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Abstract: Multivariate ROC curve models that include an interaction term be-

tween biomarker type and false positive rate is important in comparative biomarker

studies, because such interaction allows ROC curves of different biomarkers to

cross each other. However, there has been limited work in drawing inference for

comparing multivariate ROC curves, especially when the interaction terms are

present. In this article we derive the asymptotic covariance of three estimators

for multivariate ROC models. These covariance estimates have not been readily

available in the literature, and bootstrap methods have to be used to obtain co-

variance estimates. With the readily available variance estimates, we can easily

perform hypothesis testing among ROC curves while bootstrap tests are not so

easily performed. The asymptotic results are applied to compare ROC curves

and their areas under ROC curves. Moreover, we derive simultaneous confidence

bands for multivariate ROC curves. We evaluate and compare the finite sample

performance of our asymptotic covariance estimators. We also discuss the ad-

vantage of using our asymptotic results over bootstrap procedures. Finally, we

illustrate our approach through a well-known pancreatic cancer study.

Key words and phrases: Diagnostic Accuracy, Simultaneous Confidence Band,

Brownian Bridge Process.

1. Introduction

Research in early cancer detection involves developing diagnostic tools, such

as a biomarker, to distinguish diseased patients from non-diseased patients.

Biomarkers often yield continuous measurements. A popular tool to evaluate

and compare the accuracy of biomarkers is a receiver operating characteristic

(ROC) curve (Zhou et al., 2002), which is a plot of true positive rates vs false

positive rates across all thresholds. Estimating a single binormal ROC curve

of a continuous-scale biomarker has been well studied in the literature (Metz,
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2 L. TANG AND X.H. ZHOU

Herman and Shen, 1998; Cai and Moskowitz, 2004). However, inferential pro-

cedures for comparing multivariate ROC curve models with interaction terms

between biomarker type and false positive rates (FPRs) have not been well stud-

ied, mainly because it is sometimes difficult to draw inferences in the presence of

these interaction terms. However, such interactions are important because they

allow ROC curves to cross each other. For example, Wieand et al. (1989) stud-

ied pancreatic cancer biomarkers, CA 19-9 and CA 125, which were measured on

51 pancreatitis patients and 90 pancreatic cancer patients. The empirical ROC

curves were generated from this data set and their plots are shown in Figure 1.

It is clear that two ROC curves cross each other when FPR gets close to 1. This

fact shows the existence of interaction terms between biomarker type and FPRs.

Insert Figure 1 here.

Metz, et al. (1984) proposed a maximum likelihood estimator (MLE) for

estimating bivariate binormal models from ordinal data. But their method re-

quires estimating correlation parameters, besides the location and scale param-

eters in the marginal normal distributions. It would be more difficult to further

extending their MLE method to more than two ROC curves when many more

correlation parameters are to be estimated. As the number of biomarkers gets

large, the MLE method becomes nonapplicable. For multiple independent ROC

curves, Zhang (2004) and Zhang and Pepe (2005) proposed an intuitive least

squares (LS) method, and Pepe (2000) presented an elegant generalized linear

model (GLM) approach. Since it is complicated to derive the asymptotic results,

the authors did not consider the large sample inference for the LS and GLM

estimators with clustered data. Cai and Pepe (2002) considered an interesting

semiparametric generalized estimating equation (GEE) method to allow an un-

known baseline function when estimating ROC curves from correlated biomarker

data. They derived asymptotic results for their estimators, but they did not con-

sider how to compare multiple ROC curves from clustered data with the presence

of interactions between biomarker type and FPRs.

In this article we adapt the LS method to clustered ROC curve data with the

presence of interactions between biomarker type and FPRs. We derive explicit

covariance structures between empirical ROC curves and use our results to derive
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the asymptotic covariances of the LS estimator. We also adapt the GLM and

GEE methods to this type of biomarker data and derive their asymptotic sand-

wich covariance estimators. These covariances have not been readily available

in the literature, and bootstrap methods have to be used to obtain covariance

estimates. With the readily available variance estimates, we can easily perform

hypothesis testing among ROC curves while bootstrap tests are not so easily

performed. For example, if we want to test whether two ROC curves vary by a

certain amount δ at a specified FPR u0, i.e., H0 : ROC1(u0) − ROC2(u0) = δ,

it is not clear how to bootstrap from the null distribution, while it is straight-

forward to perform such hypothesis tests using our asymptotic results and the

delta method, which will be introduced in Section 4. We derive inferential proce-

dures for comparing multivariate ROC curves that include the interaction terms,

which have multivariate binormal ROC curves as a special case. In particular,

we develop methods for comparing ROC curves and the areas under these ROC

curves. We derive asymptotic simultaneous confidence bands for ROC curves.

Such asymptotic results of simultaneous confidence bands of ROC curves are

rarely studied. Instead, computer intensive methods are often employed to con-

struct confidence bands (Cai and Pepe, 2002). Our confidence bands provide an

easy-to-use tool to illustrate the sampling variability of the ROC curve estimates.

In addition, we develop a method for comparing multiple ROC curves at some

specified FPR.

This article is organized as follows. In Section 2 we adapt the LS methods

to estimate multivariate ROC curves, and we also adapt GLM and a simplified

GEE method. In Section 3 we derive the asymptotic results for the LS method

when estimating multivariate ROC models. The asymptotic results are also

derived for GLM and GEE methods. In Section 4 we apply the results to draw

inference on comparing ROC curves and the areas under the ROC curves. In

addition, asymptotic simultaneous confidence bands are derived for multivariate

ROC curves. We carry out large scale simulation studies to evaluate and compare

the finite sample performance of our covariance estimators of the LS, GLM and

GEE methods. We also carry out simulation studies to evaluate the advantages of

using asymptotic results over using bootstrap procedures. The simulation results

are summarized in Section 5. A comparative pancreatic cancer diagnostic trial
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4 L. TANG AND X.H. ZHOU

serves as an illustrative example in Section 6, and some discussions are presented

in Section 7.

2. Three estimators of multivariate ROC curves

In this section, we adapt the LS and GLM methods to clustered ROC data.

We also give a simplified version of the GEE method for estimating multivari-

ate ROC curves. Let X` = (X`,1, X`,2, ..., X`,m) denote measurements of the

`th biomarker on m diseased subjects, and Y˜̀ = (Y˜̀,1, Y˜̀,2, ..., Y˜̀,n) denote mea-

surements of the ˜̀th biomarker on n healthy subjects, where `, ˜̀ = 1, ..., K.

For the `th and ˜̀th different biomarkers measured on the ith diseased subject,

i = 1, ..., m, the measurements X`,i and X˜̀,i follow the bivariate survival function

F`,˜̀ with the marginal distributions F` and F˜̀, respectively, and the measure-

ments of the jth healthy subject, Y`,j and Y˜̀,j with j = 1, ..., n, follow the bivari-

ate survival function G`,˜̀ with the marginal distributions G` and G˜̀, respectively.

The ROC curve of the `th biomarker is then given by Q`(u) = F`(G−1
` (u)), and its

empirical form is Q̃`(u) = F̂`(Ĝ−1
` (u)), where F̂` and Ĝ` are empirical functions

of F` and G`, respectively.

Let Zk be a dummy variable for the kth biomarker, k = 2, ..., K. The

multivariate ROC curves are then given by the following expressions:

Q1(u) = g{θ10 + θ11h(u)},

and Qk(u) = g[θ10 + θ11h(u) +
K∑

i=2

{θi0Zi + θi1Zih(u)}], (2.1)

for 0 < a ≤ u ≤ b < 1, where g is some specified link function and h is some

specified baseline function. In the regression ROC modeling, θ10 + θ11h(u) is the

baseline function, usually denoted as h0(u). In this article we let this baseline

function be a known function up to two unknown parameters, θ10 and θ10, as in

Pepe (2000), Zhang (2004) and Zhang and Pepe (2005). The important compo-

nents of the model (2.1) are θk1Zkh(u), which are the interaction terms between

dummy variables indicating biomarker types and FPRs. Such interaction terms

play an important role in estimating ROC curves especially when estimating the

multivariate binormal ROC curves. With these terms, the model (2.1) includes

the multivariate binormal ROC model as a special case, which is commonly used

in the literature (Metz, et al., 1984). Specifically, let g be Φ, let h be Φ−1 and
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let Zk be an indicator variable for the kth biomarker, the model (2.1) has the

following expressions:

Q1(u) = Φ{θ10 + θ11Φ−1(u)}
and Qk(u) = Φ{θ10 + θ11Φ−1(u) + θk0 + θk1Φ−1(u)}, (2.2)

for k = 2, ..., K. When there is only one biomarker, the model (2.2) reduces to

the commonly used binormal model (Zhou, et al., 2002).

Let u` = (u`,1, · · · , u`,P`
)T be some fixed partition points in the range of [a, b]

on the `th empirical ROC curve. Here P` is arbitrarily chosen for the `th ROC

curve where 0 < a = u`,1 < u`,2 < ... < u`,P`
= b < 1. For example, if we choose

50 jump points for the 1st ROC curve, we can choose u1 = (1/51, 2/51, ..., 50/51).

Also, for simplicity, we denote L(u`) = (L(u`,1), L(u`,2), ..., L(u`,P`
))T , where

` = 1, ..., K, for any process or function L.

Zhang (2004) and Zhang and Pepe (2005) proposed a least squares (LS) ap-

proach to estimate multiple ROC curves. They let Zk be the indicator variables

for the kth biomarker. In the LS estimating procedure, the ROC curve corre-

sponding to a reference biomarker is chosen as the reference ROC curve. For the

`th empirical ROC curve, the partition points, u` = (u`,1, · · · , u`,P`
)T , are cho-

sen within interval boundaries [a, b]. When we are interested in the entire ROC

curve, a and b can be chosen to be close to 0 and 1, respectively. If a partial

ROC curve is of interest, a and b can be chosen accordingly. By plugging in the

empirical functions F̂` and Ĝ−1
` , the `th empirical ROC curve is computed by

Q̃`(u`) = F̂`(Ĝ−1
` (u`)). Denote Ỹ` = g−1(Q̃`(u`)). We combine Ỹ1, Ỹ2, ..., ỸK and

get a linear regression equation as follows:

Ỹ = Mθ + ε, (2.3)

where Ỹ = (Ỹ T
1 , ..., Ỹ T

K )T is a (
∑

` P`)×1 vector with its element Ỹ` = g−1(Q̃`(u`)).

The (
∑

` P`)×(2K) design matrix M is given by:

M =




M1 0 0 · · · 0

M2 M∗
2 0 · · · 0

M3 0 M∗
3 · · · 0

...
...

...
. . .

...

MK 0 0 · · · M∗
K




,
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6 L. TANG AND X.H. ZHOU

with its P` × 2 submatrices

M`=

(
1 · · · 1

h(u`,1) · · · h(u`,P`
)

)T

, and M∗
k=

(
Zk · · · Zk

Zkh(u`,1) · · · Zkh(u`,P`
)

)T

.

Also, the error term ε has a multivariate normal distribution given by ε ∼
N(0,Σε). The detailed proof is given in in the on-line version of the paper

at http://www.stat.sinica.edu.tw/statistica. Based on the regression equations

in (2.3), the LS estimator θ̂LS of θ is given by θ̂LS = (MT M)−1MT Ỹ .

There are several other estimating equation methods for estimating ROC

parameters. Pepe (2000) observed that the expected value of indicator variables

I{X`,i ≥ Ĝ−1
` (u`,p)} converges to the true ROC curve of the `th biomarker and

proposed a GLM method to estimate the ROC curve model (2.1). If partial

ROC curves on [a, b] are of interest, u`,p are chosen within this range. The GLM

approach estimates parameters in the model (2.1) by the following estimating

equations:

K∑

`=1

P∑̀

p=1

m∑

i=1

g′(M̃T
`,pθ)

g(M̃T
`,pθ)(1− g(M̃T

`,pθ))
M̃`,p

{
I{X`,i ≥ Ĝ−1

` (u`,p)} − g(M̃T
`,pθ)

}
= 0,

or
K∑

`=1

P∑̀

p=1

w`(u`,p)M̃`,p{Q̃`(u`,p)− g(M̃T
`,pθ)} = 0,

for ` = 1, ..., K and p = 1, ..., P`, with θ = (θ10, θ11, θ20, θ21, ..., θK0, θK1)T and a

weight function w`(u`,p) = {g′(M̃T
`,pθ)}/[g(M̃T

`,pθ){1− g(M̃T
`,pθ)}]. Here M̃1,p is a

1×2K vector with the first two elements being 1 and h(u1,p), respectively, and the

rest elements being zeros. M̃k,p have the first two elements being 1 and h(uk,p),

respectively, the (2k + 1)th and (2k + 2)th elements being Zk and Zkh(uk,p),

respectively, and the rest elements being zeros. The asymptotic results of the

parameter estimator not provided in Pepe (2000) will be given in Section 3.

The GEE method by Cai and Pepe (2002) also used the indicator variables

I{X`,i ≥ Ĝ−1
` (u`,p)} and relied on the fact that points on ROC curves can be

interpreted as conditional expectations of these indicator variables. Their method

is flexible to allow an unknown baseline function h0 in the model (2.1). When

the baseline function has the form of h0(u) = θ10 + θ11h(u), the GEE method
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is similar to the GLM method. Specifically, the GEE method is to solve the

following estimating equations:

K∑

`=1

P∑̀

p=1

M̃`,p{Q̃`(u`,p)− g(M̃T
`,pθ))} = 0.

It is observed that if the baseline function has a known form, the GLM method

differs from the GEE method by including the weight function w`.

3. Large sample theory of ROC estimators

We derive the asymptotic covariance structure of multiple empirical ROC

curves for clustered data. The result is then applied to derive asymptotic co-

variances of the LS estimator. We also derive asymptotic sandwich covariances

of GLM and GEE estimators. Asymptotic results of the LS and GLM estima-

tors for clustered data have not been provided in the literature (Pepe, 2000;

Zhang, 2004; Zhang and Pepe, 2005). Although Cai and Pepe (2002) have stud-

ied the large sample theory of the GEE estimator, their covariance estimator has

a complicated form. For the multivariate ROC models we considered here, the

covariance estimator of θ̂GEE has a simplified covariance estimator that is easy to

apply. These covariance results are essential for drawing inference on comparing

ROC curves and constructing simultaneous confidence ROC bands as discussed

in Section 4. We derive the covariance structure between empirical ROC curves

in Appendices 1 and 2, and summarize the results in Theorem 1. Theorem 1

builds a basis for deriving asymptotic covariances of the LS estimator, which is

discussed in this section.

Theorem 1. Under mild regularity conditions, i.e, 1) F̄` and Ḡ` have continuous

densities F̄ ′
` and Ḡ′

`, respectively, 2) the first derivative Q′
` of Q` is bounded in

(a, b), when m/n → λ as m,n →∞, cov[
√

m{Q̃`(s)−Q`(s)},
√

m[Q̃˜̀(t)−Q˜̀(t)}]
converges in distribution to

[
F`,˜̀{G−1

` (s), G−1
˜̀ (t)} −Q`(s)Q˜̀(t)

]
+ λ

[
Q′

`(s)Q
′
˜̀(t)

{
G`,˜̀{G−1

` (s), G−1
˜̀ (t)} − st

}]
,

for s, t in [a, b].

3.1 Asymptotic covariance of LS estimator

Denote θ̃`1 = θ11 when ` = 1; and θ̃`1 = θ11 + θ`1 when ` ≥ 2. Let us define

Hosted by The Berkeley Electronic Press



8 L. TANG AND X.H. ZHOU

the following 2K × 2K square matrix:

J=




KD Z2D · · · ZKD

Z2D Z2
2D · · · O

...
...

. . .
...

ZKD O · · · Z2
KD




−1


I2 I2 · · · I2

O I2 · · · O
. . .

O O · · · I2




,

where

D=

(
b− a

∫ b
a h(u)du,∫ b

a h(u)du
∫ b
a h2(u)du

)
,

for 0 < a < b < 1, and I2 is a 2 × 2 identity matrix. Let us define the following

quantity:

V`(s, t) =
Q`(s ∧ t)−Q`(s)Q`(t)

g′(g−1(Q`(s)))g′(g−1(Q`(t)))
+ λθ̃2

`1h
′(s)h′(t)(s ∧ t− st),

where ` = 1, ..., K, and

Ṽ`,˜̀(s, t) =
F`,˜̀(G

−1
` (s), G−1

˜̀ (t))−Q`(s)Q˜̀(t)

g′[g−1{Q`(s)}])g′(g−1(Q˜̀(t)))

+ λθ̃`1θ̃˜̀1h
′(s)h′(t){G`,˜̀(G

−1
` (s), G−1

˜̀ (t))− st},

for `, ˜̀= 1, 2, ..., K, and ` 6= ˜̀, where λ = limm,n→∞m/n. The following Theorem

2 gives the results of the LS estimator. The detailed proof of Theorem 2 is given

in the on-line version of the paper at http://www.stat.sinica.edu.tw/statistica.

Theorem 2. Under mild regularity conditions stated in Theorem 1, when m/n →
λ as m,n → ∞, and P` → ∞, the regression parameter estimator θ̂LS has the

following asymptotic multivariate normal distribution:

√
m(θ̂LS − θ) D−→ N(0,ΣLS = JΣyJT ).

Here Σy is a 2K × 2K matrix and

Σy =




Σy
11 Σy

12 · · · Σy
1K

Σy
21 Σy

22 · · · Σy
2K

. . .

Σy
K1 Σy

K2 · · · Σy
KK




,
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with 2× 2 diagonal symmetric submatrices, Σy
``, whose elements are

σ
(1,1)
`` =

∫ b

a

∫ b

a
V`(s, t)dsdt, σ

(2,2)
`` =

∫ b

a

∫ b

a
h(s)h(t)V`(s, t)dsdt,

σ
(1,2)
`` = σ

(2,1)
`` =

∫ b

a

∫ b

a
h(s)V`(s, t)dsdt,

and 2× 2 off-diagonal symmetric submatrices, Σy

`,˜̀
, whose elements are

σ
(1,1)

`,˜̀
=

∫ b

a

∫ b

a
Ṽ`,˜̀(s, t)dsdt, σ

(2,2)

`,˜̀
=

∫ b

a

∫ b

a
h(s)h(t)Ṽ`,˜̀(s, t)dsdt,

σ
(1,2)

`,˜̀
= σ

(2,1)

`,˜̀
=

∫ b

a

∫ b

a
h(s)Ṽ`,˜̀(s, t)dsdt.

In practice, F`,˜̀, G`,˜̀, F` and G` are unknown and are estimated by their

respective empirical functions. If ROC data are unclustered, the off-diagonal

submatrices, Σy

`,˜̀
’s, become zero matrices. If we further let h = g−1 and Zk be

indicator variables in the model (1), we get the same asymptotic result as in

Zhang (2004).

3.2 Asymptotic Covariances of the GLM and GEE estimators

The GLM estimator is estimated by solving the following estimating equa-

tions:

U(θ) =
K∑

`=1

P∑̀

p=1

w`(u`,p)M̃`,p{Q̃`(u`,p)− g(M̃T
`,pθ)} = 0,

where M̃`,p is defined in Section 2.1. To solve these estimating equations, we will

need the Newton-Raphson method to obtain the GLM estimator θ̂GLM . From

the Newton-Raphson algorithm, it follows that

cov(θ̂GLM ) =
(
−∂U(θ)

∂θ

)−1

var




K∑

`=1

P∑

p=1

w`(u`,p)M̃`,p{Q̃`(u`,p)− g(M̃T
`,pθ)}




(
−∂U(θ)

∂θ

)−1

,

where ∂U(θ)/∂θ is the partial derivative of U(θ) with regard to θ. Let

U1i =
∑K

`=1

∑P`
p=1 w`(u`,p)M̃`,p

{
I(X`i ≥ G−1

` (u`,p))− g(M̃T
`,pθ)

}
,

and U2j =
∑K

`=1

∑P
p=1 w`(u`,p)M̃`,pQ

′
`(u`,p)

{
I(Y`j ≥ G−1

` (u`,p))− u`,p

}
.

Hosted by The Berkeley Electronic Press



10 L. TANG AND X.H. ZHOU

Therefore, our result in Theorem 1 gives that under mild regularity conditions,

when m/n → λ as m,n → ∞, the GLM estimator θ̂GLM satisfies the following

asymptotic normality:

√
m(θ̂GLM − θ) D−→ N(0,ΣGLM ),

where

ΣGLM =




K∑

`=1

P∑̀

p=1

w`(u`,p)M̃`,pg
′(M̃T

`,pθ)



−1

lim
m,n→∞

{
m∑

i=1

U1iU
T
1i + λ

n∑

v=1

U2jU
T
2j

}




K∑

`=1

P∑̀

p=1

w`(u`,p)M̃`,pg
′(M̃T

`,pθ)



−1

.

The asymptotic property of the modified GEE estimator can be similarly derived.

We denote

U∗
1i =

∑K
`=1

∑P`
p=1 M̃`,p

{
I(Y`i ≥ G−1

` (u`,p))− g(M̃T
`,pθ)

}
,

and U∗
2j =

∑K
`=1

∑P`
p=1 M̃`,pQ

′
`(u`,p)

{
I(Y`j ≥ G−1

` (u`,p))− u`,p

}
.

When m/n → λ as m,n → ∞, the GEE estimator θ̂GEE satisfies the following

asymptotic normality:

√
m(θ̂GEE − θ) D−→ N(0,ΣGEE),

where

ΣGEE =




K∑

`=1

P∑̀

p=1

M̃`,pg
′(M̃T

`,pθ)



−1

lim
m,n→∞

{
m∑

r=1

U∗
1iU

∗T
1i + λ

n∑

v=1

U∗
2jU

∗T
2j

}




K∑

`=1

P∑̀

p=1

M̃`,pg
′(M̃T

`,pθ)



−1

.

These covariance estimators are sandwich estimators. We will evaluate their

finite sample performance in our simulation studies.

4. Multivariate ROC Analysis

Estimated ROC curves, denoted by Q̂`, are estimated by replacing θ with

the estimator θ̂ in the model (2.1). θ̂ is estimated via either of three aforemen-

tioned methods. Here θ̂ is a general notation, which can also be estimated via

http://biostats.bepress.com/uwbiostat/paper326



Semiparametric Inferential ROC Procedures 11

other available methods. But since asymptotic results are derived for the three

methods, it is convenient to utilize these results. Our asymptotic results give the

corresponding covariance matrix estimator Σ̂ of Σ for θ̂. For further notational

convenience, let Σ`,˜̀ be the 2× 2 submatrices of Σ, i.e.,

Σ =




Σ11 · · · Σ1K

...

ΣK1 · · · ΣKK




2K×2K

.

The estimator Σ̂`,˜̀ of Σ`,˜̀ is the corresponding submatrix of Σ̂. In this section we

derive methods for pairwise comparison of ROC curves. We also develop meth-

ods for comparing more than two areas under ROC curves under multivariate

binormal assumptions. In addition, we derive inferential procedures for simulta-

neous confidence ROC bands and for comparing multiple ROC curves at some

specified FPR.

4.1 Pairwise comparison of ROC curves

It is often of interest to compare ROC curves to investigate the accuracy of

biomarkers. The reference ROC curve Q1(u) and the kth ROC curve Qk(u) in

[a, b] only differ by a parameter vector θk = (θk0, θk1)T . Consequently, testing

the equality of these two ROC curves is equivalent to testing H0 : θk = (0, 0)T .

It follows from the multivariate normality of θ̂ in Section 3 that the asymptotic

distribution of the test statistic, κk = (θ̂k − θk)T Σ−1
kk (θ̂k − θk) is χ2

2. Similarly,

testing the equality of two ROC curves of the ωth and νth different biomarkers

in [a, b], ω, ν = 2, ..., K, is also reduced to a χ2 test. The null hypothesis becomes

H0 : (θω0 − θν0, θω1 − θν1) = 0. Denote that θω,ν = (θω0, θω1, θν0, θν1)T . The

resulting chi-square statistic is given by the following expression:

κω,ν =

(
(θ̂ω0 − θ̂ν0)− (θω0 − θν0)

(θ̂ω1 − θ̂ν1)− (θω1 − θν1)

)T

(AΣω,νA
T )−1

(
(θ̂ω0 − θ̂ν0)− (θω0 − θν0)

(θ̂ω1 − θ̂ν1)− (θω1 − θν1)

)
,

where A = (I2,−I2) with a 2 × 2 identity matrix I2, and Σω,ν is the covariance

matrix of θω,ν . Σω,ν is a 4 × 4 principal submatrix of Σ, and can be subtracted

by elements in Σ̂.

4.2 Comparing the areas under multivariate binormal ROC curves
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12 L. TANG AND X.H. ZHOU

Our asymptotic results in Section 3 are also applicable for comparing areas

under multivariate ROC curves, especially for multivariate binormal ROC curves.

Let A = (A1, ..., AK) be a vector, where A` is the area under the `th ROC curve.

It is well known that under the binormal assumption, A` is a simple function of

θ given by the following:

A1(θ10, θ11) = Φ

{
θ10√

1 + θ2
11

}
,

and Ak(θ10, θ11, θk0, θk1) = Φ

{
θ10 + θk0√

1 + (θ11 + θk1)2

}
. (4.1)

Let q be a second-order differentiable and real valued function of A. It follows

that when m/n → λ as m,n → ∞,
√

m{q(Â) − q(A)} asymptotically has a

normal distribution given by
√

m{q(Â)− q(A)} D−→ N(0, σ2
q ),

where the variance σ2
q is given by :

σ2
q = lim

m,n→∞m
{ ∂q

∂A1

∂q

∂A1
var(A1) + 2

K∑

k=2

∂q

∂A1

∂q

∂Ak
cov(A1, Ak)

+
K∑

k=2

K∑

k̃=2

∂q

∂Ak

∂q

∂Ak̃

cov(Ak, Ak̃)
}

.

By Taylor expansions on A` and our asymptotic results, we get that

var(A1) = BT
1 Σ11B1,

cov(A1, Ak) = BT
1 (Σ11 + Σk1)Bk,

and cov(Ak, Ak̃) = BT
k (Σ11 + Σkk̃)Bk̃,

where

B1 =
{

φ
( θ10√

1 + θ2
11

) 1√
1 + θ2

11

,−φ
( θ10√

1 + θ2
11

) θ11

(
√

1 + θ2
11)

3
2

}T
,

Bk =
[
φ
{ θ10 + θk0√

1 + (θ11 + θk1)2

} 1√
1 + (θ11 + θk1)2

,

−φ
{ θ10 + θk0√

1 + (θ11 + θk1)2

} θ11 + θk1

{
√

1 + (θ11 + θk1)2}
3
2

]T
.
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and Σ`˜̀, for `, ˜̀ = 1, ..., K, is estimated from asymptotic results. Delong, et al.

(1988) gave a similar formula for comparing the areas under nonparametric ROC

curves. Although their approach is robust, semiparametric approaches may be

more appealing to derive smooth ROC curves for continuous biomarker data. If

q is some linear function, the theoretical result is simplified to a similar formula

in Delong, et al. (1988). A simple example is to let E be a vector with the `th

element being 1, the ˜̀th element being -1 and other elements being zero. Then

we have q(Â) = EÂ corresponds to Â` − Â˜̀, whose variance estimator follows

from the variance result. Inference is then easily drawn for testing H0 : A` = A˜̀,

and for constructing a confidence interval.

4.3 Simultaneous confidence ROC bands

The variance of estimated ROC curves at each FPR can be derived from

the parameter estimator θ̂ and its covariance matrix estimator Σ̂. Denote H =

(1, h(u)), H̃ = (H, H). We get the following corollary about the variance of

estimated ROC curves, Q̂`(u):

Corollary 2. The variance of estimated ROC curves at u are given by:

σ2
1(u) = g′[g−1{Q1(u)}]2HΣ11H

T ,

and σ2
k(u) = g′[g−1{Qk(u)}]2H̃

(
Σ11 Σ1k

Σk1 Σkk

)
H̃T ,

respectively, for k = 2, ..., K.

Therefore, the (1 − α)100% pointwise confidence interval of Q`(u) is given

by

Q̂`(u)± zα/2σ̂`(u), 0 ≤ u ≤ 1.

In Theorem 3 below, we give explicit expressions of simultaneous bands for mul-

tivariate ROC curves. The detailed proof of Theorem 3 is given in the on-line

version of the paper at http://www.stat.sinica.edu.tw/statistica.

Theorem 3. Under mild conditions, the (1 − α)100% simultaneous confidence

bands for multivariate ROC curves in [a, b] are constructed as follows:

g
{

Hθ̂1 ±
√

χ2
2,αHΣ11HT

}
,

and

g



H̃(θ̂T

1 , θ̂T
k )T ±

√√√√χ2
4,αH̃

(
Σ11 Σ1k

Σk1 Σkk

)
H̃T



 ,
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14 L. TANG AND X.H. ZHOU

respectively, for k = 2, ..., K.

Note that the reason why simultaneous confidence bands for ROC curves

have such simplified expressions is that we assume that g and h are known. The

estimated ROC curves are fully determined by two parameters for the reference

biomarker and four parameters for other biomarkers. Therefore, χ2
2 and χ2

4 dis-

tributions arise, and the derivation of simultaneous bands is naturally simplified.

4.4 Comparing multiple ROC curves at some specified FPR

Denote Q̂(u) = (Q̂1(u), ..., Q̂K(u))T . Similarly as in Section 4.2, suppose

that q is a real-valued and second-order derivable function on the vector Q̂. We

have that q(Q̂(u0)) at a specified FPR u0 converges to a normal distribution with

mean zero and the variance given by

σ̃2
q (u0) = lim

m,n→∞m
[ ∂q

∂Q1

∂q

∂Q1
var{Q1(u0)}+ 2

K∑

k=2

∂q

∂Q1

∂q

∂Qk
cov{Q1(u0), Qk(u0)}

+
K∑

k=2

K∑

k̃=2

∂q

∂Qk

∂q

∂Qk̃

cov{Qk(u0), Qk̃(u0)}
]
.

Here we have

var{Q1(u0)} = C1(u0)T Σ11C1(u0),

cov{Q1(u0), Qk(u0)} = C1(u0)T (Σ11 + Σk1)Ck(u0),

and

cov{Qk(u0), Qk̃(u0)} = Ck(u0)T (Σ11 + Σkk̃)Ck(u0),

where

C1(u) =
(
g′{θ10 + θ11h(u)}, θ11g

′{θ10 + θ11h(u)})T
,

and

Ck(u) =
[
g′{θ10+θ11h(u)+θk0+θk1h(u)}, (θ11+θk1)g′{θ10+θ11h(u)+θk0+θk1h(u)}]T

.

Again, if q is a linear function, the result can be greatly simplified.

5. Simulation studies

5.1 Finite sample performance of hypothesis testing

We ran a large set of simulation studies to evaluate and compare the finite

sample performance of our asymptotic covariance estimators for the LS, GLM

http://biostats.bepress.com/uwbiostat/paper326
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and GEE methods. The bivariate normal data were simulated from N((1, 1),Σ0)

for the diseased and N((0, 0),Σ0) for the healthy, where Σ0 has the variances 1

and 2 with a correlation parameter ρ. True ROC curves of tests 1 and 2 have the

same form given by Q1(u) = Q2(u) = Φ{1/
√

2 + 1/
√

2Φ−1(u)g}, for 0 ≤ u ≤ 1.

Thus, the true value of the parameter vector is θ = (1/
√

2, 1/
√

2, 0, 0). We fitted

a bivariate binormal model to the data; that is, we let K = 2 in the model

(2.2). The null hypothesis of equal ROC curves, H0 : (θ20, θ21) = (0, 0), can

be tested by the χ2 test statistic κ = (θ̂20, θ̂21)Σ̂22(θ̂20, θ̂21)T with 2 degrees of

freedom, where (θ̂20, θ̂21)’s covariance matrix estimate, Σ̂22, is calculated using

asymptotic results in Theorem 2. We simulated 1000 data sets under the null

hypothesis with various combinations of m = (50, 100, 200) and n = (50, 100, 200)

under ρ = (0, 0.25, 0.5, 0.75). The nominal rejection rate was set to be 5%. In

the simulation, the variances of LS estimators were estimated using asymptotic

results developed in Theorem 2. The variances of GLM and GEE’s estimators

were obtained using asymptotic results in Section 3. For a small sample size such

as 50, GEE method sometimes did not converge and we had to run more than

1000 simulations in order to obtain 1000 valid estimates. Since the LS method

does not require iterations, the computation time is greatly reduced compared to

that of GLM or GEE. Under the same circumstances, the computing time of LS is

less than half of that of GLM or GEE. In particular, we conducted our simulation

study on the same Unix machine. It took 53 seconds for the LS procedure to

estimate the parameters from 1000 simulated data sets when m = n = 200, while

the computational times of GLM and GEE were 870 seconds and 348 seconds,

respectively. When m = n = 50, the computation time of LS was reduced to 24

seconds, while the times of GLM and GEE were reduced to 210 seconds and 98

seconds, respectively.

Table 1 presents the rejection rates from these three approaches. As shown

in Table 1, asymptotic results of LS work well for all combinations of sample

sizes as the rejection rates are close to the nominal level, 5%. Even for a sample

size as small as 50 for both diseased and healthy groups, the rejection rates do

not have much departure from the nominal level. Moreover, the rejection rates

of LS are not affected by values of the correlation parameter, ρ. From Table 1,

the GEE and GLM approaches behave similarly to each other. Both approaches

Hosted by The Berkeley Electronic Press



16 L. TANG AND X.H. ZHOU

have over-rejection rates when sample sizes are as small as 50. This is mainly due

to the much variability of sandwich variance estimators for the GEE and GLM

method. Readers are referred to Kauermann and Carroll (2001) for more details.

It is also noticeable in Table 1 that as sample sizes for the healthy get larger,

rejection rates of GEE and GLM get closer to the nominal level even when sample

sizes for the diseased are small. However, rejection rates for the diseased and

small sample sizes for the healthy are not improved with large sample sizes. We

tried bootstrap methods in these situations. The bootstrap method performed

similarly as the LS method on the rejection rates regardless of sample sizes. The

bootstrap performed better than GLM and GEE when sample sizes were small,

and similarly as GLM and GEE when sample sizes were large.

Insert Table 2 here.

5.2 Finite sample performance of point and interval estimates

We used the same setting as in the previous section to evaluate and compare

estimation precision of three methods in this simulation study. We again simu-

lated 1000 data sets under sample sizes m = n = (50, 200, 400) with ρ = 0.5. The

nominal coverage probability of confidence intervals was 95%. We applied LS,

GEE and GLM to simulated data sets to get estimates of the ROC parameter

vector (θ10, θ11, θ20, θ21). Confidence intervals for the parameters were calculated

based on asymptotic results. We then compared these methods based on bias,

square root of MSE (RMSE) and the coverage probabilities of confidence inter-

vals. The results are shown in Table 2. All three methods have good accuracy

for estimating the parameters. The coverage probabilities differ among these

approaches. Our simulation results show that the LS approach has nice finite

sample property as the coverage probabilities of all parameters are close to the

nominal level for small sample sizes. When sample sizes are small, confidence

intervals computed from sandwich covariance estimators for GLM and GEE ap-

proaches cover the intercept parameters properly, but these confidence intervals

over-cover slope parameters. As sample sizes approach 400, the coverages of

GLM and GEE estimators get closer to the nominal level for slope parameters.

Insert Table 2 here.

5.3 The advantage of our asymptotic results over bootstrap procedures

http://biostats.bepress.com/uwbiostat/paper326



Semiparametric Inferential ROC Procedures 17

Many authors applied bootstrap methods to estimate covariance matrices

for the LS and GLM estimators when the asymptotic results were not derivable

(Pepe, 2000; Zhang and Pepe, 2005). However, it can sometimes take much

more computation time to bootstrapping than using asymptotic results. In this

simulation study, we compared coverage percentages of bootstrap covariance es-

timates with those of asymptotic covariance estimates for the LS approach. We

used the same setting in Section 5.1 with m = n = (50, 200, 400). Under each

combination of sample sizes, we simulated 1000 data sets with ρ = 0.5. For each

data set we applied bootstrap procedures to get covariance estimates of the LS

approach. The number of bootstrap was set to be 1000. We then used covariance

estimates to get confidence intervals and their coverage percentages. We showed

coverage percentages of bootstrap methods in Table 2. As can be seen from

Table 2, our asymptotic results were as good as bootstrap results because their

coverage percentages were very close. More importantly, asymptotic covariance

estimates were computed much faster than bootstrapped covariance estimates.

For example, when using the LS method as m = n = 400 it took 30 seconds to

obtain a bootstrap covariance estimate for one data set on a PC, while it took

only 5 seconds to obtain an asymptotic covariance estimate for the same data

set on the same PC.

6. Application to Pancreatic cancer biomarkers

Main interest in the aforementioned biomarker example is to determine

whether ROC curves generated by two biomarkers are equal. If not, it would

be interesting to tell which biomarker can better distinguish the diseased from

the healthy. We applied the LS estimation procedure to this data set. With

the probit link, g = Φ, and h = Φ−1, ROC curves of these biomarkers have the

same structure as those in (2.2) when K = 2. We got the estimate of the pa-

rameter vector as (θ̂LS
10 , θ̂LS

11 , θ̂LS
20 , θ̂LS

21 ) = (1.18, 0.47,−0.49, 0.55). Its covariance

matrix estimate was calculated based on the asymptotic result in Theorem 2.

The GLM and GEE parameter estimates were very close to the LS estimate, and

thus were not listed. The χ2 was then calculated to be 18.16 with the p-value

0.0001, which indicates significant difference in diagnostic accuracy between two

biomarkers. We also calculated the difference between two areas under estimated

ROC curves using the procedure in Section 4.2 and found significant difference
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18 L. TANG AND X.H. ZHOU

between two areas with the p-value 0.02. To visualize the sampling variability

of estimated ROC curves, simultaneous ROC bands were constructed using the

result in Theorem 3. Figure 2 shows the estimated ROC curves and their simulta-

neous bands. These ROC curves fit very close to the empirical curves. Although

our results on ROC curves and their areas show that two biomarkers are different,

it is clear in Figure 3 that two ROC curves intercept. The simultaneous bands

can help us determine the region of FPRs where two ROC curves are different.

Figure 3 shows overlapped confidence bands. It is obvious that the ROC curve

for CA 19-9 is significantly better than that for CA 125 when the false positive

rate is less than around 0.17, and two ROC curves do not have much difference

elsewhere.

Insert Figures 2-3 here.

7. Discussion

The interaction terms in our multivariate ROC model are completely differ-

ent from the interactions of the K diagnostic tests on the measurement level.

In fact, the interactions we refer to are between test types and FPRs. Multi-

variate ROC models such as multivariate binormal models play an important

role in ROC analysis of clustered biomarkers. This article derived asymptotic

covariances of the LS, GLM and GEE estimators for multivariate ROC models

with the presence of interaction terms between biomarker type and FPRs. We

developed three theorems in this paper. Theorems 1-2 were developed mainly for

the LS procedure. We applied some results in empirical process theory to show

the asymptotic properties in Theorems 1 and 2. We then derived the asymptotic

properties of correlated ROC curves with interaction terms in the model. To our

knowledge, such asymptotic properties with correlated data have not been ad-

dressed in empirical process theory. Theorem 3 for confidence bands can be used

with all three aforementioned estimators with their respective variance estimates.

The confidence band method gave an intuitive way to visualize the variability of

ROC curves and the difference between ROC curves.

Due to the nature of these aforementioned ROC methods, no matter which

baseline biomarker is selected, the estimated ROC curves remain the same for

each of the methods. That is, all these methods respect exchangeability of base-

line markers. For example, in the setting of two ROC curves, θ̂ = (θ̂10, θ̂11, θ̂20, θ̂21)
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is obtained using one of the methods when biomarker 1 is chosen as the baseline

marker. The resulting estimated ROC curves are then Q̃1(u) = g{θ̂10 + θ̂11h(u)}
for biomarker 1, and Q̃2(u) = g[θ̂10 + θ̂20 + {θ̂11 + θ̂21}h(u)] for biomarker 2.

Suppose now we instead choose biomarker 2 as the baseline and obtain param-

eter estimate θ̂∗ = (θ̂∗10, θ̂
∗
11, θ̂

∗
20, θ̂

∗
21). The resulting estimated ROC curves are

Q̃∗
1(u) = g{θ̂∗10+θ̂∗11h(u)} for biomarker 2 and Q̃∗

2(u) = g[θ̂∗10+θ̂∗20+{θ̂∗11+θ̂∗21}h(u)]

for biomarker 1. All the three parametric methods give θ̂10 = θ̂∗10 + θ̂∗20, θ̂11 =

θ̂∗11 + θ̂∗21, θ̂∗10 = θ̂10 + θ̂20 and θ̂∗10 = θ̂10 + θ̂20. Thus the estimated ROC curves

remain unchanged.

Our new contributions also include procedures to compare AUCs and ROC

curves, especially when the interaction terms between FPR’s and biomarker type

are present. We drew inference for pairwise comparison between ROC curves,

multiple comparisons of areas under ROC curves under binormal assumptions.

Our inferential procedures in Section 4 for comparing ROC curves are very gen-

eral for multivariate ROC models. Besides the three estimators we discussed, if

other estimators and their covariances were available, they can also be used in

these procedures.
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Table 1: Rejection rates (in %) with the nominal level α = 0.05 from

asymptotic results
LS GEE GLM

m n ρ=0 0.25 0.5 0.75 ρ=0 0.25 0.5 0.75 ρ=0 0.25 0.5 0.75

50 50 3.7 6.0 3.6 6.9 13.1 11.8 14.2 11.8 15.2 16.2 14.9 10.3

50 100 4.8 4.5 3.6 7.2 6.9 7.8 7.7 6.9 9.3 8.8 10.0 8.3

50 200 4.1 6.5 4.9 5.8 5.6 5.1 5.6 4.5 5.4 5.9 4.5 5.8

100 50 5.3 5.3 5.0 6.7 16.0 14.7 12.9 13.6 15.3 14.1 11.9 11.3

100 100 5.7 5.2 6.4 6.8 8.2 8.3 9.1 8.8 11.2 9.8 10.1 9.5

100 200 4.9 5.5 4.6 5.2 4.4 4.3 4.2 5.0 4.7 5.0 5.6 5.6

200 50 5.1 6.2 4.7 4.7 16.8 14.5 16.3 13.6 18.6 15.7 14.4 13.2

200 100 4.7 5.2 4.9 5.4 9.2 9.4 8.1 10.5 11.0 11.9 9.8 11.4

200 200 4.7 4.7 5.3 5.6 5.5 4.9 4.5 4.6 5.5 4.8 5.1 6.0

The rejection rate with 1000 realizations of normal model. The 95% pre-

diction interval of the rejection rate is (5.0% ± 1.4%).

Table 2: Bias, RMSE, coverage probability (CP) of parameter estimators
LS GEE GLM

m(n) Bias RMSE CP CP(BT) Bias RMSE CP Bias RMSE CP
50 θ10 -2.36% 0.19 94.80% 95.20% 0.66% 0.19 97.20% 0.60% 0.19 98.70%

θ11 0.80% 0.12 95.20% 95.00% -7.88% 0.15 99.90% -8.71% 0.15 100.00%
θ20 -0.55% 0.20 93.80% 95.70% -0.92% 0.20 99.40% -0.69% 0.21 99.10%
θ21 0.28% 0.16 96.20% 95.80% 0.49% 0.16 100.00% 0.24% 0.15 99.90%

200 θ10 0.07% 0.09 95.20% 94.20% 0.02% 0.10 94.70% 0.81% 0.10 94.40%
θ11 0.52% 0.06 94.60% 94.50% -1.76% 0.07 99.60% -1.63% 0.06 99.70%
θ20 -0.28% 0.10 93.90% 93.90% -0.09% 0.10 94.30% -0.21% 0.10 95.00%
θ21 0.01% 0.08 94.70% 95.20% 0.19% 0.08 99.00% -0.08% 0.08 99.60%

400 θ10 -0.03% 0.07 95.40% 94.40% -0.07% 0.07 94.70% 0.02% 0.06 96.50%
θ11 0.37% 0.04 94.80% 95.00% -0.72% 0.04 96.40% -0.86% 0.04 97.10%
θ20 -0.42% 0.07 95.90% 94.90% 0.02% 0.07 95.00% 0.06% 0.07 96.00%
θ21 -0.08% 0.05 95.30% 95.90% -0.08% 0.05 97.70% 0.01% 0.05 97.60%

CP is the coverage percentage for 95% confidence intervals using asymptotical
standard errors with a normal quantile. CP(BT) is the coverage percentage for
95% confidence intervals using bootstrap. Results are based on 1000 realizations
of bivariate normal model.
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Figure 1: Empirical ROC curves for CA 19-9 and CA 125: solid line, CA

19-9; dashed line, CA 125.
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Figure 2: Estimated ROC curves and their 95% confidence bands for CA

19-9 and CA 125: dashed lines, empirical ROC; solid lines, estimated ROC;

shaded regions, 95% confidence band; dotted lines, confidence band bound-

ries.
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Figure 3: Overlapped 95% confidence bands for CA 19-9 and CA 125: solid

lines, estimated ROC; shaded regions, 95% confidence band; dotted lines,

confidence band boundries.

Hosted by The Berkeley Electronic Press


	4-29-2008
	Semiparametric Inferential Procedures for Comparing Multivariate ROC Curves with Interaction Terms
	Liansheng Tang
	Xiao-Hua Zhou
	Suggested Citation


	tmp.1209505452.pdf.AKirC

