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1 Introduction

Diagnostic tests seek to distinguish between subjects with a condition to those
without. If the true status was known or can be measured by a golden standard
procedure, the accuracy of the diagnostic tests could be measured. When con-
sidering a binary test (i.e. either positive or negative), one can summarize the
results by looking at two measures. One is sensitivity, which is the probability of
a positive test given the true status is positive, another one is specificity, which
is the probability for a negative test when the true status is negative. When the
interest falls on the confidence intervals (CI), finding the CI’s for the sensitivity
and specificity is equivalent to finding CI’s for two Binomial proportions. The
commonly used Wald type interval has several limitations due to the nature
of the Binomial distribution (Brown et al., 2001). Several alternative intervals
have been proposed, and have been proved to be much better than the Wald
interval (Brown et al., 2001).

Often, due to various reasons, not all subject’s disease statuses can be veri-
fied. For example, if true status can be verified only by intrusive operation, the
true status for only those who have positive test results would be likely to be
verified. In most cases, using only the verified sample, it might cause bias (Zhou
et al., 2002). This bias is known as verification bias. Under verification bias
we can no longer estimate the sensitivity and specificity using two separated
binomial distributions as before. The most widely used correction method for
this method was developed by Begg and Greenes (1983) under the ignorable
verification bias assumption, that assumes the reason for selecting a sample for
verification depends only on observed data. Zhou (1993) extended that method
using a maximum likelihood approach. Kosinski and Barnhart (2003) suggested
a method for correcting for nonignorable verification bias. Zhou et al. (2002)
and Pepe (2003) give a good summary about this subject. The coverage accu-
racy of the existing methods can be very poor, yielding coverage probabilities
much lower than the nominal levels. The reason is that these methods are still
using the Wald-type idea for CI. As it is mentioned for the Binomial case, the
Wald-type interval does not work.

Estimating the sensitivity, specificity, and their CI’s using better alternative
methods to Wald-type intervals requires a complete data set (i.e. both test re-
sults and true status for all subjects); when there are some subjects without true
status, we can not use these better alternative methods directly. By considering
verification bias as a missing-data problem, we may use Multiple Imputation
(MI) methods for dealing with the missing data problem, which allow us to
use better alternative methods for binomial proportions. Multiple imputation
(MI) (Rubin, 1987) is a simulated based technique, replacing the missing values
with m sets of plausible values, resulting in m sets of ”complete” data sets. For
each ”complete” data set, we compute the sensitivity and specificity estimates
and their standard errors and combine them by simple arithmetic rules, giving
a valid result taking into consideration the missing values. Using this method
allows us not only to use the most common and simplest procedures to estimate
the sensitivity, specificity, and their CI’s but also gives us a ground to compare
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Table 1: Data summary
a. aggregated data b. complete data

T = 1 T = 0 T = 1 T = 0
V = 1 D = 1 xA

11 xA
10 D = 1 x11 x10

D = 0 xA
01 xA

00 D = 0 x01 x00

V = 0 xB
+1 xB

+0

Total n1 n2 Total n1 n2

between the different estimation procedures. Our simulation results show that
the imputation procedures gives much better results than the currently avail-
able procedures. We will be able to pin point one MI method that is the best
in coverage accuracy and comparable in interval length and relative bias.

In the remaining parts of this article, we will present the data set up and
existing methods in Section 2. In Section 3 we will introduce the use of MI
(Rubin, 1987) to address verification bias. We will compare the various tech-
niques using a simulation study in Section 4, give applications of the propose
methods to two real data examples in Section 5, and conclude the paper with a
discussion in Section 6.

2 Data set up and existing methods

2.1 Data set up

Let T be a binary random variable, indicating whether or not the test was pos-
itive (T = 1) or negative (T = 0). Since not all subjects’ tests are being verified
using the golden standard procedure, let V be a random variable indicating
whether or not the subject was verified using the golden standard procedure
(V = 1 if verified, V = 0 if not). Let D be the true status for those who were
verified using the golden standard, such that D = 1 if diseased and D = 0 if
non-diseased (we assume there is no measurement error for the golden standard
procedure). Consider Table 1a as a summary of aggregated representation for
the data, where the x′s are the counts of observations in each status. One can
consider V = 0 to be the indicator for missing data.

We can separate the data into two parts. First, when both T and D are
observed (V = 1), we can call it part A. Second, when T is observed but D is
missing (V = 0), we will refer to this as part B (Table 1a ). Each complete
data count xij is a sum of two parts, xij = xA

ij + xB
ij . Although xA

ij is totally
observed, xB

ij is not, instead we observe only the marginal total xB
+j = xB

1j +xB
0j .

The observed data, Yobs = {xA
ij , x

B
+j : i, j = 0, 1}, is represented in Table 1a .

Consider the perfect scenario in which all subjects were verified, and we
would have complete data (Table 1b ). Even in that case, estimating the speci-
ficity and sensitivity might not be a straightforward task. This estimation is
equivalent for estimating a proportion from a binomial distribution. Although
this problem is considered one of the most basic tasks in elementary statis-
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tics, the nature of the binomial distribution makes it less trivial for estimation.
Brown et al. (2001) gave a detailed overview of this issue.

2.2 Existing methods

2.2.1 Complete data

When both diagnostic test and true status are available for all subjects, the
estimation of the sensitivity and specificity confidence intervals are equivalent
to estimating the confidence interval of a binomial proportion.

Estimating a confidence interval for a binomial proportion is a basic issue
in statistics. This estimation is not trivial due to the skewed nature of the
binomial distribution, especially when the proportion is close to 0 or 1. Consider
a random variable X ∼ Bin(n, p), the standard interval for p is the Wald interval
in which p̂±κ

√
np̂q̂, where p̂ = X/n, q̂ = 1− p̂ and κ is the (1−α/2) percentile

of the standard normal distribution. We follow Brown et al. (2001) in the
comparison of binomial intervals for complete data. The following methods
are known methods, that were developed in order to get around the Binomial
estimation problem.

The Agresti-Coull (A&C) interval: Instead of using the standard estimate
for the binomial proportion (p = X/n), Agresti and Coull (1998) suggested a
different estimate. Let X̃ = X + κ2/2 and ñ = n + κ2; hence, p̃ = X̃/ñ and
q̃ = 1− p̃. The 100(1− α)% confidence interval for p will be then:

p̃± κ

√
p̃q̃

ñ
(1)

Wilson interval: Consider using the ”true” standard error in the confidence
interval estimation instead of the estimated one. In that case we use

√
pq
n

instead
√

p̂q̂
n , which lead to the following confidence interval:

X + κ2/2
n + κ2

± κ
√

n

n + κ2

√
p̂q̂ +

κ2

4n
(2)

This interval was introduce by Wilson (1927).
Jeffreys interval: Using a Bayesian approach, it is well known that for a

binomial likelihood, one can use a beta conjugate prior. Jeffreys priors are
beta priors, and are considered to be noninformative priors (flat priors). Let p
have a prior beta distribution p ∼ Beta(1/2, 1/2), and let X ∼ Bin(n, p). The
posterior distribution of p given the data will be p|X ∼ Beta(X + 1/2, n−X +
1/2). The (Bayesian) 100(1− α)% confidence interval is

(max(0, Beta(α/2, X + 1/2, n−X + 1/2)), (3)
min(Beta(1− α/2, X + 1/2, n−X + 1/2)))

where Beta(α/2, a1, a2) is the (1 − α/2) quantile of a Beta distribution with
parameters a1 and a2.
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Logit (Rubin) interval: Rubin and Schenker (1987) suggest to use the confi-
dence interval for θ = θ(p) = logit(p) = log( p

1−p ) under a normal approximation.
Using a Bayesian argument with the Jeffreys prior distribution, we can show that
the distribution of θ is approximately normal. Therefore, if θ̂X is the estimate
for θ, it follows that (θ − θ̂X) ∼ N(0, VX) where −V −1

X is the second derivative
of the log posterior of θ evaluated at θ̂X . It follows that θ̂X = logit(p̃) where
p̃ = X+1/2

n+1 , with VX = [(n + 1)p̃(1− p̃)]−1. Hence, the 100(1− α)% confidence
interval is

logit−1{logit(p̃)± κ√
(n + 1)p̃(1− p̃)

} (4)

Zhou-Li (Z&L) interval: Zhou and Li (2004) proposed a confidence interval
based on the Edgeworth expansion of the logit transformation for the proportion
in mind. Zhou and Li (2004) consider the pivotal quantity T =

√
np̂q̂(logit(p̂)−

logit(p)); and using the Edgeworth expansion for its distribution they take into
account the third and fourth moments while the standard normal approximation
takes into account only the first two moments. In order to correct for the
skewness term of the expansion they use the function g(T ) = n−1/2bγ̂ + T +
n−1/2aγ̂T 2 + n−1(1/3)(aγ̂)2T 3, where a = −1/6, b = 1/6, and γ̂ = 1−2p̂√

p̂q̂
. The

100(1− α)% confidence interval is

logit−1

(
log

p̂

q̂
−

g−1(z1−α/2)√
np̂q̂

, log
p̂

q̂
−

g−1(zα/2)√
np̂q̂

)
, (5)

where zα is the α quantile of standard normal, and g−1(T ) =
√

n
aγ̂ [(1+3aγ̂( T√

n
−

bγ̂
n ))1/3 − 1]. In practice, since the probabilities might be 0 or 1, instead of
p̂ = X/n we used p̆ = X+1/2

n+1 .

2.2.2 Incomplete data methods for verification bias

For incomplete data sets arisen due to verification bias, the estimation of the
sensitivity, specificity and their CIs can not follow estimation of binomial pro-
portions anymore. Begg and Greenes (1983) proposed bias correction methods
for estimating the sensitivity and specificity. Consider the data given in Table
1a with the sample of size n when we know that a sub-sample n1 has verified
disease status. While for the remaining n2 = n − n1 subjects, we do not know
their true disease status. Existing methods for correcting for verification bias
are as follows:

Begg-Greenes (B&G) interval: Begg and Greenes (1983) proposed a method
to derive sensitivity and specificity under the ignorability assumption for the
verification process. If we follow the notation of Table 1a , it follows that the
sensitivity estimate is

π̂1BG =
(xA

11n1)/(xA
11 + xA

01)
(xA

11n1)/(xA
11 + xA

01) + (xA
10n2)/(xA

10 + xA
00)

,
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with variance

ˆvar(π̂1BG) = (π̂1BG(1− π̂1BG))2(
n

n1n2
+

xA
01

xA
11(x

A
11 + xA

01)
+

xA
00

xA
10(x

A
10 + xA

00)
),

and the specificity estimate is

π̂2BG =
(xA

00n2)/(xA
10 + xA

00)
(xA

01n1)/(xA
11 + xA

01) + (xA
00n2)/(xA

10 + xA
00)

,

with variance

ˆvar(π̂2BG) = (π̂2BG(1− π̂2BG))2(
n

n1n2
+

xA
11

xA
01(x

A
11 + xA

01)
+

xA
10

xA
00(x

A
10 + xA

00)
).

Using this information, the 100(1−α)% confidence intervals for sensitivity and
specificity will be

π̂1BG ± κ
√

ˆvar(π̂1BG), (6)

π̂2BG ± κ
√

ˆvar(π̂2BG), (7)

respectively.
Logit Begg-Greenes interval: Instead of assuming normality for (π̂− π), one

may think that the logit transformation of π is closer to a normal approximation,
such that logit(π̂) − logit(π) ∼ N(0, ˆV ar(logit(π̂))). Using this logit transfor-
mation, the 100(1 − α)% confidence interval for sensitivity and specificity will
be

logit−1

(
logit(π̂1BG)± κ

√
ˆV ar(logit(π̂1BG))

)
, (8)

logit−1

(
logit(π̂2BG)± κ

√
ˆV ar(logit(π̂2BG))

)
, (9)

respectively, where logit(π) = log( π
1−π ),

ˆvar(logit(π̂1BG)) = (
n

n1n2
+

xA
01

xA
11(x

A
11 + xA

01)
+

xA
00

xA
10(x

A
10 + xA

00)
),

and

ˆvar(logit(π̂2BG)) = (
n

n1n2
+

xA
11

xA
01(x

A
11 + xA

01)
+

xA
10

xA
00(x

A
10 + xA

00)
).

Bootstrap method: Instead of using κ, the normal percentile, in the confi-
dence interval, one can use bootstrap-t (Efron and Tibshirani, 1993, ch. 12).
Using this method, one is using the bootstrapped values instead of the normal
percentile as it was recommended by Pepe (2003).
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3 Framework for MI for estimating sensitivity
and specificity in the presence of verification
bias

When some subjects are not being verified, using multiple imputation will al-
low us to still use improved complete-data methods for the estimation of the
sensitivity, specificity, and their confidence intervals. Multiple imputation (MI)
(Rubin (1987); Rubin (1996); Schafer (1997)) is a simulation technique to deal
with missing data. We replace each missing value by m > 1 plausible values,
yielding m complete data sets that differ only in the imputed values. Analyzing
each data set by a complete-data method described in Section 2.2.1, will result
in m sets of point estimates and standard errors. Combining the results by
simple arithmetic rules will provide final estimates and standard errors taking
into account the missing data.

In order for the MI to yield valid inference, the simulated values must possess
certain properties. MI drawn from a distribution with these qualities was called
by Rubin (1987) proper. The full mathematical definition of proper MI is given
by Rubin, (1987 pp.118–119). Let Q and U be the population quantity of
interest and its variance respectively, and let Q̂ be its estimate. We assume that
the data can be separated into X, all observed covariates, and Y = (Yobs , Ymis),
observed and missing values. Since Q̂ and U can be created using the imputed
Ymis together with the Yobs , one need the estimates from the imputed data sets
to be unbiased for Q. For j = 1, . . . ,m imputations, the large–m averages will
be E(Q̄∞|X, Y ) .= Q̂ and E(Ū∞|X, Y ) .= U as m tends to infinity, while the
between imputation variance will be E(B∞|X, Y ) .= V ar(Q̄∞|X, Y ) for large m.
Rubin (1987) derives the procedure by Bayesian arguments. However, despite
the Bayesian derivation, it has been shown that the method leads to inferences
that are well calibrated from frequentists standpoint (Rubin and Schenker, 1986,
Schenker and Welsh, 1988, Rubin, 1996, Schafer, 1997).

Schafer (1997) relaxed the proper concept to Bayesianly proper, where he de-
fined MI to be Bayesianly proper if the imputations are independent realizations
of P (Ymis |Yobs) when the missingness process can be ignored, or P (Ymis |Yobs , R)
when the missingness process can not be ignored. Therefore, Bayesianly proper
MI reflects the uncertainty about the missing values (Ymis), given the parame-
ters of the complete-data model.

In addition, Meng (1994) introduced the term congeniality. This term came
to relate the Bayesian world and the frequentists world. A model will be called
uncongenial if the imputer model and the analysis model differ. More mathe-
matically rigorous definition is in (Meng, 1994).

When the model is congenial and proper, we would get valid inference. If
the model is not proper or uncongenial, we will get valid inference only part of
the time, depending on the specific scenario. In the next section, we propose a
proper MI procedure for correcting for verification bias.

6

http://biostats.bepress.com/uwbiostat/paper252



3.1 Imputation stage

Throughout the imputation procedure we use data augmentation (Tanner and
Wong, 1987) for imputing the missing values. The main step of MI is to derive
the posterior distribution for those with true status, given they were not ver-
ified (either positive or negative test). Under ignorability assumption and the
structure of the data (Table 1a) one can look at the data as if it came from
a multinomial distribution. We can use the multinomial property, in which a
conditional multinomial is a multinomial as well (see Appendix 1), to derive the
predictive distribution of missing data given the observed data, which is given
as follows:

(xB
1j , x

B
0j)|Yobs, θ ∼ M(xB

+j , (θ1j/θ+j , θ0j/θ+j)), j = 0, 1,

where θij is the probability that a unit falls into cell (i, j), θ+j =
∑

i θij , and
M(., .) represents a multinomial distribution.

When choosing a Dirichlet prior distribution for multinomial parameters, we
obtain the following results which are well known from the conjugate families
idea in Bayesian statistics (see Appendix 2).

x|θ ∼ M(n, θ) (10)
θ ∼ D(α) (11)

θ|Y ∼ D(α′) (12)

where α′ = α + x, and D(α) is a Dirichlet distribution with parameter α.
The data augmentation procedure is drawing iteratively from two distribu-

tions. First, one should draw the x′s from a multinomial distribution (10), this
is done under the assumption that θ is known. Then given those x′s values,
one should draw values for θ from the (Dirichlet, Beta) posterior distribution
(12). The imputation can be carried forward easily using any MI software which
allows categorical or loglinear models. For example, SAS (SAS Institute Inc.,
1999), and Splus (Schimert et al., 2001). The computational details can be
found in Schafer (1997).

The scheme for the imputation stage follows proper imputation draws. Schafer
(1997) elaborates on the properties of this model. The use of Jeffreys prior is a
common practice in Bayesian analysis when one wants to use a non informative
prior (Kass and Wasserman, 1996).

3.2 Analysis stage

After imputing the data, we obtain m sets of complete data sets. Using complete-
data methods outlined in Section 2.2.1 we obtain the estimates (Q̂1, Q̂2, . . . , Q̂m)
and associated variances (U1, U2, . . . , Um) for the sensitivity and specificity.
The complete-data methods we are going to use are: Agresti-Coull (A&C)
(Agresti and Coull, 1998); Wilson (Wilson, 1927); Jeffrey (Brown et al., 2001);
Logit (Rubin) (Rubin and Schenker, 1987); Zhou-Li (Z&L) (Zhou and Li, 2004).
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3.3 Combining results

After having m sets of estimates and variances, we use Rubin (1987) combing
rules as follows: The overall estimate is Q̄ = 1

m

∑
Qi, i = 1, . . . ,m, and its

variance is T = Ū + 1
m+1B, where Ū = 1

m

∑
U i is the complete-data variance

estimate, and 1
m+1B is the variance addition due to the imputations of missing

values. The inferences are based on the t-distribution approximation T−1/2(Q−
Q̂) ∼ tν where the degrees of freedom are ν = (m−1)[1+ Ū

(1+m−1)B ]2. Therefore,

the 100(1− α)% confidence interval for the estimate will be Q̄± tν,1−α/2

√
T .

4 Simulation study

All competing methods assume large samples. While the B&G procedures rely
on asymptotic results, the MI procedures assume normality which becomes rea-
sonable as the sample size is large. In order to compare the different estimation
methods we run two sets of simulation studies. We compare the estimates for
the sensitivity and specificity in term of relative bias and the corresponding
confidence intervals in terms of interval length and true coverage. The relative
bias is calculated as follows: (estimate-true value)/(true value). The first set of
simulations are a general scenario while the second set of simulations are based
on a real data example (described in the next section). The settings of the first
simulation study are as follows: sample sizes of N = (50, 100, 200) represent
small, moderate and big sample sizes. The specificity is set up at Sp = 0.8,
while the sensitivity Se = (0.9, 0.95). The probability of verification given a
positive test result is λ1 = P (V = 1|T = 1) = 0.8, while the probability of
verification given a negative test result is λ0 = P (V = 1|T = 0) = 0.4. And let
p, the prevalence of the population, be 0.4. We run this simulation 10000 times.
For our MI procedures we take m = 10, using S-plus 6.2 (Schimert et al., 2001)
with a flat (noninformative) prior. The results are summarized in Tables 2–3.

When we tried to use the bootstrap-t method for the B&G (Begg and
Greenes, 1983) and Logit B&G methods, there was a zero cell in many of the
simulated data sets and the estimate of the pivotal quantity was close to zero
as well. Hence, the use of this method resulted in very unstable results. We
decided not to report them in the comparison tables.

Among the alternative MI techniques compared here, all but the A&C have
relatively similar point estimates. For example, in Table 2 relative biases of the
A&C yield the range from −9% to −5% for the sensitivity and specificity when
N = 50, and decrease to the range from −3% to −1% for N = 200. Relative
biases of other MI procedures range from −4% to −2% at N = 50, reducing to
−1% to −0.5% for N = 200. The relative bias of the Rubin (Logit) procedure
is ranging from −3% to −0.7% for the sensitivity, and from −1.6% to −0.4%
for the specificity. The B&G and Logit B&G have the same relative bias which
goes from 0.7% to 0.2% for the sensitivity, and 0.3% to −0.1% for the specificity.
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Table 2: Simulation results comparing five MI methods and two existing meth-
ods for sensitivity (Se) and specificity (Sp) where true values are Se = 0.9,
Sp = 0.8, and 95% coverage. Sample sizes are: a. N=50, b. N=100 c. N=200

a. N = 50
Multiple Imputation

A&C Rubin Wilson Jeffrey Z&L B&G Logit
(Logit) B&G

Estimated Se 0.817 0.872 0.880 0.880 0.861 0.906 0.906
Estimated Sp 0.761 0.787 0.796 0.796 0.786 0.802 0.802
Se relative Bias -0.092 -0.031 -0.022 -0.022 -0.043 0.007 0.007
Sp relative Bias -0.049 -0.016 -0.005 -0.005 -0.018 0.003 0.003
Se coverage 96 94 84 87 78 56 56
Sp coverage 96 96 93 93 97 96 100
Se CI length 0.378 0.463 0.272 0.263 0.292 0.583 0.573
Sp CI length 0.310 0.316 0.277 0.276 0.321 0.621 0.604

b. N = 100
Multiple Imputation

A&C Rubin Wilson Jeffrey Z&L B&G Logit
(Logit) B&G

Estimated Se 0.854 0.877 0.888 0.888 0.879 0.903 0.903
Estimated Sp 0.781 0.795 0.799 0.799 0.794 0.802 0.802
Se relative Bias -0.051 -0.026 -0.013 -0.013 -0.023 0.003 0.003
Sp relative Bias -0.024 -0.006 -0.001 -0.001 -0.008 0.003 0.003
Se coverage 97 95 84 80 83 79 80
Sp coverage 95 96 93 93 96 99 100
Se CI length 0.277 0.330 0.188 0.184 0.196 0.307 0.329
Sp CI length 0.220 0.222 0.199 0.199 0.226 0.448 0.447

c. N = 200
Multiple Imputation

A&C Rubin Wilson Jeffrey Z&L B&G Logit
(Logit) B&G

Estimated Se 0.876 0.894 0.895 0.895 0.890 0.902 0.902
Estimated Sp 0.789 0.797 0.799 0.799 0.796 0.799 0.799
Se relative Bias -0.027 -0.007 -0.006 -0.006 -0.011 0.002 0.002
Sp relative Bias -0.014 -0.004 -0.001 -0.001 -0.005 -0.001 -0.001
Se coverage 93 95 80 79 80 82 86
Sp coverage 95 95 93 93 96 100 100
Se CI length 0.198 0.222 0.131 0.129 0.133 0.185 0.196
Sp CI length 0.156 0.157 0.142 0.142 0.161 0.322 0.323
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Table 3: Simulation results comparing five MI methods and two existing meth-
ods for sensitivity (Se) and specificity (Sp) where true values are Se = 0.95,
Sp = 0.8, and 95% coverage. Sample sizes are: a. N=50, b. N=100 c. N=200

a. N = 50
Multiple Imputation

A&C Rubin Wilson Jeffrey Z&L B&G Logit
(Logit) B&G

Estimated Se 0.855 0.915 0.924 0.924 0.903 0.954 0.954
Estimated Sp 0.760 0.786 0.795 0.795 0.785 0.800 0.800
Se relative Bias -0.1 -0.0367 -0.027 -0.027 -0.050 0.004 0.004
Sp relative Bias -0.050 -0.018 -0.006 -0.006 -0.019 0 0
Se coverage 97 93 80 85 70 33 32
Sp coverage 95 96 93 92 96 96 99
Se CI length 0.343 0.450 0.240 0.225 0.262 0.482 0.511
Sp CI length 0.308 0.315 0.277 0.277 0.322 0.597 0.583

b. N = 100
Multiple Imputation

A&C Rubin Wilson Jeffrey Z&L B&G Logit
(Logit) B&G

Estimated Se 0.896 0.932 0.935 0.935 0.924 0.952 0.952
Estimated Sp 0.779 0.793 0.797 0.797 0.792 0.799 0.799
Se relative Bias -0.059 -0.019 -0.016 -0.016 -0.027 0.002 0.002
Sp relative Bias -0.026 -0.009 -0.004 -0.004 -0.010 -0.001 -0.001
Se coverage 97 94 82 85 100 55 53
Sp coverage 95 95 93 93 96 99 100
Se CI length 0.235 0.310 0.156 0.147 0.185 0.223 0.253
Sp CI length 0.219 0.222 0.200 0.200 0.227 0.433 0.432

c. N = 200
Multiple Imputation

A&C Rubin Wilson Jeffrey Z&L B&G Logit
(Logit) B&G

Estimated Se 0.922 0.942 0.943 0.943 0.937 0.951 0.951
Estimated Sp 0.789 0.797 0.799 0.799 0.796 0.800 0.800
Se relative Bias -0.029 -0.008 -0.007 -0.007 -0.014 0.001 0.001
Sp relative Bias -0.014 -0.004 -0.001 -0.001 -0.005 0 0
Se coverage 98 94 83 78 81 78 77
Sp coverage 95 95 93 93 96 99 100
Se CI length 0.158 0.195 0.102 0.098 0.106 0.112 0.123
Sp CI length 0.155 0.156 0.142 0.142 0.160 0.309 0.310
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Similar results are summarized in Table 3 for the case in which the sensitivity
is 0.95.

The MI procedures have advantages over the B&G methods in both the cov-
erage probability and the interval length. For example, in Table 3 the coverage
probabilities of the B&G methods for sensitivity and specificity are approxi-
mately 30% and 96− 99% respectively while, the coverage probabilities for the
MI Rubin (Logit) procedure for sensitivity and specificity are 93% and 96%
respectively, for the small sample size (N = 50). For N = 200, the coverage
probabilities of the B&G methods for sensitivity and specificity are approxi-
mately 78% and 99% respectively, while for the MI Rubin (Logit) procedure the
coverage probabilities are 94% and 95% respectively. Another advantage of the
MI procedures relative to the existing methods is the CI length. For example,
in Table 2a (N = 50) the CI length for the specificity of the B&G methods are
0.621 and 0.604 (B&G and Logit B&G respectively), while the length for the
MI procedures is 0.276− 0.321 (0.316 for the MI Rubin (Logit) procedure). As
the sample size get bigger, the CI get smaller such that for N = 200 the CI
length for the specificity of the B&G methods are 0.322 and 0.323 while the
length for the MI procedures are 0.142− 0.161 (0.157 for the MI Rubin (Logit)
procedure).

The second simulation study mimics the Diaphanography data for breast
cancer introduced by Marshall et al. (1981), and used by Greens and Begg
(1985) as an illustration of a verification bias problem; see Table 7. Greens and
Begg (1985) showed that for an example where (55%) subjects who were tested
positive where verified, while only (7%) subjects who were tested negative where
verified, there might be a massive bias. In that situation they found that the
naive sensitivity estimate of 70% reduced to 28% using their correction. We are
going to compare the existing methods to the MI procedures. The simulation
settings are as follows: sample sizes of N = (900, 1500, 3000), represent the true
example sample size, and two additional big sample sizes. The specificity is set
up at Sp = 0.9, while the sensitivity Se = (0.3). The probability of verification
given a positive test result is λ1 = P (V = 1|T = 1) = 0.55, while the probability
of verification given a negative test result is λ0 = P (V = 1|T = 0) = 0.06. And
let p, the prevalence of the population, be 0.03. We run this simulation 10000
times. For our MI procedures we take m = 10, using S-plus 6.2 (Schimert et al.,
2001) with a flat (noninformative) prior. The results are summarized in Table
4.

Among the alternative MI techniques compared here (Table 4), all have
relatively similar point estimates. For example, the relative biases for sensitivity
of the MI procedures range from 22% to 23% at N = 900, going down to 4%
to 6% for N = 3000. The Rubin (Logit) procedure relative bias is moving from
23% to 3.6% for the sensitivity, and is −0.1% for the specificity. The B&G and
Logit B&G have the same relative bias which goes from 64% to 17% for the
sensitivity, and 0.1% to 0% for the specificity.

In this simulations study, there is a distinct advantage for the MI procedures
over the existing methods with respect to relative bias. In addition, another
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Table 4: Simulation results comparing five MI methods and two existing meth-
ods for sensitivity (Se) and specificity (Sp) where true values are Se = 0.3,
Sp = 0.9, and 95% coverage. Sample sizes are: a. N=900, b. N=1500 c.
N=3000

a. N = 900
Multiple Imputation

A&C Rubin Wilson Jeffrey Z&L B&G Logit
(Logit) B&G

Estimated Se 0.366 0.369 0.370 0.370 0.367 0.491 0.491
Estimated Sp 0.897 0.899 0.899 0.899 0.899 0.899 0.899
Se relative Bias 0.220 0.230 0.233 0.233 0.223 0.637 0.637
Sp relative Bias -0.003 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
Se coverage 91 96 59 58 55 54 61
Sp coverage 95 95 63 94 95 100 100
Se CI length 0.766 0.685 0.300 0.298 0.310 0.468 0.447
Sp CI length 0.043 0.043 0.040 0.040 0.0420 0.241 0.270

b. N = 1500
Multiple Imputation

A&C Rubin Wilson Jeffrey Z&L B&G Logit
(Logit) B&G

Estimated Se 0.353 0.352 0.352 0.352 0.352 0.412 0.412
Estimated Sp 0.898 0.899 0.899 0.899 0.899 0.899 0.899
Se relative Bias 0.177 0.173 0.173 0.173 0.173 0.373 0.373
Sp relative Bias -0.002 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
Se coverage 88 95 53 51 51 70 75
Sp coverage 95 95 93 93 95 100 100
Se CI length 0.661 0.607 0.237 0.234 0.241 0.404 0.387
Sp CI length 0.033 0.033 0.031 0.031 0.033 0.187 0.201

c. N = 3000
Multiple Imputation

A&C Rubin Wilson Jeffrey Z&L B&G Logit
(Logit) B&G

Estimated Se 0.319 0.311 0.315 0.315 0.316 0.350 0.350
Estimated Sp 0.899 0.899 0.899 0.899 0.899 0.900 0.900
Se relative Bias 0.063 0.037 0.050 0.050 0.053 0.167 0.167
Sp relative Bias -0.001 -0.001 -0.001 -0.001 -0.001 0 0
Se coverage 92 96 55 53 55 74 77
Sp coverage 96 96 94 94 96 100 100
Se CI length 0.519 0.486 0.173 0.170 0.174 0.301 0.294
Sp CI length 0.023 0.023 0.022 0.022 0.023 0.132 0.137
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Table 5: Hepatic scintigraphy data
T = 1 T = 0

V = 1 D = 1 231 27
D = 0 32 54

V = 0 166 140
Total 429 221

major advantage of the MI procedures over the B&G methods is in the coverage
probability. For example, in Table 4 the coverage probabilities of the B&G
methods for sensitivity and specificity are ranging from 54% to 74% and are
100% respectively while, the coverage probabilities for the MI Rubin (Logit)
procedure for sensitivity and specificity are ranging from 95% to 96% and from
95% to 96% respectively.

The results in Table 2 and Table 3 lead us to conclude that the MI based on
the Rubin (Logit) method performs the best. Even with small sample size the
relative bias does not exceed 4%, and as the sample size increase the relative
biased decrease for less then 1%. In addition, it yields confidence intervals that
are all close to the nominal level for both sensitivity and specificity, and con-
fidence interval lengths which are shorter then the existing methods for small
sample sizes and are similar length for moderate and large sample size. In addi-
tion, the results in Table 4 reiterate these conclusions. In this set of simulations
although the CI length is not the shortest, the relative bias is the smallest and
and the coverage probabilities are the best.

5 Real data examples

5.1 Hepatic scintigraphy data

Let us consider the data previously analyzed by Drum and Christacopoulos
(1969), Zhou (1993), and Zhou et al. (2002) about hepatic scintigraphy for
liver disease. Hepatic scintigraphy is an imaging scan procedure to detect liver
cancer. In this study some of the patients were refereed to disease verification
process–liver pathology–which was considered as a golden standard. The data
are summarized in Table 5.

Following the notation of the previous section, our observed data are as
follows:

Yobs = {xA
11 = 231, xA

10 = 27, xA
01 = 32, xA

00 = 54, xB
+1 = 166, xB

+0 = 140}.

In order to proceed with the data augmentation algorithm, let us choose the
parameter for the prior Dirichlet distribution to be α = (1.5, 1.5, 1.5, 1.5) which
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Table 6: Results comparing five MI methods, the B&G as existing method and
naive method of sensitivity and specificity – Hepatic scintigraphy data

Procedure Sensitivity Specificity
Est SE CI Est SE CI

Naive 0.895 0.019 (0.858,0.932) 0.628 0.052 (0.526,0.730)
B&G 0.836 0.024 (0.788,0.884) 0.738 0.039 (0.662,0.815)
A&C 0.869 0.024 (0.820,0.918) 0.672 0.049 (0.571,0.772)
Rubin 0.872 0.024 (0.817,0.912) 0.675 0.051 (0.567,0.797)
Wilson 0.869 0.016 (0.837,0.901) 0.672 0.031 (0.610,0.733)
Jeffrey 0.872 – (0.838,0.901) 0.675 – (0.611,0.734)
Z&L 0.871 – (0,1) 0.674 – (0,1)

implies Jeffreys prior. Therefore, our predictive distributions are as follows:

(xB
11, x

B
01)

t+1|Yobs, θ
t ∼ M(xB

+1, (θ11/θ+1, θ01/θ+1))

(xB
10, x

B
00)

t+1|Yobs, θ
t ∼ M(xB

+0, (θ10/θ+0, θ00/θ+0))

θ ∼ D(α) and θ|Y ∼ D(x11 + 0.5, x10 + 0.5, x01 + 0.5, x00 + 0.5)

where xij = xA
ij + xB

ij i, j = 0, 1, and t is the number of iteration. Using S-plus
6.2 (Schimert et al., 2001) we use MI (m = 10) to compare the five methods
described in section 2.2.1, the existing method described in section 2.2.2 and the
naive procedure using only the verified results. Table 6 summarizes the results
for the sensitivity, specificity, and their confidence intervals.

Notice that for the sensitivity results, it seems that the Naive estimate is
overestimating, and the B&G estimator is under estimating. All other estimates
(methods) are quite close to each other. The agreement is up to the hundredth
digit. Since the sample size of this example is quite larger with respect to the
simulation (N = 650), and the fact that we have proper MI, we can assume
that the simulated MI results are more representative of the data. On the other
hand, for estimating the specificity, it seems as if the B&G is overestimating,
the Naive procedure under estimating, while the other procedures agrees up to
the thousandth digit.

5.2 Diaphanography data for breast cancer

Marshall et al. (1981) introduced the Diaphanography as a test for detecting
breast cancer; Greens and Begg (1985) used the data as an illustration of a
verification bias problem; see Table 7. We follow Greens and Begg (1985) and
compare the seven estimation methods using this data. The observed data in
this case can be represented by Yobs such that,

Yobs = {xA
11 = 26, xA

10 = 7, xA
01 = 11, xA

00 = 44, xB
+1 = 30, xB

+0 = 782}.
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Table 7: Diaphanography data for breast cancer

T = 1 T = 0
V = 1 D = 1 26 7

D = 0 11 44
V = 0 30 782

Total 67 833

Table 8: Results comparing five MI methods, the B&G as existing method and
naive method of sensitivity and specificity – Diaphanography data for breast
cancer

Procedure Sensitivity Specificity
Est SE CI Est SE CI

Naive 0.788 0.071 (0.649,0.927) 0.800 0.054 (0.694,0.906)
B&G 0.280 0.073 (0.127,0.434) 0.974 0.007 (0.960,0.989)
A&C 0.706 0.073 (0.560,0.852) 0.861 0.049 (0.753,0.970)
Rubin 0.717 0.075 (0.548,0.841) 0.869 0.057 (0.721,0.944)
Wilson 0.706 0.054 (0.601,0.812) 0.862 0.012 (0.839,0.884)
Jeffrey 0.718 – (0.603,0.815) 0.863 – (0.839,0.885)
Z&L 0.715 – (0,1) 0.863 – (0,1)

For the data augmentation procedure we choose again the Dirichlet prior dis-
tribution parameter to be α = (1.5, 1.5, 1.5, 1.5), implying Jeffrey’s prior. The
distributions of the data augmentation are as follows:,

(xB
11, x

B
01)

t+1|Yobs, θ
t ∼ M(xB

+1, (θ11/θ+1, θ01/θ+1))

(xB
10, x

B
00)

t+1|Yobs, θ
t ∼ M(xB

+0, (θ10/θ+0, θ00/θ+0))

θ ∼ D(α) and θ|Y ∼ D(x11 + 0.5, x10 + 0.5, x01 + 0.5, x00 + 0.5)

where xij = xA
ij + xB

ij i, j = 0, 1, and t is the number of iteration. Using S-plus
6.2 (Schimert et al., 2001) we use MI (m = 10) to compare the five methods
described in section 2.2.1, the existing method described in section 2.2.2 and
the naive procedure which using only the verified results. Table 8 summarizes
the results for the sensitivity, specificity and their confidence intervals.

Once again, we note that for the sensitivity results, it seems that the Naive
estimate is overestimating, and the B&G estimator is under estimating (really
bad in this scenario). All other estimates (methods) are quite close to each other.
The agreement is up to the hundredth digit. On the other hand, for estimating
the specificity, it seems as if the B&G is overestimating, the Naive procedure
under estimating, while the other procedures agrees up to the thousandth digit.
Since the sample size of this example is quite larger then the first simulation
sample size (N = 900), based on the second simulation study, and the fact
that we have proper MI, we can assume that the simulated MI results are
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more representative of the data. In addition, since we have found during our
simulation study that the best method to use (when having an incomplete data
set), is Rubin (Logit) method. We would recommend to use this method.

6 Discussion

In this paper we proposed a proper multiple imputation (MI) procedure to
correct for verification bias. Verification bias is a common problem in medical
research, and there are existing methods to deal with it, but as we have showed,
our MI method performs much better than the existing methods. We have
shown that in some scenarios the existing method can still give grossly biased
results, while the MI procedures would be much closer to the true answer. The
reason for this phenomenon is that the common used existing methods were
build upon the estimation of binomial proportion using a Wald-type confidence
interval, and it has been shown that a Wald-type interval can perform poorly.
By using the MI technique, one can use better alternative techniques for dealing
with the complications that arise in estimating binomial proportions, and apply
it for the verification bias problem. In addition, using MI allows applying several
methods in the analysis stage and to use a sensitivity analysis very easily.

Throughout our analysis we assumed ignorable missingness. This assump-
tion allows us not to model the distribution of the missingness indicators. If on
the other hand, one believes that this assumption is not reasonable, it is not
difficult to alter the procedure to allow nonignorable missingness. By altering
the imputation stage of the procedure, adding a model for the missingness, one
can impute missing true condition statuses using the nonignorable model, while
the analysis stage and combining the result will follow exactly the same steps
of the ignorable model. It is rarely possible to test whether the missingness is
ignorable or not, hence it requires a medical reasoning for choosing one over the
other.

This is first paper that explores the possibility of using the MI technique to
correct for verification bias in one sample problem. Our results show that there
is a great potential for developing the MI technique for correcting for verification
bias in other types of problems.
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Appendix 1 – Multinomial properties

Let x be a multinomial random variable with parameter θ. By indexing the
cells in the contingence table using only one subscript (d = 1, ..., D), it follows
that

x|θ ∼ M(n, θ)

with θ = (θ1, θ2, ..., θD), where the probability distribution of x is

P (x|θ) =
n!

x1!x2! · · ·xD!
θx1
1 θx2

2 · · · θxD

D

Suppose that we collapse two cells of the contingency table, adding the
frequencies together, such that we produce new table x∗ = (z, x3, ..., xD), where
z = x1 + x2.

Result 1 The distribution of x∗ is multinomial such that

x∗|θ ∼ M(n, θ∗),

where θ∗ = (ξ, θ3, ..., θD), and ξ = θ1 + θ2.

Proof 1 Let us sum the multinomial probabilities for all the x-vectors consis-
tent with z, such that

P (x∗|θ) =
z∑

j=0

P (x1 = j, x2 = z − j, x3, ..., xD)

=
z∑

j=0

n!
j!(z − j)!x3! · · ·xD!

θj
1θ

z−j
2 θx3

3 · · · θxD

D

=
n!

z!x3! · · ·xD!
θx3
3 · · · θxD

D

z∑
j=0

z!
j!(z − j)!

θj
1θ

z−j
2

=
n!

z!x3! · · ·xD!
θx3
3 · · · θxD

D (θ1 + θ2)z

since
∑z

j=0
z!

j!(z−j)!θ
j
1θ

z−j
2 = (θ1 + θ2)z.

Result 2 The conditional distribution of (x1, x2) given z (the sum) is multino-
mial such that

(x1, x2)|z, θ ∼ M(z, (θ1/ξ, θ2/ξ)).

Proof 2 By using result 1 continuously on variables x3 to xD, those cells will
collapse to a single cell such that x3 + · · ·+ xD = n− z. Therefore,

(x1, x2, n− z)|θ ∼ M(n, (θ1, θ2, 1− ξ))
(z, n− z)|θ ∼ M(n, (ξ, 1− ξ)).
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By the definition of conditional probability, it follows that

P (x1, x2|z, θ) =
P (x1, x2, z|θ)
P (z, n− z|θ)

=
P (x1, x2, n− z|θ)

P (z, n− z|θ)
,

Since both numerator and denominator are multinomial distributions, we can
replace the expressions on the right hand side to get[

n!
x1!x2!(n− z)!

θx1
1 θx2

2 (1− ξ)n−z

] [
n!

z!(n− z)!
ξz(1− ξ)n−z

]−1

which can be reduced to

P (x1, x2|z, θ) =
z!

x1!, x2!
(
θ1

ξ
)x1(

θ2

ξ
)x2 ,

the desired result.

Although the results are stated such that the collapsing is of two cells, the
results are true for any arbitrary sets of collapsing.

Appendix 2 – Dirichlet prior

Let θ = (θ1, θ2, ..., θD) be a set of random variables such that θd ≥ 0 for d =
1, 2, ..., D and

∑D
d=1 θd = 1. The density function of θ given the parameter

α = (α1, α2, ...αD), is

P (θ|α) =
Γ(α0)

Γ(α1)Γ(α2) · · ·Γ(αD)
θα1−1
1 θα2−1

2 · · · θαD−1
D

where α0 =
∑D

d=1 αd and Γ(.) denotes the gamma function. This Dirichlet dis-
tribution is often written as θ|α ∼ D(α). When used as a prior for a multinomial
distribution, it is typical to omit the normalizing constant such that,

π(θ) ∝ θα1−1
1 θα2−1

2 · · · θαD−1
D

where (α1, ..., αD) are user specific hyperparameters. Since the likelihood func-
tion of a multinomial distribution is

Lx|θ =
n!

x1x2! · · ·xD!
θx1
1 θx2

2 · · · θxD

D ,

the posterior distribution is the product of the prior function (information) and
the likelihood function, leading us to

Lθ|x = π(θ)× Lx|θ ∝ K × (θα1−1
1 θα2−1

2 · · · θαD−1
D )(θx1

1 θx2
2 · · · θxD

D )

= K × θx1+α1−1
1 θx2+α2−1

2 · · · θxD+αD−1
D

∼ D(x + α),

a Dirichlet posterior distribution with parameter (x + α) = (x1 + α1, x2 +
α2, ..., xD + αD).
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