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Summary. Heteroscedastic data arise in many applications. In a het-

eroscedastic regression model, the variance is often taken as a parametric

function of the covariate or the regression mean. This paper presents a

kernel-smoothing based nonparametric test for checking the adequacy of such

a postulated variance structure. The test does not need to specify a para-

metric distribution for the random errors. It has an asymptotical normal

distribution under the null hypothesis and is powerful against a large class
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of alternatives. Numerical simulations and an illustrative example are pro-

vided.

Key words: goodness-of-fit test, heteroscedastic errors, kernel smoothing,

pseudo-likelihood, variance function
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1. Introduction

The problem of modeling heteroscedasticity frequently appears in practical

data analysis. It is well known that modeling variance function is important

for the efficiency of estimating the mean; the variance function itself may

be of practical importance; and whether variance is appropriately taken into

account could influence the estimation of other quantities of interest, such as

confidence interval, prediction interval, test statistics. For example, in assay

data analysis, the quality of estimation has been found to highly depend on

the modeling of the variance structure (Davidian, Carroll and Smith, 1988).

Such a data example (from Carroll and Ruppert, Section 2.8, 1988) is given in

Section 5, which consists of 108 measurements from a calibration experiment

of an assay for estimating the concentration of an enzyme esterase. The

response variable Y is the radioimmunoassay (RIA) counts, and the covariate

x is the concentration of esterase. A scatter plot of this data is given in the

top panel of Figure 1.

[Figure 1 about here.]

The heteroscedasticity exhibited in this data set is evident. Larger variance

is associated with larger response. This might encourage the researchers to

consider a variance function that is a function of the mean, such as a power-

of-the-mean variance model. Would this provide an adequate fit? Since the

responses are counts, would a Poisson model be appropriate? See Ruppert et

al. (1997), Zhou, Stroupe and Tierney (2001) for examples of heteroscedastic

data in other areas.

To answer the above questions, we need to develop goodness-of-fit test-

ing procedures for checking the adequacy of the variance function. Rigorous
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procedures for such a purpose are very lacking. Although many tests have

been proposed for checking whether a variance function is constant or not,

such as Breusch and Pagan (1980), White (1980), Cook and Weisberg (1983),

Müller and Zhao (1995), Diblasi and Bowman (1997), Cai, Hurvich and Tsai

(1998), these do not tell whether a specific variance function can adequately

describe the variability in the data. Classical tests, such as the Wald test, the

likelihood ratio test and the score test, may be constructed for this purpose

but they require the specification of a specific alternative model and a para-

metric error distribution. Although the classical tests are powerful against

that specified alternative, they may completely lose the power if the true

alternative is not in the specified direction. Recently, Bedrick (2000) and

Arbogast and Bedrick (2004) proposed how to check the adequacy of the

variance function in a log-linear model. Their methods allow for a large class

of smooth alternatives but they have not discussed general heteroscedastic

regression models and they assume normal random errors.

In this paper, we present a kernel-smoothing based nonparametric test for

assessing the goodness-of-fit of a variance function in a general heteroscedas-

tic regression model. The proposed method does not require to specify a

parametric distribution for the random errors and is designed to be power-

ful against different alternatives. It generalizes the smoothing test of Zheng

(1996) for checking the lack-of-fit of the mean function. The next section

introduces the test statistic and discusses its asymptotic properties. Section

3 proposes a simple bootstrap algorithm to obtain the critical values for fi-

nite sample size. Numerical simulations are reported in Section 4 and the

Esterase data from radioimmunoassay study is analyzed in Section 5. Sec-
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tion 6 generalizes the test to the unknown mean function case. Section 7

summarizes the paper. The technical proofs are given in an appendix.

2. The Testing Procedure

2.1 Hypothesis of Interest

Let Y be a response variable, X be an l × 1 vector of covariates and

Z be a q × 1 vector of explanatory variables which may contain part or all

components of X. A general heteroscedastic regression model based on n

independent observation triplets {(Xi, Yi, Zi), i = 1, . . . , n} can be written as

Yi = f(Xi, β) + εi, σ2
i = g(Zi, β, θ), (1)

where f is the conditional mean function, σ2
i denotes the conditional variance

function V ar(Yi|Zi), the function g depends on β and θ with the components

in θ distinct from those in β, and the εi are independent random errors

with mean zero. This formulation includes the popular log-linear model and

power-of-the-mean model, where the former has f(Xi, β) = X ′
iβ, g(Zi, β, θ) =

exp(Z ′
iβ) and the latter has g(Zi, β, θ) = θ1(f(Xi, β))θ.

We are interested in testing whether the variance function in (1) can

adequately describes the variability in the data. The null hypothesis is

H0 : σ2
i = g(Zi, β, θ), for some β, θ.

For example, to check the fit of a log-linear structure for the variance func-

tion, H0 would state that g is an exponential function. The alternative space

consists of all twice continuously differentiable functions other than exponen-

tial functions.

For the transparency of explaining the main ideas, we assume that the

mean function f has a known parametric form in the main body of the paper
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(a way to relax this assumption is given in Section 6). In practical regression

analysis, it is rare that a nonparametric model is used to fit the mean but a

parametric model is used for the variance. Knowledge of the mean function

may come from our understanding of the random mechanism which generates

the data, the underlying scientific theory or results from previous or similar

studies. We suggest that a goodness-of-fit test for the mean function (the

modern smoothing test allows for testing the fit of the mean function without

a parametric form for the variance function, see Zheng, 1996) is carried out

at the first stage and proceed with a test for the adequacy of the variance

function only when the first test does not yield a significant result. In other

words, attentions should be first given to the lower-order moment model and

then to the higher-order moment model.

2.2 The Test Statistic

The test is motivated by the fact E[riE(ri|Zi)p(Zi)] = E[(E(ri|Zi))
2p(Zi)]

is zero under H0 but is strictly positive for any alternative, where ri =

ε2
i − g(Zi, β, θ), and p(·) is the density function of Zi.

The test statistic is constructed as an estimator of E[riE(ri|Zi)p(Zi)].

First, consider only the outer-layer expectation and estimate this moment by

the sample mean n−1
∑n

i=1 riE(ri|Zi)p(Zi). Then, the product E(ri|Zi)p(Zi)

is estimated nonparametrically by

1

n− 1

n∑
j=1
j 6=i

1

hq
K

(
Zi − Zj

h

)
rj,

where K(·) is a kernel function, h is a smoothing parameter which depends

on n converges to 0 at an appropriate rate, and q represents the dimension

of Zi. It is often assumed that K(u) is a nonnegative, bounded, continuous,
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symmetric function and
∫

K(u)du = 1. This estimator is called a “leave-

one-out” kernel estimator because the i-th observation is left out. Since the

ri are not observable, they are replaced by the
√

n-consistent estimators

r̂i = (Yi − f(Xi, β̂))2 − g(Zi, β̂, θ̂), i = 1, . . . , n, (2)

where (β̂, θ̂) is the pseudo-likelihood estimator of (β, θ) (see Section 3.1). The

r̂i’s are correlated due to the estimation of the parameters but we expect them

to approximately fluctuate around zero under H0. A scatter plot of r̂i versus

Zi (of course, if Zi is univariate), would be a useful graphical display to check

the validity of the assumed variance structure.

Assembling the above estimators together, we obtain a kernel-smoothing

based nonparametric estimator of E[riE(ri|Zi)p(Zi)], which is given by

Tn =
1

n(n− 1)

n∑
i=1

∑

j 6=i

1

hq
K

(
Zi − Zj

h

)
r̂ir̂j. (3)

Since large value of Tn indicates deviations from the null hypothesis, Tn

will be used as our test statistic. The statistic Tn is a smoothing-based

nonparametric estimator of a population moment condition which is zero if

and only if the null hypothesis is true, it therefore belongs to the class of

so-called “moments tests” which includes many popular testing procedures

as special cases such as the Lagrange multiplier test and the information

matrix test. Our test statistic should be considered as a generalization of

a test proposed by Zheng (1996) for testing the goodness-of-fit of the mean

regression function since both tests have similar forms.

Under the null hypothesis, Tn can be approximated by

T
′
n =

1

n(n− 1)

n∑
i=1

∑

j 6=i

1

hq
K

(
Zi − Zj

h

)
rirj. (4)
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Note that T
′
n has the same form as Tn but with r̂i replaced by independent

quantities ri. In fact, if h → 0 and nhq → ∞ as n → ∞, then under

smoothness and moment conditions that are similar as in Zheng (1996),

nhq/2(Tn − T
′
n) → 0, (5)

in probability under H0. The statistic T ′
n has the form of a degenerate second-

order U -statistic and the theory developed in Hall (1984) can be applied to

derive its asymptotic normality. Under H0, we can show that as n → ∞,

h → 0 and nhq →∞,

nhq/2T
′
n → N(0, τ 2) (6)

in distribution, where N(a, b) denotes the normal distribution with mean a

and variance b and

τ 2 = 2

∫
K2(u)du

∫
[ξ4(z, β, θ)− g2(z, β, θ)]2p2(z)dz,

with ξ4(z, β, θ) = E(ε4
i |Zi = z). Because of (5), the normal distribution given

in (6) is also the limiting distribution of nhq/2Tn. To test for the adequacy of

the specified variance structure, a level α test will reject the null hypothesis

if nhq/2Tn/τ > Φ−1(1 − α), where Φ−1(1 − α) is the (1 − α)-quantile of the

standard normal distribution.

2.3 Asymptotic Power Properties

The nonparametric test Tn has the property of being consistent for any

alternative that is twice continuously differentiable. This omnibus prop-

erty of Tn can be established by showing: for any such alternative, we have

nhq/2Tn → ∞ in probability as n → ∞. We emphasize that the classical

parametric tests are only consistent against certain alternatives.

8

http://biostats.bepress.com/uwbiostat/paper299



Furthermore, the power property is often analyzed for a sequence of local

alternatives of the form σ2
i = g(Zi, β, θ) + cn∆(Zi), where cn is a sequence of

numbers converging to zero, ∆(Zi) is a function that is not in the parametric

class {g(Zi, β, θ) : β, θ}. Of interest is the rate of cn which makes the test

have a nontrivial power between zero and one. For parametric tests, the

rate is n−1/2; for smoothing-based nonparametric tests, this rate is generally

slower than n−1/2. We can show that nhq/2Tn has an asymptotic normal

distribution with a nonzero mean and the same asymptotic variance as that

under the null hypothesis for cn = O(n−1/2h−q/4). Note that this rate can be

made as close as possible to the parametric rate n−1 if we let h converge to

zero slowly.

3. Practical Implementation

3.1 Pseudo-likelihood Estimation

The implementation of the test requires estimation of the model under

the null hypothesis. The book of Carroll and Ruppert (1988) provides a com-

prehensive review of methods for fitting heteroscedastic regression models, of

which the pseudo-likelihood method has especially been proven to be simple

and effective.

Briefly speaking, the pseudo-likelihood procedure involves iterative steps.

Given β∗, a current estimator of β, the estimator of θ is defined to be the

value which maximizes

−
n∑

i=1

ln(g(Zi, β
∗, θ))− 1

2

n∑
i=1

(Yi − f(Xi, β
∗))2

g(Zi, β∗, θ)
. (7)

Although (7) has the form of a normal likelihood, the pseudo-likelihood

makes no assumption about the distribution of the underlying data. Call
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the pseudo-likelihood estimator of θ obtained at this step θ∗, the estimator

of β is then updated using the generalized least squares method, which is

equivalent to solving the equation

n∑
i=1

∂f(Xi, β)

∂β

Yi − f(Xi, β)

g(Zi, β, θ∗)
= 0. (8)

Given a starting value of β, the above process can be repeated until con-

vergence. The estimators obtained are
√

n-consistent under very general

conditions.

3.2 A Bootstrap Algorithm

It is well known that for nonparametric smoothing tests, the bootstrap

procedure usually exhibits better performance for small and moderate sample

size, see for example Härdle and Mammen (1993). We state below a simple

bootstrap algorithm for the fixed design case. The same algorithm can be

slightly modified and applied to the random design setting as well. The

bootstrap algorithm consists of the following five steps:

1. For a given random sample of observations, obtain the quasi-likelihood

estimator (β̂, θ̂) of (β, θ) under the null hypothesis.

2. Define ε̂i = [Yi − f(Xi, β̂)]/

√
g(Zi, β̂, θ̂), i = 1, . . . , n. Center and

standardize ε̂1, . . . , ε̂n such that they have mean zero and variance one.

3. Obtain a bootstrap sample from the standardized variables obtained in

Step 2, call them ε̂∗1, . . . , ε̂
∗
n, and define Y ∗

i = f(Xi, β̂) +

√
g(Zi, β̂, θ̂)ε̂∗i ,

i = 1, . . . , n.

4. For the bootstrap sample (Xi, Y
∗
i , Zi), i = 1, . . . , n, calculate the pseudo-

likelihood estimator (β̂∗, θ̂∗) under the null hypothesis, let r̂∗i = (Y ∗
i −
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f(Xi, β̂
∗))2− g(Zi, β̂

∗, θ̂∗). The bootstrap version of the test statistic is

T ∗
n =

1

n(n− 1)

n∑
i=1

∑

j 6=i

1

hq
K

(
Zi − Zj

h

)
r̂∗i r̂

∗
j . (9)

5. Repeat steps 3 and 4 a large number of times. For a specified nominal

level of the test, the critical value is then determined as the appropriate

quantile of the bootstrap distribution of the test statistic.

4. Numerical Simulations

We investigate the performance of the proposed test in finite sample sizes.

The test is calculated with 400 simulation runs and nominal level 0.05. The

simulated level thus has a Monte Carlo error of
√

0.05 ∗ 0.95/400 ≈ 1%. We

use 200 bootstrap samples per run to obtain the critical value. The random

data are generated using the statistical software R. In the two simulation

examples below, we evaluate the goodness-of-fit of the log-linear variance

model and the power-of-the-mean model. To investigate the influence of the

smoothing parameter, we report the simulation results for different choices

of h, which reflect different degrees of smoothness.

Simulation study 1: log-linear variance function. For this model, we com-

pare the nonparametric test Tn with the classical Wald test which requires to

specify an alternative and normal random errors. To test for the log-linear

variance structure σ2
i = exp(θ0 +θ1xi), the Wald test fits a more general vari-

ance model σ2
i = exp(θ0 + θ1xi + θ2x

2
i ) and evaluates whether the coefficient

of the quadratic term θ2 is zero.

We generate Yi = 1 + 2xi + σiεi, i = 1, . . . , n, where the xi are uniformly

distributed on (0,1). The εi are taken to be independent standard normal

random variables in order to make fair comparison with the Wald test. Three
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different functional forms are considered

(1) σi = exp(−0.5− 0.25xi),

(2) σi = exp(−0.5− 0.25xi − 6(xi − 0.5)2),

(3) σi = exp(−0.5− 0.25xi − 1.5(sin(2πxi))
2). (10)

Note that functional form (1) corresponds to the null hypothesis.

Table 1 summarizes the proportion of times the null hypothesis is rejected

by the two tests for two different sample sizes n = 50 and n = 100 and four

different choices of the smoothing parameter h: 0.10, 0.15, 0.20 and 0.25.

[Table 1 about here.]

It is observed that the Tn test maintains the specified nominal level very

well under the null hypothesis while the large-sample Wald-test tends to be

somewhat liberal. Our simulation experience indicates that if we raise the

sample size to 150, the estimated type I error for the Wald test reduces to

0.063. For the second functional form of σi, the Wald test is more powerful

than Tn for sample size n = 50 but the power of Tn catches up for n = 100.

This is not surprising as this alternative is designed to the advantage of the

Wald test. Indeed, the Wald test is most powerful if the true deviation from

the log-linear variance structure happens in the log-quadratic direction but

it can exhibit inferior power if the deviation happens in other directions. In

contrast, the smoothing-based conditional moment test is less powerful than

the Wald test when the deviation is in the log-quadratic direction and the

random errors are normal, but it can be more powerful than the Wald test for

deviations in many other directions. This is demonstrated by the simulation
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results for alternative (3), where the Wald test has very low power while the

Tn test shows very high power.

Simulation study 2: power-of-the-mean variance function. This model

assumes σ2
i = θ1(f(Xi, β))θ2 . In theory, if one is willing to assume a para-

metric error distribution, a parametric test such as likelihood-based test can

be constructed. However, this is rarely done in practice because unlike the

log-linear variance structure where the log-quadratic variance structure pro-

vides a natural extended model, such natural nested structure is not easily

available for the power-of-the-mean variance model.

We generate Yi = 20 + 10x1i + 10x2i + σiεi, i = 1, . . . , n, where the x1i

are uniform on (0,1), and the x2i are uniform on (-1.5,1.5). Three different

functional forms are considered for σi:

(1) σi = 0.05µ0.25
i ,

(2) σi = 0.05(µ0.25
i + e0.08µi),

(3) σi = 0.05(µ0.25
i + 5x2

2i), (11)

where µi = 20 + 10x1i + 10x2i is the mean for the i-th observation. We

also consider three different error distributions for the εi: standard normal,

t-distribution with four degrees of freedom, and lognormal. For comparison

purpose, the random errors from the t-distribution or lognormal distribution

are standardized to have mean zero and variance one.

For two different sample sizes n = 50, 100 and four different bandwidths

h = 0.10, 0.15, 0.20 and 0.25, the proportion of times the nonparametric

test rejects the null hypothesis for various scenarios is summarized in Table

2. The simulation results indicate that the observed level is quite close to
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the specified nominal level 0.05 for different choices of error distributions,

bandwidths and sample sizes. The power performance is also satisfactory.

The power is higher for normal errors than for the heavier-tailed errors and

increases with the sample size.

[Table 2 about here.]

5. Applications to Esterase Count Data

For the Esterase count data set discussed in the introduction, Carrol and

Ruppert suggest to fit a linear mean regression function. The local linear

smoother imposed on the scatter plot in the top panel of Figure 1 indicates

overally linearity mean function is a reasonable assumption. We further check

the validity of this proposal using the test of Zheng (1996). A plot of the

the p-value versus the smoothing parameter h is exhibited as the solid line in

the bottom panel of Figure 1. Such a plot is often referred to as a smoothing

trace of the test, see for example King, Hart and Wehrly (1991), Young and

Bowman (1995). The p-values are high for all choices of h. This provides

support to the linear mean function.

For most of the immunoassays data analysis in the literature, the variance

is assumed to be proportional to the mean, which leads to the following

regression model for the esterase data

Yi = β0 + β1xi + σ(β0 + β1xi)
θεi, i = 1, . . . , 108, (12)

where the εi are independent random errors with mean 0 and variance 1.

To test for the adequacy of the power-of-the-mean variance structure, the

nonparametric test Tn gives p-values much higher than 0.05 for a wide range

14
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values of h, see the dashed line in the bottom panel of Figure 1. The smooth-

ing trace suggests that the Tn test provides no evidence against the power-of-

the-mean variance structure. The pseudo-likelihood method gives for model

(12): β̂0 = −37.42 with an estimated standard error 12.11, β̂1 = 18.16 with

an estimated standard error 0.95, θ̂ = 1.03 with an estimated standard error

0.10, and the scale parameter σ is estimated to be 0.24.

In this data set, the response is RIA count. Poisson model is often used

for count data, which would correspond to θ2 = 0.5 in (12). The above

estimated model indicates that the esterase data are more heteroscedastic

than what a Poisson model would suggest. Merely for comparison purposes,

we check the validity of the Poisson variance structure using the Tn test. The

Tn test gives significant p-values for a wide range of h. The smoothing trace

for testing this hypothesis is plotted as the dotted line in the bottom panel of

Figure 1. Thus, the Possion variance structure does not provide an adequate

fit for the esterase data.

6. Unknown Mean Regression Function

The assumption of a known parametric mean regression function can be

relaxed. Consider the following general heteroscedastic regression model:

Yi = m(Xi) + σ(Xi)εi, i = 1, . . . , n, (13)

where X is an l-dimensional vector of covariates and the mean function m(·)
is only assumed to be smooth, the εi are independent with mean zero and

variance one. We want to test H0 : σ2(x) = g(x, θ) for some θ, i.e., whether

the variance function σ2(x) can be modeled parametrically.

Let m̂(x) be a kernel-smoothing estimator of m(x). Hall and Carroll

15
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(1989) verified that the parameter in the parametric variance function can

be consistently estimated with
√

n-rate if m(x) is Lipschitz smooth of order

1/2 or more. Denote r̂i = (Yi− m̂(xi))
2− g(xi, θ̂), where θ̂ is an estimator of

θ. Then the r̂i estimate ri = (Yi −m(xi))
2 − g(xi, θ), which have mean zero

under the null hypothesis. Define the test statistic similarly as before

Tn =
1

n(n− 1)

n∑
i=1

∑

j 6=i

1

hl
K

(
Xi −Xj

h

)
r̂ir̂j. (14)

A somewhat more involved proof (sketched in the appendix) shows that under

H0, as n →∞, h → 0 and nhl →∞,

nhl/2Tn → N(0, ξ2) (15)

in distribution, where ξ2 = 2
∫

K2(u)du
∫

g4(x, θ)(E(ε4
i |x)− 1)2p2(x)dx.

We explore the finite sample property of the proposed test through a

small Monte Carlo study, where the goal is to test whether the variance is

homoscedastic, i.e., whether g is a constant function. The random data is

simulated from Yi = 0.5 + 3(xi − 0.5)2 + 0.25εi, i = 1, . . . , n, where xi is

uniformly distributed on (0,1) and the εi’s are independent standard normal

random variables. We compare the test of this section (denoted by Tn1) with

the test in Section 2.2 that assumes a quadratic mean function (denoted

by Tn2) and the test in Section 2.2 with a linear mean function (denoted

by Tn3). Thus Tn2 represents the case in which a correct mean model is

used and Tn3 uses incorrectly specified mean model. For Tn1, a bootstrap

procedure similar to that in Section 3.2 is used, where f(Xi, β̂) is replaced

by a nonparametric estimator using kernel smoothing with optimal plug-in

bandwidth. For three different sample sizes n = 50, 100 and 150, and four
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different bandwidths h = 0.10, 0.15, 0.20 and 0.25, the estimated levels of the

three tests are displayed in Table 3. It is clear that the test Tn3 becomes very

liberal as the mean function is incorrectly specified. It is also observed that

compared with Tn2 where the mean function is correctly specified, it takes

much large sample size for Tn1 to work properly. Thus the test with unknown

mean is not as efficient as the test with a correctly specified parametric mean

function, on the other hand, a test with an incorrectly specified parametric

mean function may seriously impair the test for the variance function.

[Table 3 about here.]

7. Summary

We have developed a nonparametric test for assessing the adequacy of an

assumed variance structure in a linear/nonlinear heteroscedastic regression

model. The emphasis of this paper is the case the mean function has a

known parametric form. This is motivated by the fact that in practice when a

parametric form is assumed for a higher moment (the variance), a parametric

form is almost always assumed for the lower moment (the mean). We have

also discussed a generalization where the mean function is only assumed to

be smooth and estimated nonparametrically, but its practical performance

needs further study.
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Appendix A

Sketch of Proofs

Proof of (5). Since r̂i = (Yi−f(Xi, β̂))2−g(Zi, β̂, θ̂), ri = (Yi−f(Xi, β))2−
g(Zi, β, θ), we have r̂i = ri+2εi(f(Xi, β)−f(Xi, β̂))+(f(Xi, β)−f(Xi, β̂))2+

(g(Zi, β, θ)− g(Zi, β̂, θ̂)). As a result, Tn can be decomposed as a sum of ten

terms: Tn = T ′
n +

∑9
i=1 Qi, where

Q1 =
4

n(n− 1)hq

n∑
i=1

n∑

j=1,j 6=i

K

(
Zi − Zj

h

)
riεj(f(Xj, β)− f(Xj, β̂)),

Q2 =
2

n(n− 1)hq

n∑
i=1

n∑

j=1,j 6=i

K

(
Zi − Zj

h

)
ri(f(Xj, β)− f(Xj, β̂))2,

and Qi, i = 3, . . . , 9, are similarly defined. Let
∂f(Xj ,β)

∂β
be the m × 1 vector

with the ith element
∂f(Xj ,β)

∂βi
, and

∂f(Xj ,β)

∂β′ be the transpose of this vector.

Let
∂2f(Xj ,β)

∂β∂β
′ be an m×m matrix with the (i, k)th element

∂2f(Xj ,β)

∂βi∂βk
, then we

have

Q1 =
4

n(n− 1)hq

n∑
i=1

n∑

j=1,j 6=i

K

(
Zi − Zj

h

)
riεj

∂f(Xj, β)

∂β′
(β − β̂)

+(β − β̂)′
4

n(n− 1)hq

n∑
i=1

n∑

j=1,j 6=i

K

(
Zi − Zj

h

)
riεj

∂2f(Xj, β)

∂β∂β ′
(β − β̂)

= Q11(β − β̂) + (β − β̂)′Q12(β − β̂),

where the definition of Q11 and Q12 should be clear from the context, β

depends on Xj and lies between β and β̂. Note that the ri’s are independent
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with mean 0, thus E(Q11) = 0 and

E(Q2
11|X, Z)

=
16

n2(n− 1)2h2q

n∑
i1=1

n∑
i2=1

n∑

j1=1,j1 6=i1

n∑

j2=1,j2 6=i2

K

(
Zi1 − Zj1

h

)
K

(
Zi2 − Zj2

h

)

E(ri1ri2εj1εj2)
∂f(Xj1 , β)

∂β′
∂f(Xj2 , β)

∂β′
.

In order for the expectation to be nonzero, we must have i1 = i2 and j1 =

j2 or i1 = j2 and i2 = j1, we have E(Q2
11|X, Z) = O(n−4h−2q)O(n2) =

O(n−2h−2q). Since the quasi-likelihood estimator β̂ is
√

n-consistent for β, we

have nhq/2Q11(β − β̂) = O(nhq/2)Op(n
−1h−q)Op(n

−1/2) = Op(n
−1/2h−q/2) =

op(1). Similarly, Q12 = Op(1) and nhq/2(β − β̂)′Q12(β − β̂) = Op(h
q/2) =

op(1). Therefore nhq/2Q1 = op(1). Similarly, we can show nhq/2Qi = op(1),

i = 2, . . . , 9. 2

Proof of (6). From (5), nhq/2Tn and nhq/2T ′
n have the same asymptotic

distribution. Since the ri’s are independent with mean 0, nhq/2T ′
n is a second-

order degenerate U -statistic. Its asymptotic normality can be established by

checking the condition of Theorem 1 of Hall (1984). 2

Proof of (15). For r̂i = (Yi − m̂(Xi))
2 − g(Xi, θ̂), where m̂(Xi) = [(n−

1)hl]−1
∑

k 6=i YkK((Xk−Xi)/h)/p̂(Xi) and p̂(Xi) = [(n−1)hl]−1
∑

k 6=i K((Xk−
Xi)/h), and ri = (Yi−m(Xi))

2−g(Xi, θ), we have r̂i = ri+2σ(Xi)εi(m(Xi)−
m̂(xi)) + (m(Xi)− m̂(Xi))

2 + [g(Xi, θ)− g(Xi, θ̂)]. Similarly as in the proof

of (5), Tn can be decomposed as a sum of ten terms: Tn = T ′
n +

∑9
i=1 Qi,

where T ′
n = [n(n− 1)hl]−1

∑n
i=1

∑
j 6=i K

(
Xi−Xj

h

)
rirj,

Q1 =
4

n(n− 1)hl

n∑
i=1

n∑

j=1,j 6=i

K

(
Xi −Xj

h

)
riσ(Xj)εj(m(Xj)− m̂(Xj)),

21

Hosted by The Berkeley Electronic Press



Q2 =
2

n(n− 1)hl

n∑
i=1

n∑

j=1,j 6=i

K

(
Xi −Xj

h

)
ri(m(Xj)− m̂(Xj))

2,

and Qi, i = 3, . . . , 9, are similarly defined. To show nhl/2Q1 = op(1), we

make use of the following fact:

m(Xj)− m̂(Xj) =
ŝ(Xj)− s(Xj)

p(Xj)
− (ŝ(Xj)− s(Xj))(p̂(Xj)− p(Xj))

p(Xj)p̂(Xj)

−s(Xj)(p̂(Xj)− p(Xj))

p2(Xj)
+

s(Xj)(p̂(Xj)− p(Xj))
2

p2(Xj)p̂2(Xj)
,

where s(Xj) = m(Xj)p(Xj) and ŝ(Xj) = m̂(Xj)p̂(Xj). Based on the above

decomposition, nhl/2Q1 can be written as nhl/2Q1 = Q11 + Q12 + Q13 + Q14.

For instance,

Q11 =
4

n(n− 1)hl

n∑
i=1

n∑

j=1,j 6=i

K

(
Xi −Xj

h

)
riσ(Xj)εj

ŝ(Xj)− s(Xj)

p(Xj)
.

Since

ŝ(Xj)− s(Xj)

=
1

(n− 1)hl

∑

k 6=j

K

(
Xi −Xj

h

)
(m(Xk)−m(Xj))

+
1

(n− 1)hl

∑

k 6=j

K

(
Xi −Xj

h

)
σ(Xk)εk + m(Xj)(p̂(Xj)− p(Xj)),

Q11 can be further written as Q11 = Q11A+Q11B+Q11C . By directly checking

mean and variance, we can show Q11A = op(1), Q11B = op(1). And we can

show Q11C = op(1) by employing a result of Stute (1984): supx |p̂(x)−p(x)| =
(n−1h−l(lnh−l))1/2 almost surely. This proves that Q11 = op(1). Similarly,

we can show Q1i = op(1), for i = 2, 3, 4, which yields Q1 = op(1). We prove

nhl/2(Tn − T ′
n) = op(1) by showing Qi = op(1), for i = 2, . . . , 9 using the

same technique. The asymptotic normality is proved by applying the result

of Hall (1984) on T ′
n. 2
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Figure 1. Analysis of Esterase data. The top graph is a scatter plot; the
bottom graph contains smoothing traces for three different hypotheses: The
solid line is for testing the linearity of the mean function; the dashed line is
for testing the power-of-the-mean variance structure, the dotted line is for
testing Poisson model, and the horizontal dashed line has intercept 0.05.
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Table 1
Estimated powers of the Tn test and the Wald test for the three functional
forms of σ(xi) specified in (10) and two different sample sizes n = 50, 100.

The nominal level is 0.05.

n = 50 n = 100
σ(xi) h Tn test Wald test Tn test Wald test

0.10 0.048 0.103 0.055 0.070
(1) 0.15 0.050 0.053

0.20 0.048 0.053
0.25 0.050 0.053
0.10 0.633 0.995 0.943 1.000

(2) 0.15 0.735 0.970
0.20 0.780 0.983
0.25 0.810 0.988
0.10 0.658 0.140 0.973 0.165

(3) 0.15 0.690 0.980
0.20 0.648 0.963
0.25 0.513 0.903
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Table 2
Estimated powers of the Tn test for the three functional forms of σ(xi)

specified in (11), three different error distributions and two different sample
sizes n = 50, 100. The nominal level is 0.05.

n = 50 n = 100
σ(xi) h normal t4 lognormal normal t4 lognormal

0.10 0.053 0.058 0.045 0.063 0.063 0.045
(1) 0.15 0.043 0.050 0.050 0.043 0.058 0.025

0.20 0.038 0.050 0.040 0.040 0.050 0.048
0.25 0.053 0.043 0.045 0.030 0.040 0.045
0.10 0.455 0.305 0.180 0.773 0.473 0.238

(2) 0.15 0.533 0.350 0.183 0.848 0.550 0.230
0.20 0.598 0.383 0.190 0.885 0.608 0.268
0.25 0.665 0.418 0.193 0.933 0.645 0.248
0.10 0.583 0.370 0.260 0.875 0.610 0.313

(3) 0.15 0.708 0.468 0.323 0.945 0.728 0.398
0.20 0.750 0.505 0.343 0.968 0.790 0.443
0.25 0.765 0.545 0.335 0.990 0.792 0.463
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Table 3
Estimated levels of three tests for testing homoscedasticity when the mean

function is quadratic. Tn1 assumes unknown mean function and estimates it
nonparametrically; Tn2 assumes a quadratic mean function and Tn3 assumes

a linear mean function. The nominal level is 0.05.

test
sample size h Tn1 Tn2 Tn3

0.10 0.123 0.065 0.175
50 0.15 0.088 0.063 0.110

0.20 0.080 0.060 0.068
0.25 0.080 0.043 0.030
0.10 0.080 0.073 0.530

100 0.15 0.075 0.065 0.478
0.20 0.075 0.050 0.330
0.25 0.075 0.070 0.228
0.10 0.055 0.048 0.813

150 0.15 0.058 0.048 0.780
0.20 0.050 0.045 0.635
0.25 0.050 0.048 0.430
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