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1 Introduction

In data analysis, we sometimes encountered skewed data with additional zero values. Although

it is common to use the median instead of the mean as the measure of central location in skewed

data, many applications require mean as the parameter of interest. This is particularly true in the

analysis of medical cost data (Zhou and Tu, 1999). For example, health care policymakers and

managers are interested in the entire expenditure on health care in a given patient population,

which can be measured by the total cost; only the mean, not median, can be used to recover

the total cost. For example, to achieve fairness in the allocation of fixed assets to different

veteran affairs (VA) hospitals, the federal VA administration is interested in the most accurate

prediction of the total cost for each VA hospital.

For modeling the mean of skewed data with additional zero values, several parametric

regression models and methods have been proposed (Ichimura, 1993). These models include

the Tobit model (Tobin, 1958) and Heckman’s selection model (Heckman, 1976). Duan et

al. (1983) argued that these models may not be the best models for skewed data containing

zeros, and proposed an alternative two-part parametric regression model. The two-part model

is a generalization of the delta distribution model (Aitchison, 1955) and consists of two stages.

The first stage uses a probit equation for the dichotomous event of having zero or positive

values, and the second stage uses a linear model for non-zero values on the log-scale. Olsen

and Schafer (2001) extended Duan et al.’s (1983) two-part parametric regression model to

longitudinal data. If the parametric distribution assumption is true, regression estimators are

usually
√

n consistent.However, if the assumption of a parametric distribution is violated, the

resulting estimators can be biased.

One alternative way of modeling non-zero values is to use a totally non-parametric re-

gression model, but the convergence rate of nonparametric estimators to the true parameter

decreases rapidly as the number of covariates increases. To make a trade-off between nonpara-

metric and parametric models, we propose a semi-parametric single-index regression model for

non-zero costs and use it for the analysis of skewed data with additional zeros. A single-index

model is one of effective tools to avoid the curse of dimensionality occured in nonparametric

multivariate regression. It generalizes linear regression by replacingαTx by g(αTx) but keeps

feasibility of univariate nonparametric regression. Efforts were mainly focused on estimation
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of α andg(·) whenthe covariatesx are continuous. In many practical problems, covariates

are mixed with continuous and binary/discrete variables, for instance in our example. How to

estimate the coefficients of the continuous and discrete components forms the goal of this pa-

per. The similar topics have been studied by Bonneu, Delecroix, and Malin (1993), Delecroix,

Härdle, and Hristache (2003), and Horowitz and Härdle (1996).

The paper is organized as follows. In Section 2 we introduce a semi-parametric single-

index two-part regression model. In Section 3 we propose an estimation procedure for the

proposed semi-parametric single-index two-part regression model. In Section 4 we conduct

a simulation study to assess the performance of the proposed method in finite-sample sizes.

In Section 5 we illustrate the application of the proposed methods in a heath care cost study,

in which the cost was the main outcome. We state the assumptions for our method in the

Appendix.

2 The Models

Let Yi be a random variable that represents the total inpatient cost of theith patient, where

i = 1, . . . , n. We assume thatY1, . . . , Yn are independent. The proposed model consists of the

following two parts. In the first part, we relate the probability of(Yi > 0) to a vector of known

covariatesWi through a logistic link function so that

logit{P (Yi > 0|Wi)} = W T
i α, (2.1)

whereα is a vector of unknown parameters. In the second part, we relate the conditional mean

of Yi given Yi > 0 to a vector of covariates,Xi andZi, by a semi-parametric single-index

model,

E(Yi | Xi, Zi, Yi > 0) = g(XT
i β + ZT

i γ), (2.2)

whereXi(k × 1) andZi(l × 1) are, respectively, continuous and discrete covariates,g(·) is

an unknown smooth function, andβ andγ are the vectors of unknown parameters. Note that

some elements inWi may overlap with those inXi andZi. In order to identifyβ andγ we

require that the model (2.2) contains at least one continuous variable (Klein and Spady, 1993).

See Bierens and Hartog (1988) for a detailed discussion of the case wherek = 0. Becauseβ
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andγ areidentified only up to sign and scale, sign and scale normalizations are required; we

assume the coefficient of the first component ofX, β1, is 1.

3 Estimation Procedure

Let {(Yi, Xi, Zi, Wi, δi), i = 1, . . . , n} be a sample of sizen from models (2.1) and (2.2).

Denoteπi = 1 − P (Yi = 0) = P (Yi > 0). Then,πi = {1 + exp(−W T
i α)}−1. Our goal is

to provide point estimates and confidence intervals of the parametersβ, γ, andE(Yi|Wi =

wi, Xi = xi, Zi = z). Note thatE(Yi|Wi = wi, Xi = xi, Zi = z) = πig(xT
iβ + zTγ).

To estimateE(Yi|Wi = wi, Xi = xi, Zi = zi), we estimateα, β, γ and the nonparametric

functiong(·) first. Using a standard logistic technique, we obtain an estimator, sayα̂n, of α.

Denoteπ̂in = {1 + exp(−W T
i α̂n)}−1. It is easy to show that

√
n(α̂n − α) = OP (1), and then

√
n(π̂in − πi) = OP (1). (3.1)

We next consider estimation ofβ, γ, and the nonparametric functiong(·) in the single-index

model using the data(Yi, Xi, Zi,Wi, Yi = 0). We first discuss estimation ofβ andg(·) and

then discuss the method for estimatingγ, the vector of discrete covariates.

For estimatingβ andg(·), several methods have already been proposed in the statistical

literature, including average derivative estimation (ADE) (Härdle and Stoker, 1989), projection

pursuit regression (Friedman and Stuetzle, 1981), and sliced inverse regression (Li, 1991).

The method of ADE is most computationally efficient because it does not require iteration

as other methods do. We extend the method of ADE to our two-part semi-parametric single

index model. DefineΩz = {z(i), i = 1, · · · ,M} to be the support of the discrete random

vectorZ. The estimation procedure forβ andg(·), proposed by Ḧardle and Stoker (1989), are

summarized as follows.

To estimateβ, we denote{Xiz, Yiz, Ziz} to be the subset of{Xi, Yi, Zi} with Zi = z for

eachz ∈ Ωz. Let Mz = #{i : Zi = z, i = 1, · · · , n}. Applying the method of ADE to this

subset, we obtain an estimate ofβ using the data in this subset, denoted byβnz. Combining

data across the subsets, we obtain an estimate ofβ as

β̂n =
∑

z∈Ωz

Mzβnz/n.
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After estimatingβ by β̂n, we next estimateg(·). Noting thatZ is a discrete variable, we

estimateg(·) for each of thez values. For each givenz ∈ Ωz, we estimate the function

g(v + zTγ) by

ĝnz(v) =
1

nh

n∑

i=1

K

(
v − Λ̂i

h

)
YiI(Zi = z)

/
f̂nz(v),

whereK(·) is a kernel function,̂Λi = XT
i β̂n, andf̂nz(v) is the density estimator ofXTβ given

Z = z, i.e.,

f̂nz(v) =
1

nh

n∑

i=1

K

(
v − Λ̂i

h

)
I(Zi = z).

Underthe appropriate assumptions (listed in the Appendix), by modifying the proof in The-

orem 3.3 of Ḧardle and Stoker (1989), we can show that the regression estimatorĝnz(v) is

asymptotically normal and converges tog(v + ZT γ) (pointwise) with the optimal raten2/5.

More specifically,

n2/5{ĝnz(v)− g(•)} → N{M(v|z), Σ(v|z)}, (3.2)

where

M(v|z) = {g(2)(•)/2 + g′(•)f ′(•|z)/f(•|z)}
∫

s2K(s)ds

and Σ(v|z) = {var(Y |xTβ, z)/f(•|z)}
∫

K2(s)ds.

Here and in the sequel,(•) denotes(v + zTγ).

There are some good alternative methods for estimatingĝnz(ν) andf̂nz(v) including local

linear or local polynomial kernel smoothing methods and regression spline methods. In this

paper we chose the local constant smoothing method for its simple descriptions. The results

still apply for any other kernel-based methods, as well as for spline methods. One critical

concern in any kernel based method is the bandwidth selection. In the Appendix, we give the

theoretical conditions for selecting appropriate bandwidths in our kernel smoothing method. In

our practical implementation below, we compute the average error using a geometric sequence

of 30 bandwidths ranging in[0.1, 0.5]. The optimal bandwidth is selected to minimize the

average squared error among the30 candidates.

Finally we estimateγ by employing the estimation procedure proposed by Horowitz and

Härdle (1996). It can briefly be described as follows. Assume that there are finite numbers

4
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v0, v1, c0 andc1 such thatv0 < v1, c0 < c1 andg(v + zγ) < c0 for eachz ∈ Ωz if v < v0, and

g(v + zγ) > c1 for z ∈ Ωz if v > v1. Forz ∈ Ωz, define

J(z) =
∫ v1

v0

[
c0I{g(v + zγ) < c0}+ c1I{g(v + zγ) > c1}

+g(v + zγ)I{c0 ≤ g(v + zγ) < c1}
]
dv

and let

∆J =




J{z(2)} − J{z(1)}
...

J{z(M)} − J{z(1)}




andB =




z(2) − z(1)

...

z(M) − z(1)




.

It follows from Horowitz and Ḧardle (1996) that

γ = (c1 − c0)
−1(BTB)−1BT∆J.

It suffices to estimate∆J . Let

Jn =
∫ v1

v0

[
c0I{ĝnz(v) < c0}+ c1I{ĝnz(v) > c1}+ ĝnz(v)I{c0 ≤ ĝnz(v) < c1}

]
dv.

As a consequence, we define∆Jn by replacingJ by Jn in ∆J , and obtain an estimator ofγ

γ̂n = (c1 − c0)(BTB)−1BT∆Jn.

Under appropriate regularity conditions,γ̂n is asymptotically normal. See Horowitz and Härdle

(1996) for a detailed discussion.

After we have obtained the estimates ofβ, γ, andg(.), we can then estimate the conditional

overall meanE(Yi|Xi = xi, Zi = zi, Yi > 0) by the quantity

Ê(Yi|Xi = xi, Zi = zi, Yi > 0) = ĝnz(x
T
i β̂n + zT

i γ̂).

The mean functionE(Yi|z) = E(Yi|Xi = xi, Zi = z) is estimated bŷE(Yi|z) = gnz(x
T
i β̂n +

zT
i γ̂)π̂in, whereπ̂in = {1 + exp(−wT

i α̂n)}−1.

Note that̂gnz(v)π̂in−g(•)π = ĝnz(v)(π̂in−π)−{ĝnz(v)−g(•)}π. Recall (3.1) and (3.2).

We can easily show that

n2/5{ĝnz(v)π̂in − g(•)π} → N{M(v|z)π, Σ(v|z)π
2}. (3.3)
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For a given value ofv, we consistently estimate the bias and variance given in (3.3) by us-

ing {Yi, i = 1, . . . , n}, ĝ and f̂ and their derivatives with a standard sandwich method. The

resulting estimators are given as follows:

M̂n(v|z) = {ĝ(2)
nz (v)/2 + ĝ′nz(v)f̂ ′nz(v)/f̂nz(v)}

∫
s2K(s)ds

and

Σ̂n(v|z) = v̂arn(Y |XTβ = v, z)/f̂nz(v)
∫

K2(s)ds.

DenoteV̂i = xT
i β̂n + zT

i γ̂. Then, for a fixed value ofz, we can show that the following

statistic is asymptotic pivotal and has the asymptotically standard normal distribution:

[
n2/5{Ê(Yi|z)− E(Yi|z)} − M̂

n(V̂i|z)
π̂in

]
Σ̂
−1/2

n(V̂i|z)
π̂−1

in .

Basing on this statistics, we obtain the followingξ−level confidence interval ofE(Yi|z):
[
Ê(Yi|z)− M̂

n(V̂i|z)
π̂inn

−2/5 − Σ̂
1/2

n(V̂i|z)
π̂inn

−2/5qξ/2,

Ê(Yi|z)− M̂
n(V̂i|z)

π̂inn
−2/5 + Σ̂

1/2

n(V̂i|z)
π̂inn

−2/5qξ/2

]
, (3.4)

whereqξ/2 is the(1− ξ/2)th quantile value of the standard normal distribution.

4 Numerical Results

4.1 Simulation Study

To evaluate the proposed method, we conducted an intensive experiment to explore its perfor-

mance. We generated a sample size ofn observations by a two-stage procedure. In the first

stage, we generated zero costs according to a Bernoulli distribution with the probability:

P (Y = 0) = {1 + exp(−0.3W1 − 0.4W2)}−1,

whereW1 was a covariate with the uniform distribution,Uniform[0.7, 1], andW2 was another

covariate with the normal distribution,Normal(0, 0.3). In the second stage, we generated non-

zero costs according to the following non-linear heteroscedastic models:

• case 1:E(Y |X, Z, Y > 0) = exp(X1 + 0.25X2 + 0.3Z),

6
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• case2: E(Y |X,Z, Y > 0) = exp(X1 + 0.25X2 + 0.3Z){1 + 0.1 ∗ exp(X1 + 0.25X2 +

0.3Z)}−1,

respectively. The variance function in the both cases was var(Y |X, Z, Y > 0) = (X1 +

0.25X2)
2, and X1, X2, andZ were three covariates. HereX1 ∼ Normal(0, 0.7), X2 ∼

Normal(0, 0.4), andZ ∼ Binom(0.5). Therefore, the true regression model for the expected

value ofY is

E(Y |X, Z, W ) = {1 + exp(−0.3W1 − 0.4W2)}−1E(Y |X, Z, Y > 0).

In the simulation experiment we fitted both a nonlinear parametric model and our semi-

parametric single index regression model to the simulated data sets. The parametric mode for

E(Y |X, Z, Y > 0) is assumed to have the form,exp(X1+βX2+γZ), which is the same as the

case 1 model. Our goal is to investigate the efficiency of our method relative to the parametric

approach when the model is correct and to check its robustness when the model is incorrectly

specified.

The sample sizes weren = 100, 200, and500. Bandwidths were selected as remarked be-

fore. We used the kernel functionK(u) = 15/16(1− u2)2I(|u|≤1) in nonparametric regression.

We generated1000 data sets in each of six parameter configurations. We computedJn, defined

in Section 4, using the Gauss-Legendre quadrature. To computec0 andc1, we first estimated

gz for eachz ∈ Ωz using the standard normal kernel and called the resulting estimateg∗nz. We

then computedc0 andc1 by the following formula:

c0 = max
z∈Ωz

max
Xiβ̂n≤vn0

g∗nz(Xiβ̂n) and c1 = min
z∈Ωz

min
Xiβ̂n≥vn1

g∗nz(Xiβ̂n),

where

vn0 = max
z∈Ωz

min
1≤i≤n

{Xiβ̂n + hnz : Zi = z}, vn1 = min
z∈Ωz

max
1≤i≤n

{Xiβ̂n − hnz : Zi = z},

hnz = svzn
−1/7.5
z , andsvz was the sample standard deviation ofXβ̂n conditional onZ = z ∈

Ωz.

The computation was implemented in XploRe-an advanced statistical environment devel-

oped by Ḧardle’s team, see the website at:http://www.xplore-stat.de/ .

Table 1 gives the results for the parametric componentsβ andγ. In both the cases, the

estimated values ofβ andγ based on our method are close to the true values, but not as close

7
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asthe parametric model based estimates when the parametric model is correctly specified, al-

though the difference may be ignorable. However, when the parametric model is misspecified,

the parametric approach leads to biased results, whereas the estimated values based on our

method are still close to the true values.

Table 1 goes here

Given points{(xi, wi, zi), i = 1, · · · ,m} for somem, we estimatedE(Y |X, Z,W ) at

these given points in each replication. The averages of the estimated values ofE(Y |X =

x, Z = z, W = w) based on the1000 replications are our estimates ofE(Y |X, Z,W ), which

are shown in Figure 1.

Figure 1 goes here

In Figure 1, the left-hand panel represents the expectation ofY againstXTβ, and the right-

hand panel represents the expectation againstXTβ +γ. The solid lines indicate the true curves,

the dotted and dashed lines indicate the nonparametric and parametric fitted curves. For ex-

ample, in the left-hand panel, the solid line corresponds to the function{1 + exp(−0.3w1 −
0.4w2)}−1 exp(x1+0.25x2+z), and the dotted and dashed lines correspond the estimates,{1+

exp(β̂1w1+ β̂2w2)}−1ĝnz(x1+ β̂2x2+ γ̂z) and{1+exp(β̂1w1+ β̂2w2)}−1 exp(x1+ β̂2x2+ γ̂z),

respectively. From Figure 1, we can draw a similar conclusion on estimation ofE(Y |X, Z,W )

as on estimation of parametric componentsβ andγ; that is, our method is comparable to the

parametric one when the parametric model is correctly specified, but beats the parametric one

when the model is incorrectly specified.

4.2 Health Care Data Analysis

Effective management of chronic diseases often requires long-term administration of medi-

cations. Although many chronic diseases can be treated effectively with medications, there

is limited evidence on the effectiveness of proper medications in improving patients’ overall

functional status and quality of life and in reducing health care charges. In addition, the pro-

liferation of new drugs has increased the potential for adverse drug interactions. These two

factors, along with variability in medical training, have led to much variation in treatments for
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thesame chronic conditions. To determine whether medication-prescribing patterns could be

altered to improve patient outcomes in a cost-effective manner, Tierney et al. (1998) conducted

a clinical trial of a computer-assisted prospective drug utilization review (DUR) in an urban,

hospital-based academic primary care system. The DUR program involved guideline-based,

computer-generated treatment recommendations to primary care physicians and hospital-based

pharmacists during encounters with their patients. These recommendations were aimed at pre-

venting adverse drug reactions and improving the effectiveness of treatment for three chronic

conditions: hypertension, congestive heart failure, and reactive airway disease. In addition to

quality of life, outcome variables in this trial included inpatient and outpatient charges. In the

current analysis, we will focus on the total inpatient health care charges generated by patients

with hypertension during the two year-long trial.

This data set has the two analytic problems: (1) a large number of patients with zero

inpatient costs, and (2) a skewed distribution. The formal test for normality gives a p-value

of < 0.001 for original non-zero costs and a p-value of 0.003 for log-transformed non-zero

costs. Therefore, we know that non-zero costs have a severely skewed distribution, which is

not a log-normal distribution. From some preliminary analysis reported elsewhere (Tierney et

al, 1998), we found that the following four important covariates which are related to inpatient

charges: (a) age, (b) the SF-36 physical function score (from the medical outcomes study 36-

item short-form health survey), (c) whether a patient is female, and (d) whether a patient is

black. The analytic goal in this paper is to estimate the average cost of a patient with given

values of these four covariates.

Let Yi be the health care cost of theith patient. LetXi1 andXi2 denote the continuous-

scale covariates, the age and SF-36 physical function score of theith patient, respectively,

and letZi1 andZi2 denote binary covariates, gender and race indicators, for theith patient,

respectively; that is,Zi1 = 1 if the ith patient is female and 0 otherwise;Zi2 = 1 if the ith

patient is black and 0 otherwise. DenoteXi = (Xi1, Xi2)
′ andZi = (Zi1, Zi2)

′. We model the

probability of being the zero cost by the logistic regression model,

logit{P (Yi = 0 | Xi, Zi)} = α1Xi1 + α2Xi2 + α3Zi1 + α4Zi2,

9
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andwe assume that the conditional expectation of the positive costsYi givenYi > 0 follows a

semi-parametric single-index regression model,

Yi = g(β1Xi1 + β2Xi2 + γ1Zi1 + γ2Zi2),

where the functiong(.) is unknown. To confirm the logistic assumption for the probability of

being a zero cost, we conduct a goodness-of-fit test (le Cessie and van Houwelingen, 1991),

and find the assumption is reasonable. Then, the regression model for the overall mean is given

as follows:

E(Yi | Xi, Zi) =
1

1 + exp(α1Xi1 + α2Xi2 + α3Zi1 + α4Zi4)
g(XT

i β + ZT
i γ).

We report the results in Figure 2.

Figure 2 goes here

The solid line on the left panel in Figure 2 displays the estimated values ofE(Yi | Xi1 =

x1, Xi2 = x2, Zi1 = z1, Zi2 = z2) versusx1β̂1 + x2β̂2 for all patients in the sample. Similarly,

the solid line on the right panel represents the estimated values ofE(Yi | Xi1 = x1, Xi2 =

x2, Zi1 = z1, Zi2 = z2) versusXT
i β̂ + ZT

i γ̂ for all patients in the sample.

For constructing confidence intervals ofE(Y |X, Z), we could theoretically use the vari-

ance formula given in (3.3) to compute the standardized test statistics forE(Y |X, Z), and then

use the normal approximation to construct confidence intervals. Unfortunately, the resulting

confidence intervals are not good, giving negative lower bounds. The reason is partly due to the

relatively small sample size for non-zero observations, resulting in big bias in the estimation

of Σv|z. We therefore provided bootstrap confidence intervals ofE(Y |X, Z) in Figure 2, in

which the dotted lines represent 95% pointwise bootstrap confidence intervals. The pointwise

bootstrap confidence intervals were computed at101 selected points with200 bootstrap repli-

cations by randomly resampling the original cost data with replacement. It is intuitively clear

that the bootstrap can be used to construct estimates of standard error, because the estimators

of the parametersπ, β, γ are regular. The standard bootstrap arguments (Davison and Hinkley,

1997) can justify our statement.

We can also use the proposed model to predict the average cost of a patient with given

characteristics of the patient. For example, among 53 years old patients with the SF-36 physi-

cal function score of 37.5, a black male patient has an estimated average inpatient cost of $7848
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with a 95% confidence interval of ($1390.7, $44326.6), and a black female patient has an esti-

mated average inpatient cost of $6228 with a 95% confidence interval of ($1800.1, $22159.7).

5 Discussion

Effectively analyzing skewed data with excessive zero values is a challenging topic in practice.

One additional complication is that non-zero costs may not follow an often assumed log-normal

distribution. In this paper, we propose a semi-parametric single-index two-part model that

allows us to handle these problems. We have theoretically shown that the proposed estimators

are consistent and have asymptotically normal distributions under some regularity conditions.

Our theoretical proof is a straightforward extension of theorems in Horowitz and Härdle (1996).

The detailed derivation and the discussion of the regularity conditions are referred to Horowitz

and Ḧardle (1996).

It is worthy to mention that we assume the first stage zero versus non-zero model follows

a parametric logit model in this paper because our real data follow this distribution. We can

easily generalize our method to allow the first stage model also to be a semi-parametric single

index model. See Klein and Spady (1993) for a detailed discussion of a single index model

with binary response variables. The authors proposed an asymptotically efficient estimator of

the index parameter. The convergence rate of the estimator ofπ is n−1/3, which can ensure that

the theoretical results of this paper still hold.
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Appendix: Assumptions

Let Sv denote the support of the distribution ofV = XTβ. Letf(v|z) be the probability density
of V givenZ = z, let p(v, x̃|z) be the joint density of(V, X̃) conditional onZ = z, let p(z) be
the probability thatZ = z ∈ Sz andf(v, z) = f(v|z)p(z). Let r ≥ 4 be an integer and‖ · ‖
denote the Euclidean norm. The following assumptions were given by Horowitz and Härdle
(1996) to assure that the asymptotic normality of the estimators ofβ hold.

Assumption A.1 Sz is a finite set;
E(‖X̃‖2|Z = z) < ∞ andE(|Y |‖X̃‖2|Z = z) < ∞ for eachz ∈ Sz; X̃ andβ̃ denote

components 2 throughk of X andβ if k > 1.
E(|Y |‖X̃‖2|V = v, Z = z), E(|Y |2|V = v, Z = z) andf(v, z) are bounded uniformly

overv ∈ [v0 − ζ, v0 + ζ] for someζ > 0 and allz ∈ Sz

For eachz ∈ Sz, p(v, x̃|z) has continually 3 order derivative withv and uniformly
bounded over(v, x̃)

Var(Y |V = v, Z = z) > 0 for all z ∈ Sz and almost everyv.

Assumption A.2 BTB is nonsingular.

Assumption A.3 g(·) is r times continually differentiable, and itsr derivatives are bounded
on all bounded intervals.

Assumption A.4 There are finite numbersv0, v1, c0 andc1 such thatv0 < v1, c0 < c1 and
g(v + zγ) < c0 for eachz ∈ Ωz if v < v0, andg(v + zγ) > c1 for z ∈ Ωz if v > v1; f(v|z) is
bounded away from0 on an open interval containing[v0, v1].

Assumption A.5 If k > 1, there are (a) an1/2-consistent estimator of̃β, denoted bŷbn, and
(b) a(k − 1)× 1 vector-valued functionΨ(y, x, z) such that

n1/2(b̃n − β̃) = n−1/2
n∑

i=1

Ψ(Yi, Xi, Zi) + op(1)

as n → ∞ whereEΨ(Y, X, Z) = 0 and n−1/2 ∑n
i=1 Ψ(Yi, Xi, Zi) converges to a normal

distribution.

Assumption A.6 Kernel functionK is bounded, symmetric, differentiable and nonzero on
[−1, 1], its derivative is Lipschitz continues. For0 ≤ i ≤ r, K satisfies

∫ 1
−1 viK(v)dv = 1 if

i = 0, 0 if 1 < i < r and nonzero ifi = r.

Assumption A.7 nhr+3 →∞ andnh2r → 0 asn →∞.
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Table 1: Results of the simulation study. ‘mean’ is the simulation mean, ‘s.e.’ is the Monte

Carlo standard error. The methods are ‘parametric’: parametric fitting; ‘SIN’: semiparametric

approach proposed in this paper.

case n parameter True SIN Parametric

mean s.e. mean s.e.

1 100 β 0.25 0.25 0.035 0.25 0.006

γ 0.3 0.296 0.025 0.3 0.003

200 β 0.25 0.249 0.023 0.25 0.004

γ 0.3 0.296 0.019 0.3 0.002

500 β 0.25 0.25 0.019 0.25 0.003

γ 0.3 0.297 0.014 0.3 0.001

2 100 β 0.25 0.249 0.012 0.174 0.184

γ 0.3 0.3 0.011 0.003 0.088

200 β 0.25 0.25 0.008 0.172 0.141

γ 0.3 0.3 0.006 -0.016 0.084

500 β 0.25 0.25 0.005 0.156 0.111

γ 0.3 0.3 0.004 -0.021 0.063
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Figure1: Pointwise estimated values of the expectation values againstXTβ + ZTγ whenn =

200. The upper panel are for case 1 and the bottom panel for case 2. The solid, dotted, and

dashed lines represent the true, nonparametrically fitted, and parametrically fitted curves.
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Figure2: Pointwise estimates of the expectation values (solid lines) and bootstrap confidence

intervals (dotted lines).+ represents the observed values. The left panel corresponds to the

expectation ofY againstXTβ̂, and the right panel corresponds to the expectation ofY against

XTβ̂ + ZTγ̂.
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