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1. Introduction

The Receiver Operating Characteristic (ROC) curve is the most commonly used index for

assessing the accuracy of diagnostic imaging tests. In radiology, one common design for

ROC studies involves multiple readers and multiple tests (Zhou et al, 2002). In such studies,

all readers read all test results from the same patients. An example of such a study was

conducted by Jiang et al (1999) to test whether computer-aided diagnosis (CAD) could

improve radiologists’ performance in breast cancer diagnosis. In the study, the 10 radiologists

read mammograms of 104 patients using both computer-aided and unaided methods, and the

response of the radiologist on the presence of malignant cancer had a continuous-scale. The

true disease status of each patient was verified using a near-consecutive biopsy series. Among

the 104 patients, 46 were malignant and 58 were benign. The objective was to compare the

accuracy of computer-aided and unaided diagnoses.

The main complication for analysis of data obtained from such studies is that the test

results from the same subject or the same reader may be correlated. Approaches that

ignore the correlations might lead to erroneous conclusions. To deal with such data, several

approaches have been proposed which assume that the estimated area (or other function)

of the ROC plot follows a mixed-effects ANOVA model (Dorfman, Berbaum and Metz,

1992; Obuchowski and Rockette, 1995). Beiden, Wagner and Campell (2000) proposed a

bootstrap approach under the same model without the normality assumption on the random

effects but with the same correlation structure, which was further relaxed to allow different

variances for different tests (2001). However, it might be difficult to check the assumptions

on the correlation structure of these estimated measures in practice. Among these methods,

the most widely used approach is the Dorfman-Berbaum-Metz (DBM) approach (Dorfman,

Berbaum and Metz, 1992), which is regularly used in studies that the FDA and industry

rely upon to quantify the benefits of new diagnostic and screening technologies. The DBM
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approach assumes a mixed-effects ANOVA model for the jackknife pseudovalues for the area

under the ROC curve (AUC). Roe and Metz (1997) indicated by simulations that the DBM

method works well for testing the null hypothesis that the diagnostic tests are equivalent

when the response variable follows a standard mixed-effects ANOVA model with normal

random effects and errors; however, they did not evaluate the performance of the DBM

approach in estimation of the AUCs in situations of inequivalent tests. Moreover, there are

other concerns for using the DBM method (Zhou et al., 2002). First, since pseudovalues are

not real observations, the ANOVA model for pueudovalues does not have straightforward

interpretation. Second, since pseudovalues are generally correlated, it lacks firm theoretical

basis to utilize the standard inference procedures for ANOVA model.

In this paper, we first investigate the theoretical basis of the DBM method. Our results

indicate that the DBM method does not satisfy the regular assumptions for standard mixed-

effects ANOVA models in general because the variance of the response variable may vary

across tests and subjects. Hence this approach might lead to erroneous inference. However,

our theoretical results do show that correlations among the AUC jackknife pseudovalues

from different subjects tend to zero as the number of subjects goes to infinity. We then

propose a marginal regression model approach based on the AUCs. The estimators of the

regression coefficients are consistent and asymptotically normal. Thus in contrast to the

DBM approach, the marginal model approach has solid theoretical basis. We then compare

the relative finite sample performance of our method with the DBM method via simulation

studies. Our results show that our new method has similar coverage accuracy as the DBM

method for the difference of two AUCs and for individual AUCs when the AUCs are the

same for all tests but has better coverage accuracy for individual AUCs when the AUCs are

different for different tests.

We organize the paper as follows. In Section 2, we describe the data structure for
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continuous outcomes. We investigate the theoretical basis for the DBM method in Section 3.

The marginal model approach is given in Section 4. We compare the two approaches via

simulation in Section 5 and by application to the breast cancer data in Section 6. We discuss

the extension of the marginal model approach to ordinal outcomes in Section 7.

2. Data Structure

Suppose there are K = n0 + n1 subjects, of which n0 are non-diseased and n1 are diseased,

I tests taken on each subject, and J readers each reading all test results from each subject.

Let the subscripts k = 1, . . . , n0 denote non-diseased subjects and k = n0 + 1, . . . , K denote

diseased subjects. Let Yijk be the test value for subject k from the test i assigned by reader j,

with larger values being more indicative of disease. In this paper, we consider the case that

Yijk is continuous. Extensions to ordinal outcomes are discussed in Section 7. We assume

that the test values from different subjects and different readers are independent, but they

can be correlated if they are from the same reader or the same subject.

3. Existing DBM jackknife approach

The DBM approach computes the AUCs based on the ROC estimator under the binormal

assumption (Dorfman and Alf, 1969), which is the maximum likelihood estimator (MLE) in

the case of ordinal outcomes. Continuous outcome data need to be discretized before using

this estimator, which is not MLE anymore in this case (Pepe, 2003). For simplicity, we use

the nonparametric Wilcoxon estimator for the AUCs. We investigate the possible loss of

efficiency of using the Wilcoxon estimator in Section 5.

Let Ai be the AUC for test i. Then Ai = Pr(Yijk > Yijs) for s = 1, . . . , n0 and k =

n0 + 1, . . . , K. The Wilcoxon estimator for Ai based on the observations from reader j is

Aij = (n0n1)
−1

∑n0

s=1

∑K
k=n0+1 ϕijks, where ϕijks = I(Yijk > Yijs) with I(·) being the indicator

function; that is, ϕijks is equal to 1 if Yijk > Yijs and 0 otherwise. The corresponding jackknife

pseudovalue is A∗
ijk = KAij − (K − 1)Aij(k) (k = 1, . . . K), where Aij(k) is the “leave-1-out”
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estimator obtained by deleting subject k. The DBM method assumes that the pseudovalues

A∗
ijk follow the ANOVA model

A∗
ijk = µ∗ + α∗i + R∗

j + C∗
k + (αR)∗ij + (αC)∗ik + (RC)∗jk + ε∗ijk, (1)

where µ∗ is the population mean, α∗i is the fixed effect of test i, R∗
j is the random effect

of reader j, C∗
k is the random effect of subject k, (αR)∗ij, (αC)∗ik and (RC)∗jk are the cor-

responding two-way interactions, and ε∗ijk is the random error. The random variables R∗
j ,

C∗
k , (αR)∗ij, (αC)∗ik, (RC)∗jk and ε∗ijk are normally and independently distributed with mean

zero and variances σ2
R∗, σ2

C∗, σ2
αR∗, σ2

αC∗, σ2
RC∗ and σ2

ε∗, respectively. Standard techniques for

ANOVA models are used for inference. For example, the F-test is used to test the fixed and

random effects. The estimator for µ∗ + α∗i is used to estimate Ai.

Roe and Metz (1997) conducted simulations using the DBM method. They assume the

response variable Yijk follows the ANOVA model

Yijk = µt + αit + Rj + Ckt + (αR)ij + (αC)ikt + (RC)jkt + εijkt, (2)

where t = I(k > n0), µt is the population mean, αit is the fixed effect of test i, Rj is

the random effect of reader j, Ckt is the random effect of subject k, (αR)ij, (αC)ikt, and

(RC)jkt are the corresponding two-way interactions, and εijkt is the random error. The

random variables Rj,Ckt, (αR)ij, (αC)ikt, (RC)jkt, and εijkt are normally and independently

distributed with mean zero and variances σ2
R, σ2

Ct, σ2
αR, σ2

aCt, σ2
RCt and σ2

εt, respectively. Their

simulation results indicate that the DBM method works well for testing the null hypothesis

that the diagnostic tests are equivalent, i.e., α∗i = 0.

In Roe and Metz’s simulation, they implicitly assume that (1) holds under (2). Notice

that the following two conditions about the covariance structure hold under the standard

mixed-effects ANOVA model (1): (i) corr(A∗
ijk, A

∗
i′j′k′) = 0 for i 6= i′, j 6= j′, and k 6= k′; (ii)

var(A∗
ijk) = σ2

R∗ + σ2
C∗ + σ2

αR∗ + σ2
αC∗ + σ2

RC∗ + σ2
ε∗, which is a constant independent of i, j

6

http://biostats.bepress.com/uwbiostat/paper234



and k. Now we check whether these conditions hold under model (2). With some tedious

algebra, we can show that

cov(A∗
ijk, A

∗
i′j′k′) =




n1−2K+2
(n0−1)2n0

{θii′b11 + (n0 − 1)θii′b10 + (n1 − 1)θii′b01}+ (K−1)2

(n0−1)2n1
θii′b10,

k 6= k′, k ≤ n0, k
′ ≤ n0;

n0−2K+2
(n1−1)2n1

{θii′b11 + (n0 − 1)θii′b10 + (n1 − 1)θii′b01}+ (K−1)2

(n1−1)2n0
θii′b01,

k 6= k′, k > n0, k
′ > n0;

1
(n0−1)(n1−1)

(
1− K−1

n0n1

)
{θii′b11 + (n0 − 1)θii′b10 + (n1 − 1)θii′b01} ,

k 6= k′, k ≤ n0, k
′ > n0; or k > n0, k

′ ≤ 0;
n1−2K+2
(n0−1)2n0

{θii′b11 + (n0 − 1)θii′b10 + (n1 − 1)θii′b01}+ (K−1)2

(n0−1)2n1
{θii′b11 + (n1 − 1)θii′b10} ,

k = k′ ≤ n0;
n0−2K+2
(n1−1)2n1

{θii′b11 + (n0 − 1)θii′b10 + (n1 − 1)θii′b01}+ (K−1)2

(n1−1)2n0
{θii′b11 + (n0 − 1)θii′b01} ,

k = k′ > n0;

(3)

where θii′bcd = cov(ϕijks, ϕi′j′k′s′) with b = I(j = j′), c = I(k = k′) and d = I(s = s′).

Expression (3) holds even without the normality assumption on the random effects and error

in model (2). Hence both conditions (i) and (ii) assumed under the standard mixed-effects

ANOVA model (1) are violated for finite samples in general. To have a better understanding

of the covariance structure, we consider its asymptotic form when the number of subjects

K goes to infinity. Write ξ(K) = O{η(K)}. If, for some positive constants v and K0,

|ξ(K)| ≤ v|η(K)| when K ≥ K0. By assuming O(n0) = O(n1), we can show that

A. corr(A∗
ijk, A

∗
i′j′k′) = O(K−1) for k 6= k′;

B.
lim

K→∞
var(A∗

ijk) = lim
K→∞

{
I(k ≤ n0)

(
K

n0

)2

θii110 + I(k > n0)

(
K

n1

)2

θii101

}
, (4)

which depends on i and k;

C. a sufficient condition for (4) to be independent of i and k is that the random effects

and error in model (2) are normal and µ0 = µ1, αi0 = αi1, σ2
C0 = σ2

C1, σ2
αC0 = σ2

αC1,

σ2
RC0 = σ2

RC1, σ2
ε0 = σ2

ε1 and limK→0 n0/K = 1/2.
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The proof is sketched in the Appendix.

Result (A) indicates that the correlations among the pseudovalues from different subjects

are asymptotically equal to 0 as the number of subjects goes to infinity and hence condition

(i) holds asymptotically, which might explain the unbiased estimation for the AUCs observed

in our simulations in Section 5. However, result (B) implies that the variances of the pseu-

dovalues A∗
ijk can differ across tests and subjects when the tests are not equivalent or when

the sample sizes for diseased and non-diseased subjects are not equivalent; that is, condition

(ii) can be violated even for large samples. This deviation from condition (ii) might lead to

biased variance estimators, as we illustrate in Section 5.

4. Marginal Model Approach

We propose a marginal generalized linear model for the AUCs which allows to include types of

tests and other covariates in the model; our regression model is an extension of the marginal

regression model for the AUCs for independent ROC data, proposed by Dodd and Pepe

(2003), to multi-reader multi-test ROC data. Let X1
k denote covariates for diseased subject

k (k = n0 + 1, . . . , K), X0
s denote covariates for non-diseased subject s (s = 1, . . . , n0), and

Qj denote covariates for reader j (j = 1, . . . , J). Let Zi = (Zi1, Zi2, . . . , ZiI)
T (i = 1, . . . , I),

where Zir = I(i = r) is the indicator for the test r. Here Qj’s are independent across j, X1
k ’s

are independent across k, X0
s ’s are independent across s, and Zi’s are independent across i.

Following Dodd and Pepe (2003), we define the covariate-specific AUC Aijks as

Aijks = E(ϕijks|Zi, Qj, X
1
k , X0

s ) = P (Yijk > Yijs|Zi, Qj, X
1
k , X0

s ).

Then we propose the following regression model for Aijks:

Aijks = g(βT
1 Zi + βT

2 Qj + βT
3 X1

k + βT
4 X0

s ), (5)
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where g(·) is a monotone link function, and β = (βT
1 , βT

2 , βT
3 , βT

4 )T is a vector of regression

parameters. Under model (5), we have the regression model for ϕijks:

Pr
(
ϕijks = 1|Zi, Qj, X

1
k , X0

s

)
= g(βT

1 Zi + βT
2 Qj + βT

3 X1
k + βT

4 X0
s ). (6)

For this marginal model, the set of “observations” is {(ϕijks, Zi, Qj, X
1
k , X0

s ) : i = 1, . . . , I; j =

1, . . . , J ; k = n0+1, . . . , K; s = 1, . . . , n0}. Since ϕijks are not independent, standard methods

for generalized linear models can not be applied directly. We consider three different assump-

tions on the correlation structure. First, as conforming to the ANOVA model (2), we assume

that ϕijks and ϕi′j′k′s′ are correlated only when k = k′ or s = s′. Then ϕijks are sparsely

correlated as defined by Lumley (1998) and Lumley and Hamblett (2003). In their notation,

for each “observation” ϕijks, we define the set Sijks = {(i′, j′, k′, s′) : k′ = k or s′ = s}, which

contains the indices of all “observations” correlated to ϕijks. It is easy to see that the number

of “observations” in Sijks is M = IJ(K− 1) = O(IJn0 + IJn1). Now consider a subset T of

{(i, j, k, s) : i = 1, . . . , I; j = 1, . . . , J ; k = n0 + 1, . . . , K; s = 1, . . . , n0} which satisfies that,

for any two elements (i′, j′, k′, s′) ∈ T and (i′′, j′′, k′′, s′′) ∈ T , (i′, j′, k′, s′) /∈ Si′′j′′k′′s′′ and

(i′′, j′′, k′′, s′′) /∈ Si′j′k′s′ . Thus any two elements in T must have different k and s. Hence

the maximum number of elements in T is m = min(n0, n1). Therefore Mm = O(IJn0n1).

Noticing that IJn0n1 is the number of “observations”, we can conclude that the condition

of sparse correlation is satisfied. This assumption can be relaxed to that ϕijks and ϕi′j′k′s′

are correlated only when j = j′ or k = k′ or s = s′; in this case, Sijks = {(i′, j′, k′, s′) : j′ = j

or k′ = k or s′ = s}, M = O(In0n1 + IJn0 + IJn1) and m = min(J, n0, n1). We can further

relax the assumption to that ϕijks and ϕi′j′k′s′ are correlated only when i = i′ or j = j′ or

k = k′ or s = s′; the corresponding Sijks = {(i′, j′, k′, s′) : i′ = i or j′ = j or k′ = k or

s′ = s}, M = O(Jn0n1 + In0n1 + IJn0 + IJn1) and m = min(I, J, n0, n1). Notice that under

each of these conditions we always have Mm = O(IJn0n1) and hence the data have sparse

correlation structure. To discriminate these assumptions, we call them assumption I, II and

9

Hosted by The Berkeley Electronic Press



III, respectively.

Now consider the pseudo-likelihood

L =
I∏

i=1

J∏
j=1

n0∏
s=1

K∏

k=n0+1

{
g(βT Wijks)

}ϕijks
{
1− g(βT Wijks)

}1−ϕijks , (7)

where Wijks = (ZT
i , QT

j , X1T
k , X0T

s )T . Expression (7) is the likelihood when ϕijks are inde-

pendent. The log pseudo-likelihood equation is

U =
∂ log L

∂βT
=

I∑
i=1

J∑
j=1

n0∑
s=1

K∑

k=n0+1

Uijks(β) = 0, (8)

where

Uijks(β) =

[{
ϕijks − g(βT Wijks)

}
g′(βT Wijks)

g(βT Wijks) {1− g(βT Wijks)}

]
Wijks,

g′(·) is the derivative of g(·). Let β̂ be the solution to (8) that maximizes (7). By Theorem 7

of Lumley and Hamblett (2003), under some regularity conditions, as m →∞, β̂ is consistent

and asymptotically normal with variance consistently estimated by C−1B(C−1)T , where

C =
I∑

i=1

J∑
j=1

n0∑
s=1

K∑

k=n0+1

∂Uijks(β̂)

∂βT
,

B =
I∑

i=1

J∑
j=1

n0∑
s=1

K∑

k=n0+1

∑

(i′,j′,k′,s′)∈Sijks

Uijks(β̂)UT
i′j′k′s′(β̂).

A consistent estimator for the AUCs can then be obtained by substituting β̂ for β in (5). In

practice, to utilize the asymptotic normality, m is required to be large. Under assumption

I, this corresponds to that both the number of diseased subjects and the number of non-

diseased subjects are large. Assumption II further requires that the number of readers is

large and assumption III in addition requires that both the number of tests and the number

of readers are large. Hence assumption I is more reasonable in practice.
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It is easy to see that the mixed-effects ANOVA model (2) is a special case of the proposed

marginal model, that is,

Pr (ϕijks = 1|Zi, Qj,Xk,Xs) = φ(βT
1 Zi),

where φ(·) is the distribution function for the standard normal, and β1 = (µ1 − µ0 + α11 −
α10, . . . , µ1 − µ0 + αI1 − αI0)

T /
{∑1

t=0 (σ2
Ct + σ2

αCt + σ2
RCt + σ2

εt)
}1/2

. Compared to the jack-

knife pseudovalue model (1), the marginal model (6) has advantage in interpretation, since

the dependent variable is the more meaningful covariate-specific AUC; for example, the

regression parameter for Zir indicates the effect of test r on the AUC, with larger values

imply better accuracy. In addition, it is easy to incorporate covariates in (6). The asymp-

totic properties provide sound theoretical basis for statistical inference. Since the estimating

equation (8) has the same form as that for the generalized estimating equation (GEE) with

independent working correlation structure, the estimates can be obtained by standard statis-

tics softwares such as SAS and SPlus, although the standard errors need to be recomputed

using the sandwich estimator described above. We have written the code for computing the

standard errors under the logit and probit links using PROC IML in SAS, which can be

easily extended to other links or converted to SPlus. Therefore the implementation of the

marginal model approach includes three steps: i) derive the data set {ϕijks, Zi, Qj, Xk, Xs}
from the original data; ii) obtain the estimates using PROC GENMOD or PROC LOGISTIC

in SAS or function gee() or glm() in SPlus; iii) compute the standard errors using self-coded

functions based on the sandwich estimator and the output obtain from step ii).

5. Simulation Studies

To compare the performance of the marginal model approach and the DBM approach, we

conducted simulations under scenarios similar to those in Roe and Metz (1997). We gen-

erated the data according to model (2), with I = 2, J = 5, µ0 = 0, µ1 = 0.75 or 1.5,

11
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α10 = α11 = α20 = 0, σ2
R =0.0055, σ2

Ct =0.3, σ2
αR =0.0055, σ2

aCt =0.3, σ2
RCt =0.2, σ2

εt = 0.2

(t = 0, 1). For µ1 = 0.75 and 1.5, A1 = 0.702 and 0.856, respectively. We considered two

scenarios representing equal and unequal accuracy of tests, respectively; that is, α21 = 0 and

1. When α21 = 0, the AUCs are the same for the two tests, that is, A1 = A2; when α21 = 1,

A2 − A1 = 0.190 and 0.106 for µ1 = 0.75 and 1.5, respectively.

We carried out simulations for n0 = n1 = 20 and 50. For each scenario, 500 Monte Carlo

data sets were simulated. Table 1 presents the results of estimation for A1 and A2−A1 using

both the DBM method based on the Wilcoxon estimator for the AUCs and the marginal

model method. For both methods, the coverage probabilities of the 95% confidence intervals

were computed; the confidence intervals were obtained based on the t-statistics for the DBM

approach and the Wald statistics for the marginal model approach. In the case when α21 = 0,

both estimators are close to the truth and the standard errors track the empirical standard

deviations well. The coverage probabilities for both approaches are close to the nominal level,

which tend to be larger for the DBM approach. In the case when α21 = 1, the performance

of the marginal model approach is similar to that when α21 = 0. In contrast, for the DBM

estimator, the inference on A2 − A1 works well while the standard error for A1 is much

less than the corresponding empirical standard deviation and the coverage probability is

well below the nominal level, which tends to decrease with increased number of patients. A

possible explanation is that the variances of the pseudovalues vary across the tests in this

case.

In summary, for inference on the difference of the AUCs, the performance of the marginal

model approach is comparable to that of the DBM approach. However, the marginal model

method has better performance for inference on individual AUCs when the accuracy of tests

are not equivalent although their performances are comparable in the case of equal accuracy.

To assess possible loss of efficiency by using the Wilcoxon estimator for AUCs in the DBM

12
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approach, we also computed AUCs parametrically assuming both the diseased and non-

diseased distributions of Y are normal; that is, the AUC estimates are based on the MLEs

of the normal parameters. The results are similar with only slight loss of efficiency for those

using the Wilcoxon estimator (not shown).

6. Application

We apply the marginal model approach and the DBM approach to the breast cancer data

(Jiang et al., 1999) described in Section 1. In this case, there were I = 2 tests (computer-

aided and unaided diagnoses), J = 10 readers (radiologists), n0 = 58 non-diseased (benign)

and n1 = 46 diseased (malignant) subjects. For each diagnosis, the radiologists were asked

to give their degree of suspicion that a lesion was malignant by reading the mammagrams

and then placing a mark on a 5-cm line labeled “benign” at the left end and “malignant” on

the right end. These marks were then converted to numerical scores with a ruler. Here the

scores were the observed test results. For the computer-aided diagnosis, the radiologists were

given an additional computer-estimated likelihood of malignancy based on eight computer-

extracted image features from the mammagrams.

To compare the computer-aided and unaided diagnoses, we estimated their AUCs and the

difference between them using both the DBM approach and the marginal model approach.

Since the AUC for each diagnostic method is the expectation of the reader-specific AUCs,

the estimated AUC can be viewed as the estimate of mean of the AUCs for the 10 readers in

this case. The results are shown in table 2. For both approaches, the estimates for the AUCs

are very close and the lower bounds of the 95% confidence intervals for the AUC difference

were greater than 0. It seems that CAD can improve radiologists’ performance in breast

cancer diagnosis.
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7. Discussion

For multi-reader multi-test ROC data, the correlated data structure makes the analysis more

complicate than that for the independent case. One popular analytic method for such data is

the DBM jackknife method that assumes that the pseudovalues for areas under ROC curves

follow a standard mixed-effects ANOVA model, and this method has been found widely used

in practice. In this paper, we have conducted a theoretical study on the validity of the DBM

method and have explored situations when the DBM method is appropriate and situations

when the DBM method may lead to erroneous inference. We have also proposed a new

marginal model approach for the analysis of multi-reader multi-test ROC data. Our new

approach has the advantage in interpretation, sound theoretical foundation, and good finite

sample performance. Our method is also computationally simpler than the DBM jackknife

method. When we implemented both approaches in SAS for the breast cancer data described

in Section 6, the marginal model approach was about 4 times faster than the DBM approach.

This paper has focused on continuous test outcome Yijk. Like DBM approach, the

marginal model approach can be extended to ordinal outcomes as well. If Yijk is ordi-

nal, then Ai = Pr(Yijk ≥ Yijs). We define ϕijks1 = I(Yijk > Yijs) and ϕijks2 = I(Yijk = Yijs),

s = 1, . . . , n0, k = n0 +1, . . . , K; alternatively, we can define ϕijks2 = I(Yijk ≥ Yijs). Assume

the following marginal model

Pr
(
ϕijksr = 1|Zi, Qj, X

1
k , X0

s

)
= g(βT

1rZi + βT
2rQj + βT

3rX
1
k + βT

4rX
0
s ).

Since the set of “observations” {(ϕijksr, Zi, Qj, X
1
k , X0

s ) : r = 1, 2; i = 1, . . . , I; j = 1, . . . , J ; k =

n0 + 1, . . . , K; s = 1, . . . , n0} is sparsely correlated, the estimation and inference procedure

will be similar to that for the continuous test outcomes.
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Appendix

By straightforward algebra, the pseudovalues A∗
ijk can be represented through ϕijks, that is,

A∗
ijk =

{
n0−K

(n0−1)n0n1

∑n0

s=1

∑K
s′=n0+1 ϕijss′ +

K−1
(n0−1)n1

∑K
s=n0+1 ϕijsk, k = 1, . . . , n0;

n1−K
(n1−1)n0n1

∑n0

s=1

∑K
s′=n0+1 ϕijss′ +

K−1
(n1−1)n0

∑n0

s=1 ϕijks, k = n0 + 1, . . . , K.
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Note that ϕijks = I(δijks > 0), where

δijks = µ1 − µ0 + αi1 − αi0 + Ck1 − Cs0

+(αC)ik1 − (αC)is0 + (RC)jk1 − (RC)js0 + εijk1 − εijs0.

We can write cov(ϕijks, ϕi′j′k′s′) = θii′bcd, where b = I( j = j′), c = I(k = k′) and d =

I(s = s′). It is easy to see that θii′b00 = 0. Then (3) follows with some simple but tedious

algebra. Note that the normality assumption is not required here. Results (A) and (B)

follow immediately from (3).

Now we consider the normal case. It is easy to see that (δijks, δi′j′k′s′)
T is normally

distributed with mean (µ1 − µ0 + αi1 − αi0, µ1 − µ0 + αi′1 − αi′0)
T and variance

Σijks,i′j′k′s′ = V

(
1 ρabcd

ρabcd 1

)
,

where V =
∑1

t=0 (σ2
Ct + σ2

αCt + σ2
RCt + σ2

εt), a = I(i = i′),

ρabcd = V −1
[
σ2

C1I(k = k′) + σ2
C0I(s = s′)

+σ2
αC1I(i = i′, k = k′) + σ2

αC0I(i = i′, s = s′)

+σ2
RC1I(j = j′, k = k′) + σ2

RC0I(j = j′, s = s′)

+σ2
ε1I(i = i′, j = j′, k = k′) + σ2

ε0I(i = i′, j = j′, s = s′)
]
.

Hence

θabcd = Pr(δijks > 0, δi′j′k′s′ > 0)− Pr(δijks > 0) Pr(δi′j′k′s′ > 0)

=

{
φ(hijks)− φ2(hijks), i = i′, b = c = d = 1
φ2(hijks, hi′j′k′s′ , ρabcd)− φ(hijks)φ(hijk′s′), otherwise,

where φ(·) and φ2(·) are the standard univariate and bivariate normal distribution functions,

respectively, and hijks = V −1/2(µ1 − µ0 + αi1 − αi0). Note when µ0 = µ1, αi0 = αi1,

σ2
C0 = σ2

C1, σ2
αC0 = σ2

αC1, σ2
RC0 = σ2

RC1, and σ2
ε0 = σ2

ε1, we have hijks = 0 and ρab10 = ρab01.

Hence θii110 = θii101. Then (C) follows.
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Table 1
Simulation results. MM, marginal model approach; B, bias; SD, empirical standard
deviation across simulated data sets; SE, average of estimated standard errors; CP,
coverage probability of the 95% confidence interval; CL, length of the 95% confidence

interval.

α21 = 0 α21 = 1
n0 = 20 n0 = 50 n0 = 20 n0 = 50

µ1 DBM MM DBM MM DBM MM DBM MM
0.75 A1 B 0.002 0.002 0.000 0.000 0.002 0.002 0.000 0.000

SD 0.065 0.064 0.045 0.045 0.064 0.064 0.045 0.045
SE 0.068 0.063 0.043 0.041 0.056 0.063 0.035 0.041
CP 0.957 0.942 0.944 0.926 0.904 0.942 0.878 0.926

A2 −A1 B -0.002 -0.003 0.002 0.002 -0.002 -0.002 0.000 0.000
SD 0.068 0.067 0.043 0.043 0.058 0.058 0.039 0.038
SE 0.069 0.064 0.043 0.042 0.061 0.056 0.039 0.037
CP 0.959 0.926 0.962 0.944 0.944 0.936 0.954 0.934

1.5 A1 B 0.002 0.002 0.001 0.000 0.002 0.002 0.000 0.000
SD 0.047 0.047 0.032 0.032 0.047 0.047 0.032 0.032
SE 0.048 0.043 0.030 0.028 0.036 0.043 0.023 0.028
CP 0.940 0.928 0.942 0.932 0.862 0.928 0.844 0.932

A2 −A1 B -0.002 -0.002 0.001 0.001 -0.002 -0.001 0.000 0.000
SD 0.049 0.049 0.030 0.030 0.043 0.043 0.028 0.028
SE 0.050 0.045 0.031 0.030 0.043 0.039 0.027 0.026
CP 0.964 0.938 0.972 0.954 0.938 0.912 0.942 0.918

Table 2
Results for the breast cancer data. MM, marginal model approach; Est, Estimate; SE,

standard error; CI, 95% confidence interval.

DBM MM
AUC Est SE CI Est SE CI

Unaided 0.597 0.038 (0.522, 0.671) 0.597 0.036 (0.524, 0.666)
With Aid 0.742 0.038 (0.667, 0.816) 0.741 0.036 (0.666, 0.807)

With Aid − Unaided 0.145 0.035 (0.076, 0.214) 0.145 0.034 (0.079, 0.211)
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