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Abstract. In this paper we study the convergence of a fully discrete Crank–Nicolson Galerkin scheme for the initial
value problem associated with the fractional Korteweg-de Vries (KdV) equation, which involves the fractional
Laplacian and non-linear convection terms. Our proof relies on the Kato type local smoothing effect to estimate the
localized Hα/2-norm of the approximated solution, where α ∈ [1, 2). We demonstrate that the scheme converges
strongly in L2(0, T ; L2

loc(R)) to a weak solution of the fractional KdV equation provided the initial data in L2(R).
Assuming the initial data is sufficiently regular, we obtain the rate of convergence for the numerical scheme. Finally,
the theoretical convergence rates are justified numerically through various numerical illustrations.
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1. Introduction

This work is concerned with the Cauchy problem associated to a nonlinear, non-local dispersion
equation known as a fractional KdV equationut +

(
u2

2

)
x

− (−∆)
α
2 ux = 0, (x, t) ∈ R × (0, T ],

u(x, 0) = u0(x), x ∈ R,
(1.1)

where T > 0 is fixed, u0 is the prescribed initial condition and u : R× [0, T ] → R is the unknown. The
non-local operator −(−∆)

α
2 in (1.1) is the fractional Laplacian with the values α ∈ [1, 2), defined for

all ϕ ∈ C∞
c (Rd) by [4]

−(−∆)
α
2 [ϕ](x) = cα P.V.

∫
R

ϕ(y) − ϕ(x)
|y − x|1+α

dy, (1.2)

for some constant cα > 0 which is described in [9, 25]. Moreover, the non-local operator can also be
defined for α ∈ (0, 2) through the Fourier transform as (cf. [27, Theorem 1.1])

F [(−∆)
α
2 u](ξ) = |ξ|αF [u](ξ), (1.3)

where F [u] denotes the Fourier transform of u. For α = 2, (1.1) reduces to the well-known KdV
equation [18, 21, 22, 26, 29] and whenever α = 1, (1.1) represents the Benjamin-Ono (BO) equation [5,
6, 13, 29, 36, 37] which was derived to model the weakly nonlinear internal long waves. In general,
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the equation (1.1) occurs in the study of nonlinear dispersive long waves, inverse scattering method
and plasma physics, see [1, 9, 10, 22, 24] and references therein. The non-local operators such as
fractional Laplacian (1.2), have proven to be highly efficient tools in localized computations such as
image segmentation, water flow in narrow channels, plasma physics, and other related applications,
for more details, refer to [4, 32] and references therein.

The local and global well-posedness of (1.1) have been studied by several authors in recent times.
In particular, for α = 2, well-posedness of (1.1) has been studied by several authors in the last three
decades, for instance, see [21, 28, 29] and finally global well-posedness in H−1(R) was established
by Killip et al. [23]. Moreover, in case of α = 1, the global well-posedness of (1.1) in Hs(R), s ≥ 0
is proved in [20, 36]. For further discussion on global well-posedness, one can refer to [30]. In case
of α ∈ (1, 2), the local well-posedness has been established for Hs(R), s ≥ 0 in [10, 22]. However,
the approach of local well-posedness differs significantly from the KdV equation in which contraction
principle plays a crucial role. Due to high-low frequency interaction with the nonlinearity, one needs
to use the compactness arguments based on a priori estimates on the solution and smoothing effect
to establish the local well-posedness of (1.1) for α ∈ [1, 2) (see [10, 15, 31]). Using the frequency
dependent renormalization technique, Herr et al. [17] proved the well-posedness in L2(R) for all the
values of α ∈ (1, 2).

Several numerical methods have been developed for (1.1) in recent years. In particular, for α = 2,
Sjoberg [34] developed a semi-discrete scheme and analyzed the convergence of approximated solution.
Due to the requirements of finer grids and reduction in computational cost, many authors have looked
for more efficient fully discrete schemes. For instance, Holden et al. [19] designed a fully discrete finite
difference scheme and Dutta et al. [8] proved the convergence of a Crank–Nicolson Galerkin scheme
after proposing a higher order scheme in space [7] for the KdV equation. In a similar manner, for
α = 1, (1.1) has been investigated numerically by several authors. A convergent finite difference
scheme is developed in [6] and Galtung [11, 13] designed a fully discrete Galerkin scheme for the BO
equation. However, there is a limited literature concerning the numerical framework specifically for the
fractional KdV equation (1.1) with α ∈ (1, 2). The equation (1.1) exhibits two competing effects that
contribute to the difficulties encountered in the numerical approximation process. The inclusion of the
nonlinear convective term results in the emergence of infinite gradients in finite time, even for smooth
initial data. Additionally, the presence of the non-local dispersive term produces dispersive waves that
are hard to compute with high accuracy and efficiency. Consequently, due to the combined effects of
the nonlinear convective term and the dispersive term, designing an accurate and efficient numerical
framework for (1.1) remains a highly intricate task. Even though there is an operator splitting scheme
is studied in [9], there is a need for the convergent fully discrete scheme of (1.1).

In this paper, we propose a fully discrete scheme for (1.1). More precisely, the main ingredients of
this paper are enlisted below:

(1) In order to develop an efficient numerical scheme, motivated by the work of [6, 12] for the BO
equation and KdV equation respectively, we look for a higher order approximation in space and
second-order fully implicit time steeping scheme. We design a fully discrete Crank–Nicolson
type Galerkin scheme for the fractional KdV equation (1.1).

(2) Our goal is to ensure the existence of a sequence of discretized solutions which converge locally
to a weak solution of (1.1). This convergence result is established for the low regular initial data
L2(R). Following the techniques in Kato [21], we make use of intrinsic local smoothing effect
of the equation, i.e. u( · , t) ∈ H

α
2 (R) ∀ t. It is worth mentioning that the Kato type smoothing

effect exhibited by the fractional KdV equation is stronger than that of the BO equation, but
weaker than the KdV equation. This, coupled with the non-local dispersive term, justifies the
inclusion of fractional Sobolev spaces, leading to more intricate estimates compared to the case
of the KdV equation.
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(3) We investigate the theoretical convergence rates under certain assumptions on the initial data.
The obtained rates are further justified by the various numerical illustrations. The real solutions
of IVP (1.1) posses mainly three conserved quantities:

C1(u) : =
∫
R
u(x, t) dx, C2(u) :=

∫
R
u2(x, t) dx,

C3(u) :=
∫
R

(
(D

α
2 u)2 − u3

3

)
(x, t) dx,

where D is given by D := (−∆)
1
2 . A numerical scheme which preserves these conserved quanti-

ties are considered to be more accurate. We show that the proposed numerical scheme conserves
a discrete version of these quantities.

The rest of the paper is organized as follows: In Section 2, we establish some preliminary estimates
involving non-local dispersion pertaining to a partially discretized weak formulation of equation (1.1).
In addition, we demonstrate the Kato type local smoothing effect. In Section 3, we propose a fully
discrete scheme. Since the scheme is implicit in nature, we need to ensure the solvability at each time
step. In Section 4, We show the convergence of the scheme to a weak solution of (1.1) provided the
initial data belongs to L2(R). We investigate the theoretical convergence rates in Section 5. Finally,
we verify our theoretical findings through several numerical illustrations in Section 6.

2. Preliminary estimates and local smoothing effect

In this section, we shall provide necessary ingredients of our approach. To begin with, we mo-
mentarily define a weak solution of the fractional KdV equation (1.1) to be a function u(x, t) ∈
C1([0,∞);H1+α(R)) satisfies the following integral formulation:

⟨ut, v⟩ +
〈(

u2

2

)
x

, v

〉
+ ⟨Dαu, vx⟩ = 0 (2.1)

for all v ∈ H1+α(R), where the notation ⟨ · , · ⟩ denotes the usual L2-inner product.
We plan to discretize the equation (2.1) in time using the Crank–Nicolson method. Assuming the

time step size to be ∆t, we approximate u( · , tn) as un, where tn = n∆t and n is a non-negative
integer. We introduce the notation: un+ 1

2 := (un+1 + un)/2 and tn+ 1
2

= (tn + tn+1)/2. Furthermore,
given u0, we define un to be the solution of

⟨un+1, v⟩ + ∆t
〈(

(un+ 1
2 )2

2

)
x

, v

〉
+ ∆t⟨Dαun+ 1

2 , vx⟩ = ⟨un, v⟩, (2.2)

for any v ∈ H1+α(R) and n ≥ 0. Assuming the existence of a unique solution un+1 for the aforemen-
tioned equation, we can choose v = un+1 + un in (2.2), leading to∥∥∥un+1

∥∥∥2

L2(R)
= ∥un∥2

L2(R) = ∥u0∥2
L2(R), (2.3)

which further implies ∥∥∥un+ 1
2

∥∥∥2

L2(R)
≤ ∥u0∥2

L2(R). (2.4)

To derive the above estimates, we have taken into account the following lemma.
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Lemma 2.1. Let S(R) denote the Schwartz space. Then the Fractional Laplacian Dα with α ∈ (0, 2)
on R defined by (1.3) is a linear operator with the following properties:

(i) (Symmetric) Assume f, g ∈ S(R). Then there holds
⟨Dαf, g⟩ = ⟨f,Dαg⟩.

(An integration by parts formula for fractional Laplacian).

(ii) (Translation invariant) The Fractional Laplacian commutes with derivatives i.e., for the dif-
ferentiable functions f and g, we have

⟨Dαfx, g⟩ = −⟨Dαf, gx⟩ = ⟨(Dαf)x, g⟩.

(iii) The Fractional Laplacian satisfies
⟨Dαfx, f⟩ = 0.

(iv) (Semi-group property of fractional Laplacian) Assume f ∈ S(R) and α1, α2 > 0 with α1 +α2 <
2, then there holds

Dα1Dα2f = Dα1+α2f.

(v) ∥f∥2
Hs(R) = ∥Dsf∥2

L2(R), where s ∈ (0, 1).

Proof. (i) directly follows from the distributional definition [27] of fractional Laplacian. (ii) will be
followed by using the Plancherel theorem, i.e.∫

R
Dαfx(x)g(x) dx =

∫
R

F [Dαfx](ξ)F [g](ξ) dξ

=
∫
R

−iξ|ξ|αF [f ](ξ)F [g](ξ) dξ =
∫
R

(Dαf(x))xg(x) dx

=
∫
R

|ξ|αF [f ](ξ)iξF [g](ξ) dξ

= −
∫
R

F [Dαf ](ξ)F(gx)(ξ) dξ = −
∫
R

Dαf(x)gx(x) dx.

(iii) is a consequence of the properties (i) and (ii) as follows:
⟨Dαfx, f⟩ = −⟨f,Dαfx⟩ implies ⟨Dαfx, f⟩ = 0.

(iv) can be derived using the Fourier transform as follows:
F [Dα1Dα2f ](ξ) = |ξ|α1 |ξ|α2F [f ](ξ) = |ξ|α1+α2F [f ](ξ) = F [Dα1+α2f ](ξ),

and applying the inverse Fourier transform, we have the required identity. Finally, (v) is followed
from [4, Proposition 3.6].

Furthermore, it can be easily observed that the fractional Laplacian commutes with differentiation,
i.e. Dαfx = (Dαf)x. In addition, we mention few results associated to the Sobolev embedding and
interpolation inequality which will be instrumental for further analysis.
Lemma 2.2. Let p ∈ [1,∞) and s, s′ > 1 be any two real numbers. Let Ω ⊆ R be any open set and u
be a measurable function defined on Ω. If s′ ≥ s, then we have

∥u∥W s,p ≤ C∥u∥W s′,p

for some positive constant C depending only on s and p.
Proof. For the proof, one can refer to [4, Proposition 2.1].
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Lemma 2.3 ([4, Theorem 6.7]). Let s ∈ (0, 1) and p ∈ [1,∞) such that sp < n. Then there exists
a positive constant C = C(n, p, s) such that the Sobolev space W s,p(Rn) is continuously embedded in
Lq(Rn) for any q ∈ [p, p∗] with p∗ := np/(n− sp), i.e. for any f ∈ W s,p(Ω),

∥f∥Lq(Rn) ≤ C∥f∥W s,p(Rn). (2.5)

Lemma 2.4 ([29, Proposition 3.1]). If s1 ≤ s ≤ s2 with s = θs1 + (1 − θ)s2, 0 ≤ θ ≤ 1, then for any
suitable function u, we have

∥u∥Hs(Rn) ≤ ∥u∥θ
Hs1 (Rn)∥u∥1−θ

Hs2 (Rn). (2.6)

The above estimates will be essential throughout this paper and for several other identities relevant
to fractional Laplacian, one can refer to [4, 27].

In order to derive a local smoothing effect which bounds un locally in H
α
2 -norm, we follow the

approach originally introduced by Kato [21] for the KdV equation. In the work [8], it was demonstrated
that the solution operator of the KdV equation exhibits a smoothing effect attributed to dispersion.
The smoothing effect plays a significant role in the proof of existence of solutions when the initial
data belongs to L2(R). The technique, introduced by Kato [21], is based on the consequence of the
commutator identity mentioned in [12]. We introduce more general commutator operator involving
the remainder operator Sµ:

[Dµ, h] =: Sµ, µ ∈ R+, (2.7)
where h is the operator of multiplication by a smooth function and the commutator bracket [P,Q] :=
PQ − QP applies to operators P and Q acting on suitable Sobolev spaces with 0 ≤ µ ≤ 1, refer
to [13, 14]. Building upon the priori estimate from [2, 12, 13], we have:

Dµh = hDµ + Sµ(h), 0 ≤ µ ≤ 1,

and
|||Sµ||| ≤ 1√

2π
∥F [Dµh]∥L1(R) , (2.8)

where ||| · ||| denotes the operator norm in L2(R). Hence we have the following estimate:∣∣∣∣∣∣∣∣∣Sα
2

∣∣∣∣∣∣∣∣∣ ≤ 1√
2π

∥∥∥F [D
α
2 h]
∥∥∥

L1(R)
= 1√

2π

∥∥∥|ξ| α
2 F [h]

∥∥∥
L1(R)

≤ 1√
2π

∥(1 + |ξ|)F [h]∥L1(R) = 1√
2π

(
∥F [h]∥L1(R) +

∥∥F [h′]
∥∥

L1(R)

)
.

Note that since h ∈ C∞
c (R), we have h, h′ ∈ L1(R) and as a consequence, |F [h′](ξ)| ≤ C

(1+|ξ|) , where
C = C(∥h′∥L1(R)). We end up with the following estimate for the remainder operator:∣∣∣∣∣∣∣∣∣Sα

2

∣∣∣∣∣∣∣∣∣ ≤ 4C√
2π

=: CS . (2.9)

Motivated by Kato [21], we define a smooth cut-off function ϕ in the following way

(i) 1 ≤ ϕ(x) ≤ 2 + 2R,

(ii) ϕx(x) = 1 for |x| < R,

(iii) ϕx(x) = 0 for |x| ≥ R+ 1,

(iv) 0 ≤ ϕx(x) ≤ 1, for x ∈ R and

(v)
√
ϕx ∈ C∞

c (R),
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where R denotes a positive constant. Properties (i)–(v) can be obtained by standard mollifier methods
(for details, kindly refer to [13]). Taking into account the properties ϕ, we consider v = ϕun+ 1

2 =: ϕw
as an admissible test function in H1+α. Using the test function v = ϕw in (2.2), we obtain

1
2

∥∥∥un+1√ϕ∥∥∥2

L2(R)
+ ∆t

∫
R

D
α
2 wD

α
2 (ϕw)x dx+ ∆t

∫
R

(
w2

2

)
x

wϕdx = 1
2

∥∥∥un
√
ϕ
∥∥∥2

L2(R)
. (2.10)

Proposition 2.5. Let the initial data u0 ∈ L2(R) and un be the solution of (2.10). Then we have

un+ 1
2 ∈ ℓ2

(
[0,m∆t];H

α
2 ([−R,R])

)
, 0 ≤ m ≤ N, (2.11)

where R denotes a positive constant.

Proof. We start with the following identity, obtained by using the integration by parts∫
R

(
w2

2

)
x

wϕdx = −1
3

∫
R
w3ϕx dx

which can be estimated by applying the Cauchy–Schwarz inequality and estimates (2.5) and (2.6) as
follows

B1 :=
∫
R
w3ϕx dx ≤

(∫
R
w2 dx

) 1
2
(∫

R
w4ϕ2

x dx
) 1

2
= ∥w∥L2(R)

∥∥∥w√ϕx

∥∥∥2

L4(R)

≤ C ∥w∥L2(R)

∥∥∥w√ϕx

∥∥∥2

Hα/4(R)
≤ C ∥w∥L2(R)

∥∥∥w√ϕx

∥∥∥
L2(R)

∥∥∥w√ϕx

∥∥∥
H

α
2 (R)

.

Now B1 can be further estimated by using the inequality ab ≤ 1
2(a2 + b2) and the estimate (2.9)

B1 ≤ 1
2

∥∥∥w√ϕx

∥∥∥2

H
α
2 (R)

+ C2

2 ∥w∥2
L2(R)

∥∥∥w√ϕx

∥∥∥2

L2(R)

≤ 1
2∥D

α
2 (w

√
ϕx)∥2

L2(R) + 1
2

∥∥∥w√ϕx

∥∥∥2

L2(R)
+ C2

2 ∥w∥2
L2(R)

∥∥∥w√ϕx

∥∥∥2

L2(R)

≤ 1
2∥
√
ϕxD

α
2 w∥2

L2(R) + 1
2

∥∥∥Sα
2
(
√
ϕx)w

∥∥∥2

L2(R)

+ 1
2

∥∥∥w√ϕx

∥∥∥2

L2(R)
+ C2

2 ∥w∥2
L2(R)

∥∥∥w√ϕx

∥∥∥2

L2(R)

≤ 1
2∥
√
ϕxD

α
2 w∥2

L2(R) + 1
2CS ∥w∥2

L2(R) + 1
2
(
1 + C2 ∥w∥2

L2(R)

)
∥w∥2

L2(R) . (2.12)

Furthermore, we have the estimate by using the properties of ϕ and (2.9) as follows

B2 :=
∫
R

D
α
2 wD

α
2 (ϕw)x dx =

∫
R

D
α
2 w(D

α
2 (ϕw))x dx

=
∫
R

D
α
2 w
(
ϕD

α
2 w + Sα

2
(ϕ)w

)
x

dx =
∫
R

D
α
2 w
(
ϕxD

α
2 w + ϕD

α
2 wx + (Sα

2
(ϕ)w)x

)
dx

=
∫
R

D
α
2 w(ϕxD

α
2 w) dx+

∫
R

D
α
2 w(ϕD

α
2 wx) dx−

∫
R

D
α
2 wxSα

2
(ϕ)w dx

≥
∫
R

D
α
2 w(ϕxD

α
2 w) dx+

∫
R
wDαwx dx− CS

∫
R
wD

α
2 wx dx =

∥∥∥√ϕxD
α
2 w
∥∥∥2

L2(R)
, (2.13)
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since
∫
RwDαwx dx = 0 for all α ∈ (0, 2) by the Lemma 2.1. Subsequently, inserting the estimates for

B1 and B2 in (2.10), we obtain
1
2

∥∥∥un+1√ϕ∥∥∥2

L2(R)
+ ∆t∥

√
ϕxD

α
2 w∥2

L2(R) ≤ 1
2

∥∥∥un
√
ϕ
∥∥∥2

L2(R)
+ ∆t

6 ∥
√
ϕxD

α
2 w∥2

L2(R)

+ ∆t
6 CS ∥w∥2

L2(R) + ∆t
6 (1 + C2 ∥w∥2

L2(R)) ∥w∥2
L2(R) ,

which further becomes
1
2

∥∥∥un+1√ϕ∥∥∥2

L2(R)
+ 5∆t

6

∫
R
ϕx|D

α
2 un+ 1

2 |2 dx ≤ 1
2

∥∥∥un
√
ϕ
∥∥∥2

L2(R)
+ C

(
∥u0∥L2(R)

)
∆t, (2.14)

where the final estimate in (2.14) is due to the boundedness of the L2-norm of w (cf. (2.4)). After
dropping the positive second term on the left hand side in (2.14) and subsequently, summing over
n = 0 to n = m− 1 and observing that this is a telescoping sum, we end up with

∥um
√
ϕ∥2

L2(R) ≤ ∥u0√ϕ∥2
L2(R) + C

(
∥u0∥L2(R)

)
m∆t. (2.15)

Again in (2.14), first taking sum over from n = 0 to n = m and then dropping the term 1
2∥uk+1√

ϕ∥2
L2(R)

from the resulting estimate yields

∆t
m∑

n=0

∫ R

−R
ϕx|D

α
2 un+ 1

2 |2 dx ≤ 6
5

(1
2

∥∥∥un
√
ϕ
∥∥∥2

L2(R)
+ C

(
∥u0∥L2(R)

)
(m+ 1)∆t

)
. (2.16)

Combining the above estimates (2.15) and (2.16), we obtain (2.11). Hence the result follows.

Remark 2.6. The Kato type local smoothing effects in Proposition 2.5 illustrates that the temporal
discretization of the sequence space mentioned in (2.11) serves as a discrete analogous representation
of L2([0, T );H

α
2 ([−R,R])). We would like to point out that the solution obtained from the Crank–

Nicolson temporal discretized equation demonstrate a similar local smoothing effect observed in the
BO equation [12] and the KdV equation [7].

Remark 2.7. The local smoothing effect will play a crucial role in demonstrating the convergence of
the discretized solution of (1.1). The idea behind our approach is to consider the test function of the
form ϕv, where v belongs to a suitable finite element space. This approach was implemented for KdV
equation in [7] and for BO equation in [13]. The choice of test function has an advantage to obtain
H

α
2 -bound. However, the L2-estimate in (2.3) no longer follows directly by choosing an appropriate

test function.

Our objective is to derive the L2-estimate for the approximate solution of (1.1) while using the
test function of the type ϕv. In order to use the local smoothing effect, we introduce a suitable CFL
condition which will be instrumental to find the L2-bounds.

3. Discrete formulation

In this section, we propose a Galerkin scheme for spatial discretization along with the Crank–Nicolson
scheme for temporal discretization. At each discrete time step, our aim is to define a sequence of
functions approximating the exact solution of (1.1) using the weak formulation. Furthermore, an
iteration scheme will be devised to solve the implicit equation for each time step. As a consequence,
we also need to demonstrate the solvability of the resulting equation. We start by introducing the
following notations.
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3.1. Notation

To establish the finite element space, we partition the spatial domain into equally-sized elements in the
form of intervals. For each j ∈ Z, let the grid points be xj = j∆x, where ∆x represents the spatial step
length. Consequently, we denote the spatial grid cells Ij = [xj−1, xj ]. Similarly, for the discretization of
time, we fix a time horizon T > 0 and set tn = n∆t for n ∈ {0, 1, 2, . . . , N}, where ∆t is the temporal
step length and

(
N + 1

2

)
∆t = T. Furthermore, we introduce the notation tn+ 1

2
= (tn + tn+1)/2.

We define the weighted L2-inner product with the weight function ϕ defined in the previous section

⟨u, v⟩ϕ := ⟨u, vϕ⟩,

and the associated weighted norm ∥u∥2,ϕ =
√

⟨u, uϕ⟩.

3.2. Galerkin Scheme

We propose a Galerkin scheme for (1.1) using the weak formulation (2.1). In particular, we seek an
approximation u∆x of (1.1) belongs to the finite element space

S∆x = {v ∈ H1+α(R) | v ∈ Pr(Ij), j ∈ Z}

for all t ∈ [0, T ], where r ≥ 2, and Pr(Ij) denotes the space of polynomials on Ij with degree at most r.
We define P as the L2-orthogonal projection onto the space S∆x and set u0 = Pu0. We define the

sequence {un} such that un+1 ∈ S∆x satisfies

⟨un+1, ϕv⟩ − ∆t
〈

(un+ 1
2 )2

2 , (ϕv)x

〉
+ ∆t

〈
D

α
2 un+ 1

2 ,D
α
2 (ϕv)x

〉
= ⟨un, ϕv⟩, (3.1)

for all v ∈ S∆x and n ∈ {0, 1, . . . , N}. Due to the implicit nature of the scheme (3.1) and in order
to find un+1 from the nonlinear equation (3.1), we need to consider the solvability at each time step.
Since P is the L2-projection operator, there holds ∥u0∥L2(R) ≤ ∥u0∥L2(R).

3.3. Solvability for each time step

In order to demonstrate the existence of a solution un for each time step, we refer to the approach
in [8] and [13] for KdV equation and BO equation respectively. Let us define the iterative scheme as
follows: for every v ∈ S∆x,⟨wℓ+1, ϕv⟩ − ∆t

2

〈(
wℓ+un

2

)2
, (ϕv)x

〉
+ ∆t

〈
D

α
2
(

wℓ+1+un

2

)
,D

α
2 (ϕv)x

〉
= ⟨un, ϕv⟩,

w0 = un.
(3.2)

The above iterative scheme can be considered as a Galerkin scheme of a linear problem involving the
bilinear form in wℓ+1 and v. The coercivity in the L2-norm of the bilinear form can be shown by
representing the scheme (3.2) in the following form with the given right hand side〈(

1 − ∆t
2 Dα

x

)
wℓ+1, ϕv

〉
= ∆t

2

〈(
wℓ + un

2

)2

, (ϕv)x

〉
+ ∆t

2 ⟨Dα
xu

n, ϕv⟩ + ⟨un, ϕv⟩. (3.3)

More precisely, we define the bilinear form a : H1+α(R) ×H1+α(R) → R as

a(wℓ+1, v) :=
〈(

1 − ∆t
2 Dα

x

)
wℓ+1, ϕv

〉
.
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With the help of ϕ ≥ 1 and estimate for B2, we have the following estimate〈(
1 − ∆t

2 Dα
x

)
wℓ+1, ϕwℓ+1

〉
=
〈
wℓ+1, ϕwℓ+1

〉
− ∆t

2
〈
Dα

xw
ℓ+1, ϕwℓ+1

〉
≥
∥∥∥wℓ+1

∥∥∥2

L2(R)
+ ∆t

2
〈
D

α
2 wℓ+1,D

α
2 (ϕwℓ+1)x

〉
≥
∥∥∥wℓ+1

∥∥∥2

L2(R)
+ ∆t

2 ∥
√
ϕxD

α
2 wℓ+1∥2

L2(R) ≥
∥∥∥wℓ+1

∥∥∥2

L2(R)
.

Hence there exists a unique solution wℓ+1 of (3.2) in S∆x by using the Lax–Miligram lemma. After-
wards, the solvability of the implicit scheme (3.1) is guaranteed by the following lemma.

Lemma 3.1. Let us consider the iterative scheme (3.2) and assume that the following CFL condition
holds:

λ ≤ L

2
√
C2K ∥un∥2,ϕ

, (3.4)

where the constant L is chosen such that 0 < L < 1 and K is defined by

K = 5 − L

1 − L
> 5.

The constant C2 in (3.4) is independent of un and ∆x, and λ is given by

λ = ∆t
∆x

3
2
.

Then there exists a function un+1 that solves (3.1), and limℓ−→∞wℓ = un+1. Furthermore, the following
estimate holds ∥∥∥un+1

∥∥∥
2,ϕ

≤ K ∥un∥2,ϕ . (3.5)

Proof. We introduce the notation
G(un, ϕv) := ⟨un, ϕv⟩ + ∆t

8
〈
(un)2, (ϕv)x

〉
− ∆t

2
〈
D

α
2 un,D

α
2 (ϕv)x

〉
,

and consequently, the iterative scheme (3.2) can be rewritten as

⟨wℓ+1, ϕv⟩ + ∆t
4
〈
(wℓun)x, ϕv

〉
+ ∆t

4
〈
wℓwℓ

x, ϕv
〉

+ ∆t
2
〈
D

α
2 wℓ+1,D

α
2 (ϕv)x

〉
= G(un, ϕv),

for all v ∈ S∆x. Since the parameter ℓ is not involved in the right hand side, we obtain

⟨wℓ+1 − wℓ, ϕv⟩ + ∆t
4
〈(
un(wℓ − wℓ−1)

)
x
, ϕv

〉
+ ∆t

4
〈
wℓwℓ

x − wℓ−1wℓ−1
x , ϕv

〉
+ ∆t

2
〈
D

α
2 (wℓ+1 − wℓ),D

α
2 (ϕv)x

〉
= 0.

We choose v = wℓ+1 − wℓ =: w in the above equation to obtain

⟨w, ϕw⟩ + ∆t
2
〈
D

α
2 w,D

α
2 (ϕw)x

〉
= −∆t

4
〈
(un(wℓ − wℓ−1))x, ϕw

〉
︸ ︷︷ ︸

A1

−∆t
4
〈
wℓwℓ

x − wℓ−1wℓ−1
x , ϕw

〉
︸ ︷︷ ︸

A2

. (3.6)

Taking into account the estimate of B2 in Proposition 2.5 and using the fact that ϕ ≥ 1, we have〈
D

α
2 w,D

α
2 (ϕw)x

〉
≥ ∥

√
ϕxD

α
2 w∥2

L2(R) ≥ 0. (3.7)
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Afterwards, we estimate A2 using the Young’s inequality

A2 = 1
4

∫
R

(−∆t)(wℓwℓ
x − wℓ−1wℓ−1

x )ϕw dx

≤ ∆t2

8

∫
R

((wℓ − wℓ−1)wℓ
x + wℓ−1(wℓ

x − wℓ−1
x ))2ϕ dx+ 1

8

∫
R
w2ϕ dx

≤ ∆t2

4
(
∥wℓ

x∥2
L∞(R)∥w

ℓ − wℓ−1∥2
2,ϕ + ∥wℓ

x − wℓ−1
x ∥2

L∞(R)∥w
ℓ−1∥2

2,ϕ

)
+ 1

8 ∥w∥2
2,ϕ

≤ C2∆t2

4∆x3

(
∥wℓ∥2

L2(R)∥w
ℓ − wℓ−1∥2

2,ϕ + ∥wℓ − wℓ−1∥2
L2(R)∥w

ℓ−1∥2
2,ϕ

)
+ 1

8 ∥w∥2
2,ϕ ,

where we have used the following inverse inequalities [3, p. 142] in the last estimate

∥wℓ
x∥L∞(R) ≤ C

1
2
1

(∆x)
1
2

∥wℓ
x∥L2(R) ≤ C

1
2
2

(∆x)
3
2

∥wℓ∥L2(R), (3.8)

where C1 and C2 are independent of wℓ and ∆x. Using the definition of λ, we end up with

A2 ≤ 1
8 ∥w∥2

2,ϕ + C2λ
2

2 max{∥wℓ∥2
2,ϕ, ∥wℓ−1∥2

2,ϕ}∥wℓ − wℓ−1∥2
2,ϕ. (3.9)

In a similar way, we also get the estimate of A1

A1 ≤ ∆t2

8

∫
R

(
(un(wℓ − wℓ−1))x

)2
ϕ dx+

∫
R
w2ϕ dx

which in turn becomes

A1 ≤ 1
8 ∥w∥2

2,ϕ + C2λ
2

2 ∥un∥2
2,ϕ ∥wℓ − wℓ−1∥2

2,ϕ. (3.10)

Combining the estimates (3.7), (3.9) and (3.10) together in (3.6), we have the following bound for
ℓ ≥ 1, ∥∥∥wℓ+1 − wℓ

∥∥∥2

2,ϕ
≤ 2

3C2λ
2 max{∥wℓ∥2

2,ϕ, ∥wℓ−1∥2
2,ϕ, ∥un∥2

2,ϕ}∥wℓ − wℓ−1∥2
2,ϕ. (3.11)

For the bound of w1, setting ℓ = 0 in (3.2), we get

⟨w1 − un, ϕv⟩ + ∆t
〈

Dα

(
w1 + un

2

)
, (ϕv)x

〉
= ∆t

2
〈
(un)2 , (ϕv)x

〉
= −∆t ⟨unun

x, ϕv⟩ .

Choosing v = un+w1

2 yields
1
2

∫
R

(
(w1)2 − (un)2

)
ϕ dx+ ∆t

∫
R

Dα

(
w1 + un

2

)(
ϕ
un + w1

2

)
x

dx = −∆t
∫
R
unun

xϕ
un + w1

2 dx.

Again, estimating the term involving fractional Laplacian as before, using the Young’s inequality and
inverse inequality leads to

∥w1∥2
2,ϕ ≤ 4(1 + C2λ

2 ∥un∥2
2,ϕ) ∥un∥2

2,ϕ . (3.12)
Then we claim that the following holds∥∥∥wℓ+1 − wℓ

∥∥∥
2,ϕ

≤ L∥wℓ − wℓ−1∥2,ϕ, ℓ ≥ 1, (3.13)

∥wℓ∥2,ϕ ≤ K ∥un∥2,ϕ , ℓ ≥ 1, (3.14)
∥w1∥2,ϕ ≤ 3 ∥un∥2,ϕ . (3.15)

We prove the claim by an induction argument. We use the CFL condition (3.4) and (3.12) to get
∥w1∥2,ϕ ≤

(
2 + 2

√
C2λ ∥un∥2,ϕ

)
∥un∥2,ϕ

≤
(

2 + L

K

)
∥un∥2,ϕ ≤ 3 ∥un∥2,ϕ ≤ K ∥un∥2,ϕ ,
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and hence (3.14) holds for ℓ = 1. Setting ℓ = 1 in (3.11) and using (3.4), we obtain

∥w2 − w1∥2,ϕ ≤
√

2
3C2λmax{∥w1∥2,ϕ, ∥un∥2,ϕ}∥w1 − un∥2,ϕ

≤
(

3
√

2
3C2λ ∥un∥2,ϕ

)
∥w1 − un∥2,ϕ

≤ 3L
2K ∥w1 − un∥2,ϕ ≤ L∥w1 − un∥2,ϕ.

Hence (3.13) holds for ℓ = 1. Afterwards, we assume that (3.13) and (3.14) hold for ℓ = 1, 2, 3, . . . ,m.
Then

∥wm+1∥2,ϕ ≤
m∑

ℓ=0

∥∥∥wℓ+1 − wℓ
∥∥∥

2,ϕ
+ ∥w0∥2,ϕ ≤ ∥w1 − w0∥2,ϕ

m∑
ℓ=0

Lℓ + ∥w0∥2,ϕ

≤ 4 ∥un∥2,ϕ

1
1 − L

+ ∥un∥2,ϕ = 5 − L

1 − L
∥un∥2,ϕ = K ∥un∥2,ϕ .

Thus (3.14) holds for all ℓ. The above estimate together with (3.11) and (3.4) leads to

∥wm+2 − wm+1∥2,ϕ ≤
√

2
3C2λmax{∥wm+1∥2,ϕ, ∥wm∥2,ϕ, ∥un∥2,ϕ}∥wm+1 − wm∥2,ϕ

≤
√

2
3C2λK ∥un∥2,ϕ ∥wm+1 − wm∥2,ϕ ≤ L∥wm+1 − wm∥2,ϕ.

This shows that (3.13) holds for all ℓ as well. Since we have 0 < L < 1, the sequence {wℓ} is a Cauchy
sequence and it converges to un+1. Hence the proof follows.

4. Convergence of the scheme

In this section, we will prove the convergence of the proposed Crank–Nicolson Galerkin scheme (3.1).
As we have mentioned before, the inherent Kato type local smoothing effect of the fractional KdV
equation (1.1) helps us to obtain the H

α
2

loc(R)-estimate of the approximate solution induced by the
scheme (3.1).

Lemma 4.1. Let λ, K and L be defined as in Lemma 3.1 and un be the solution of the scheme (3.1).
Assume the time step ∆t satisfies

λ ≤ L

2
√
C2K

√
Y
, (4.1)

where Y = Y
(
∥u0∥L2(R)

)
. Then there exist time T > 0 and a constant C, both depending only on

∥u0∥L2(R) such that for all n satisfying n∆t ≤ T , the following estimate holds

∥un∥L2(R) ≤ C
(
∥u0∥L2(R)

)
. (4.2)

In addition, the approximation un satisfies the following H
α
2 -estimate

∆t
∑

(n+ 1
2 )∆t≤T

∥∥∥D α
2 un+ 1

2

∥∥∥2

L2([−R,R])
≤ C

(
∥u0∥L2(R)

)
. (4.3)
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Proof. We observe that (2.10) holds by choosing v = un+ 1
2 in (3.1) and consequently, using the

estimates in (2.12) and (2.13), we deduce∫
R

(
un+1

)2
ϕ dx+ 2∆t

∫
R

∣∣∣D α
2 un+ 1

2

∣∣∣2 ϕx dx

≤
∫
R

(un)2 ϕ dx+ 2∆t
3

∫
R

∣∣∣D α
2 un+ 1

2

∣∣∣2 ϕx dx+ 2∆t
3 Cs

∫
R

(
un+ 1

2
)2
ϕ dx

+ ∆t
3

∫
R

(
un+ 1

2
)2
ϕ dx+ ∆t

3 C2
(∫

R

(
un+ 1

2
)2
ϕ dx

)2

which further turns into∫
R

(
un+1

)2
ϕ dx+ 4

3∆t
∫
R

∣∣∣D α
2 un+ 1

2

∣∣∣2 ϕx dx

≤
∫
R

(un)2 ϕ dx+ C∆t
[∫

R

(
un+ 1

2
)2
ϕ dx+

(∫
R

(
un+ 1

2
)2
ϕ dx

)2
]
. (4.4)

By dropping the non-negative term involving the fractional derivative in (4.4) and denoting an :=∫
R (un)2 ϕ dx implies

an+1 ≤ an + ∆tf(an+ 1
2
), (4.5)

where the function f is given by

f(a) = C(a+ a2).

It can be easily seen that an+ 1
2

≤ (an + an+1)/2 and hence {an} satisfies the differential inequality
da
dt ≤ f(a).

We claim that
an ≤ y(tn) for every n ≥ 0, (4.6)

where y satisfies the following initial value problem
dy
dt = f

(
K2+1

2 y
)
, t > 0,

y(0) = a0,
(4.7)

in which K occurs from the Lemma 3.1. Thanks to the locally Lipschitz contintinuity of f , the solution
of (4.7) is unique and moreover, it is strictly increasing and convex. However, it blows up in finite
time, say at t = T∞ and hence we choose T = T∞/2. We argue via induction to prove (4.6). We
assume that (4.6) holds for n ∈ {0, 1, 2, . . . ,m}. As 0 ≤ am ≤ y(T ), (4.1) implies that (3.4) holds, and
thus Lemma 3.1 gives am+1 ≤ K2am. As a consequence, using the convexity of f , we obtain

am+1 ≤ am + ∆tf
(
K2 + 1

2 am

)
≤ y(tm) + ∆tf

(
K2 + 1

2 y(tm)
)

≤ y(tm+1).

Hence the claim (4.6) follows. Since ϕ ≥ 1, we obtain the L2-stability estimate (4.2). Afterwards,
summing (4.4) over n yields the estimate

∆t
∑

(n+ 1
2 )∆t≤T

∥∥∥D α
2 un+ 1

2

∥∥∥2

L2([−R,R])
≤ C

(
∥u0∥L2(R)

)
.

This completes the proof.
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4.1. Bounds on temporal derivatives

In order to carry out the convergence analysis, we require certain temporal derivative bounds on
the approximated solution of (3.1). For this, we need to introduce a suitable projection operator. By
adopting the approach from the monograph of Ciarlet [3], we can ensure the existence of the projection
map P on S∆x. More precisely, we have

Lemma 4.2. Let ψ ∈ C∞
c (−R,R) and ϕ be defined by properties (i)–(iv) in Section 2. Then there

exists a projection operator P : C∞
c (−R,R) −→ S∆x ∩ Cc(−R,R) such that∫

R
uP (ψ)ϕ dx =

∫
R
uψϕdx, u ∈ S∆x. (4.8)

In addition, P satisfies the bounds
∥P (ψ)∥L2(R) ≤ C∥ψ∥L2(R),

∥P (ψ)∥H1(R) ≤ C∥ψ∥H1(R),

∥P (ψ)∥H2(R) ≤ C∥ψ∥H2(R),

(4.9)

where the constant C is independent of ∆x.
Moreover, there holds

∥P (ψ)∥
H

α
2 (R) ≤ C∥ψ∥

H
α
2 (R). (4.10)

For the proof of (4.9)–(4.10), one can refer to [13, 35]. From the definition of the dual norms in
H−s(R) and H−s([−R,R]) for all s ∈ R+, we have the estimates∫

R
fg dx ≤ ∥f∥H−s(R)∥g∥Hs(R) for all f ∈ H−s(R), g ∈ Hs(R), (4.11)

and for f ∈ H−s([−R,R]), g ∈ Hs([−R,R]), there holds∫ R

−R
fg dx ≤ ∥f∥H−s([−R,R])∥g∥Hs([−R,R]). (4.12)

With the help of Lemma 4.2, we have the estimates on the temporal derivatives stated as follows:

Lemma 4.3. Let {un} be the solution of the scheme (3.1). Suppose the hypothesis of Lemma 4.1
holds. Then we have the estimate

∥D+
t u

nϕ∥H−2([−R,R]) ≤ C
(
∥u0∥L2(R) , R

)(
1 +

∥∥∥D α
2 un+ 1

2

∥∥∥
L2([−R,R])

)
, (4.13)

where D+
t is the forward time difference operator

D+
t u

n = un+1 − un

∆t .

Proof. The scheme (3.1) can be rewritten as〈
D+

t u
n, ϕv

〉
=
〈

(un+ 1
2 )2

2 , (ϕv)x

〉
−
〈
D

α
2 un+ 1

2 ,D
α
2 (ϕv)x

〉
, v ∈ S∆x. (4.14)

We choose v = P (ψ) in (4.14), where ψ ∈ C∞
c (−R,R) and P is the projection operator described in

the Lemma 4.2, to obtain〈
D+

t u
n, ϕP (ψ)

〉
=
〈

(un+ 1
2 )2

2 , (ϕP (ψ))x

〉
−
〈
D

α
2 un+ 1

2 ,D
α
2 (ϕP (ψ))x

〉
. (4.15)

119



Mukul Dwivedi & Tanmay Sarkar

Using the estimates in (4.9), we have∫
R

(
un+ 1

2
)2

(ϕP (ψ))x dx

≤
(
∥P (ψ)∥L∞([−R,R]) + ∥P (ψ)x∥L∞([−R,R])(2 + 2R)

) ∫ R

−R

(
un+ 1

2
)2

dx

≤
(
∥P (ψ)∥H1([−R,R]) + ∥P (ψ)x∥H1([−R,R])(2 + 2R)

) ∥∥∥un+ 1
2

∥∥∥2

L2(R)

≤ C(∥u0∥L2(R) , R)∥ψ∥H2([−R,R]),

where we have used the Sobolev inequality and the bound (4.2). We also deduce the following estimate
by using the Cauchy–Schwarz inequality and properties of ϕ

−
〈
D

α
2 un+ 1

2 ,D
α
2 (ϕP (ψ))x

〉
≤
∥∥∥D α

2 un+ 1
2

∥∥∥
L2([−R,R])

∥∥∥D α
2 (ϕP (ψ))x

∥∥∥
L2([−R,R])

≤ C(R)
∥∥∥D α

2 un+ 1
2

∥∥∥
L2([−R,R])

∥P (ψ)∥
H1+ α

2 ([−R,R])

≤ C(R)
∥∥∥D α

2 un+ 1
2

∥∥∥
L2([−R,R])

∥ψ∥H2([−R,R]) ,

where we have used the estimate (4.9). Combining the above estimates together in (4.15), we end up
with ∣∣∣∣∣

∫ R

−R
D+

t u
nϕP (ψ) dx

∣∣∣∣∣ =
∣∣∣∣∣
∫ R

−R
D+

t u
nϕψ dx

∣∣∣∣∣
≤ C

(
∥u0∥L2(R), R

)(
1 +

∥∥∥D α
2 un+ 1

2

∥∥∥
L2([−R,R])

)
∥ψ∥H2([−R,R]),

and the estimate (4.13) follows.

4.2. Convergence to a weak solution.

We start by defining the weak solution of the Cauchy problem (1.1).

Definition 4.4. Let Q > 0 and u0 ∈ L2(R). Then u ∈ L2(0, T ;H
α
2 (−Q,Q)) is said to be a weak

solution of (1.1) in the region (−Q,Q) × [0, T ) if

∫ T

0

∫
R

(
φtu+ φx

u2

2 − D
α
2 φxD

α
2 u

)
dx dt+

∫
R
φ(x, 0)u0(x) dx = 0, (4.16)

for all φ ∈ C∞
c ((−Q,Q) × [0, T )).

Next we define the approximate solution u∆x ∈ S∆x by the interpolation formula

u∆x(x, t) =

u
n− 1

2 (x) + (t− tn− 1
2
)D+

t u
n− 1

2 (x), t ∈ [tn− 1
2
, tn+ 1

2
), n ≥ 1,

u0(x) + 2tu
1
2 (x)−u0(x)

∆t , t ∈ [0, t 1
2
).

(4.17)

Hereby, our aim is to demonstrate the convergence of u∆x(x, t) to a weak solution of (1.1). More
precisely, we have the following result.

120



Convergence of CNGS for the fractional KdV

Theorem 4.5. Let u0 ∈ L2(R) and {un}n∈N be a sequence of function defined by the scheme (3.1).
Further, assume that ∆t = O(∆x2). Then there exist a time T > 0 and a contant C, depending only
on R and ∥u0∥L2(R) such that

∥u∆x∥L∞(0,T ;L2([−R,R])) ≤ C(∥u0∥L2(R) , R), (4.18)
∥u∆x∥

L2(0,T ;H
α
2 ([−R,R])) ≤ C(∥u0∥L2(R) , R), (4.19)

∥∂t(u∆xϕ)∥L2(0,T ;H−2([−R,R])) ≤ C(∥u0∥L2(R) , R), (4.20)

where u∆x is described by (4.17). Moreover, there exist a sequence {∆xj}∞
j=1 and as ∆xj −−−−→

j−→∞
0

u∆xj
−→ u strongly in L2(0, T ;L2([−R,R])), (4.21)

where u ∈ L2(0, T ;L2([−R,R])) is a weak solution of the Cauchy problem (1.1) in the sense of Defi-
nition 4.4 for Q = R− 1.
Proof. Let us consider T = (N + 1/2)∆t for some N ∈ N. Then u∆x(x, t) can be represented by

u∆x(x, t) = (1 − αn(t))un− 1
2 (x) + αn(t)un+ 1

2 (x), t ∈ [tn− 1
2
, tn+ 1

2
),

where αn ∈ [0, 1) is given by αn = (t− tn− 1
2
)/∆t.

For t ∈ [tn− 1
2
, tn+ 1

2
), n = 1, 2 . . . , N, using (4.2), we have

∥u∆x∥L2(R) ≤
∥∥∥un− 1

2

∥∥∥
L2(R)

+
∥∥∥un+ 1

2

∥∥∥
L2(R)

≤ C
(
∥u0∥L2(R)

)
.

Again, for t ∈ [0, t 1
2
), we have

∥u∆x∥L2(R) ≤ |1 − (2t)/∆t|∥u0∥L2(R) + |2t/∆t|∥u
1
2 ∥L2(R) ≤ C

(
∥u0∥L2(R)

)
.

This proves (4.18). Next we have∫ T

0

∥∥∥D α
2 u∆x

∥∥∥2

L2([−R,R])
dt

≤ 2
∥∥∥D α

2 u0
∥∥∥2

L2([−R,R])

∫ t 1
2

0

(
1 − 2t

∆t

)2
dt+ 2

∥∥∥D α
2 u0

∥∥∥2

L2([−R,R])

∫ t 1
2

0

( 2t
∆t

)2
dt

+ 2
N∑

n=1

∥∥∥D α
2 un− 1

2

∥∥∥2

L2([−R,R])

∫ t
n+ 1

2

t
n− 1

2

(1 − αn(t))2 dt

+ 2
N∑

n=1

∥∥∥D α
2 un+ 1

2

∥∥∥2

L2([−R,R])

∫ t
n+ 1

2

t
n− 1

2

(αn(t))2 dt

≤ C∆t∥u0∥2
H1([−R,R]) + 2∆t

N∑
n=1

∥∥∥D α
2 un+ 1

2

∥∥∥2

L2([−R,R])

= C∆t∥u0∥2
L2([−R,R]) + C∆t∥u0

x∥2
L2([−R,R]) + 2∆t

N∑
n=1

∥∥∥D α
2 un+ 1

2

∥∥∥2

L2([−R,R])
,

where we have taken into account the Sobolev inequality ∥u0∥
H

α
2 ([−R,R]) ≤ C∥u0∥H1([−R,R]). By the

help of (4.3) and the inverse inequality (3.8) along with the assumption ∆t ≤ C∆x2, provide the
estimate (4.19).
We observe that

∂tu∆x =


D+

t u
n− 1

2 = D+
t un+D+

t un−1

2 , (x, t) ∈ R × [tn− 1
2
, tn+ 1

2
),

u
1
2 −u0

∆t/2 = D+
t u

0, (x, t) ∈ R × [0, t 1
2
).
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Thus, using the bounds (4.13) and (4.3), we get∫ T

0
∥∂t(u∆xϕ)∥2

H−2(R) dt

≤
∫ t 1

2

0

∥∥∥D+
t u

0ϕ
∥∥∥2

H−2(R)
dt+ 1

2

N∑
n=1

∫ t
n+ 1

2

t
n− 1

2

(∥∥∥D+
t u

nϕ
∥∥∥2

H−2(R)
+
∥∥∥D+

t u
n−1ϕ

∥∥∥2

H−2(R)

)
dt

≤ C

∫ t 1
2

0

∥∥∥D α
2 u

1
2

∥∥∥2

L2([−R,R])
dt+ C

2

N∑
n=1

∫ t
n+ 1

2

t
n− 1

2

(∥∥∥D α
2 un+ 1

2

∥∥∥2

L2([−R,R])
+
∥∥∥D α

2 un− 1
2

∥∥∥2

L2([−R,R])

)
dt

≤ C

2 ∆t
∥∥∥D α

2 u
1
2

∥∥∥2

L2([−R,R])
+ C

2 ∆t
N∑

n=1

(∥∥∥D α
2 un+ 1

2

∥∥∥2

L2([−R,R])
+
∥∥∥D α

2 un− 1
2

∥∥∥2

L2([−R,R])

)
≤ C

(
∥u0∥L2(R) , R

)
.

Considering the properties of ϕ and using the estimates (4.18) and (4.19), we obtain
∥ϕu∆x∥L∞(0,T ;L2([−R,R])) ≤ C

(
∥u0∥L2(R) , R

)
, (4.22)

∥ϕu∆x∥
L2(0,T ;H

α
2 ([−R,R])) ≤ C

(
∥u0∥L2(R) , R

)
. (4.23)

Based on the bounds (4.22), (4.23) and (4.20), we apply the Aubin–Simon compactness lemma (cf. [18,
Lemma 4.4]) to the set {ϕu∆x}. Then there exists a sequence {∆xj}j∈N such that ∆xj −→ 0 as j tends
to infinity, and a function ũ such that

ϕu∆xj
−→ ũ strongly in L2(0, T ;L2([−R,R])), (4.24)

and subsequently, as ϕ ≥ 1, there exists u = 1
ϕ ũ such that (4.21) holds. The strong convergence ensures

the limit can be passed through the nonlinear term.
Our next aim is to show that u is, in fact, a weak solution to (1.1). The standard L2-projection of a
function ψ ∈ Ck+1(R) onto the finite element space S∆x for some k ∈ N0, denoted by P, satisfies∫

R
(Pψ(x) − ψ(x))v(x) dx = 0, ∀v ∈ S∆x.

Furthermore, the projection operator P satisfies (see Ciarlet [3])
∥ψ − Pψ∥Hk(R) ≤ C∆x∥ψ∥Hk+1(R), (4.25)

where the constant C is independent of ∆x.
For v ∈ S∆x and n ≥ 1, taking into account (4.14), we have〈

D+
t u

n, ϕv
〉

−
〈

(un+ 1
2 )2

2 , (ϕv)x

〉
+
〈
D

α
2 un+ 1

2 ,D
α
2 (ϕv)x

〉
= 0,

〈
D+

t u
n−1, ϕv

〉
−
〈

(un− 1
2 )2

2 , (ϕv)x

〉
+
〈
D

α
2 un− 1

2 ,D
α
2 (ϕv)x

〉
= 0.

By taking average of the above two relations gives

Gn(ϕv) :=
〈
D+

t u
n− 1

2 , ϕv
〉

−
〈

(un+ 1
2 )2 + (un− 1

2 )2

2 , (ϕv)x

〉
+
〈

D
α
2
un+ 1

2 + un− 1
2

2 ,D
α
2 (ϕv)x

〉
= 0.

(4.26)
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Our aim is to demonstrate that∫ T

0

∫
R

(
∂tu∆xϕv − (u∆x)2

2 (ϕv)x − (D
α
2 u∆x)D

α
2 (ϕv)x

)
dx dt = O(∆x), (4.27)

for any test function v ∈ C∞
c ((−R+ 1, R− 1) × [0, T )), where ϕ is specified in Section 2. We proceed

as follows∫ T

0

∫
R

(
∂tu∆xϕv − (u∆x)2

2 (ϕv)x − (D
α
2 u∆x)D

α
2 (ϕv)x

)
dx dt

=
∫ t 1

2

0

∫
R

(
∂tu∆xϕv − (u∆x)2

2 (ϕv)x − (u∆x)Dα(ϕv)x

)
dx dt

+
N∑

n=1

∫ t
n+ 1

2

t
n− 1

2

∫
R

(
∂tu∆xϕv − (u∆x)2

2 (ϕv)x − (u∆x)Dα(ϕv)x

)
dx dt

=: I∆x + E∆x.

We choose the test function as v∆x := Pv and observe that I∆x and E∆x can be rewritten as

I∆x =
∫ t 1

2

0

∫
R

(
(D+

t u
0)ϕv∆x − (u

1
2 )2

2 (ϕv∆x)x − (D
α
2 u

1
2 )D

α
2 (ϕv∆x)x

)
dx︸ ︷︷ ︸

=0

dt

+
∫ t 1

2

0

∫
R

(D+
t u

0)ϕ(v − v∆x) dx dt︸ ︷︷ ︸
I∆x

1

−
∫ t 1

2

0

∫
R

(u
1
2 )2

2 (ϕ(v − v∆x))x dx dt︸ ︷︷ ︸
I∆x

2

−
∫ t 1

2

0

∫
R

[
(u∆x)2

2 − (u
1
2 )2

2

]
(ϕv)x dx dt︸ ︷︷ ︸

I∆x
3

−
∫ t 1

2

0

∫
R

(
u

1
2
)

Dα(ϕ(v − v∆x))x dx dt︸ ︷︷ ︸
I∆x

4

−
∫ t 1

2

0

∫
R

(
u∆x − u

1
2
)

Dα(ϕv)x dx dt︸ ︷︷ ︸
I∆x

5

,

and

E∆x =
N∑

n=1

∫ t
n+ 1

2

t
n− 1

2

Gn(ϕv∆x)︸ ︷︷ ︸
=0

dt+
N∑

n=1

∫ t
n+ 1

2

t
n− 1

2

∫
R

(
D+

t u
n− 1

2
)
ϕ(v − v∆x) dx dt

︸ ︷︷ ︸
E∆x

1

−
N∑

n=1

∫ t
n+ 1

2

t
n− 1

2

∫
R

1
2

(un+ 1
2 )2 + (un− 1

2 )2

2 (ϕ(v − v∆x))x dx dt

︸ ︷︷ ︸
E∆x

2

−
N∑

n=1

∫ t
n+ 1

2

t
n− 1

2

∫
R

1
2

[
(u∆x)2 − (un+ 1

2 )2 + (un− 1
2 )2

2

]
(ϕv)x dx dt

︸ ︷︷ ︸
E∆x

3
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−
N∑

n=1

∫ t
n+ 1

2

t
n− 1

2

∫
R

(
un+ 1

2 + un− 1
2

2

)
Dα(ϕ(v − v∆x))x dx dt

︸ ︷︷ ︸
E∆x

4

−
N∑

n=1

∫ t
n+ 1

2

t
n− 1

2

∫
R

(
u∆x − un+ 1

2 + un− 1
2

2

)
Dα(ϕv)x dx dt

︸ ︷︷ ︸
E∆x

5

.

We estimate the terms I∆x
i and E∆x

i , i = 1, 2, 3, 4, 5. From (4.11), (4.25) and (4.20), we obtain

I∆x
1 + E∆x

1 =
∫ T

0

∫ R

−R
∂tu∆xϕ(v − v∆x) dx dt

≤
∫ T

0
∥∂tu∆xϕ∥H−2([−R,R])∥v − v∆x∥H2([−R+1,R−1]) dt

≤ C∆x
(
∥u0∥L2(R) , R

)
∥v∥L2(0,T ;H3([−R+1,R−1]))

∆x−→0−−−−→ 0.
From (4.2) and (4.25), we get

I∆x
2 + E∆x

2 ≤ 1
2

∫ t 1
2

0

∫ R−1

−R+1

∣∣∣u 1
2

∣∣∣2 |(ϕ(v − v∆x))x| dx dt

+ 1
4

N∑
n=1

∫ t
n+ 1

2

t
n− 1

2

∫ R−1

−R+1

(∣∣∣un+ 1
2

∣∣∣2 +
∣∣∣un− 1

2

∣∣∣2) |(ϕ(v − v∆x))x| dx dt

≤ C(R)
∫ t 1

2

0
∥v − v∆x∥H2([−R+1,R−1])∥u

1
2 ∥2

L2([−R,R]) dt

+ C(R)
N∑

n=1

∫ t
n+ 1

2

t
n− 1

2

∥v − v∆x∥H2([−R+1,R−1])

∥∥∥un+ 1
2

∥∥∥2

L2([−R,R])
dt

+ C(R)
N∑

n=1

∫ t
n+ 1

2

t
n− 1

2

∥v − v∆x∥H2([−R+1,R−1])

∥∥∥un− 1
2

∥∥∥2

L2([−R,R])
dt

≤ C∆x
(
∥u0∥L2(R) , R

)
∥v∥L∞(0,T ;H3([−R+1,R−1]))

∆x−→0−−−−→ 0.
The next terms rewritten as

I∆x
3 + E∆x

3 = ∆t
4

∫ t 1
2

0

∫ R−1

−R+1

(
u

1
2 + u0

)
(D+

t u
0)(ϕv)x dx dt

−
∫ t 1

2

0

∫ R−1

−R+1

(
u0t(D+

t u
0)(ϕv)x + 1

2 t
2(D+

t u
0)2(ϕv)x

)
dx dt

+ ∆t
4

N∑
n=1

∫ t
n+ 1

2

t
n− 1

2

∫ R−1

−R+1

(
un+ 1

2 + un− 1
2
) (
D+

t u
n− 1

2
)

(ϕv)x dx dt

−
N∑

n=1

∫ t
n+ 1

2

t
n− 1

2

∫ R−1

−R+1
un− 1

2 (t− tn− 1
2
)
(
D+

t u
n− 1

2
)

(ϕv)x dx dt

− 1
2

N∑
n=1

∫ t
n+ 1

2

t
n− 1

2

∫ R−1

−R+1
(t− tn− 1

2
)2
(
D+

t u
n− 1

2
)2

(ϕv)x dx dt
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Using (4.11), (4.13),(4.2) and Lemma 4.1 in [12] we have the estimates∫ t 1
2

0

∫ R−1

−R+1
u0(D+

t u
0)(ϕv)x dx dt+

N∑
n=1

∫ t
n+ 1

2

t
n− 1

2

∫ R−1

−R+1
un− 1

2
(
D+

t u
n− 1

2
)

(ϕv)x dx dt

≤
∫ t 1

2

0
∥u0∥L∞([−R+1,R−1])∥D+

t u
0ϕ∥H−2([−R+1,R−1]) ∥(ϕv)x∥H2([−R+1,R−1]) dt

+
N∑

n=1

∫ t
n+ 1

2

t
n− 1

2

∥∥∥un− 1
2

∥∥∥
L∞([−R,R])

∥D+
t u

n− 1
2ϕ∥H−2([−R+1,R−1]) ∥(ϕv)x∥H2([−R+1,R−1]) dt

≤ C
(
∥u0∥L2(R) , R

) ∫ t 1
2

0

C√
∆x

∥u0∥L2(R) ∥ϕv∥H3([−R+1,R−1]) dt

+ C
(
∥u0∥L2(R) , R

) N∑
n=1

∫ t
n+ 1

2

t
n− 1

2

C√
∆x

∥∥∥un− 1
2

∥∥∥
L2(R)

∥ϕv∥H3([−R+1,R−1]) dt

≤ 1√
∆x

C
(
∥u0∥L2(R) , R

)
∥v∥L∞(0,T ;H3([−R+1,R−1])) .

Similarly we can estimate∫ t 1
2

0

∫ R−1

−R+1
u

1
2 (D+

t u
0)(ϕv)x dx dt+

N∑
n=1

∫ t
n+ 1

2

t
n− 1

2

∫ R−1

−R+1
un+ 1

2
(
D+

t u
n− 1

2
)

(ϕv)x dx dt

≤ 1√
∆x

C
(
∥u0∥L2(R) , R

)
∥v∥L∞(0,T ;H3([−R+1,R−1])) .

Furthermore we have∣∣∣∣∣
∫ t 1

2

0

∫ R−1

−R+1
u0t(D+

t u
0)(ϕv)x dx dt

∣∣∣∣∣+
∣∣∣∣∣∣
∫ t

n+ 1
2

t
n− 1

2

∫ R−1

−R+1
un− 1

2 (t− tn− 1
2
)
(
D+

t u
n− 1

2
)

(ϕv)x dx dt

∣∣∣∣∣∣
≤ ∆t

2

∫ t 1
2

0
∥u0∥L∞([−R+1,R−1])

∫ R−1

−R+1
|D+

t u
0||(ϕv)x| dx dt

+ ∆t
∫ t

n+ 1
2

t
n− 1

2

∥∥∥un− 1
2

∥∥∥
L∞([−R+1,R−1])

∫ R−1

−R+1

∣∣∣D+
t u

n− 1
2

∣∣∣ |(ϕv)x| dx dt

and∣∣∣∣∣
∫ t 1

2

0

∫ R−1

−R+1
t2(D+

t u
0)2(ϕv)x dx dt

∣∣∣∣∣+
∣∣∣∣∣∣
∫ t

n+ 1
2

t
n− 1

2

∫ R−1

−R+1
(t− tn− 1

2
)2
(
D+

t u
n− 1

2
)2

(ϕv)x dx dt

∣∣∣∣∣∣
≤ ∆t

2

∫ t 1
2

0
∥u

1
2 − u0∥L∞([−R+1,R−1])

∫ R−1

−R+1
|D+

t u
0||(ϕv)x| dx dt

+ ∆t
∫ t

n+ 1
2

t
n− 1

2

∥un+ 1
2 + un− 1

2 ∥L∞([−R+1,R−1])

∫ R−1

−R+1

∣∣∣D+
t u

n− 1
2

∣∣∣ |(ϕv)x|,dx dt.

Now we can estimate these terms like the preceding terms, and as ∆t ≤ C∆x2 we obtain
I∆x

3 + E∆x
3

∆x−→0−−−−→ 0.
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Using (4.3), (4.2), (4.19) and (4.25) we obtain

I∆x
4 + E∆x

4 ≤
∫ t 1

2

0

∥∥∥u 1
2

∥∥∥
L2(R)

∥∥∥ϕ(v − v∆x)
∥∥∥

H1+α([−R+1,R−1])
dt

+ 1
2

N∑
n=1

∫ t
n+ 1

2

t
n− 1

2

∥∥∥un+ 1
2

∥∥∥
L2(R)

∥ϕ(v − v∆x)∥H1+α([−R+1,R−1]) dt

+ 1
2

N∑
n=1

∫ t
n+ 1

2

t
n− 1

2

∥∥∥un− 1
2

∥∥∥
L2(R)

∥∥∥ϕ(v − v∆x)
∥∥∥

H1+α([−R+1,R−1])
dt

≤ C
(
∥u0∥L2(R) , R

) ∫ T

0
∥v − v∆x∥H3([−R+1,R−1]) dt

= ∆xC
(
∥u0∥L2(R) , R

)
∥v∥L∞(0,T ;H4([−R+1,R−1])

∆x−→0−−−−→ 0.
Finally

I∆x
5 + E∆x

5 =
∫ t 1

2

0

∫
R

∆t
(

−1
2 + t

∆t

)
(D+

t u
0)(Dα(ϕv)x) dx dt

+
N∑

n=1

∫ t
n+ 1

2

t
n− 1

2

∫
R

∆t
(

−1
2 +

t− tn− 1
2

∆t

)
(D+

t u
n− 1

2 )(Dα(ϕv)x) dx dt

≤ ∆t
2

∫ T

0

∫
R

|∂tu∆xϕ||Dα(ϕv)x| dx dt

≤ ∆t
2

∫ T

0
∥∂tu∆xϕ∥H−2(R) ∥Dα(ϕv)x∥H2(R) dt

≤ ∆tC
(
∥u0∥L2(R) , R

)
∥ϕv∥L∞(0,T ;H3+α([−R+1,R−1]))

∆t−→0−−−−→ 0.
Combining the above estimates together to conclude that (4.27) holds. Also, observe that by passing
∆x −→ 0 we obtain∫ T

0

∫
R

(
∂tu∆xϕv − (u∆x)2

2 (ϕv)x − (D
α
2 u∆x)D

α
2 (ϕv)x

)
dx dt = 0, (4.28)

for any test function v ∈ C∞
c ([−R + 1, R − 1] × [0, T )). Now choose v = φ/ϕ in (4.28) with φ ∈

C∞
c ([−R+ 1, R− 1] × [0, T )) and integrate by parts to conclude that (4.16) holds, that is∫ T

0

∫
R

(
φtu+ φx

u2

2 − (D
α
2 φx)D

α
2 u

)
dx dt+

∫
R
φ(x, 0)u0(x) dx = 0.

This concludes the proof.

5. Convergence rate of the scheme

Under the assumption that the initially data is sufficiently smooth, we determine the convergence rates
for the devised scheme (3.1) of the associated initial value problem (1.1). More precisely, we prove the
following result:

Theorem 5.1. Assume that u0 ∈ Hmax {r+2,5}. Let u be the solution of the IVP (1.1) associated to
the initial data u0 and un be the approximated solution obtained from the devised scheme (3.1) at time
t = tn. Then there holds

∥un − u(tn)∥L2(R) = O(∆xr−1 + ∆t2), n = 0, 1, . . . , N, (5.1)

where r ≥ 2 is the degree of the polynomial in the finite element space S∆x.
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In order to demonstrate the convergence rate in Theorem 5.1, we require the following estimate [33,
p. 98].

Lemma 5.2. Let P be the projection defined by (4.8) on S∆x ∩Cc(−R,R). Assume that u ∈ H l+1(R).
If s := min{l, r + 1}, then

|Pu− u|Hm(Rn) ≤ C∆xs+1−m|u|Hs+1(Rn), m = 0, 1, 2, . . . , l, (5.2)
where the constant C is independent of ∆x and | · |Hs(R) denotes the seminorm of the Sobolev space
Hs(R).

Proof. [Proof of Theorem 5.1] To begin with, we decompose the error as follows:
un − u(tn) = (un − Pu(tn)) + (Pu(tn) − u(tn)) := χn + ρn.

Furthermore, for simplicity, let us denote wn := Pu(tn). Testing the equation (1.1) with ϕv, where
v ∈ H1+α(R), and performing the integration by parts, we get

⟨∂tu(t), ϕv⟩ − 1
2⟨u(t)2, (ϕv)x⟩ + ⟨Dαu(t), (ϕv)x⟩ = 0, t ∈ (0, T ]. (5.3)

Using (3.1), (5.3) and (4.8), we have〈
χn+1 − χn

∆t , ϕv

〉
=
〈
un+1 − un

∆t , ϕv

〉
−
〈
ωn+1 − ωn

∆t , ϕv

〉

=
〈
un+1 − un

∆t , ϕv

〉
− ⟨∂tu(tn+ 1

2
), ϕv⟩ +

〈
∂tu(tn+ 1

2
) − un+1 − un

∆t︸ ︷︷ ︸
ξn+ 1

2

, ϕv

〉

= 1
2
〈
(un+ 1

2 )2 − u(tn+ 1
2
)2, (ϕv)x

〉
−
〈
Dα(un+ 1

2 − u(tn+ 1
2
)), (ϕv)x

〉
+
〈
ξn+ 1

2 , ϕv
〉
,

for all v ∈ S∆x. In particular, we choose v = χn+ 1
2 to obtain

1
2

∥∥∥χn+1
∥∥∥2

2,ϕ
= 1

2 ∥χn∥2
2,ϕ + ∆t

[1
2
〈
(un+ 1

2 )2 − u(tn+ 1
2
)2, (ϕχn+ 1

2 )x

〉
−
〈
Dα(un+ 1

2 − u(tn+ 1
2
)), (ϕχn+ 1

2 )x

〉
+
〈
ξn+ 1

2 , ϕχn+ 1
2
〉]
. (5.4)

Moreover, we decompose the error at the mid-point tn+ 1
2

as

un+ 1
2 − u(tn+ 1

2
) = χn+ 1

2 + ρn+ 1
2 + u(tn+1) + u(tn)

2 − u(tn+ 1
2
)︸ ︷︷ ︸

σn+ 1
2

(5.5)

= χn+ 1
2 + wn+ 1

2 − u(tn+ 1
2
),

and consequently, we have
(un+ 1

2 )2 − u(tn+ 1
2
)2 = (χn+ 1

2 )2 + 2χn+ 1
2ωn+ 1

2 + (ωn+ 1
2 )2 − u(tn+ 1

2
)2

= (χn+ 1
2 )2 + 2χn+ 1

2wn+ 1
2 + (ωn+ 1

2 + u(tn+ 1
2
))(ρn+ 1

2 + σn+ 1
2 ).

(5.6)

Since χn+ 1
2 ∈ S∆x and using the integration by parts repeatedly, we get the following identities:〈

(χn+ 1
2 )2, (ϕχn+ 1

2 )x

〉
= 2

3
〈
(χn+ 1

2 )3, ϕx

〉
,

2
〈
χn+ 1

2ωn+ 1
2 , (ϕχn+ 1

2 )x

〉
= −

〈
(χn+ 1

2 )2, ϕω
n+ 1

2
x

〉
+
〈
(χn+ 1

2 )2, ϕxω
n+ 1

2
〉
.

(5.7)
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Using the identities (5.7) and taking into account of (5.5) and (5.6), the equation (5.4) reduces to
1
2

∥∥∥χn+1
∥∥∥2

2,ϕ
= 1

2 ∥χn∥2
2,ϕ + ∆t

[1
3
〈
(χn+ 1

2 )3, ϕx

〉
− 1

2

〈
(χn+ 1

2 )2, ϕω
n+ 1

2
x

〉
+ 1

2 ta
〈
(χn+ 1

2 )2, ϕxω
n+ 1

2
〉

+ 1
2
〈
(ωn+ 1

2 + u(tn+ 1
2
))(ρn+ 1

2 + σn+ 1
2 ), (ϕχn+ 1

2 )x

〉
−
〈
Dα(χn+ 1

2 + ρn+ 1
2 + σn+ 1

2 ), (ϕχn+ 1
2 )x

〉
+
〈
ξn+ 1

2 , ϕχn+ 1
2
〉]
. (5.8)

Let f ∈ Hs(R) and 0 < a < 1 be such that s ≥ 2a. Then by the Fourier transform (for more details
refer to [16]), we have ∥∥∥D2af

∥∥∥2

L2(R)
≤ C

∥∥∥D2af
∥∥∥2

Hs−2a(R)
≤ C ∥f∥2

Hs(R) .

Hence by the estimates (2.12), (2.13) and using the Cauchy–Schwarz inequality, the equation (5.8)
turns into

1
2

∥∥∥χn+1
∥∥∥2

2,ϕ
+ ∆t

∥∥∥√ϕxD
α
2 χn+ 1

2

∥∥∥2

L2(R)

≤ 1
2 ∥χn∥2

2,ϕ + ∆t
6

∥∥∥√ϕxD
α
2 χn+ 1

2

∥∥∥2

L2(R)

+ ∆t
6

[
CS

∥∥∥χn+ 1
2

∥∥∥2

L2(R)
+ C

(
1 +

∥∥∥un+ 1
2 − ωn+ 1

2

∥∥∥2

L2(R)

)∥∥∥χn+ 1
2

∥∥∥2

L2(R)

+
∥∥∥χn+ 1

2

∥∥∥2

2,ϕ

∥∥∥∥ωn+ 1
2

x

∥∥∥∥
L∞

+
∥∥∥χn+ 1

2

∥∥∥2

2,ϕ

∥∥∥ωn+ 1
2

∥∥∥
L∞(R)

+ ∥ωn+ 1
2 + u(tn+ 1

2
)∥L∞

(∥∥∥∥ρn+ 1
2

x

∥∥∥∥
L2(R)

+
∥∥∥∥σn+ 1

2
x

∥∥∥∥
L2(R)

)∥∥∥χn+ 1
2

∥∥∥
2,ϕ

+ ∥ωn+ 1
2

x + ux(tn+ 1
2
)∥L∞

(∥∥∥ρn+ 1
2

∥∥∥
L2(R)

+
∥∥∥σn+ 1

2

∥∥∥
L2(R)

)∥∥∥χn+ 1
2

∥∥∥
2,ϕ

+
∥∥∥∥Dαρ

n+ 1
2

x

∥∥∥∥
L2(R)

∥∥∥χn+ 1
2

∥∥∥
L2(R)

+
∥∥∥∥Dασ

n+ 1
2

x

∥∥∥∥
L2(R)

∥∥∥χn+ 1
2

∥∥∥
2,ϕ

+ CR

∥∥∥ξn+ 1
2

∥∥∥
L2(R)

∥∥∥χn+ 1
2

∥∥∥
2,ϕ

]
,

where
∥∥√ϕ∥∥L∞(R) ≤ CR. Furthermore, using the Sobolev inequality ∥ω∥L∞(R) ≤ ∥ω∥H1(R) and triangle

inequality we deduce
1
2

∥∥∥χn+1
∥∥∥2

2,ϕ
+ 5∆t

6

∥∥∥√ϕxD
α
2 χn+ 1

2

∥∥∥2

L2(R)

≤ 1
2 ∥χn∥2

2,ϕ + C
∆t
6

[∥∥∥χn+ 1
2

∥∥∥2

L2(R)
+
(

1 +
∥∥∥un+ 1

2

∥∥∥2

L2(R)
+
∥∥∥ωn+ 1

2

∥∥∥2

L2(R)

)∥∥∥χn+ 1
2

∥∥∥2

L2(R)

+
∥∥∥χn+ 1

2

∥∥∥2

2,ϕ

∥∥∥ωn+ 1
2

∥∥∥
H2

+
∥∥∥χn+ 1

2

∥∥∥2

2,ϕ

∥∥∥ωn+ 1
2

∥∥∥
H1(R)

+
(∥∥∥ωn+ 1

2

∥∥∥
H1(R)

+
∥∥∥u(tn+ 1

2
)
∥∥∥

H1(R)

)(∥∥∥∥ρn+ 1
2

x

∥∥∥∥
L2(R)

+
∥∥∥∥σn+ 1

2
x

∥∥∥∥
L2(R)

)∥∥∥χn+ 1
2

∥∥∥
2,ϕ

+
(∥∥∥∥ωn+ 1

2
x

∥∥∥∥
H1(R)

+
∥∥∥ux(tn+ 1

2
)
∥∥∥

H1(R)

)(∥∥∥ρn+ 1
2

∥∥∥
L2(R)

+
∥∥∥σn+ 1

2

∥∥∥
L2(R)

)∥∥∥χn+ 1
2

∥∥∥
2,ϕ

+
∥∥∥ρn+ 1

2

∥∥∥
H3(R)

∥∥∥χn+ 1
2

∥∥∥
2,ϕ

+
∥∥∥σn+ 1

2

∥∥∥
H3(R)

∥∥∥χn+ 1
2

∥∥∥
2,ϕ

+
∥∥∥ξn+ 1

2

∥∥∥
L2(R)

∥∥∥χn+ 1
2

∥∥∥
2,ϕ

]
.
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Using stability estimate (4.2) from the Lemma 4.1 along with the Cauchy’s inequality, properties of ϕ
and also dropping the second term on the left hand side, we obtain∥∥∥χn+1

∥∥∥2

2,ϕ
≤ ∥χn∥2

2,ϕ + ∆tC(u0, R)
[∥∥∥χn+1

∥∥∥2

2,ϕ
+ ∥χn∥2

2,ϕ +
∥∥∥ρn+ 1

2

∥∥∥2

L2(R)
+ |ρn+ 1

2 |2H1(R)

+ |ρn+ 1
2 |2H2(R) + |ρn+ 1

2 |2H3(R) +
∥∥∥σn+ 1

2

∥∥∥2

H3(R)
+
∥∥∥ξn+ 1

2

∥∥∥2

L2(R)

]
,

which further implies

(1 − ∆tC(u0, R))
∥∥∥χn+1

∥∥∥2

2,ϕ
≤ (1 + ∆tC(u,R)) ∥χn∥2

2,ϕ + ∆tC(u,R)Sn, (5.9)

where Sn is represented by

Sn :=
∥∥∥ρn+ 1

2

∥∥∥2

L2(R)
+ |ρn+ 1

2 |2H1(R) + |ρn+ 1
2 |2H2(R) + |ρn+ 1

2 |2H3(R) +
∥∥∥σn+ 1

2

∥∥∥2

H3(R)
+
∥∥∥ξn+ 1

2

∥∥∥2

L2(R)
.

We choose ∆t in such a way that (1 − ∆tC(u,R)) ≥ 1/2. Afterwards, using the Taylor’s formula with
integral remainder, we have the following estimates

|σn+ 1
2 |2Hk(R) ≤ C∆t3

∫ tn+1

tn

|utt(s)|2Hk(R) ds, (5.10)∥∥∥ξn+ 1
2

∥∥∥2

L2(R)
≤ C∆t3

∫ tn+1

tn

∥uttt(s)∥2
L2(R) ds. (5.11)

Using the estimates (5.2), (5.10) and (5.11), we obtain
Sn ≤ 2C∆x2(r+2)

(
|u(tn)|2Hr+2(R) + |u(tn+1)|2Hr+2(R)

)
+ 2C∆x2(r+2)

(
|u(tn)|2Hr+2(R) + |u(tn+1)|2Hr+2(R)

)
+ 2C∆x2r

(
|u(tn)|2Hr+2(R) + |u(tn+1)|2Hr+2(R)

)
+ 2C∆x2(r−1)

(
|u(tn)|2Hr+2(R) + |u(tn+1)|2Hr+2(R)

)
+ C∆t3

∫ tn+1

tn

∥utt(s)∥2
H3(R) ds+ C∆t3

∫ tn+1

tn

∥uttt(s)∥2
L2(R) ds,

≤ C∆x2(r−1) sup
0≤t≤T

|u(t)|2Hr+2(R)

+ C∆t3
(∫ tn+1

tn

∥utt(s)∥2
H3(R) ds+

∫ tn+1

tn

∥uttt(s)∥2
L2(R) ds

)
.

As a consequence, (5.9) becomes

∥χn∥2
2,ϕ ≤

(1 + C∆t
1 − C∆t

)n

∥χ0∥2
2,ϕ + ∆tC

n−1∑
j=0

(1 + C∆t
1 − C∆t

)n−j

Sj

≤ e4CT ∥χ0∥2
2,ϕ + ∆te4CT

n−1∑
j=0

Sj

≤ TC(u,R, T )∆x2(r−1) + C(T )∆t4
(∫ T

0
∥utt(s)∥2

H3(R) ds+
∫ T

0
∥uttt(s)∥2

L2(R) ds
)

= C(u,R, T )(∆x2(r−1) + ∆t4).
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In order to ensure the boundedness of the above norms, we have taken into account u0 ∈ Hs(R), where
s = max{r + 2, 5}. We observe that using the estimate (5.2), for n = 1, 2, . . . , N

∥un − u(tn)∥L2(R) ≤ ∥χn∥L2(R) + ∥ρn∥L2(R)

≤ ∥χn∥2,ϕ + ∥ρn∥L2(R) ≤ C(u,R, T )(∆xr−1 + ∆t2).
Hence the result follows.

6. Numerical experiments

In our analysis, we provide a series of numerical illustrations of the fully discrete scheme (3.1) associated
to (1.1). The conventional approaches typically involve applying a numerical scheme to the periodic
version of the problem, considering a sufficiently large domain where the reference solutions tend to
zero outside of it, for instance, kindly refer to [6, 25, 37]. However, in particular, our study in this paper
focuses on the convergence of the approximated solution on the real line. To address this, we consider
a discretized domain that is large enough for the reference solutions (exact or higher-grid solutions)
to be nearly zero outside of it. By incorporating a periodic boundary condition that enforces the
approximation to have the same value at both ends of the domain, we are able to effectively handle
our system of equations.

To summarize, we present a numerical demonstration according to the following procedure. Inspired
by [8, 13], we define the finite element space S∆x. For this, let us consider the functions f and g as

f(y) =
{

1 + y2(2|y| − 3), |y| ≤ 1,
0, |y| > 1,

g(y) =
{
y(1 − |y|)2, |y| ≤ 1,
0, |y| > 1.

For j ∈ Z, we consider xj = j∆x and define the basis functions as

v2j(x) = f

(
x− xj

∆x

)
, v2j+1(x) = g

(
x− xj

∆x

)
.

Then we consider S∆x = span({v2j , v2j+1} : j = −M,−M + 1, . . . ,M) which is a 4M + 2 dimensional
subspace of H1+α(R) for α ∈ [1, 2).

Let us denote N := 2M as the number of elements considered for our numerical experiments. As
mentioned in [8] for KdV equation and [13] for BO equation, setting ∆t = O(∆x) is sufficient to
obtain the numerical results instead of ∆t = O(∆x2). To determine the subsequent iteration un+1 in
equation (3.2), we impose a termination criterion asserting that ∥wℓ+1−wℓ∥L2(R) ≤ 0.002∆x ∥un∥L2(R).

For the computation of the inner product ⟨Dα(vj), (vi)⟩ for each individual element, we use an
eight-point Gauss-Legendre (GL) quadrature rule. This rule was applied to the principal value integral
defining Dα(vj) and is evaluated at seven GL points. We have measured the relative L2-error, which
is defined by

E :=
∥u∆x − u∥L2(R)

∥u∥L2(R)
,

where the L2-norms are computed using the trapezoidal rule on the points xj . For t = n∆t, we set

u∆x(x, t) = un(x, t) =
2M+1∑

j=−2M

un
j vj(x).

Similar to the case of usual KdV equation, the fractional KdV equation (1.1) possesses an infinite
number of conserved quantities [13, 17, 18]. Hereby we consider the first two specific quantities known
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Table 6.1. Relative error for one soliton solution with α = 1.

N E C∆
1 C∆

2 C∆
3 RE

64 0.2898 1.19 1.310 3.850
3.590

128 0.0241 1.108 1.275 3.055
2.462

256 0.0044 1.000 1.016 1.034
2.044

512 0.0011 1.000 1.001 1.001
2.002

1024 0.0002 1.000 1.000 1.000

as mass and momentum along with another conserved quantity involving the exponent α. With
normalization, these quantities can be expressed as follows:

C∆
1 :=

∫
R u∆x dx∫
R u

0 dx , C∆
2 :=

∥u∆x∥L2(R)
∥u0∥L2(R)

,

C∆
3 :=

∫
R

(
(Dα/2u∆x)2 − (u∆x)3

3

)
dx∫

R

(
(Dα/2u0)2 − (u0)3

3

)
dx

.

Our aim is to preserve these quantities in the discrete set up. We remark that within the realm of
completely integrable partial differential equations, it has been noted that numerical methodologies
capable of preserving a greater number of conserved quantities generally yield more accurate approx-
imations in comparison to those preserving fewer. Furthermore, we have determined the convergence
rates of the numerical scheme (3.1), denoted as RE , with the varying numbers of elements N1 and N2,
defined by

ln(E(N1)) − ln(E(N2))
ln(N2) − ln(N1) ,

where E is considered as a function of the number of elements N .

6.1. Benjamin Ono equation

(α ≈ 1): In this example we consider the one soliton solution of the Benjamin Ono equation presented
in [37], namely

u(x, t) = 2cδ
1 −

√
1 − δ2 cos(cδ(x− ct))

, δ = π

cL
. (6.1)

We have applied the proposed scheme (3.1) with the initial data u0(x) = u(x, 0) along with the
parameters c = 0.25 and L = 15. We set the time step to ∆t = ∆x/ ∥u0∥∞ and the approximate
solution is computed at t = 120 which is a period for the exact solution. A visualization for the results
for N = 128 and 512 are given in the Figure 6.1. Clearly the plot indicates that the approximated
solution converges to the exact solution and this is confirmed by the error analysis in Table 6.1. It
demonstrates the errors are small even for fairly coarser grids and it is converging to zero at an optimal
rate 2.
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Figure 6.1. The exact and numerical solution at t = 120 with the initial data u(x, 0)
using N = 128 and N = 256.

6.2. KdV equation

(α ≈ 2): We would like to compare our approximated solution u∆x obtained from (3.1) in case
of α = 1.999 with the exact solution of the KdV equation ut + (u2/2)x + uxxx = 0. We test our
scheme (3.1) for one-soliton and two-soliton solution.

6.2.1. One soliton

The family of exact solution (one soliton) of the KdV equation is given by [7]

u(x, t) = 9
(

1 − tanh2
(√

3/2(x− 3t)
))

, (6.2)

which represents a single “bump” moving to the right with speed 3. We have tested our scheme with
the initial data u0 = u(x,−1). The solution of (1.1) is calculated on the uniform grid with ∆x = 30/N
in the interval [−15, 15]. The Figure 6.2 depicts the convergence of the approximated solution and the
Table 6.2 provides the expected rate of convergence.

6.2.2. Two soliton solution

From a physical perspective, solitons of different shapes manifest diverse velocities, establishing a
correlation between soliton height and speed. A taller soliton exhibits a greater swiftness compared to
a shorter one. As two solitons traverse a surface, the taller soliton surpasses the shorter soliton, and
both solitons emerge unaltered after the collision. This scenario presents a considerably more intricate
computational challenge than solving for a single soliton solution. In case of two soliton, the family of
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Table 6.2. Relative error for one soliton solution (α = 1.999).

N E C∆
1 C∆

2 C∆
3 RE

32 0.0693 1.10 1.00 1.629
1.717

64 0.0211 1.02 1.00 1.353
1.922

128 0.0056 1.01 1.00 1.076
1.955

256 0.0014 1.00 1.00 1.006
1.990

512 3.56e-04 1.00 1.00 1.005
1.998

1024 8.91e-05 1.00 1.00 1.001
1.992

2048 2.24e-05 1.00 1.00 1.000

-15 -10 -5 0 5 10 15
x

-0.5

0

0.5

1

1.5

2

2.5

3

u

u"x(x; 2)

N = 128
Exact

Figure 6.2. The exact and numerical solution at t = 2 with the initial data w1(x,−1)
with N = 128.
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Table 6.3. Relative error for two soliton solutions (α = 1.999)

N E C∆
1 C∆

2 C∆
3 RE

256 1.098 0.978 0.770 26.518
0.57

512 0.741 0.988 0.889 10.788
1.53

1024 0.257 1.001 0.934 3.826
1.88

2048 0.070 1.001 0.955 1.722
1.98

4096 0.018 1.000 0.969 1.042

exact solution of the KdV equation is given by [7]

u(x, t) = 6(b− a)
b csch2

(√
b/2(x− 2bt)

)
+ a sech2

(√
a/2(x− 2at)

)
(√

a tanh
(√

a/2(x− 2at)
)

−
√
b coth

(√
b/2(x− 2bt)

))2 . (6.3)

for some constants a and b. We have considered the parameters a = 0.5 and b = 1, and the initial
data u0(x) = u(x,−10). We computed the approximated solution at time t = 20 to compare with
the exact solution u(x, 10). The Figure 6.3 represents the exact solution at t = 10 and numerical
solution at t = 20. Nevertheless, slight inaccuracies in the placement of the larger bump, stemming
from a minor discrepancy in its height, result in a slightly higher velocity for the wave compared
to the corresponding wave in the exact solution. Since the wave is relatively narrow, the L2-error
assumes significant proportions. The Table 6.3 demonstrates the relative L2-errors for the two soliton
simulation.

6.3. Fractional case with smooth initial data

(α = 1.5): We test the convergence for the initial condition u0(x) = 0.5 sin(x) in the interval [0, 2π]. In
the Table 6.4, we have analyzed the L2 errors using the approximated solution with 216 grid points as
a reference solution at time T = 1. The relative L2-errors along with the conserved quantities converge
at the optimal rates as mesh size decreases. The Figure 6.4 describes that the approximated solution
converges to the reference solution even for the fairly coarser grids for the parameter α = 1.5.

6.4. Fractional case with non-smooth initial data

(α = 1.5): In our final illustration, we test the convergence of our scheme (3.1) for the less regular
initial data

u0(x) =
{

1
2(x+ 1), x ∈ [−1, 1],
0, otherwise

in the interval [−10, 10]. The Figure 6.5 depicts the approximated solution for various number of
elements. In the Table 6.5, we analyze the L2 errors using the approximated solution obtained by (3.1)
for the exponent α = 1.5 with 216 grid points as a reference solution at time T = 0.1 due to the
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Figure 6.3. The exact and numerical solution at t = 20 with the initial data
w2(x,−10) with N = 2048 (α = 1.99)
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Figure 6.4. The exact and numerical solution at t = 1 with the initial data u0(x) =
0.5 sin(x) with N = 1024 grids and α = 1.5.
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Table 6.4. Relative errors for α = 1.5 with smooth initial data.

N E C∆
1 C∆

2 C∆
3 RE

512 1.13e-03 1.001 1.000 1.001
1.984

1024 3.12e-04 1.001 1.000 1.001
1.980

2048 6.82e-05 1.001 1.000 1.000
1.994

4096 1.71e-05 1.000 0.998 1.000
2.005

8192 4.26e-06 1.000 0.999 1.000
1.888

16384 1.15e-06 1.000 1.000 1.000

Table 6.5. Relative errors for α = 1.5 with L2 initial data.

N E C∆
1 C∆

2 C∆
3 RE

2048 0.4482 0.05 0.176 0.022
0.192

4096 0.3925 0.12 0.250 0.043
0.039

8192 0.3820 0.26 0.354 0.084
0.162

16384 0.3416 0.53 0.500 0.173
0.117

32768 0.3150 1.08 0.707 0.333

unavailability of the reliable reference solution. We observe that the relative L2-error is decreasing.
However, the large errors and slow convergence in Table 6.5 indicates that we are not yet in the
asymptotic regime.

We have observed that the approximated solutions of the equation (1.1), obtained using the devised
scheme (3.1) demonstrates the convergence towards the exact solutions for several values of α numer-
ically. This convergence exhibits an expected rate of 2, which is consistent with our theoretical results
as demonstrated in the earlier sections. It is important to note that when dealing with non-smooth
solutions, the convergence rates do not adhere to the expected behavior, and this inconsistency can
be attributed to some of the evident factors, such as reference solution may not be close to the exact
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Figure 6.5. The approximated solution at t = 0.1 with the L2 initial data u0(x).

solution. However, even though the data is less regular, the conserved quantities are converging but a
lower convergence rate. This is expected as we are not yet in an asymptotic regime.
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