outcome, a common loss function is the squared
error loss, L(O,ψ) = (T − ψ(W ))2, corresponding to the conditional mean
ψ0(W ) = E0[T | W ]. In classification trees with a categorical outcome, the
indicator loss function, L(O, ψ) = I(T 6= ψ(W )) is frequently used. This
loss function corresponds to choosing the class with maximum probability
given covariates W , i.e., ψ0(W ) = argmaxtPr0(t | W ).

2.1 Piecewise Constant Regression Estimators

In tree-based estimation procedures such as CART [Breiman et al., 1984],
the candidate estimators are generated by recursive binary partitioning of
a suitably defined covariate space. We have also recently introduced a new
method for forming piecewise constant estimators, the Partitioning Dele-
tion Substitution Addition algorithm (Part-DSA) [Molinaro and van der
Laan, 2004a,b]. Part-DSA exhaustively searches the covariate space form-
ing ’and’ and ’or’ statements.

Both of these approaches define a countable set of basis functions, {φj :
j ∈ IN}, indexed by the non-negative integers IN. These basis functions are
simply set indicators {Rj : j ∈ I} which form a partition of the covariate
space S, where I is an index set, I ∈ I, and I is a collection of subsets of
IN.

Here Rj denotes regions of S which are disjoint (Rj ∩ Rj′ = ∅, j 6= j′)
and exhaustive (S = ∪j∈IRj). Now every parameter ψ ∈ Ψ can be written
(and approximated) as a finite linear combination of the basis functions:

ψI,β(·) ≡ ∑

j∈I

βjφj(·),

where for a given index set I ∈ I, the coefficients β = (β1, . . . , β|I|) belong
to BI ≡ {β : ψI,β ∈ Ψ} ⊆ IR|I|. These are of the form referred to as piecewise
constant regression models [Härdle, 1989].

The complete parameter space Ψ can be written as the collection of
basis functions {φj : j ∈ IN} and represented by

Ψ ≡ {ψI,β(·) =
∑

j∈I

βjφj(·) : β, I ∈ I}.
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Define a sieve, {Ψk}, of subspaces Ψk ⊂ Ψ, of increasing dimension
approximating the complete parameter space Ψ, such as,

Ψk ≡


ψI,β(·) =

∑

j∈I

βjφj(·) : β, I, |I| ≤ k



 ,

where k denotes the index set size (i.e., how many basis functions). Now
for every k we want to find the estimator which minimizes the empirical
risk over the subspace Ψk. That can be done by initially optimizing over
the regression coefficients β ∈ BI for a given index set I and then optimiz-
ing over the index sets I .
Given index sets I ∈ I, define I-specific subspaces

ΨI ≡ {ψI , β : β ∈ BI}.

For each subspace ΨI , the regression coefficients β are estimated by mini-
mizing the empirical risk, i.e.,

β̂I = βI(Pn) ≡ argminβ∈BI

∫
L(o, ψI,β)dPn(o)

= argminβ∈BI

n∑

i=1

L(Oi, ψI,β),

It is possible to write the I-specific estimators as ψ̂I = ΨI(Pn) ≡ ψI,βI(Pn)
, I ∈

I. For example, with the squared error loss function ψ̂I is the least squares
linear regression estimator corresponding with the variables identified by
the index set I .

CART and Part-DSA can be used to construct a sequence of candi-
date estimators, ψ̂k = ψk(Pn), k ∈ {1, . . . , K(n)}, up to a maximal size,
ψmax = ψK(n). Here, k indexes the number of partitions, measured by the
number of terminal nodes in CART and by the number of basis functions
in Part-DSA. The maximum size K(n) of the partitioning is typically de-
termined by criteria such as the complexity parameter (cp) as defined in
Breiman et al. [1984], the minimal number of observations need to further
split a partition, and/or homogeneity (purity) for categorical outcomes.
Given this sequence of candidate estimators, the goal is to select a data
adaptive k̂ = k(Pn)∈ {1, . . . , K(n)}, such that the risk for ψk̂(Pn) converges
to that for the parameter ψ0 in an optimal manner. In order to address this
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selection problem, define the conditional risk of the estimator ψk(Pn) based
on the loss function as

θ̃n(k) ≡
∫

L(o, ψk(Pn))dP0(o).

Also define the optimal risk, θopt, as the risk of the parameter of interest,

θopt = min
ψ∈Ψ

∫
L(o, ψ)dP0(o).

Let
k̃n ≡ argmink θ̃n(k) = argmink

∫
L(o, ψk(Pn))dP0(o)

be the optimal benchmark selector which chooses the estimator with minimal
conditional risk θ̃n(k), for each given data set. If the minimum is not unique,
then the argmin is defined as the smallest k achieving the minimum. A
selector k̂ = k(Pn) is said to be asymptotically equivalent with the optimal
benchmark k̃n if

θ̃n(k̂)− θopt

θ̃n(k̃n)− θopt

→ 1 in probability. (1)

In particular, then it is asymptotically optimal [van der Laan and Dudoit,
2003].

Note that the optimal benchmark selector k̃n depends on the unknown
data generating distribution P0. The selection problem therefore involves
estimating the unknown conditional risk θ̃n(k) for each candidate estima-
tor ψ̂k = ψk(Pn). Cross-validation provides a general approach for estimat-
ing the conditional risk and producing a data adaptive selector k̂ which is
asymptotically equivalent to the oracle selector k̃n based on the true data
generating distribution P0. The default in both CART and Part-DSA is
10-fold cross validation for estimator selection.

2.2 Bagging Estimators

We will write the collection of regression estimators based on a recursive
partitioning (described in Section 2.1) as Ψ̂1

s(Pn) indexed by s ∈ An, where
s represents a vector of fine-tuning parameters. For example in CART, s
contains the size of the tree k which ranges from the root node to the max-
imal tree, k = 1, . . . , K(n), the complexity parameter setting (default is
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cp = .01 in rpart), and the minimal size of a terminal node tn (default
is minbucket/3 in rpart). In this example, the collection of single tree
estimators would range over k with the complexity parameter and termi-
nal node size held constant. In Part-DSA, s contains, k as the range of
partitions (k = 1, . . . , K(n)), as well as k0 = K(n) the maximum number
of basis functions, k1 the allowed complexity of the basis functions, and
minsplit the minimal number of observations to split a partition. Again,
the collection of partitionings would range over k with k0, k1, and minsplit
held constant.

Given Ψ̂1
s(Pn), the collection of corresponding bagged estimators is de-

fined as:
Ψ̂s(Pn) ≡ EP#

n |Pn
Ψ̂1

s(Pn),

where P#
n given Pn is the empirical distribution of a bootstrap sample

O#
1 , . . . , O#

n of the empirical distribution Pn. And thus, EP
n# |Pn denotes

the expectation over many draws of bootstrap samples Pn# given Pn. For
each of these draws, P#

n1, . . ., P#
nB, (of size n), the estimators Ψ̂1

s(P
#
nb), b =

1, . . . , B, are calculated and averaged. Such that Ψ̂s(Pn) can be written as:

Ψ̂s(Pn) = lim
B→∞

1

B

B∑

b=1

Ψ̂1
s(P

#
nb).

This results in a sequence of candidate estimators Ψ̂s(Pn) indexed over
s. Our goal is to data adaptively select the s which minimizes the risk of
Ψ̂s(Pn) over An. As such, we propose the cross-validated bagged estimator
defined as:

Ψ̂(Pn) = Ψ̂Ŝ(Pn)(Pn),

where Ŝ(Pn) is the cross-validation selector corresponding with a cross-
validation scheme defined by a random n vector Bn ∈ {0, 1}n. A real-
ization of Bn = (Bn,1, . . . ,Bn,n) defines a particular split of the learning
sample of n observations into a training set, {i ∈ {1, . . . , n} : Bn,i = 0},
and a validation set, {i ∈ {1, . . . , n} : Bn,i = 1}. The proportion of observa-
tions in the validation set is p. The empirical distributions of the training
and validation sets are denoted by P 0

n,Bn
and P 1

n,Bn
, respectively. The cross-

validation selector is written as:

Ŝ(Pn) = arg min
s∈An

EBnP 1
n,Bn

L[·, Ψ̂s(P
0
n,Bn

)]. (2)
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To calculate this selector of s, for each possible realization of Bn and s ∈
An, B bootstrap samples of size n(1− p) are drawn from the training sam-
ple P 0

n,Bn
. For each the B corresponding s-specific estimators Ψ̂1

s(P
0,#
n,Bn,b)

are calculated and averaged to obtain:

Ψ̂s(P
0
n,Bn

) = lim
B→∞

1

B

B∑

b=1

Ψ̂1
s(P

0#
nBnb).

The cross-validated bagged estimator is defined as the one which minimizes
the risk as evaluated by the validation sample,P 1

n,Bn
, as in Equation 2.

In Breiman’s VFOLD approach, the selection of s via cross-validation
is performed within each bootstrap sample. Subsequently the B bootstrap
specific estimators are averaged to arrive at the final estimator. As such,
the cross-validation selector is defined as

ŜbrV
(P#

n ) = arg min
s∈An

E1,#
Bn,Pn,Bn

L[·, Ψ̂1
s(P

0,#
n,Bn

)].

The B bootstrap specific estimators are written as Ψ̂CV (P#
n ) = Ψ̂Ŝ1

br
(P#

n )(P
#
n ).

While the final estimator is the average of these B bootstrap specific esti-
mators:

Ψ̃brV
(Pn) = EP#

n |Pn
Ψ̂CV (P#

n ).

It is our belief that Breiman’s VFOLD approach provides the right se-
lection among the estimators Ψ̂1

s, s ∈ An by trading off bias and variance.
However, it may result in bagged estimators Ψ̂s, s ∈ An, with poor perfor-
mance. This is due to the decreased variance and the possibly increased
bias of the bagged estimators. The increase in bias is due to two, possi-
bly cumulative, sources: the bias introduced by applying an estimator to a
bootstrap sample relative to the empirical sample; and the bias introduced
by applying the estimator to the empirical sample relative to the truth.

In Breiman’s Full Tree approach there is no selection of s within each
bootstrap sample, instead a full tree Ψ̂1

s(P
#
n ), where k = K(n) ∈ s, is grown

on each of the B bootstrap samples. The B bootstrap specific estimators
can be written as Ψ̂sk=K(n)

(P#
n ). The final estimator is the average of these

B bootstrap specific estimators:

Ψ̃brFT
(Pn) = EP#

n |Pn
Ψ̂sk=K(n)

(P#
n ).
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In Breiman’s Test Tree approach the selection of s is determined by
minimizing the learning set’s prediction error on the bootstrap sample’s
tree. Subsequently, the B bootstrap specific estimators are averaged to
construct the final estimator. The Test Tree selector is defined as

ŜbrTT
(P#

n ) = arg min
s∈An

EPnL[·, Ψ̂1
s(P

#
n )].

The B bootstrap specific estimators are written as Ψ̂TT (P#
n ) = Ψ̂ŜbrTT

(P#
n )(P

#
n ).

While the final estimator is the average of these B bootstrap specific esti-
mators:

Ψ̃brTT
(Pn) = EP#

n |Pn
Ψ̂TT (P#

n ).

Let d(ψ, ψ0) = E0L(o, ψ)dP0(o) − E0L(o, ψ0)dP0(o) denote the risk dis-
similarity. The results on the cross-validation selector (see van der Laan
et al. [2003]) imply that under reasonable general conditions the cross-
validated bagged estimator performs as well as the oracle selected bagged
estimator Ψ̂S̃n(1−p)(Pn)(Pn), where S̃n(1−p)(Pn) = arg mins EBE0L(o, Ψ̂s(P

0
n,Bn

))dP0(o).

S̃n(1−p)(Pn) selects the bagged estimator (based on n(1 − p) observations)
closest to the truth w.r.t. to the risk dissimilarity. As a consequence, it is
of interest to understand the relation between risk dissimilarity of Ψ̂1

s(Pn)

and the risk dissimilarity of the corresponding bagged estimator Ψ̂s(Pn).
This would immediately imply asymptotic consistency results for our pro-
posed cross-validated bagged estimator.

2.3 Censored Data

In Section 2, the observed data structure resembles the full data struc-
ture in that neither the outcome nor the covariates are missing. In both
Molinaro et al. [2004] and Molinaro and van der Laan [2004a] we have
addressed how to accommodate censored observations using loss-based
piecewise constant estimation. The exact same approach is applicable here
using either the inverse probability censoring weighted (IPCW) or doubly
robust IPCW.

2.4 Variable Importance

As most available variables are included in the bagged linear regression fit,
we can comprehensively assess variable importance. One such measure
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is the partial derivative with respect to each variable, averaged over all
observed covariate values.

Given the collection of d baseline covariates W, we can define the fol-
lowing function of (W, w, j):

W−j(w) ≡ (W1, . . . , Wj−1,Wj = w, Wj+1, . . . , Wd).

Then for an ordered categorical or binary variable Wj ∈ {W0, . . . , Wkj
}, we

can define the variable importance of Wj at each value of Wj as:

νj,k(P0) = EW−j
[Ψ0(W−j(wk))−Ψ0(W−j(wk−1))], for k = 1, . . . , kj.

The variable importance measure of each value of Wj can be evaluated,
i.e., (νj,1(P0), . . . , νj,kj

(P0)), and graphed to illustrate any fluctuations in
the importance of Wj at the different values. An overall measure of impor-
tance for each variable can also be given by averaging over the observed
covariate values, that is:

νj(P0) =
1

kj

kj∑

k=1

EW−j
[Ψ0(W−j(wk))−Ψ0(W−j(wk−1))]

This can be estimated with the empirical distribution by calculating:

ν̂j =
1

kj

kj∑

k=1

[
1

n

n∑

i=1

Ψ̂(Pn)(W−j(wk))− Ψ̂(Pn)(W−j(wk−1))

]
.

Given a continuous variable we can dichotomize it into kj bins and use
this approach. Alternatively, with a continuous variable we can take the
derivative of Ψ0(W ) evaluated at Wj = w:

Ψ
(j)
0 (W−j(w)) ≡ d

dWj

Ψ0(w) |Wj=w

And define the variable importance measure over the observed covari-
ate values as:

νj(P0) = EW−j
Ψ

(j)
0 (W−j(w)).

The values of νj(·) can be plotted over the observed values of Wj to
observe any fluctuations in importance. Pairwise variable importance can
be measured by evaluating νj within νi, where i 6= j.
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3 Simulations

To compare our proposed cross-validated bagged estimator to that of Breiman’s
we performed similar simulations to those in the original manuscript [Breiman,
1996]. For the simulations we used CART as implemented in the recursive
partitioning algorithm rpart [Therneau and Atkinson, 1997] in the statis-
tical package R [Ihaka and Gentlemen, 1996].

For each simulation, we evaluated estimators for a single tree, Breiman’s
suggested schemes, and our proposed method. For each, the same learn-
ing set Lset was used for building and choosing the estimator. The same
independent test set Tset evaluated the fit and reflects the empirical risk
estimated in the following tables.

For the single tree, Ψ̂1
s(Lset) was estimated with Lset, where s = (k =

1, . . . , K(n),minbucket = 7, cp = .01). The best level of the tree k̂ was cho-
sen via 10-fold cross-validation. The empirical risk was evaluated with the
independent test set at level k̂. For Breiman’s VFOLD bagging scheme,
the learning set Lset was used to generate B bootstrap samples and build
B bootstrap specific estimators Ψ̂CV (L#

set), where 10-fold cross validation
was implemented to select Ŝbr(L

#
set). The predicted test set Tset values

Ψ̃brV
(Tset) were calculated by averaging the B bootstrap specific estima-

tors built on Lset. For Breiman’s Full Tree bagging scheme, the learning set
Lset was used to generate B bootstrap samples and build B bootstrap spe-
cific estimators Ψ̂sk=K(n)

(P#
n ). The predicted test set Tset values Ψ̃brFT

(Tset)
were calculated by averaging the B bootstrap specific estimators built on
Lset. In Breiman’s Test Tree approach the learning set Lset was used to
generate B bootstrap samples and build B bootstrap specific estimators
Ψ̂CV (L#

set), where the entire learning set was used to select ŜbrTT
(L#

set). The
predicted test set Tset values Ψ̃brTT

(Tset) were calculated by averaging the
B bootstrap specific estimators built on Lset.

For our proposed cross-validated bagging scheme, Lset was used to
generate B bootstrap samples and 10-fold cross-validation to select k̂. The
empirical risk is calculated with the averaged bootstrap specific estima-
tors, Ψ̂s(Tset).

This entire procedure was repeated 100 times for each of the methods
and the empirical risk averaged over the 100 repetitions.
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Table 1: Simulation F1

Method Bootstrap Emp Risk Emp Risk % improvement
Samples Mean Std.Dev. in Risk

Single Tree 0 21.39 3.19
Breiman VFOLD 25 15.67 1.34 27%

Test Tree 25 13.95 0.92 35%
Full Tree 25 13.89 0.91 35%

OurT Bagging 25 14.02 1.02 34%
Single Tree 0 20.83 3.07

Breiman VFOLD 100 15.63 1.37 25%
Test Tree 100 13.74 0.95 34%
Full Tree 100 13.71 0.95 34%

OurT Bagging 100 13.75 1.01 34%
Single Tree 0 21.18 3.37

Breiman VFOLD 1000 15.54 1.32 27%
Test Tree 1000 13.68 0.95 35%
Full Tree 1000 13.61 .94 36%

OurT Bagging 1000 13.64 .97 36%

3.1 Simulation 1

This simulation is from Friedman’s simulations in the MARS paper [Fried-
man, 1991] and also implemented in Breiman [1996]. There are 10 indepen-
dent predictor variables x1, . . . , x10 each of which is uniformly distributed
over (0, 1). The response is given by

y = 10sin(πx1x2) + 20(x3 − .5)2 + 10x4 + 5x5 + error,

where the error ∼ N(0, 1). For this the learning set LSET has 200 observa-
tions and the test set TSET has 1000.

The procedures for the single tree, Breiman’s VFOLD, Test Set, and Full
Tree, and our proposed bagging (details above) were repeated 100 times.
The results are shown in Table 1.
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3.2 Simulation 2

This simulation is from Friedman’s simulations in the MARS paper [Fried-
man, 1991] and also implemented in Breiman [1996]. There are 4 indepen-
dent predictor variables x1, . . . , x4 each of which is uniformly distributed
over different ranges:

0 ≤ x1 ≤ 100

20 ≤ (x2/2π) ≤ 280

0 ≤ x3 ≤ 1

1 ≤ x4 ≤ 11

The response is given by

y = (x2
1 + (x2x3 − (1/x2x4))

2)1/2 + error,

where the error ∼ N(0, σ). We compared 0.35 and .862 as values for σ. For
this the learning set LSET has 200 observations and the test set TSET has
1000.

The procedures for the single tree, Breiman’s VFOLD, Test Set, and Full
Tree, and our proposed bagging (details above) were repeated 100 times.
The results are shown in Table 2.

3.3 Simulation 3

This simulation is from Friedman’s simulations in the MARS paper [Fried-
man, 1991] and also implemented in Breiman [1996]. There are 4 indepen-
dent predictor variables x1, . . . , x4 each of which is uniformly distributed
over different ranges:

0 ≤ x1 ≤ 100

20 ≤ (x2/2π) ≤ 280

0 ≤ x3 ≤ 1

1 ≤ x4 ≤ 11

The response is given by

y = arctan(
x2x3 − (1/x2x4)

x1

) + error,

14
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Table 2: Simulation F2

Bootstrap Emp Risk Emp Risk % improvement
σ Method Samples Mean Std.Dev. over single tree

Single Tree 0 14529.2 3546.97
Breiman VFOLD 25 6638.60 1278.63 56%

Test Tree 25 5250.65 1013.96 65%
Full Tree 25 5188.31 1020.34 65%

OurT Bagging 25 5185.77 1040.5 64%
Single Tree 0 15044 4697.57

Breiman VFOLD 100 6248.02 1196.94 58%
.35 Test Tree 100 4957.21 958.82 67%

Full Tree 100 4871.85 1011.65 68%
OurT Bagging 100 4870.32 954.91 68%

Single Tree 0 15015.85 4562.50
Breiman VFOLD 1000 6145.56 1134.76 59%

Test Tree 1000 4835.71 965.72 68%
Full Tree 1000 4787.36 952.69 68%

OurT Bagging 1000 4771.76 948.49 68%
Single Tree 0 14787.81 4488.39

Breiman VFOLD 25 6650.93 1269.7 55%
Test Tree 25 5254.50 1016.85 64%
Full Tree 25 5191.34 1023.36 65%

OurT Bagging 25 5180.04 1035.8 65%
Single Tree 0 15055.41 4709.78

Breiman VFOLD 100 6283.21 1177.67 58%
.62 Test Tree 100 4944.95 975.27 67%

Full Tree 100 4883.19 978.73 67%
OurT Bagging 100 4871.83 964.94 68%

Single Tree 0 15071.4 4569.87
Breiman VFOLD 1000 6127.12 1144.38 59%

Test Tree 1000 4836.26 965.55 68%
Full Tree 1000 4774.79 966.83 68%

OurT Bagging 1000 4770.82 949.19 68%
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where the error ∼ N(0, σ). We compared 0.35 and .86 as values for σ. For
this the learning set LSET has 200 observations and the test set TSET has
1000.

The procedures for the single tree, Breiman’s VFOLD, Breiman’s Test
Set, Full Tree, and our proposed bagging (as explained above) were re-
peated 100 times. The results are shown in Table 3.

3.4 Simulation 4

To understand the ramifications of not using honest cross-validation or
any cross-validation at all, a simulation study with only one covariate
was studied. Histogram regression necessitates a medium to small tree
for adequate prediction. As such, overfitting will not be appropriate. In
Table 4, the full data distribution was simulated from y = x2 + er, where
x ∼ N(0, 1) and er ∼ N(0, .25). For each of 100 repetitions a training set of
size 200 was used to build a classifier and an independent test sample of
1000 to assess the empirical risk. The mean of the risk for each of the 100
repetitions is reported in the table along with the standard deviation.

4 Data Analysis

4.1 Boston Housing Data

In the Boston Housing dataset (available from the MASS library in R (Ven-
ables and Ripley [2002])) socio-economic variables are used to predict me-
dian value of houses in Boston housing tracts. There are 506 observations
and 14 variables. For the following an independent test set TSET of size
25 was randomly selected. This is a replication of simulations in Breiman
[1994]. The learning set LSET contains the 481 remaining observations.
The results of 100 simulations are shown in Table 5.

Using the variable importance overall measure as described in Section
2.4, the socio-economic predictors are ranked in increasing importance in
Table 6. From this ranking, the number of rooms (rm) is decidedly the most
important variable. To further investigate any fluctuations in importance
of this variable we can plot the values of νrm(·) over the observed values
of rm (Figure 1). In this exercise rm split was into 10 bins.
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Table 3: Simulation F3

Bootstrap Emp Risk Emp Risk % improvement
σ Method Samples Mean Std.Dev. over single tree

Single Tree 0 0.1903 0.0137
Breiman VFOLD 25 0.1616 0.0092 15%

Test Tree 25 0.1534 0.008 19%
Full Tree 25 0.1543 0.008 19%

OurT Bagging 25 0.1516 0.0091 20%
Single Tree 0 0.1891 0.0135

Breiman VFOLD 100 0.1 603 0.009 15%
.35 Test Tree 100 0.1513 0.008 20%

Full Tree 100 0.1521 0.0079 20%
OurT Bagging 100 0.1511 0.0084 20%

Single Tree 0 0.1876 0.0123
Breiman VFOLD 1000 0.1599 0.0088 15%

Test Tree 1000 0.1507 0.0076 20%
Full Tree 1000 0.1514 0.0076 19%

OurT Bagging 1000 0.1504 0.0080 20%
Single Tree 0 0.8374 0.0353

Breiman VFOLD 25 0.8037 0.0349 4%
Test Tree 25 0.8209 0.0385 2%
Full Tree 25 0.8328 0.0397 0.6%

OurT Bagging 25 0.7987 0.0379 5%
Single Tree 0 0.8377 0.0365

Breiman VFOLD 100 0.8005 0.0354 4%
.86 Test Tree 100 0.8122 0.0381 3%

Breiman Full Tree 100 0.8217 0.0391 2%
OurT Bagging 100 0.7951 0.0357 5%

Single Tree 0 0.8386 0.0365
Breiman VFOLD 1000 0.7995 0.0354 5%

Test Tree 1000 0.8091 0.0375 3.5%
Full Tree 1000 0.8185 0.03863 2%

OurT Bagging 1000 0.7941 0.0351 5%
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Table 4: Histogram Regression Simulation

Bootstrap Emp Risk Emp Risk % improvement
Method Samples Mean Std.Dev. over single tree

Single Tree 0 0.2767 0.0144
Breiman VFOLD 25 0.2625 0.0123 5%

Test Tree 25 0.353 0.0238 -28%
Full Tree 25 0.3625 0.0228 -31%

OurT Bagging 25 0.2612 0.0122 6%
Single Tree 0 0.2773 0.0159

Breiman VFOLD 100 0.2613 0.0125 6%
Test Tree 100 0.3476 0.0214 -25%
Full Tree 100 0.3576 0.0207 -29%

OurT Bagging 100 0.2606 0.0127 6%
Single Tree 0 0.2767 0.0149

Breiman VFOLD 1000 0.2617 0.0123 6%
Test Tree 1000 0.3465 0.0215 -25%
Full Tree 1000 0.3566 0.0208 -28%

OurT Bagging 1000 0.2606 0.0127 6%

Table 5: Boston Housing Data

Method Bootstrap Emp Risk Emp Risk % improvement
Samples Mean Std.Dev. over single tree

Single Tree 0 23.61 15.77
Breiman VFOLD 25 15.93 11.45 31%

Test Tree 25 13.14 10.28 43%
Full Tree 25 13.13 10.31 43%

OurT Bagging 25 12.92 10.15 44%
Single Tree 100 22.93 14.78

Breiman VFOLD 100 15.67 11.29 31.7%
Test Tree 100 12.91 10.07 43.8%
Full Tree 100 12.9 10.1 43.7%

OurT Bagging 100 12.81 9.999 44.2%
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Figure 1: Variable importance over value of RM.
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Table 6: Variable Overall Importance Measure for Boston Housing Data

Variable Importance Measure
zn 0.0073
rad 0.0337

indus 0.0506
black 0.0572
chas 0.0702
age 0.1181

ptratio 0.1378
tax 0.1634
nox 0.1754
crim 0.3648
dis 0.4299

lstat 1.5615
rm 2.2151

5 Summary

We have presented a cross-validated bagging scheme in the context of
partitioning algorithms. This method differs from previously suggested
methods by implementing an ’external’ cross-validation for estimator se-
lection. We compared our method to the previous ones and a single regres-
sion tree via simulations and a data analysis. In the first three simulations
over-fitting is appropriate, as such, ours, the Full Tree and Test Tree meth-
ods do equivalently well. This illustrates that VFOLD is restricted by the
use of cross-validation within the bootstrap samples. This is true in all
but one case where we increased the variance in Simulation 3.3. There a
more conservative tree is beneficial and we note that our method, closely
followed by the VFOLD method, acts appropriately.

In Simulation 3.4 we investigated the different approaches in the con-
text of histogram regression. Histogram regression necessitates a medium
to small tree for adequate prediction. As such, over-fitting is not appro-
priate. This can best be seen in Table 4, where the Full Tree and Test Set
methods perform very poorly. Our method and VFOLD do well in re-
stricting the tree size. This simulation illustrates the fact that dishonest or
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no cross-validation can limit the user to only over-fitting.
In Section 4, the Boston Housing data was explored with all four meth-

ods as well as a single regression tree. We see in Table 5 that over-fitting
is favored and as such our method, Test Set and Full Tree do well. The
variable importance measure introduced in Section 2.4, is illustrated with
the Boston Housing data. In this example we see that ’rm’, or number
of rooms, is designated as the most important variable. In Figure 1, the
values of ’rm’ are shown with their corresponding variable importance
measure. Here it is apparent that between six and eight rooms contributes
most to the prediction ability of the bagged trees.
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