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By far the most popular regression model for binary data is logistic regression. Logistic regression
plays a central role in observational epidemiology because the odds ratios that it estimates are
identifiable from case–control samples [Cornfield, 1956], and because for rare events the odds ratios
approximate the relative risk. Logistic regression is also used to model common events in cross-
sectional or longitudinal studies, where the relative risk could be directly estimated and is not close
to the odds ratio.

The argument that relative risks will often provide a more useful summary of associations has been
made repeatedly over at least two decades [eg Wacholder, 1986, Sinclair & Bracken 1994, Davies
et al 1998, Skov et al 1998, McNutt et al 2003, Greenland 2004, Liberman 2005, Katz 2006] and
we will not belabor it here. Perhaps even more important as a reason for preferring relative risks
in summarising associations in binary data is the difficulty of explaining the correct interpretation
of odds ratios. Unfortunately, even researchers who clearly understand the distinction between
relative risks and odds ratios will find it difficult to ensure that the correct interpretation of an
odds ratio is communicated to a general audience. The difficulties are illustrated well by [Schulman
et al, 1999]. The authors estimated an odds ratio of 0.6 for effect of race on referral for angiography
in a well-designed and well-executed study and reported this odds ratio in a major medical journal.
The study was widely discussed in the news media as if it reported a relative risk of 0.6, when
in fact the relative risk was 0.93 [Schwartz et al, 1999]. It appears unavoidable that the reported
associations will be interpreted as relative risks, arguing that they should in fact be relative risks.

Several estimators of the relative risk have been proposed over the years, often on more than one
occasion. Barros & Hirakata (2003) give a comprehensive listing of proposals up to their date
of writing and compare performance in simulations. Our review differs from previous reports in
focusing on the estimating equations solved by various proposed estimators of the relative risk
and in evaluating the efficiency and robustness tradeoffs they make. Previous reviews have often
considered software rather than estimators. This appears more straightforward but frequently leads
to confusion. For example, Deddens & Petersen (2004) commented that using Cox model software
for binary outcomes seemed inappropriate because the Cox model is for survival data, and Ma &
Wong (1999) argued that three relative risk estimators were based on models whose assumptions
were not satisfied by the data. This misses the point. If the estimator is a good one then the fact
that it can be easily computed by abusing software designed for the Cox model is an advantage,
not a disadvantage. Aesthetically and pedagogically there may be cause for complaint, but the
objection is best removed by persuading software vendors to add a new ‘relative risk regression’
interface to the same estimation code, and again the fact that no new estimation code is required
should make this easier.

We describe the relative risk regression model and review a number of estimation algorithms that
have been proposed. We show that the estimators that give consistent results and valid standard
errors can be seen as a series of robust generalizations of the maximum likelihood estimator. We
compare the efficiency of these estimators and give some guidelines for implementation in popular
software. In a companion paper (Lumley & Kronmal 2006) we provide more algorithmic and math-
ematical detail, including implementations of all these algorithms in the R statistical environment
(R Development Core Team, 2006)

In the interests of terminological clarity we note that relative risk regression is also called ‘prevalence
ratio’ or ‘prevalence rate ratio’ regression by some authors. We assume that binary outcome data
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are actually of interest, i.e., that time-to-event information is either unavailable or inappropriate
to the substantive question at hand. We also note that our discussion in this paper is entirely
concerned with inference about relative risks as a description of associations between variables, and
not with prediction. The literature on relative risk regression has generally this same focus. Criteria
for building and evaluating models for the purpose of prediction are completely different. Good
discussions of modelling for prediction or classification can be found in Hastie et al (2001), which
discusses more automated methods, and Harrell (2001), which focuses on approaches requiring
more detailed control by the analyst.

1 The relative risk regression model

Relative risks arise naturally from the regression model

log P [Y = 1|X] ≡ log µ = η ≡ β0 + β1X1 + · · ·+ βpXp (1)

in which eβi is a relative risk contrasting levels of Xi that differ by 1. If P [Y = 1|X] is small then

log P [Y = 1|X] ≈ log
P [Y = 1|X]

1− P [Y = 1|X]
≡ logitP [Y = 1|X],

and if this is true for for all observed values of X the relative risk regression model is very close to
the logistic regression model

logitP [Y = 1|X] = logitµ = α0 + α1X1 + · · ·+ αpXp

If P[Y=1] is larger than 10-15% for any observed values of X (Greenland) then α and β will differ
noticeably, with |α| > |β|.

Like the logistic regression model, the relative risk regression model is a generalized linear model
(McCullagh & Nelder, 1989), with log link and variance function V (µ) = µ(1 − µ). Unlike the
logistic regression model, the relative risk model requires constraints on β to ensure that fitted
probabilities remain in the interval [0,1].

The maximum likelihood estimator, and all the other consistent estimators that have been proposed,
solve equations of the form

n∑
i=1

∂µi

∂β
w(µi)(Yi − µi) =

n∑
i=1

xiµiw(µi)(Yi − µi) = 0. (2)

with different choices of weight function w(·), at least in situations where a solution to this equation
exists in the parameter space being considered.

The estimating equations are unbiased for any choice of w(·), so all these estimators are consistent,
and are asymptotically Normal as long as β is in the interior of the parameter space being considered
(McCullagh & Nelder, 1989).
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2 Estimators of the relative risk

2.1 Maximum likelihood estimation

The statistically natural estimator for the relative risk is the maximum likelihood estimator in
model 1. A number of authors have noted that this is a generalized linear model and argued that
standard generalized linear model software should be used to fit it (Wacholder 1986, Skov et al
1998, Robbins et al 2002). In practice, difficulties arise.

There is at most one solution (Wedderburn, 1976) to the likelihood equations
n∑

i=1

xiµi
1

µi(1− µi)
(Yi − µi) = 0, (3)

with all µi ≤ 1, and if it exists it is the maximum likelihood estimator. There may be multiple
solutions with some µi > 1 and, in addition, if any µi ≈ 1 the estimating function will be dominated
by observation i, and estimation software may either fail or falsely report convergence.

Some software (eg, Stata) attempts to provide the solution to equation 3 even if it has some µi > 1,
though a more or less clear warning may be given that something unexpected has occurred. Other
software (eg R) attempts to solve the constrained optimization problem needed to give the true
maximum likelihood estimator.

Both the MLE and the solution to the likelihood equations are consistent for β and asymptotically
efficient under model 1. They are also design-consistent under sampling from a population even
when model 1 is not true. That is, as sample size increases they converge to the values of β that
would be obtained by applying the same estimator to the whole population.

Any consistent sequence of solutions to equation 3 will always be asymptotically Normal. The
true maximum likelihood estimator will be asymptotically Normal only when the true β lies in the
interior of the parameter space. If the maximum likelihood estimator is on the boundary of the
parameter space or the solution to equation 3 has some µi > 1, the usual model-based standard
errors from model 1 will be incorrect. The solution to equation 3 is computationally simpler, but has
the disadvantage that the weight 1/µ(1−µ) given to some observations may be very large or may be
negative. From a methodological viewpoint the meaning of negative weights is unclear. A practical
disadvantage is that ordinarily reliable statistical software may not have been as thoroughly tested
with negative weights.

2.1.1 Algorithms for the MLE

Most standard statistical software will not automatically produce the true maximum likelihood
estimator, because it is not readily obtained from the same Fisher scoring algorithm used for more
popular generalized linear models.

We will argue below that the maximum likelihood estimator is insufficiently robust to model mis-
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specification and that other estimators are often preferable. Algorithms for computing the maxi-
mum likelihood estimator, or a good approximation to it, are still of interest.

COPY algorithm Deddens & Petersen (2003) describe one algorithm for obtaining something
close to the maximum likelihood estimator. They proposed taking C copies of the data and 1 copy
with Y set to 1 − Y and fitting the relative risk model to these modified data. They call this the
COPY algorithm. The same effect could be obtained with orders of magnitude less computational
effort by taking just one copy of the data with outcome Y and one with with outcome 1− Y and
using weights C and 1 respectively. This is particularly important in our research applications,
which are to cohort studies of thousands of individuals. Essentially the same weighted estimator
was proposed by Carter & Lipsitz (2006), motivated by the common practice of adding a small
constant to cell counts to remove the problem of zero counts when analysing categorical data.

Writing βC for the maximum likelihood estimator in the modified data, as C → ∞, βC converges
to the solution to equation 3 and as C → 1, βC → (− log 2, 0, 0, . . . , 0). The weight C must be
chosen large enough that little bias results and small enough that the solution to equation 3 lies
within the permissible parameter space. Deddens & Petersen recommend C = 1000 and show that
it works well in some simulated examples. We show in examples below that (presumably when the
model is not exactly true) it may be necessary to use much smaller values of C and the resulting
estimator need not be close to the MLE.

Truncating fitted values Another approach to obtaining convergence to an approximate mle
for the log-binomial model is to simply truncate the range of µ (Wacholder, 1986). A threshold
near 1, such as 0.999, is chosen and µ is set to min(µ, 0.999) after each iteration for the purpose of
computing working residuals and working weights for the next iteration. The resulting estimator
is the MLE when the MLE is sufficiently far in the interior of the parameter space. When the
MLE is on the boundary of the parameter space this estimator is not the MLE, and need not be
consistent or asymptotically Normal, although it is almost as non-robust as the MLE. Baumgarten
et al (1989) also warn that this algorithm may be sensitive to starting values and to the tolerance
for convergence.

Searching the boundary Deddens & Petersen (2003) also mention (without details) a method
for finding the true maximum likelihood estimator by searching the boundary of the parameter
space. With two predictors, as in the example they mention, this is straightforward as either a
graphical or an automated approach. If the MLE is not in the interior of the parameter space
then it must have fitted probability equal to 1 at one corner or one edge of the convex hull of the
observed predictors xi, and a search for this edge or corner is easy. In higher dimensions, however,
it appears much more difficult to characterize and search the extreme points.

Step-halving The glm function in R augments the usual Fisher scoring algorithm with step-
halving. That is, β̂OLD is first updated to β̂NEW by Fisher scoring. If β̂NEW is outside the valid
parameter space we set

β̂NEW :=
1
2

(
β̂NEW + β̂OLD

)
4
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and repeat this until β̂NEW is inside the parameter space.

In theory this algorithm will always converge to the MLE. In practice it is fairly reliable, but if an
edge of the parameter space is almost perpendicular to the gradient of the the loglikelihood, the
estimate will move only very slowly along the edge and convergence may be declared before the
MLE is reached.

Other constrained optimization methods Many algorithms for constrained optimization
have been developed in the numeric analysis literature [eg Boyd & Vandeberghe, Chapter 11].
These are not readily available to users of statistical software, but would be a natural choice for
software vendors wishing to add maximum-likelihood relative risk regression to their offerings. One
example of such an algorithm is the adaptive log-barrier algorithm of Lange (1994), which is built
in to R and which we have used to compute the maximum likelihood estimator when testing other
algorithms.

2.2 Poisson working model

Poisson regression software is another natural choice for fitting a log-linear model, since it estimates
incidence rate ratio and since most medical applications of the Poisson distribution arise via the
Poisson approximation to the binomial distribution. This approach has been proposed by Traissac
et al (1999), McNutt et al (2003), Zou (2004), and Carter et al (2005). The estimating equations
are those for a generalized linear model with log link and variance proportional to mean

n∑
i=1

xiµi
1
µi

(Yi − µi) = 0.

The estimating equations for Poisson regression are unbiased when the response variable is binary
rather than Poisson, and thus lead to consistent estimation of the relative risk. Software for Poisson
regression is widely available, although one important package, SPSS, does not currently provide
it.

This estimator is often described as ‘assuming a Poisson model’, which is unfortunate choice of
terminology since it is neither reasonable nor necessary to assume that the binary variable Yi has a
Poisson distribution. When referring to the relationship between this estimator and the maximum
likelihood estimator for a Poisson model a better term might be ‘using a Poisson working model’,
by analogy with the working correlation models used in GEE (Zeger & Liang 1986).

When use to estimate relative risks from binary data, Poisson regression gives standard errors that
are too large, because the variance of a Poisson random variable is always larger than that of a
binary variable with the same mean. This bias can be removed by using model-robust standard
error estimates. Zou (2004) and Carter et al (2005) suggested using the model-robust sandwich
estimator; Barros & Hirakata (2003) show in some examples that two standard scale adjustments
for overdispersion can give reasonably accurate standard errors if the model-robust estimator is not
available and a bootstrap is too difficult to implement.

5

Hosted by The Berkeley Electronic Press



An aesthetically pleasing property of using the Poisson working model is that as the outcome
becomes rarer the estimator approaches both the log-binomial and the logistic regression estimator.
All three of these are asymptotically equivalent and thus fully efficient for rare events.

2.3 Nonlinear least squares

Nonlinear least squares estimation involves finding the relative risk estimates than minimize
∑

i(Yi−
µi)2. The estimating equations that result from differentiating this objective function are the same
as those for a generalized linear model with log link and constant variance

n∑
i=1

xiµi(Yi − µi) = 0.

These would be the likelihood equations for data with a Gaussian distribution, and a ‘Gaussian
working model’ may be the clearest description of these estimator when computations are done
using standard generalized linear model software.

As with the working Poisson model, using a variance function other than the binomial results
in less efficient estimates and biased standard errors, but still gives consistent estimators of the
relative risk. In constrast to the working Poisson model, the standard errors estimates may be
either too large or too small, depending on the range of fitted probabilities and the skewness of the
predictor variables. The bias in the standard errors is often very small for nonlinear least squares;
the usual standard error formula already incorporates an estimated dispersion term analogous to
those studied for Poisson regression by Barros & Hirakata (2003). As with the Poisson working
model, correct standard errors can be obtained from a robust ‘sandwich’ variance estimator or from
a jackknife or bootstrap.

2.4 Using Cox regression software

Cox regression estimates hazard ratios, which are relative risks at an instant. This motivated
the use of Cox regression software for relative risk regression. In reality, different events occur
at different instants of time and the hazard ratio will lie between the odds ratio and the relative
risk. To make the hazard ratio equal to the relative risk a fictitious data set is constructed where
every individual has the same observation time and so all events occur at the same instant (Lee
& Chia 1993, Lee, 1994)). This data construction poses problems for the Cox model, which is
mathematically and computationally simple only in continuous time, when no tied events occur.
These complications have led some authors (Ma & Wong 1999) to conclude, incorrectly, that the
method is invalid.

The first popular approximation for handling tied event times in genuine survival data was given by
Breslow (1974). When every individual has the same artificial observation time this approximation
results in the same estimating equations as Poisson regression, and so gives the same consistent
estimates, the same upwardly-biased model-based standard errors, and the same consistent model-
robust standard errors. The Breslow approximation is the default in many statistical packages,
including SPSS, SAS, and Stata.
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Many packages also provide, either as an option (Stata, SAS) or as the default (S-PLUS, R), a
more accurate approximation due to Efron (1977). Some packages also offer the exact partial or
marginal likelihoods. These more accurate methods of handling ties are often recommended for
genuine time-to-event data when the number of ties is large (Hertz-Picciotto & Rockhill, 1997),
but their use in relative risk regression would cause serious bias. Using the exact partial likelihood
gives a hazard ratio estimate that is identical to the conditional logistic regression estimator of the
odds ratio. Using the exact marginal likelihood or the Efron approximation results in estimators
that are not consistent for either the odds ratio or the relative risk.

Because of the dependence of the results on the method used to handle ties, and because there is,
even at best, no advantage over the use of Poisson regression software we do not recommend the
use of Cox regression software to estimate relative risks. This technique might be in principle be
useful when Poisson regression software is not available, but we know of no software package that
provides Cox regression with model-robust standard errors and does not provide Poisson regression.

2.5 Scaling by the average prevalence

In a model with a single, binary predictor the relative risk can be converted to the odds ratio by

RR =
OR

(1− p0) + p0 ×OR
(4)

where p0 is the probability of the event in the unexposed (or referent) group.

Zhang & Yu(JAMA 1998) propose using equation 4 for more general logistic regression models,
and Zocchetti et al (1997) give a similar proposal. The advantage of this proposal is its simplicity,
and equation 4 is certainly useful when a study has published odds ratios and a reader needs an
approximate translation to relative risks. However, as noted by authors including McNutt et al
(2003), equation 4 does not give a consistent estimator of the relative risk. Even at an operational
level it may not be clear what referent group to use to compute p0, for example in a model with
continuous predictors or with interactions.

2.6 Duplication of cases

Schouten et al suggested duplicating each observation that has Y=1, setting Y=0 for the duplicate.
They argued that in this new data set P [Y = 1] ≡ ν = µ/(1 + µ) and so

logit ν = log
ν

1− ν
= log

µ/(1 + µ)
1− µ/(1 + µ)

= log µ

so that logistic regression could be used to estimate β, though this estimation procedure will not
guarantee µ ≤ 1 without additional constraints.

If we write (xij , Yij) with j = 0 for the original data and j = 1 for the duplicate, the logistic
regression estimating equations are ∑

i,j

xij(Yij − νij) = 0

7
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Writing these equations in terms of the original data we obtain yet another set of generalized linear
model estimating equations

n∑
i=1

xi

(
Yi − (1 + Yi)

µi

1 + µi

)
=

n∑
i=1

xi
1

1 + µi
(Yi − µi) = 0. (5)

The estimating equations are unbiased, and so the solution is consistent for β and asymptotically
Normal. Model-robust standard errors are needed in this case to handle correlation from the
duplicated observations Yi0, Yi1 rather than misspecification of the marginal variance function.
This use of sandwich estimators is analogous to that in GEE, leading Skov et al (1998) to call
equation 5 the GEE–logistic procedure.

3 Robust estimators in the generalized linear model.

Equation 2 yields consistent, asymptotically Normal estimators of β for all the w(·) we consider,
so the choice of w(·) presents a tradeoff between efficiency and robustness. The efficient estimator
of β is obtained with

w(µ) =
1

µ(1− µ)
.

While it is not unusual for an efficient estimator to lack robustness, the extent of the non-robustness
is greater than usual. A single point with µ close to 1 can have arbitrarily large influence despite
having bounded covariate values. If gross outliers in x are plausible, either because of measurement
error or because of the presence of small subpopulations where the risk relationship is truly different,
the efficient estimator is likely to be too sensitive.

Figure 1 shows the net observation weight µw(µ) for the four consistent estimators. It is clear
that the weight becomes very much larger for the efficient estimator, where µw(µ) = 1/(1 − µ).
The other three estimators have relatively stable weight functions and it is not obvious how their
performance will vary. Wacholder’s estimate, which truncates µ at a value 1 − ε, such as 0.999,
has a weight function that follows that of the MLE but is truncated at 1/ε. For 1− ε = 0.999 the
truncation point is well off the top of the figure.

3.1 Efficiency

The price for robustness is usually a moderate reduction in efficiency, so we explored the loss of
efficiency from using the robust weight functions rather than maximum likelihood estimation. To
gain more insights, we consider a simplified case with p = 1, i.e., one dimensional covariate. In
this case, the relative efficiency for estimating β is invariant to location-scale transformation of X.
So the asymptotic relative efficiencies (of different estimates) will be completely determined by the
distribution of µ, given the one-to-one relationship between µ and X with fixed coefficients.

We use the following simple simulation study to investigate the relative efficiencies for differently
distributed P with one dimensional X. Consider a simple regression model log(P [Y = 1|X]) =
β0 + β1X, with β0 = −1 and β = 1. We assume the probability µ has a Beta distribution B(θ1, θ2)

8
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Figure 1: Net observation weight µw(µ) vs µ for the four consistent estimators of the relative risk
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distribution. Different combinations of θ1 and θ2 yield a rich family of probability distributions.
For example, µ ∼ B(0.2, 0.2) has a bowl-shape distribution, with a majority of µ close to 0 and
1; µ ∼ B(1, 1) is uniformly distributed between 0 and 1; µ ∼ B(2, 2) is bell-shaped, with mode at
1/2; µ ∼ B(0.2, 2) is clustered around 0 and µ ∼ B(2, 0.2) is clustered around 1.

In our simulation study, we first generate 500,000 realizations of µ from the appropriate Beta
distribution. Once µ is generated, we can compute corresponding X from the equation log(P [Y =
1|X]) = µ = β0 + β1X and (β0, β1) = (−1, 1). We can then obtain the asymptotic variances of the
estimates of β1 for different approaches by approximating the sandwich variance estimates with
their empirical counterparts based on the 500,000 realizations. Asymptotic relative efficiencies can
be then computed.

In Figures 2–5, we show the relative efficiencies for the three approaches with respect to the MLE
as a function of θ2 for different, fixed θ1. It can be seen that under all simulated settings, the
duplication of cases approach is less efficient than the Poisson regression; the relative efficiency
of the nonlinear least squares approach with respect to the Poisson regression depends on the
distribution of µ; Both the Poisson and the nonlinear least squares approaches are very efficient
(with relative efficiency greater than 0.8), unless µ is extremely clustered around 0 and/or 1.

3.2 Gross error sensitivity

To illustrate the sensitivity of the MLE we performed a simulation based on µ ∼ B(2, 2) as above,
but contaminating the covariates with 0.5% and 1% gross errors in x. Two contaminating distri-
butions were used. In the first, the contaminating values of x were taken so that µ ∼ B(0.5, 0.5).
This means that at the true value of β the fitted values are all in [0, 1]. The second contaminating
distribution was logNormal(0.5, 1), which has the same median as the true x but a larger range,
and where some erroneous x values will lead to fitted µ > 1.

In Table 1 we show the bias and mean squared error for estimates from the contaminated and
uncontaminated data with three of the four weight functions in Figure 1. The MLE is more efficient
in the absence of contamination, but loses its efficiency advantage in the presence of very small
amounts of contamination even when the fitted values stay in [0, 1]. When errors produce fitted
values outside [0, 1] the MLE is much more biased and has much large MSE than the alternatives.

3.3 Example:

In this section, we illustrate the relative risk regression using data from the Multi-Ethnic Study
of Atherosclerosis (MESA), a multi-center study of sub-clinical cardiovascular disease (Bild et al.,
2002). The sample consists of 6,814 men and women aged 4584, who are Caucasian, African-
American, Hispanic, or Chinese-American. The response to be considered here is the presence of
coronary artery calcium (CAC), a measure of the presence of coronary artery disease, determined
by the use of computed tomography (CT). For illustrative purposes, we restrict the predictors of
interest to age, gender, and high density lipoprotein cholesterol (HDL). Approximately 50% of the
MESA participants have CAC present on the CT scan.

10
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Figure 2: Efficiency of three alternative estimators relative to the MLE, when µ ∼ B(0.2, θ2). Inset
graphs show probability density for B(0.2, 1), B(0.2, 3), B(0.2, 5)
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Figure 3: Efficiency of three alternative estimators relative to the MLE, when µ ∼ B(1, θ2). Inset
graphs show probability density for B(1, 1), B(1, 3), B(1, 5)
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Figure 4: Efficiency of three alternative estimators relative to the MLE, when µ ∼ B(2, θ2). Inset
graphs show probability density for B(2, 1), B(2, 3), B(2, 5)
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Figure 5: Efficiency of three alternative estimators relative to the MLE, when µ ∼ B(10, θ2). Inset
graphs show probability density for B(10, 1), B(10, 3), B(10, 5)
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Table 1: Median bias and MSE of regression coefficient from three estimators under gross error
contamination, based on 1000 replications

Weight function
Binomial Poisson Constant

µ/(µ(1− µ)) µ/1 µ/µ

Uncontaminated
(bias) -0.007 0.001 0.003

(MSE) 0.0035 0.0065 0.0051
Beta(0.5,0.5)

0.5% (bias) -0.031 -0.026 -0.009
(MSE) 0.0076 0.0079 0.0057

1.0% (bias) -0.05 -0.05 -0.02
(MSE) 0.0090 0.0110 0.0058

Lognormal
0.5% (bias) -0.42 -0.02 -0.07

(MSE) 0.20 0.0072 0.0135
1.0% (bias) -0.52 -0.05 -0.14

(MSE) 0.27 0.0089 0.0271

Table 2: Relative risk and odds ratio estimates for risk of coronary calcification
Relative Risk

MLE Poisson NLS Scaled OR Odds ratio
Age (vs < 55)
55–64 1.84 1.79 1.84 1.46 2.69
65–74 2.58 2.50 2.62 1.73 6.19
75–84 3.07 3.13 3.34 1.89 15.91
Male 1.37 1.37 1.45 1.43 2.47
HDL (vs lowest quintile)
2nd 0.98 0.95 0.91 0.87 0.78
3rd 0.96 0.92 0.87 0.82 0.69
4th 0.95 0.92 0.88 0.83 0.71
5th 0.91 0.87 0.83 0.77 0.62
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Table 3: Relative risk and odds ratio estimates for risk of coronary calcification
Relative Risk

MLE Poisson NLS Scaled OR Odds ratio
Age (/10 yrs) 2.02 1.98 1.88 1.46 2.70
(Age− 50)2 0.90 0.91 0.92 1.00 0.99
Male 1.36 1.44 1.36 1.43 2.48
log HDL 0.89 0.77 0.82 0.68 0.51

Table 2 shows results from the maximum likelihood, non-linear least squares, working Poisson
model, and logistic regression. In these analyses, age and HDL are categorized into 5 intervals. In
this model there was no difficulty in estimating the MLE by the usual Fisher scoring algorithm. All
fitted values were below 1 for the MLE and non-linear least squares estimates; the working Poisson
model gave fitted values up to 1.08.

The first three RR model estimates are similar and would lead to roughly the same quantitative
and qualitative inferences. The scaled odds ratio estimate of the relative risk, using the mean fitted
value as p0 in equation 4, is noticeably different, in particular for age. Using the fitted value when
all covariates are zero as p0 gives a much worse approximation to the relative risk. As expected, in
this example the odds ratios from logistic regression grossly overestimate the RRs and would likely
lead to the impression by the unsophisticated reader of very strong risks associated with all of the
variables.

Table 3 shows the various estimates for the different models with age, age squared and ln(HDL)
as continuous variables (age centered at 50). In this example the MLE is on the boundary of the
parameter space, but is not far from the two quasilikelihood estimates.

Estimation of the MLE failed in Stata so the MLE was computed in R. The R glm function and
the log-barrier constrained optimizer gave relative risks differing by 0.2–2%. One observation has
µ̂ = 1 at the MLE, an 81-year old man with the lowest observed HDL. The COPY algorithm
required C = 25 for the final estimate to be in the interior of the parameter space and C = 2 for
Fisher scoring to stay inside the parameter space with starting value −1 for the intercept and 0 for
all other parameters. At C = 25 the COPY algorithm gave very similar results to nonlinear least
squares, but at C = 2 there was substantial bias, eg a coefficient of 1.31 for age and 1.18 for male
gender.

In the figures presented below, all of the curves shown are for the unadjusted models. Figure 6(a)
shows plots with age as the predictor variable of a lowess estimator of the RR function, along with
the RR functions from the maximum likelihood, non-linear least squares and logistic regression.
Each estimator has a comparison value of age 50 for the RR computation. The lowess estimator
is computed by first estimating the probability of CAC presence by using CAC coded as 0 for
presence and 1 for absence and then computing from the estimated probabilities, the RRs for each
study participant. As observed in table 3, the odds ratio curve provides an extremely poor estimate
of the RR. Although it is not readily apparent from the figure, the RR curves deviate somewhat
from the lowess curve. Figure 6(b) shows the maximum likelihood curve for the linear model and
additionally the maximum likelihood and non-linear least squares models including both a linear
and quadratic term. Clearly the RR model curves with the quadratic term now closely approximate
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Figure 6: Fitted risks relative to age 50 from models and smoothing: (a) linear term in age (b)
linear and quadratic terms in age.
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the lowess curve. Also overlaid on the plot for comparison to the models in table 3, is the estimator
of the RRs for age in categories.

In Figure 7 the same curves as described above except with ln(HDL) as the predictor and the 10th
percentile value of ln(HDL) as the comparator. In this example the RR models provide excellent
estimates of the lowess estimated RR curve. Again the odds ratios are clearly not reasonable
estimates of the RRs.

4 Implementations

We consider the statistical packages SAS, SPSS (version 11), Stata (version 9), S-PLUS (version
7.0.3), and R (version 2.2.1).

SAS Computations using SAS (SAS Institute Inc, 2004) PROC GENMOD are described in detail
by Spiegelman & Hertzmark (2005). In brief, the log-binomial estimator is obtained simply by
specifying binomial distribution and log link. To compute valid standard errors for other weight
functions they add the lines

class id;
repeated subject=id/type=ind;

which asks for estimates suitable for longitudinal data. With one observation per individual this
gives model-robust standard errors without changing the point estimates of relative risk.

SPSS (SPSS Inc, 2001) does not provide routines for Poisson regression, but does provide nonlin-
ear least squares. The nonlinear least squares routines do not compute the model-robust standard
error, but the model-based standard error is likely to be adequate unless covariate effects are very
strong.

Stata (StataCorp 2005) provides model-robust standard errors for nearly all its regression models.
The efficient weights and the Poisson and Gaussian working models are available by

glm y x, link(log) eform robust binomial
glm y x, link(log) eform robust poisson
glm y x, link(log) eform robust gaussian

The binomial option performs unconstrained estimation. The additional optimization options
difficult and search may be helpful in finding the MLE when it is inside the parameter space
but relatively close to the boundary. Version 9 of Stata also provides a relative risk regression
command, using Wacholder’s method of truncation at 0.999 to handle µ > 1.
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Figure 7: Fitted risks relative to age 50 from models and smoothing: (a) linear term in age (b)
linear and quadratic terms in age.
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S-PLUS and R: In S-PLUS (Insightful Corporation 2005) and R (R Development Core Team,
2006) the glm function takes as an argument a family object. The Poisson regression and non-
linear least squares weights are available by family=poisson() and family=gaussian(log). In
R, family=binomial(log) attempts constrained estimation of the mle. It is usually successful if
the number of iterations is set high enough. In S-PLUS family=binomial(log) is interpreted as
an abbreviation for family=binomial(logit) and performs logistic regression, not relative risk
regression.

In addition, R code for all the estimators we discuss, including the adaptive barrier algorithm for
the maximum likelihood estimator, is available from the authors.

5 Conclusions

Estimators obtained from solving equation 2 always have the possibility of producing some fitted
µ > 1. Constrained optimization, which will often result in some points having very high influence,
is the only way to avoid this. There has been ongoing controversy about the practical and theoretical
importance of the constraint µ ≤ 1.

Deddens and coworkers stress the fact that the MLE cannot lie outside the parameter space, but
if the MLE lies on the boundary it is likely that applying the model to new data will lead to fitted
probabilities outside [0,1]. They also correctly point out that if model 1 is true, the limiting value of
β must lie in the parameter space and that the finite-sample MLE cannot be far outside. This is the
motivation for the COPY algorithm and demonstrates why it is successful, especially in simulated
data where the model holds exactly.

On the other hand, the only point on which there appears to exist consensus is that the main reason
for choosing the relative risk regression model is the greater interpretability of relative risks. If we
choose the model primarily based on the contrasts we are interested in, we are surely precluded
from assuming that it fits perfectly; we can only ensure that it is a good approximation to the
bulk of the data. Even more than usual, Peter McCullagh’s aphorism ‘models play the same role
in statistics as in fashion: as idealizations of reality’ applies.

In our experience in large epidemiologic studies it is relatively common for the log relative risk to
be linear in an exposure variable over nearly all the range of the data, but to have a few outlying
measurements that do not fit the linear model. In these cases the MLE produces a more misleading
summary of the relationship than an estimator that allows µ > 1 for a handful of observations.

When the purpose of regression modeling is to estimate a contrast that summarizes the effect of
some exposure or intervention there should be a strong preference for expressing the contrast in
a form that is easy to communicate. This principle suggests that, other things being equal, we
should prefer to estimate relative risks rather than odds ratios when modeling common events.
Discussions of relative risk regression have often evaluated proposals solely by their performance in
small simulations or in a few examples. We have shown that consistency, and even relative efficiency,
of many of these proposals can be evaluated analytically when the estimator is characterized by
the estimating equation it solves, rather than the software or algorithm used to obtain it.
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Relative risk regression is now a feasible technique for most public health or clinical researchers.
While some previously proposed estimation algorithms give inconsistent relative risk estimates or
invalid standard errors, there are convenient and widely available techniques that do give valid
estimation.

As an interim approach, we recommend using the maximum likelihood estimator when it lies in
the interior of the parameter space. If the maximum likelihood estimator is on the boundary of the
parameter space this likely indicates the model does not fit perfectly. We would then recommend
using an unconstrained estimator, such as nonlinear least squares, and investigating the fit of the
model.

If the model fits reasonably well over the bulk of the data, but produces a few outliers with estimated
probabilities exceeding one, we would report the nonlinear least squares results. Spiegelman &
Hertzmark (2005) give a similar recommendation, defaulting to the Poisson working model rather
than nonlinear linear squares, and their software will be helpful for SAS users.

If the fit is generally poor we would investigate transformations of the data, interactions, and other
standard approaches to model criticism. Blizzard & Hosmer (2006) found that formal goodness-
of-fit tests for the log-binomial model had low power, but other model diagnostics for generalized
linear models should still be useful.

We hope that relative risk regression commands will be implemented in standard software, making
these circuitous approaches unnecessary. The fact that nearly 20 years after Wacholder (1986) we
are still seeing new proposals for tricking software into fitting the relative risk regression model
implies either that researchers do not care about the difference between odds ratios and relative
risks or that the statistical software industry is not listening to them.
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