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1. Introduction

To evaluate the accuracy of a diagnostic test, an unbiased estimate for the

test accuracy is preferred. But in order to obtain an unbiased estimator

for the test accuracy, we need to determine the true disease status for each

patient (present or absent) independent of the patient’s test result. The

procedure that establishes the patient’s true disease status is referred to as

a gold standard.

For many diseases, it is difficult or impossible to establish a definitive

diagnosis. A perfect gold standard may not exist or may be too expensive

or impractical to administer. This is especially true for complex clinical

conditions in the usual clinical practice setting. For example, a definitive

diagnosis of myocardial infarction (MI) is difficult to establish for patients

admitted to a hospital for “rule-out MI”. Similarly, the definitive diagnosis

of Alzheimer’s disease cannot be established until a patient has died and

a neuropathological examination is performed. Even when the “definitive”

diagnosis of a well-defined disease, such as an infection by a known agent, can

be performed, it still may require culturing the organism or other detection

procedures, any of which may be subject to laboratory and other errors.

Consequently, in many diagnostic accuracy studies, an imperfect standard

is used to evaluate the test instead. However, when an imperfect standard

is used as if it were a gold standard, the accuracy of the new test is often

either underestimated or overestimated. This type of bias is called imperfect
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reference standard bias.

Hui and Zhou (1998) reviewed available statistical methods for estimat-

ing the diagnostic accuracy of one or more new tests, with or without an

imperfect standard, when the true disease status is not known for any of

the subjects. As noted in Hui and Zhou (1998), almost all available statis-

tical methods focus on binary tests and are based on mixture latent class

models; and the majority of those methods require the conditional indepen-

dence assumption (CIA). Only few published papers dealt with estimation

of ROC curves of ordinal or continuous scale tests in the absence of a gold

standard. Henkelman, Kay and Bronskill (1990) proposed a maximum likeli-

hood estimation method for the ROC curve of a five-point rating scale using

a multivariate normal mixture latent model. One major limitation of this

approach is that the latent random variables for multiple ordinal-scale tests

are assumed to follow the multivariate normal distribution. In addition, in

a published commentary on this paper, Begg and Metz (1990) pointed out

three serious potential limitations to this method and called for further re-

search into its properties before they could recommend it for general use.

Another paper by Hall and Zhou (2003) proposed a non-parametric esti-

mator for the ROC curves of continuous-scale tests under the conditional

independence assumption when the number of tests is more than two.

In this paper, we will apply the ideas in Hall and Zhou (2003) to esti-

mating ROC curve areas of ordinal-scale tests when the number of tests is

more than two. As shown in Hall and Zhou (2003), without the conditional
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independence assumption the component distributions in a multivariate la-

tent class model are not identifiable non-parametrically. Hence, in this paper

we focus on a non-parametric maximum likelihood (ML) method under the

conditional independence assumption. In Section 2 we present the method in

detail. We show the existence of many local ML estimate solutions under this

model, the global ML estimate has a ”mirror” solution that yields the same

log-likelihood value, and all local ML estimates, including the global ones,

give the same sum of squared residuals. In Section 3 we conduct simulation

studies to assess the finite-sample properties of the proposed ML estima-

tors, and to compare them with parametric models. We apply the proposed

method to a real study in Section 4.

2. A Non-parametric Approach

2.1 Estimation method

Here we consider the situation where each of the N patients is scored on

an ordinal scale from 1 to J on a battery of K tests. Throughout this paper

we will assume that the disease status is unknown for all N patients and will

attempt to estimate the ROC curves for each of the K tests without this

seemingly necessary piece of information.

Let T1, · · · , TK be the responses from K diagnostic tests for a particular

patient whose disease status although unknown is denoted by D, where D = 1

if the patient is diseased and D = 0 if the patient is non-diseased. Since

each test can be scored from 1 to J , we can define its ROC curve in two
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ways: (1) the non-parametric ROC curve based on the discrete sensitivity

and specificity values, and (2) the continuous ROC curve of a latent variable

underlying the observable ordinal data. In this paper, we focus on the non-

parametric ROC curve. To compute a discrete ROC curve from the ordinal

data, we vary the threshold for a positive test and then calculate J + 1 pairs

of true positive rates (TPR) and false positive rates (FPR). Specifically, for

the kth test, if we define a positive test as one with Tk ≥ j, a corresponding

pair of TPR and FPR are

TPRk(j) = P (Tk ≥ j |D = 1), FPRk(j) = P (Tk ≥ j |D = 0),

respectively, for j = 1, · · · , J + 1. Here, TPRk(1) = FPRk(1) = 1, and

TPRk(J + 1) = FPRk(J + 1) = 0. A discrete ROC curve is defined as a

discrete function of (FPRk(j), TPRk(j)), j = 1, · · · , J + 1. By connecting

coordinates with linear lines, we obtain the non-parametric ROC curve. Us-

ing the trapezoidal rule for integration (Bamber, 1975), we can obtain the

area under the non-parametric ROC curve of the kth test as follows

Ak =
J−1∑
j=1

[
P (Tk = j |D = 0)

J∑

l=j+1

P (Tk = l |D = 1)

]

+
1

2

J∑
j=1

P (Tk = j |D = 0)P (Tk = j |D = 1)

(1)

If we define φ0kj = P (Tk = j |D = 0) and φ1kj = P (Tk = j |D =

1), we can express the ROC curve and its area as functions of φ0kj and
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φ1kj. Note that the coordinates of the non-parametric ROC curve of Tk are

(FPRk(j), TPRk(j)), which are related to the parameters φ1jl and φ2jl in

the following form:

FPRk(j) =
J∑

l=j

φ0kl, TPRk(j) =
J∑

l=j

φ1kl. (2)

Similarly we can show the area under the ROC curve for the kth test can be

written as follows:

Ak =
J−1∑
j=1

[
φ0kj

J∑

l=j+1

φ1kl

]
+

1

2

J∑
j=1

φ0kjφ1kj. (3)

We wish to formulate the likelihood for this particular problem in such

a way that φ0kj and φ1kj play central roles. Specifically, we wish to be able

to find maximum likelihood estimates (MLEs) for these parameters and to

employ them in order to calculate MLEs for the ROC curve and its areas

under each of the K tests.

Let yikj be a binary variable such that yikj = 1 if the response of the

kth test is j for the ith patient and yijk = 0 otherwise, where i = 1, · · · , N ,

k = 1, · · · , K, and j = 1, · · · , J . Then we can construct a K × J binary

vector yi such that yi = (yi11, · · · , yi1J , · · · , yiK1, · · · , yiKJ). We will call yi

the test score vector for the ith patient. Also let us define the disease status

of the ith patient to be Di = 1 if the ith patient is diseased and Di = 0

if the ith patient is not diseased. Now let us define the likelihood function

5

Hosted by The Berkeley Electronic Press



gd(yi) = P (yi |Di = d) to be the conditional probability of ith patient’s test

score vector yi given their disease status Di = d. When assuming conditional

independence of the K tests, we can write that

gd(yi) =
K∏

k=1

J∏
j=1

[φdkj]
yikj , (4)

where φdkj = P (Tk = j|D = d). Here we employ the “1/0” property of the

vector yi to turn “on/off” the proper φdkj.

If we assume a Bernoulli distribution for disease status with pd = P (D =

d) for d = 0, 1, we obtain that the marginal likelihood contributed by the ith

patient has the following mixture form: P (yi) = p1g1(yi) + p0g0(yi). The

joint log-likelihood of all N patients is given by

l(p1,φ0,φ1) =
N∑

i=1

log[p0g0(yi) + p1g1(yi)], (5)

where p0 = 1 − p1, and φd represents the vector of conditional probabilities

(φd11, · · · , φd1J , · · · , φdK1, · · · , φdKJ) for d = 0, 1.

Our goal is to find maximum likelihood (ML) estimates for p1, φ0 =

(φ011, · · · , φ0KJ) and φ1 = (φ111, · · · , φ1KJ), subjecting to the normalizing

conditions
∑J

j=1 φdkj = 1 for d = 0, 1 and all k = 1, · · · , K. These are

precisely the parameters needed in order to estimate the ROC curves and

their respective areas for each of the K tests. Here we employ the EM

algorithm to find the ML estimates by treating D as missing data. Therefore
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our complete data consist of (y, D). The main advantage of the EM algorithm

over the directly maximizing the log-likelihood function (5) is that there is

an explicit solution in the M step for our non-parametric approach.

Let θ = (p1,φ0,φ1). Note that the complete-data log-likelihood is given

by

lc(θ) =
N∑

i=1

[Di log p1g1(yi) + (1−Di) log p0g0(yi)].

Let θ(t) denote the estimate of θ after the tth iteration of the EM algorithm.

• E step: The E step computes the conditional expectation of lc(θ) given

the observed data y and current parameter estimates θ = θ(t),

E(lc(θ) |y, θ = θ(t)) =
N∑

i=1

1∑

d=0

P (Di = d |yi, θ
(t)) log pdgd(yi).

If we write

q
(t)
id = P (Di = d |yi, p

(t)
1 ,φ

(t)
0 ,φ

(t)
1 ),

and

g
(t)
d (yi) =

K∏

k=1

J∏
j=1

[φ
(t)
dkj]

yikj ,

we can show that

q
(t)
id =

p
(t)
d g

(t)
d (yi)

p
(t)
0 g

(t)
0 (yi) + p

(t)
1 g

(t)
1 (yi)

, (6)
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and

E(lc(θ) |y,θ = θ(t)) =
N∑

i=1

1∑

d=0

q
(t)
id log gd(yi). (7)

• M step: The M step finds the updated estimate θ(t+1) for θ by max-

imizing E(lc(θ) |y,θ = θ(t)) in (7). We can show that θ(t+1) has the

following explicit expression:

p
(t+1)
1 =

1

N

N∑
i=1

q
(t)
i1 , (8)

and

φ
(t+1)
dkj =

∑N
i=1 q

(t)
id yikj∑N

i=1 q
(t)
id

. (9)

It is helpful to note that

p
(t+1)
0 φ

(t+1)
0kj + p

(t+1)
1 φ

(t+1)
1kj =

1

N

N∑
i=1

[(q
(t+1)
i0 + q

(t+1)
i1 )yikj] =

1

N

N∑
i=1

yikj ≡ ȳ∗kj.(10)

Though not required for the initial parameter estimates, the above con-

dition will hold after any iteration and thus will hold for the eventual MLEs,

θ̂. Therefore this is a necessary condition for any set of MLEs under our

non-parametric model. We call the condition p̂0φ̂0kj + p̂1φ̂1kj = ȳ∗kj the MLE

Mixture Condition. Due to this property we have just reduced the effective

parameter space almost in half.

We obtain the estimated covariance matrix for θ using the Fisher infor-

mation matrix, which is given in Appendix A.
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2.2 Equal conditional probability solution

Notice that if one selects the initial parameters such that φ0kj = φ1kj for

all k and j then g
(t=0)
0 (yi) = g

(t=0)
1 (yi). By equation (6), q

(t)
i1 does not depend

on data y and remains constant for all patients i = 1, · · · , N . So during each

iteration p
(t+1)
1 = p

(t)
1 = · · · = p

(0)
1 , and we find that the prevalence rate p1

stays fixed to whatever value was selected for its initial estimate. It can also

be seen that φ
(t+1)
dkj = 1

N

∑N
i=1 yikj = ȳ∗kj for d = 0, 1 and all 1 ≤ k ≤ K and

1 ≤ j ≤ J . Thus given any initial parameters such that φ0kj = φ1kj for all k

and j and any p
(0)
1 the iterative procedure will stop after just one iteration.

It can be shown that for every such case the log-likelihood score function

is zero, and thus each such case is a local log-likelihood maximum. Thus

we are assured of the existence of an infinite number of local log-likelihood

maxima. We hope this set of local maxima do not comprise all local maxima.

For then the global maxima would be one such case and not only would p1

be indeterminate, but we would conclude that φ0kj = φ1kj for all k and j.

It implies that each test is worthless for determining disease status since

for each outcome of any test for a patient is equally likely regardless of

disease status. Obviously this problem is sensitive to the selection of the

initial parameter estimates and we can see which ones it would probably be

worth avoiding. Therefore in seeking the global maximum using the proposed

non-parametric approach, we make the following recommendations: 1) avoid

equal φ0kj = φ1kj for all k and j, this should not be a difficult decision

as in practice certain asymmetry in the test scores are often obvious; 2)
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try a set of reasonable initial parameter estimates, and compare the local

log-likelihood maxima obtained; 3) reasonable initial values can be obtained

from similar studies with known disease status; 4) study the likelihood surface

using exploratory and simulation techniques such as the Stochastic EM we

devise in our simulation study, see Section 4 for more details.

2.3 Invariance property of log-likelihood function

Upon looking at the log-likelihood equation (5) one can see that this equa-

tion is invariant to the re-labeling of the parameter sets (p0,φ0, p1,φ1) to

(p1,φ1, p0,φ0). This implies that there can never exist a unique global max-

imum likelihood solution, since any such maximum, say (p̂1, φ̂0, φ̂1) would

imply the existence of a ”mirror” maximum of equal likelihood at ((1 −
p̂1), φ̂1, φ̂0). Thus the best case is that we arrive at a presumed global maxi-

mum by the use of the EM algorithm, and can distinguish between these two

possibilities by a reasonable ordering of the prevalence rate p̂1 or p̂0 or by

the plausibility of the resulting areas under the K ROC curves. The latter

case may be possible since the area under any test k, say Ak(φ0k•, φ1k•), is

equal to 1 − Ak(φ1k•,φ0k•) where φdk• = (φdk1, . . . , φdkJ). For a proof, see

Appendix B. Therefore, for any credible test we could presumably choose the

global maximum for which Ak > 0.5 for all k = 1, . . . , K if such a case exists.
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2.4 Sum of squared residuals

Let us look at the sum of squared residuals as defined by:

SS =
N∑

i=1

K∑

k=1

J∑
j=1

[yikj − E(yikj)]
2 (11)

Since for any patient i E(yikj) = p̂0φ̂0kj+p̂1φ̂1kj, then by the MLE Mixture

Condition we find that E(yikj) = ȳ∗kj. Thus at any local maximum and for

every iteration of the EM algorithm the sum of squared residuals remain

constant at the value:

SS =
N∑

i=1

K∑

k=1

J∑
j=1

[yikj − ȳ∗kj]
2 (12)

Thus at each iteration of the EM algorithm the parameters are being

updated in such a manner as to always increase the log-likelihood and mean-

while the sum of squared residuals remains fixed. Just as in the case of the

maximum likelihood criterion there are an infinite number of suitable choices

among the parameter set but for the case of the sum of squares there is no

way of distinguishing between the possible choices for a ”best” set.

3. Simulation Study

3.1 Finite sample performance

To assess the performance of the proposed likelihood-based approach in

finite samples, we carried out simulation studies under different ROC curve

11
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conditions. In the simulations we assessed the bias and mean squared error

(MSE) of our estimators. We focused on the prevalence p1 and the area

under curve (AUC). We chose sample size to be N = 118 and N = 500, and

the number of tests to be K = 7, as our real data set. In our simulation

studies we constructed the experiments by varying the parameters φ0kj and

φ1kj in such a manner that A1, · · · , A7 took different values. We also took

the prevalence rate p1 to be 0.5, 0.7, and 0.9.

Tables 1 and 2 summarize the bias and MSE of the estimated ROC areas

for equal ROC curve areas (A1 = · · · = A7 = A), with A = 0.7, 0.8 and 0.9,

and the sample size N is 118 and 500, respectively.

[Table 1 about here.]

[Table 2 about here.]

Tables 3 and 4 summarize the bias and MSE of the estimated ROC curve

areas for unequal ROC curve areas (A1 = 0.9, A2 = 0.87, A3 = 0.83, A4 =

0.80, A5 = 0.77, A6 = 0.73, A7 = 0.7) when the sample size N is 118 and 500,

respectively.

[Table 3 about here.]

[Table 4 about here.]

From the results in Tables 1-4 we see that the proposed method yields

ML estimates for ROC curves with small bias and MSE regardless the true
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ROC curve areas. In general, the higher the areas under ROC curves are,

the smaller their bias and MSEs. In other words, the estimators perform

better when the tests distinguish the disease status better. Hence, the pro-

posed method has good finite sample size performance under the conditional

independence assumption.

3.2 Comparison to a parametric approach

Although the main purpose of this paper is to introduce a non-parametric

approach to the ROC curve estimation without gold standard, it is of inter-

est to compare it with existing parametric approaches. Unfortunately most

published literature has been on the problem of hypothesis testing, not on es-

timation based on parametric models ( Hui and Zhou, 1998; Qu and Hadgu,

1998). Therefore, for our simulation studies, we had to extend the classic

binormal model to the situation where the patient disease status is missing.

Following Diebolt and Ip (1996) we adapted the ROCFIT program (Metz

et al., 1994) to allow missing indicator of disease status. A stochastic step is

added to impute the missing disease indicator D from its conditional density

given observation y and current parameter estimate φ(m) of parameter φ.

Since this imputation is based on all our current information, and hence pro-

vides us with a plausible pseudo-complete sample. Once we have a pseudo-

complete sample, we can directly maximize its log-likelihood to obtain an

updated MLE φ(m+1) using the standard ROCFIT program. This whole

process is iterated. This is the stochastic EM (SEM) algorithm introduced

13

Hosted by The Berkeley Electronic Press



by Celeux and Diebolt (1985). Under mild conditions the SEM algorithm

generates a Markov chain {φ(m)} which converges to a stationary distribu-

tion π(·). The stationary distribution is approximately centered at the MLE

of φ thus provides an alternative for the maximum likelihood estimation.

Standard errors of MLE can be easily derived from the simulated samples as

well (Diebolt and Ip, 1996). Due to the stochastic nature of SEM algorithm,

unlike the EM algorithm the log-likelihood does not decrease monotonically,

and the convergence of the Markov chain has to be monitored using conver-

gence diagnostics. As noted by Diebolt and Ip (1996), in most situations

convergence is reached reasonably fast. See Biernacki et al. (2003) for more

on stopping criteria. For our simulation, we used 400 iterations with 200 as

burn-in.

Table 5 lists the MLEs from both parametric and non-parametric ap-

proaches when the data are actual binormal. The data were generated from

two overlapping Gaussian distributions with different degree of separation

(A1 = 0.95, A2 = 0.90, A3 = 0.90, A4 = 0.85, A5 = 0.85, A6 = 0.80, A7 =

0.75), with various ratios of SDs of distributions for the non-diseased to dis-

eased, and various decision thresholds. It appears the results from our non-

parametric approach are quite comparable to those from parametric models.

The validity of the parametric and non-parametric methods relies on one

common assumption and some unique assumptions. Both the methods make

the conditional independence assumption. While the non-parametric method

makes the irreducibility assumption, the parametric method makes paramet-
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ric assumptions on the distributions of latent variables.

But the non-parametric approach has additional advantages: it is poten-

tially more robust since no distributional assumptions are required, and it is

easier to implement when there is no gold standard.

[Table 5 about here.]

Table 6 lists the results from a simulation study where the true para-

metric distributions are not binormal. The distribution for non-diseased

subjects was chosen to be Gaussian, but the distribution for diseased sub-

jects was formed from a mixture of two Gaussian distributions to create

right-skewed bimodal distributions. Again the AUCs were fixed a priori,

with various ratios of SDs of component distributions for the non-diseased

to diseased subjects. It can be seen under such the setting, both approaches

perform worse than those in Table 5. The results from both non-parametric

approach and parametric approach are quite comparable. And for p1 = 0.9,

the non-parametric approach again appears to perform better, but for smaller

p1 parametric approach appears to perform better. It has been shown that

binormal model is quite robust to model mis-specification (Hajian-Tilaki,

Hanley, Joseph and Collet, 1997; Walsh, 1997), the close estimates of diag-

nostic accuracy (AUC) and the corresponding precision in our simulations

are consistent with the findings by those authors.

[Table 6 about here.]
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4. A Real Example

Holmquist, McMahan and Williams (1967) studied variability in detection

of carcinoma in situ of the Uterine Cervix among seven pathologists under

the study. These seven pathologists were all senior staff pathologists who

were involved in diagnoses of surgical pathologic specimens during 1963 at

Louisiana State University Medical Center. During the period July 1, 1964

through June 30, 1965, these seven pathologists independently evaluated and

classified lesions on each of the 118 randomly ordered slides into five category

ordinal-scale, ranging from 1 (negative) to 5 (invasive carcinoma) categories.

In this study, there was a clinical definition on carcinoma in situ of the

uterine cervix. However, due to technological limitations, diagnosis based on

the clinical definition was not available.

Landis and Koch (1977) assessed variability in detection of carcinoma

among the seven readers using agreement measures. However, the agreement

information cannot translated into the accuracy information. For example,

the seven readers might agree on the disease status of a patient, they all could

be wrong. In this section we apply the proposed method in Sections 2 to as-

sess the variability in the diagnostic accuracy of each reader in detecting the

carcinoma in situ of the uterine cervix, in terms of the empirical ROC curve

and its area under the curve. We summarize the estimated non-parametric

ROC curves for the seven readers in Figure 1, and the corresponding areas

under the ROC curves are 0.94, 0.92, 0.90, 0.93, 0.95, 0.87, and 0.98, re-

spectively. The estimated prevalence is 0.61. The estimated areas under the
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curves under binormal model assumption are 0.84, 0.83, 0.83, 0.86, 0.84, 0.84

and 0.85, respectively, the prevalence is estimated to be 0.65. The computa-

tion was carried out using the SEM algorithm discussed above. It appears the

parametric approach gave more conservative estimates of the test accuracy,

but the validity of the estimates relies on the binormal assumption and the

convergence of the Markov chain. The log-likelihood under non-parametric

MLEs is −779.23, whereas the log-likelihood under MLEs from the binormal

model is −841.15. The likelihood ratio test statistic is 123.84 with degrees of

freedom 14, larger than χ2
0.95,14 = 23.68, so the non-parametric model gives

significant better fit to the data than the binormal model.

[Figure 1 about here.]

5. Discussion

In this paper we have proposed a ML method for estimating the accuracy

of ordinal-scale diagnostic tests with the EM algorithm, based on a latent

class model. To avoid controversies on the use of a latent class model in

the problem of imperfect gold standard (Alonzo and Pepe, 1999;Hadgu and

Miller, 2001; Pepe and Alonzo, 2001), in this paper we assume that we

are dealing with clinical studies in which a gold standard exists but is not

available.

Our simulation result has shown the proposed estimators have good small

bias and mean squared error (MSE). However, the global ML estimate is

not unique; there is a ”mirror” solution. If (p̂1, φ̂0, φ̂1) is ML estimates for
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(p1,φ0,φ1), (1 − p̂1, φ̂1, φ̂0) is also ML estimates. This result is consistent

with the imperfect gold standard bias problem in binary-scale tests as ob-

served by Hui and Walter (1980). One additional complication in finding

a global ML estimate is that there are many local ML estimates. To over-

come this problem we recommend randomly perturbing the starting point,

or recomputing the ML estimates based on a set of plausible initial values.

An advantage with our proposed non-parametric ML approach is that

it does not require specific modeling assumptions, therefore it is likely to

be more robust. Another advantage is that there is explicit solution at the

M-step, so it is much easier to implement the corresponding EM algorithm.

Our simulation studies show that non-parametric estimates are comparable

to those from parametric models. But because the missing disease status, the

parametric likelihood involves complicated mixture form and differentiation,

which makes it harder to carry out the computation. Our experience also

suggests the computation for parametric models is more sensitive to initial

values and less stable when the tables are close to degeneracy.

The proposed non-parametric method requires the conditional indepen-

dence and irreducibility assumptions. One future research is to develop a

parametric ML method without assuming conditional independence. For ex-

ample, we may use a log-linear model without higher order interactions or a

random-effect latent class model as done in Hadgu and Qu (1998) and Qu

and Hadgu (1998).
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Appendix A

Expected Fisher’s Information Matrix

We summarize Expected Fisher’s information matrix of the log-likelihood

function in the following.

The Expected Fisher’s information matrix equals to

E

[
−∂2l(p1,φ0,φ1)

∂(p1,φ0,φ1)
2

]
.

Here

E

[
−∂2l(p1,φ0,φ1)

∂p2
1

]
=

J∑
j1=1

· · ·
J∑

jK=1

[
E[n(j1, · · · , jK)]

(
π1(j1, · · · , jK)

p1

− π0(j1, · · · , jK)

p0

)2
]

,

E

[
−∂2l(p1,φ0,φ1)

∂p1∂φ0kj

]
=

J∑
j1=1

· · ·
J∑

jk−1=1

J∑
jk+1=1

· · ·
J∑

jK=1

[
E[n(jk = j)]

(
π0(jk = j)π1(jk = j)

p0p1φ0kj

)

−E[n(jk = J)]

(
π0(jk = J)π1(jk = J)

p0p1φ0kJ

)]
,

E

[
−∂2l(p1,φ0,φ1)

∂p1∂φ1kj

]
=

J∑
j1=1

· · ·
J∑

jk−1=1

J∑
jk+1=1

· · ·
J∑

jK=1

[
−E[n(jk = j)]

(
π0(jk = j)π1(jk = j)

p0p1φ1kj

)

+E[n(jk = J)]

(
π0(jk = J)π1(jk = J)

p0p1φ1kJ

)]
,
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E

[
−∂2l(p1,φ0,φ1)

∂φ0kj∂φ0kj

]
=

J∑
j1=1

· · ·
J∑

jk−1=1

J∑
jk+1=1

· · ·
J∑

jK=1

[
E[n(jk = j)]

(
π0(jk = j)

φ0kj

)2

+E[n(jk = J)]

(
π0(jk = J)

φ0kJ

)2]
,

E

[
−∂2l(p1,φ0,φ1)

∂φ0kj1∂φ0kj2

]
=

J∑
j1=1

· · ·
J∑

jk−1=1

J∑
jk+1=1

· · ·
J∑

jK=1

[
E[n(jk = J)]

(
π0(jk = J)

φ0kJ

)2]
,

E

[
−∂2l(p1,φ0,φ1)

∂φ0k1j1∂φ0k2j2

]
=

J∑
j1=1

· · ·
J∑

jk1−1=1

J∑
jk1+1=1

· · ·
J∑

jk2−1=1

J∑
jk2+1=1

· · ·
J∑

jK=1

[

E[n(jk1 = j1, jk2 = J)]

(
π0(jk1 = j1, jk2 = J)π1(jk1 = j1, jk2 = J)

φ0k1j1φ0k2J

)

+E[n(jk1 = J, jk2 = j2)]

(
π0(jk1 = J, jk2 = j2)π1(jk1 = J, jk2 = j2)

φ0k1Jφ0k2j2

)

−E[n(jk1 = j1, jk2 = j2)]

(
π0(jk1 = j1, jk2 = j2)π1(jk1 = j1, jk2 = j2)

φ0k1j1φ0k2j2

)

−E[n(jk1 = J, jk2 = J)]

(
π0(jk1 = J, jk2 = J)π1(jk1 = J, jk2 = J)

φ0k1Jφ0k2J

)]
,

E

[
−∂2l(p1,φ0,φ1)

∂φ0kj∂φ1kj

]
=

J∑
j1=1

· · ·
J∑

jk−1=1

J∑
jk+1=1

· · ·
J∑

jK=1

[
E[n(jk = j)]

(
π0(jk = j)π1(jk = j)

φ0kjφ1kj

)

+E[n(jk = J)]

(
π0(jk = J)π1(jk = J)

φ0kJφ1kJ

)]
,
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E

[
−∂2l(p1,φ0,φ1)

∂φ0kj1∂φ1kj2

]
=

∑J
j1=1 · · ·

∑J
jk−1=1

∑J
jk+1=1 · · ·

∑J
jK=1

[
E[n(jk = J)]

(
π0(jk=J)π1(jk=J)

φ0kJφ1kJ

)]
,

E

[
−∂2l(p1,φ0,φ1)

∂φ0k1j1∂φ1k2j2

]
=

J∑
j1=1

· · ·
J∑

jk1−1=1

J∑
jk1+1=1

· · ·
J∑

jk2−1=1

J∑
jk2+1=1

· · ·
J∑

jK=1

[

−E[n(jk1 = j1, jk2 = J)]

(
π0(jk1 = j1, jk2 = J)π1(jk1 = j1, jk2 = J)

φ0k1j1φ1k2J

)

−E[n(jk1 = J, jk2 = j2)]

(
π0(jk1 = J, jk2 = j2)π1(jk1 = J, jk2 = j2)

φ0k1Jφ1k2j2

)

+E[n(jk1 = j1, jk2 = j2)]

(
π0(jk1 = j1, jk2 = j2)π1(jk1 = j1, jk2 = j2)

φ0k1j1φ1k2j2

)

+E[n(jk1 = J, jk2 = J)]

(
π0(jk1 = J, jk2 = J)π1(jk1 = J, jk2 = J)

φ0k1Jφ1k2J

)]
,

E

[
−∂2l(p1,φ0,φ1)

∂φ1kj∂φ1kj

]
=

J∑
j1=1

· · ·
J∑

jk−1=1

J∑
jk+1=1

· · ·
J∑

jK=1

[
E[n(jk = j)]

(
π0(jk = j)

φ0kj

)2

+E[n(jk = J)]

(
π0(jk = J)

φ0kJ

)2]
,

E

[
−∂2l(p1,φ0,φ1)

∂φ1kj1∂φ1kj2

]
=

J∑
j1=1

· · ·
J∑

jk−1=1

J∑
jk+1=1

· · ·
J∑

jK=1

[
E[n(jk = J)]

(
π0(jk = J)

φ0kJ

)2]
,
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and

E

[
−∂2l(p1,φ0,φ1)

∂φ1k1j1∂φ1k2j2

]
=

J∑
j1=1

· · ·
J∑

jk1−1=1

J∑
jk1+1=1

· · ·
J∑

jk2−1=1

J∑
jk2+1=1

· · ·
J∑

jK=1

[

E[n(jk1 = j1, jk2 = J)]

(
π0(jk1 = j1, jk2 = J)π1(jk1 = j1, jk2 = J)

φ0k1j1φ0k2J

)

+E[n(jk1 = J, jk2 = j2)]

(
π0(jk1 = J, jk2 = j2)π1(jk1 = J, jk2 = j2)

φ0k1Jφ0k2j2

)

−E[n(jk1 = j1, jk2 = j2)]

(
π0(jk1 = j1, jk2 = j2)π1(jk1 = j1, jk2 = j2)

φ0k1j1φ0k2j2

)

−E[n(jk1 = J, jk2 = J)]

(
π0(jk1 = J, jk2 = J)π1(jk1 = J, jk2 = J)

φ0k1Jφ0k2J

)]
.

We can prove this using calculus and algebra. Since the proof is straight-

forward but requires tedious calculus and algebra operations, we omit the

proof.

Appendix B

Proof of Invariance Property of ROC Curve Areas

From the expression (3) on an ROC curve area, we obtain that

Ak(φ0k•,φ1k•) + Ak(φ1k•,φ0k•)

=
J−1∑
j=1

[
φ0kj

J∑

l=j+1

φ1kl

]
+

1

2

J∑
j=1

φ0kjφ1kj +
J−1∑

l=1

[
φ1kl

J∑

j=l+1

φ0kj

]
+

1

2

J∑
j=1

φ1kjφ0kj

=
J−1∑
j=1

[
φ0kj

J∑

l=j+1

φ1kl

]
+

J−1∑

l=1

[
φ1kl

J∑

j=l+1

φ0kj

]
+

J∑
j=1

φ0kjφ1kj.
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Note that

J−1∑

l=1

φ1kl

J∑

j=l+1

φ0kj =
J∑

j=2

φ0kj

j−1∑

l=1

φ1kl

Then we find

Ak(φ0k•,φ1k•) + Ak(φ1k•,φ0k•)

=
J−1∑
j=1

[
φ0kj

J∑

l=j+1

φ1kl

]
+

J∑
j=2

[
φ0kj

j−1∑

l=1

φ1kl

]
+

J∑
j=1

φ0kjφ1kj

=φ0k1

( J∑

l=2

φ1kl

)
+

J−1∑
j=2

[
φ0kj

J∑

l=j+1

φ1kl

]
+φ0kJ

(J−1∑

l=1

φ1kl

)
+

J−1∑
j=2

[
φ0kj

j−1∑

l=1

φ1kl

]
+

J∑
j=1

φ0kjφ1kj

=φ0k1

( J∑

l=2

φ1kl

)
+φ0kJ

(J−1∑

l=1

φ1kl

)
+

J−1∑
j=2

[
φ0kj

( j−1∑

l=1

φ1kl +
J∑

l=j+1

φ1kl

)]
+

J∑
j=1

φ0kjφ1kj

=φ0k1

(
1− φ1k1

)
+φ0kJ

(
1− φ1kJ

)
+

J−1∑
j=2

φ0kj

(
1− φ1kj

)
+

J∑
j=1

φ0kjφ1kj

=
J∑

j=1

φ0kj

(
1− φ1kj

)
+

J∑
j=1

φ0kjφ1kj

=
J∑

j=1

φ0kj −
J∑

j=1

φ0kjφ1kj +
J∑

j=1

φ0kjφ1kj =
J∑

j=1

φ0kj

=1,

where we have repeatedly used the fact
∑J

j=1 φ0kj =
∑J

j=1 φ1kj = 1.

Thus we conclude that

Ak(φ0k•, φ1k•) + Ak(φ1k•, φ0k•) = 1
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Table 1
Results From 500 Simulations With N=118, J=5, K=7 Under Various

Parameter Settings

True True Areas 0.7 0.7 0.7 0.7 0.7 0.7 0.7

Prevalence Statistic p1 A1 A2 A3 A4 A5 A6 A7

0.5 Bias -0.0186 -0.0127 -0.0109 -0.0140 -0.0135 -0.0094 -0.0142 -0.0164

MSE 0.0305 0.0089 0.0083 0.0095 0.0090 0.0082 0.0087 0.0091

0.7 Bias -0.1098 -0.0266 -0.0214 -0.0262 -0.0321 -0.0254 -0.0352 -0.0272

MSE 0.0497 0.0127 0.0109 0.0127 0.0121 0.0106 0.0117 0.0128

0.9 Bias -0.3398 -0.1065 -0.1021 -0.0960 -0.1082 -0.0980 -0.1059 -0.0983

MSE 0.1604 0.0277 0.0259 0.0241 0.0262 0.0235 0.0254 0.0240

True True Areas 0.8 0.8 0.8 0.8 0.8 0.8 0.8

Prevalence Statistic p1 A1 A2 A3 A4 A5 A6 A7

0.5 Bias -0.0067 0.0012 0.0008 -0.0042 0.0022 -0.0008 -0.0059 0.0007

MSE 0.0039 0.0024 0.0025 0.0025 0.0026 0.0024 0.0027 0.0025

0.7 Bias -0.0109 0.0000 -0.0057 -0.0035 -0.0041 -0.0037 -0.0079 0.0014

MSE 0.0042 0.0031 0.0032 0.0031 0.0031 0.0033 0.0033 0.0033

0.9 Bias -0.0947 -0.0593 -0.0595 -0.0596 -0.0615 -0.0602 -0.0605 -0.0543

MSE 0.0263 0.0170 0.0169 0.0169 0.0162 0.0159 0.0167 0.0157

True True Areas 0.9 0.9 0.9 0.9 0.9 0.9 0.9

Prevalence Statistic p1 A1 A2 A3 A4 A5 A6 A7

0.5 Bias 0.0022 0.0007 0.0008 0.0007 0.0005 0.0005 -0.0001 0.0006

MSE 0.0023 0.0007 0.0007 0.0007 0.0006 0.0007 0.0007 0.0007

0.7 Bias 0.0021 0.0009 0.0001 0.0000 0.0013 0.0000 -0.0003 0.0001

MSE 0.0021 0.0009 0.0008 0.0008 0.0009 0.0008 0.0009 0.0008

0.9 Bias 0.0019 -0.0004 -0.0019 -0.0002 -0.0023 -0.0011 0.0008 -0.0042

MSE 0.0007 0.0024 0.0023 0.0021 0.0026 0.0024 0.0023 0.0023
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Table 2
Results From 500 Simulations With N=500, J=5, K=7 Under Various

Parameter Settings

true True Areas 0.7 0.7 0.7 0.7 0.7 0.7 0.7

Prevalence Statistic p1 A1 A2 A3 A4 A5 A6 A7

0.5 Bias -0.0003 0.0003 0.0010 0.0021 0.0015 0.0004 0.0007 0.0008

MSE 0.0065 0.0013 0.0015 0.0014 0.0015 0.0014 0.0014 0.0013

0.7 Bias 0.0006 0.0027 0.0051 0.0005 0.0040 -0.0015 0.0013 0.0047

MSE 0.0066 0.0018 0.0019 0.0021 0.0022 0.0020 0.0021 0.0018

0.9 Bias -0.1308 -0.0371 -0.0452 -0.0360 -0.0364 -0.0336 -0.0360 -0.0325

MSE 0.0818 0.0125 0.0138 0.0116 0.0120 0.0124 0.0125 0.0123

True True Areas 0.8 0.8 0.8 0.8 0.8 0.8 0.8

Prevalence Statistic p1 A1 A2 A3 A4 A5 A6 A7

0.5 Bias 0.0001 -0.0017 0.0010 0.0006 -0.0005 -0.0002 -0.0003 0.0007

MSE 0.0008 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005

0.7 Bias 0.0005 -0.0017 0.0013 0.0006 -0.0005 0.0012 -0.0005 0.0016

MSE 0.0007 0.0006 0.0007 0.0006 0.0006 0.0007 0.0007 0.0006

0.9 Bias -0.0022 -0.0019 0.0026 0.0031 -0.0006 -0.0001 -0.0046 0.0009

MSE 0.0004 0.0020 0.0019 0.0018 0.0020 0.0021 0.0021 0.0019

True True Areas 0.9 0.9 0.9 0.9 0.9 0.9 0.9

Prevalence Statistic p1 A1 A2 A3 A4 A5 A6 A7

0.5 Bias 0.0014 -0.0009 0.0007 0.0000 -0.0008 -0.0005 -0.0004 0.0001

MSE 0.0005 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

0.7 Bias 0.0018 -0.0006 0.0006 0.0001 -0.0007 0.0004 0.0002 0.0011

MSE 0.0004 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

0.9 Bias -0.0011 0.0011 -0.0002 0.0007 -0.0008 -0.0001 -0.0006 0.0007

MSE 0.0002 0.0004 0.0004 0.0004 0.0005 0.0004 0.0005 0.0004
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Table 3
Results From 500 Simulations With N=118, J=5, K=7 Under Various

Parameter Settings

True True Areas 0.90 0.87 0.83 0.80 0.77 0.73 0.70

Prevalence Statistic p1 A1 A2 A3 A4 A5 A6 A7

0.5 Bias -0.0009 -0.0045 -0.0059 0.0052 0.0039 0.0049 0.0007 0.0042

MSE 0.0027 0.0009 0.0012 0.0017 0.0019 0.0022 0.0025 0.0027

0.7 Bias -0.0053 -0.0057 -0.0082 0.0044 0.0074 0.0072 0.0037 0.0032

MSE 0.0029 0.0012 0.0015 0.0023 0.0025 0.0025 0.0032 0.0039

0.9 Bias -0.0389 -0.0500 -0.0515 -0.0181 -0.0181 -0.0087 -0.0078 -0.0055

MSE 0.0082 0.0124 0.0114 0.0085 0.0102 0.0088 0.0088 0.0096
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Table 4
Results From 500 Simulations With N=500, J=5, K=7 Under Various

Parameter Settings

True True Areas 0.90 0.87 0.83 0.80 0.77 0.73 0.70

True Prevalence Statistic p1 A1 A2 A3 A4 A5 A6 A7

0.5 Bias 0.0018 -0.0014 0.0000 0.0016 -0.0001 0.0004 0.0001 0.0006

MSE 0.0006 0.0002 0.0002 0.0004 0.0004 0.0005 0.0005 0.0005

0.7 Bias 0.0015 -0.0013 0.0001 0.0019 0.0002 0.0016 0.0004 0.0017

MSE 0.0005 0.0002 0.0003 0.0005 0.0006 0.0006 0.0007 0.0006

0.9 Bias 0.0000 -0.0022 0.0005 0.0058 0.0025 0.0037 -0.0008 0.0040

MSE 0.0003 0.0007 0.0009 0.0011 0.0015 0.0016 0.0019 0.0017
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Table 5
Results From 500 Simulations With N=118, J=5, K=7 Under BiNormal

Models

True True Areas 0.95 0.90 0.90 0.85 0.85 0.80 0.75

Prevalence Statistic Model∗ p1 A1 A2 A3 A4 A5 A6 A7

0.5 Bias P 0.0034 -0.0046 -0.0024 -0.0070 0.0002 0.0009 0.0002 -0.0014

NP -0.0008 -0.0124 -0.0118 -0.0092 -0.0046 -0.0059 0.0038 0.0112

MSE P 0.0023 0.0005 0.0012 0.0011 0.0012 0.0014 0.0022 0.0029

NP 0.0023 0.0007 0.0011 0.0011 0.0014 0.0015 0.0019 0.0020

0.7 Bias P -0.0041 -0.0119 -0.0388 -0.0507 0.0103 0.0017 -0.0040 -0.0271

NP -0.0064 -0.0106 -0.0125 -0.0104 -0.0074 -0.0077 0.0038 0.0141

MSE P 0.0017 0.0004 0.0026 0.0037 0.0010 0.0014 0.0017 0.0037

NP 0.0020 0.0009 0.0013 0.0012 0.0014 0.0013 0.0014 0.0021

0.9 Bias P -0.0205 -0.0663 -0.0736 -0.0649 -0.0494 -0.0346 -0.0569 -0.0497

NP -0.0143 -0.0401 -0.0316 -0.0295 -0.0205 -0.0196 -0.0057 0.0022

MSE P 0.0012 0.0064 0.0091 0.0065 0.0074 0.0039 0.0067 0.0071

NP 0.0016 0.0069 0.0054 0.0054 0.0044 0.0038 0.0036 0.0042

∗ P = parametric model; NP = non-parametric model.
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Table 6
Results From 500 Simulations With N=118, J=5, K=7 Under

Non-BiNormal Models

True True Areas 0.95 0.90 0.90 0.85 0.85 0.80 0.75

Prevalence Statistic Model∗ p1 A1 A2 A3 A4 A5 A6 A7

0.5 Bias P 0.0020 -0.0113 -0.0053 -0.0054 -0.0041 0.0024 0.0019 0.0012

NP -0.0039 -0.0118 -0.0117 -0.0127 -0.0070 -0.0043 0.0011 0.0149

MSE P 0.0026 0.0005 0.0011 0.0008 0.0015 0.0018 0.0025 0.0021

NP 0.0021 0.0007 0.0011 0.0012 0.0015 0.0015 0.0018 0.0026

0.7 Bias P -0.0033 -0.0107 -0.0083 -0.0074 -0.0031 -0.0023 -0.0001 0.0005

NP -0.0006 -0.0122 -0.0136 -0.0099 -0.0066 -0.0047 -0.0018 0.0123

MSE P 0.0025 0.0005 0.0010 0.0009 0.0013 0.0016 0.0021 0.0017

NP 0.0016 0.0008 0.0013 0.0013 0.0015 0.0014 0.0018 0.0022

0.9 Bias P -0.0147 -0.0566 -0.0416 -0.0318 -0.0363 -0.0361 -0.0186 -0.0096

NP -0.0149 -0.0297 -0.0298 -0.0260 -0.0234 -0.0138 -0.0052 0.0001

MSE P 0.0008 0.0043 0.0036 0.0026 0.0035 0.0033 0.0028 0.0041

NP 0.0012 0.0043 0.0046 0.0040 0.0042 0.0029 0.0040 0.0041

∗ P = parametric model; NP = non-parametric model.
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