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1. Introduction

The accuracy of a test can be measured by its ability to correctly classify patients as diseased or

non-diseased. When the response of a test is binary, the accuracy of the test is usually represented

by its sensitivity and specificity. The sensitivity is defined as the proportion of positive test results

among diseased patients, and the specificity is defined as the proportion of negative test results

among non-diseased patients. When dealing with a continuous-scale test, a cut-off point is usually

chosen so that a fixed value of specificity is achieved (typically the 80%, 90%, or 95%)[1]. Since

in practice the distribution of test results for non-diseased patients is unknown, the cut-off point

corresponding to a fixed value of specificity has to be estimated using the data from non-diseased

patients. Therefore, we have to adjust for the uncertainty associated with the estimated cut-off

point when we construct a confidence interval for the sensitivity of the test at the cut-off point that

provides this fixed value of specificity.

Linnet (1987) [2] proposed both parametric and non-parametric methods for constructing confi-

dence intervals for the sensitivity of a test at a fixed value of specificity, accounting for the random

variation associated with the estimated cut-off point. Platt et al. (2000) [1] pointed out several

shortcomings in Linnet’s methods and then proposed to use Efron’s bias-corrected acceleration

(BCa) bootstrap interval; they have shown through simulation studies that the BCa bootstrap

interval has better coverage accuracy than Linnet’s interval. However, as shown in this paper, this

BCa bootstrap interval can still have poor coverage accuracy in many circumstances.

In this paper, we proposed two new intervals for the sensitivity of a test at a fixed value of

specificity. The proposed intervals may be regarded as extensions of Agresti and Coull’s interval

[3] for a binomial proportion, but the extensions are non-trivial because the sensitivity at a fixed

value of specificity is not a simple binomial proportion. Simulation studies indicated that the new
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intervals have better coverage accuracy and shorter length than the BCa bootstrap interval.

This paper is organized as follows. In section 2 we state our problem and introduce necessary

notation. In Section 3 we describe existing methods for interval estimation of the sensitivity of a

continuous-scale test at a fixed level of its specificity. In section 3 we propose two new intervals that

are based on extensions of Agresti and Coull’s idea for confidence intervals of binomial proportions.

In Section 4 we conduct simulation studies to assess the finite-sample performance of the new

intervals with the best existing interval. In Section 5 we illustrate the application of the proposed

method in two real examples.

2. Problem and notation

Let Y and X be results of a continuous-scale test for a diseased and a non-diseased patient,

respectively. For a given cut-off point c, we can define sensitivity and specificity of the test as

Se = P (Y ≥ c), Sp = P (X ≤ c),

respectively. Let F1 and F0 be the distribution functions of Y and X, respectively. We can

then write Se = 1 − F1(c) and Sp = F0(c). Therefore, for a fixed value of specificity at p, the

corresponding sensitivity of the test is R(p) = 1−F1(F−1
0 (p)), where F−1

0 (p) is the inverse function

of F0(p). Our goal in this paper is to construct confidence intervals for R(p) at a fixed level of

specificity p.

Let Y1, . . . , Ym be test results of a random sample of diseased patients and X1, . . . , Xn be test

results of a random sample of non-diseased patients. Based on these observations, we wish to

construct (1 − α)100% confidence intervals for the sensitivity R(p) of the test at a fixed value of

specificity p.

3. Existing Confidence Intervals

Note that R(p) = P (Y1 ≥ F−1
0 (p)). So an obvious estimator for R(p) is the observed sensitivity
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at p-th sample quantile of test results in the sample of non-diseased patients. More specifically, let

F̂0 be the empirical distribution function based on X1, . . . , Xn. Then, we can define this obvious

estimator by

R̂(p) =

∑m
i=1 I

[Yi≥F̂−1
0 (p)]

m
, (1)

where IA is an indicator variable, and F̂−1
0 (p) = sup{t : F̂0(t) ≤ p}.

Treating F̂−1
0 (p) as fixed, we would obtain the naive variance of R̂(p) as

V̂ arN (R̂(p)) =
R̂(p)(1− R̂(p))

m

and the corresponding (1− α)100% confidence interval (hereafter NV interval) for R(p) as

(
R̂(p)− z1−α/2

√
V̂ arN (R̂(p)), R̂(p) + z1−α/2

√
V̂ arN (R̂(p))

)
,

where zα is the α-th quantile of the standard normal distribution [1].

Linnet (1987) [2] showed that the coverage probability of the above NV interval could fall far

below the nominal confidence level, as expected, because it only considered the variability in the

test values from diseased patients and ignored the random variation due to the estimated quantile

of the test values from non-diseased patients. Recogning this problem, Linnet (1987) [2] proposed

an idea to account for this extra random variation in the variance formula for R̂(p), but he didn’t

give the general formula explicitly. However, it is an easy task to derive a general variance formula

for R̂(p) using Linnet’s idea. The key assumption in Linnet’s variance formula for R̂(p) is that the

variance of R̂(p) can be approximated by the sum of the two terms:

V ar(R̂(p)) =
R(p)(1−R(p))

m
+ f2

1 (F−1
0 (p))V ar(F̂−1

0 (p)),

where f1 is the density of the distribution function F1, and V ar(F̂−1
0 (p)) represents the variance

of the sample quantile F̂−1
0 (p). Note that the sample quantile F̂−1

0 (p) has the following asymptotic
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normal distribution:

F̂−1
0 (p)− F−1

0 (p) ∼ N

(
0,

(1− p)p
nf2

0 (F−1
0 (p))

)
,

where f0 is the density of the distribution function F0. Therefore, Linnet’s variance formula for

R̂(p) can be written as

V ar(R̂(p)) =
R(p)(1−R(p))

m
+

(1− p)p
nf2

0 (F−1
0 (p))

f2
1 (F−1

0 (p)). (2)

It turns out that the variance V ar(R̂(p)) for R̂(p) has some nice asymptotic properties. In fact

several authors have shown that when both m and n are large, R̂(p) has an approximately normal

distribution with mean R(p) and variance V ar(R̂(p)), given by (2) [4].

By substituting unknown quantities in (2) by their corresponding sample estimates, we obtain

the following estimated variance for R̂(p):

V̂ arLN (R̂(p)) =
R̂(p)(1− R̂(p))

m
+

(1− p)p
nf̂2

0 (F̂−1
0 (p))

f̂2
1 (F̂−1

0 (p)), (3)

where f̂1 and f̂0 are the empirical density estimates from samples of diseased and non-diseased

patients, respectively, and F̂−1
0 (p) is the p-th sample quantile in the sample of non-diseased patients.

It is worth noting that Linnet’s variance estimate for R̂(p), given by Platt et al. (2000) [2], contains

some minor typos (see their formula for ̂
VLNP (Ŝe) on page 315 of their paper). However, the typos

in their paper should not affect their simulation conclusions. Using V̂ arLN (R̂(p)), we obtain the

(1− α)100% Linnet confidence interval (hereafter LN interval) for R(p) as follows:

(
R̂(p)− z1−α/2

√
V̂ arLN (R̂(p)), R̂(p) + z1−α/2

√
V̂ arLN (R̂(p))

)
.

From the variance formula for V̂ arLN (R̂(p)) in (3), we see that the performance of Linnet’

interval may be greatly affected by poor empirical density estimation. Platt et al. (2000)[1] studied

this issue and found via a simulation study that Linnet’ interval could perform poorly under certain
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circumstances, particularly when test responses of a diseased and a non-diseased patient were not

normally distributed. To avoid estimation of the variance of R̂(p), Platt et al. (2000) [1] proposed

to use Efron’s bias correction and acceleration (BCa) bootstrap method to construct a confidence

interval for R(p).

4. New Confidence Intervals

We first assume that the distribution function F0 for test results of non-diseased patients is

known and let Wi = I[Yi≥F−1
0 (p)], i = 1, · · · ,m. Then, we can see that Wi’s are Bernoulli random

variables with the proportion R(p) = P
(
Yi ≥ F−1

0 (p)
)
. Letting R0(p) =

∑m
i=1 Wi/m, we obtain

the standard (1− α)100% Wald interval for R(p) as follows:

(
R0(p)− z1−α/2

√
R0(p)(1−R0(p))/m,R0(p) + z1−α/2

√
R0(p)(1−R0(p))/m

)
.

However, it has been shown that the Wald interval has poor coverage accuracy, particularly for

small sample sizes [5]. In order to improve the coverage accuracy of the Wald interval for binomial

proportions, Agresti and Coull (1998) [3] proposed an easy-to-use interval, called the AC interval.

Applying the AC interval to our setting, we obtain the following (1− α)100% confidence interval

for R(p):
(

R̃0(p)− z1−α/2

√
V̂ arAC(R̃0(p)), R̃0(p) + z1−α/2

√
V̂ arAC(R̃0(p))

)
(4)

where

R̃0(p) =

∑m
i=1 I[Yi≥F−1

0 (p)] + z2
1−α/2/2

m + z2
1−α/2

, (5)

and

V̂ arAC(R̃0(p)) =
R̃0(p)(1− R̃0(p))

m + z2
1−α/2

. (6)

Since z1−α/2 is approximately equal to 2, when α = 0.05, the AC interval is regarded as the adjusted

Wald interval by adding two successes and two failures to Bernoulli observations. Agresti and Coull
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(1998) [3] strongly recommended this interval because their simulation study has shown that it has

good coverage accuracy even for small sample sizes.

Since F−1
0 (p) is unknown, we can not directly use the AC interval for R(p), defined by (4). One

way of overcoming this problem is to replace the unknown F−1
0 (p) in the formula (4) by its sample

quantile F̂−1
0 (p), resulting in a plug-in type interval,

(
R̃(p)− z1−α/2

√
V̂ arAC(R̃(p)), R̃(p) + z1−α/2

√
V̂ arAC(R̃(p))

)

where

R̃(p) =

∑m
i=1 I

[Yi≥F̂−1
0 (p)]

+ z2
1−α/2/2

m + z2
1−α/2

, (7)

and

V̂ arAC(R̃(p)) =
R̃(p)(1− R̃(p))

m + z2
1−α/2

. (8)

However, our simulation study, not reported here, has shown that the plug-in type AC interval has

poor coverage accuracy.

The problem with the plug-in AC interval is still underestimation of the variance for the estima-

tor R̃(p) in (7), which is derived by replacing F−1
0 (p) in (5) with F̂−1

0 (p). When we replace F−1
0 (p)

by its sample quantile F̂−1
0 (p) in Wi = I[Yi≥F−1

0 (p)], the resulting random variables I
[Yi≥F̂−1

0 (p)]
are

no longer independent. Hence, the variance estimate, given by (8), also underestimates the true

variance of R̃(p).

In this paper we propose a bootstrap method to estimate the variance of R̃(p). After we

obtain such an appropriate variance estimate, we then apply Agresti and Coull’s idea to obtain

confidence intervals for R(p). We summarize the procedure for computing the bootstrap variance

in the following steps:

1. Draw a resample of size m, Y ∗
i ’s, with replacement from the diseased sample Yi’s and a
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separate resample of size n, X∗
j ’s, with replacement from the non-diseased sample Xj ’s.

2. Calculate the bootstrap version of R̃(p),

R̃∗(p) =

∑m
i=1 I

[Y ∗i ≥F̂−1∗
0 (p)]

+ z2
1−α/2/2

m + z2
1−α/2

,

where F̂−1∗
0 (p) is the p-th sample quantile based on the bootstrap resample X∗

j ’s.

3. Repeat the first two steps B times to obtain the set of bootstrap replications {R̃∗b(p) : b =

1, 2, · · · , B} (it is recommended that B ≥ 200; in this paper, we take B = 500). Then, the

proposed bootstrap variance estimator V ∗(p) is defined by

V ∗(p) =
1

B − 1

B∑

b=1

(R̃∗b(p)− R̄∗(p))2,

where R̄∗(p) = (1/B)
∑B

b=1 R̃∗b(p).

Now we propose the following two new intervals for R(p). The first (1 − α)100% level interval,

called BTI interval, for R(p) is defined by

(
R̃(p)− z1−α/2

√
V ∗(p), R̃(p) + z1−α/2

√
V ∗(p)

)

where R̃(p) is defined by (7). The second (1−α)100% level interval, called BTII interval, for R(p)

is defined by
(

R̄∗(p)− z1−α/2

√
V ∗(p), R̄∗(p) + z1−α/2

√
V ∗(p)

)
.

5. Simulation Studies for the Confidence Intervals

We conducted two simulation studies to evaluate coverage accuracy and interval length of the

newly proposed intervals for R(p) when p =80% or 90% in finite-sample sizes. Since Platt et

al. (2000) [1] have already shown that their BCa bootstrap interval has better coverage accuracy

than currently used methods, including Linnet’s interval, for non-normally distributed data and
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has at least as good as currently used methods when test responses follow normal distributions,

in our simulation studies we only included the BCa bootstrap interval for comparison purposes.

In both simulation studies, we generated 5,000 random samples of size m from the distribution

function F1 for test responses of diseased patients and another independent random sample of the

sample size n from the distribution function F0 for test responses of non-diseased patients, and we

took (m,n) = (20, 20), (50, 50), and (40, 20) in the both simulation studies to represent a small

sample size, moderate sample size, and unequal sample size setting. In the simulation studies,

the distributions F0 and F1 were chosen to represent a setting of normally distributed data and a

setting of non-normally distributed data, as used in Platt et al (2000) [1].

In the first simulation study, we chose the distributions F0 and F1 to be beta distributions with

parameters (a0, b0) and (a1, b1), respectively. The parameter settings for a0, a1, b0, b1 were chosen

so that various values of test’ sensitivity were achieved when its specificity was fixed at either 80%

or 90%. In Table 1 we report the corresponding sensitivity when test’s specificity is fixed at either

80% or 90%. We display coverage probabilities and interval lengths for the BCa intervals and the

two newly proposed intervals (BTI and BTII) with the nominal level of 95% in Table 2 when

n = m = 20, in Table 3 when n = m = 50, and in Table 4 when m = 40 and n = 20, respectively.

From the results in Tables 2-4, we see that generally the both proposed BTI and BTII intervals have

better coverage accuracy and shorter interval length than the BCa interval, regardless of sample

sizes and true values of sensitivity and specificity considered here. The BTII interval performs the

best among the three intervals compared under simulated scenarios here. The improvement of the

BTII interval over the BCa interval in coverage accuracy can be huge when sample sizes are samll

or unqual and when the test’s sensitivity is greater than 0.93. For example, when n = m = 20, at

the fixed specificity of 80% with the true sensitivity of 93% (Run 2), the coverage probability of
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the BTII interval with the nominal level of 95% is 92.55% whileas that of the BCa interval with

the nominal level of 95% is only 71.25%.

In the second simulation study, we chose the distributions F0 and F1 to be the standard normal

distribution and a normal distribution with mean µ and variance 1, where µ was chosen to give

different levels of the desired sensitivity of the test when test’s specificity was fixed at 80% or 90%.

Table 5 displays the parameter settings for µ and corresponding sensitivities when the specificity

was fixed at either 80% or 90%. We present coverage probabilities and interval lengths for the BCa

intervals and the two newly proposed intervals (BTI and BTII) with the nominal level of 95% in

Table 6 when n = m = 20, in Table 7 when n = m = 50, and in Table 8 when m = 40 and n = 20,

respectively. From results in Tables 6-8, we see a very similar pattern on coverage accuracy and

interval length of the various intervals as in the first simulation study.

In summary, our simulation studies suggest that the two newly proposed BTI and BTII intervals

tend to have better coverage accuracy and shorter interval lengths than the existing BCa interval

regardless of the sample sizes and for both normal and non-normal data we considered here. Among

the three intervals compared here, the BTII interval tends to have the best coverage accuracy and

shortest length. In addition, the new intervals are computanionally simpler than the BCa interval.

6. Two Real Applications

We illustrated the application of the proposed methods in two real studies. The first study

investigated the accuracy of dematoscopy in distingushing patients with malignant melanoma (MM)

from those without MM; the second study assessed the the accuracy of cerebrospinal fluid CK-BB

isoenzyme in predicting the future outcome of severe head trauma.

6.1 Dermoscope Example

The most deadly kind of skin disease is malignant melanoma (MM), and early detection of MM
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combined with excision of MM is the only way to cure patients with MM. Stolz et al. (1994) [6]

studied the accuracy of clinical evaluation with the aid of dermatoscopy in detecting malignant

melanoma by using the ABCD rule (Asymmetry, irregular Border, different Colors, and Diameter

larger than 6mm). The dermatoscopy is a hand-held instrument for skin surface microscopy at

10 times magnification [7]. The study sample consists of 21 patients with MM and 51 patients

with benign melanocytic lesions, and the gold standard used in the study is biopsy. To be sure

that dermatoscopy has a high change of ruling out patients without MM, dermatologists want the

specificity of dermatoscopy to be at least 90% for detecting patients without MM and want to know

what the corresponding sensitivity of dermatoscop is in detecting patients with MM. Therefore,

It is an interest to construct a confidence interval for the sensitivity of dermatoscopy when its

specificity is fixed at 90%.

The estimated sensivitiy of the dermatoscopy at the fixed 90% level of specificity is 0.71,

and the corresponding 95% confidence intervals are: [1.00,1.00] using the BCa bootstrap method,

[0.357,1.00] using the BTI bootstrap method, and [0.285,0.934] using the BTII bootstrap method.

It is worth noting the BCa bootstrap method gave a degenerated confidence interval. According

to our simulation result, we would use [0.285,0.934] from the BTII bootstrap method as the 95%

confidence interval for the sensitivity of the dermatoscopy at the fixed 90% level of specificity.

6.2 Severe Head Trauma Example

Hans et al. (1985) [8] conducted a study on assessing the accuracy of cerebrospinal fluid CK-BB

isoenzyme measured within 24 hours of injury as a means of predicting the outcome of severe head

trauma. Investigators are interested in determining whether patients will have a poor outcome

(death, vegetative state or severe disability) after suffering a severe head trauma. A sample of 60

subjects admitted to a hospital with severe head trauma are considered with 19 eventually having
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moderate to full recovery, with the remaining 41 poor or no recovery (Hans et al., 1985).

Investigators want the specificity of CK-BB to be at least 90% for predicting poor recovery

or death from severe head injury. They want to know what the corresponding sensitivity of CK-

BB is. Therefore, one main research question is how to construct a confidence interval for the

corresponding sensitivity of CK-BB when one chooses a decision threshold to achieve a minimum

value of required specificity of 90%.

The estimated sensitivity at the fixed 90% level of specificity is 0.634, and the corresponding

95% confidence intervals are: [0.415,0.829] using the BCa bootstrap method, [0.419,0.825] usig

the BTI bootstrap method, and [0.429,0.836] using the BTII bootstrap method. Based on our

simulation result, we would use [0.429,0.836] as the 95% confidence interval for the sensitivity of

the fluid CK-BB isoenzyme at the fixed 90% level of its specificity.

7. Discussion

When the response of a test is continuous, we need to choose a cut-off point to compute its

sensitivity and specificity. A patient is classified as diseased if the test’s response is above the

chosen cut-off point and as non-diseased if the test’s response is below the chosen cut-off point.

For a continuous-scale test, we are often interested in estimating the sensitivity of the test at a

cut-off point that yields a pre-determined level of specificity [2]. The current best existing interval

is Platt’s BCa bootstrap interval. Since this interval is based on the traditional Wald-type interval

for the binomial proportion, as shown in this paper it can still have poor coverage accuracy. In

this paper, we have proposed two new intervals (BTI and BTII) that are based on an improved

version of the Wald-type interval. We have shown in the simulations that the proposed BTII has

the best performance in term of coverage accuracy and interval length. However, the performance

of the proposed BTII interval is still not satisfactory when the true sensitivity is very high ( ≥ 0.95)
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and sample sizes are small. It is a future research topic to improve the coverage accuracy of the

proposed intervals when the sensitivity is very high.

If we do not know which level of specificity a test should be fixed at when we are estimating

the sensitivity of the test, we need to construct a receiver operating characteristic curve (ROC) to

represent the accuracy of the test. Our proposed methods can also be used to construct pointwise

confidence bands for an ROC curve. Whereas our method may be considered as a non-parametric

method for the interval estimation of the ROC curve of a continuous-scale test, Metz et al. (2000)

[9] has proposed a latent semi-parametric method for estimation of the ROC curve. It is a future

research topic to compare these two approaches. The use of the jackkinife or bootstrap method

has also been considered by Dorfman et al. (1992) [10] for the analysis of ROC curve areas of

ordinal-scale tests.

A S-plus code implementing the proposed BTI and BTII intervals are available from the authors.
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Table 1. Parameter settings for beta distributions in the first simulation, where a1 and b1

denote two parameters in a beta distribution for a diseased patient, and a0 and b0 denote

two parameters in a beta distribution for a non-diseased patient. The specificity of the test

is fixed at either 80% or 90%, and the corresponding sensitivity is calculated based on a

given beta distribution.

Run (a1, b1) (a0, b0) Specificity (p) Sensitivity (R(p))

1 (4, 1) (1, 3.5) 0.90 0.95

2 (3, 1) (1, 3) 0.80 0.93

3 (3, 1) (1, 3) 0.90 0.85

4 (4, 2) (2, 4) 0.80 0.82

5 (3, 2) (2, 3) 0.80 0.55
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Table 2. Coverage errors and probabilities and average lengths of the various intervals with

the nominal level of 95% when data are generated from beta distributions with m = n = 20.

Run Method Coverage errors Coverage Average

Lower Upper probability length

1 BCa 0.3575 0.0175 0.6250 0.2640

BTI 0.0000 0.1905 0.8095 0.2278

BTII 0.0000 0.1605 0.8395 0.2278

2 BCa 0.2410 0.0465 0.7125 0.3192

BTI 0.0000 0.0975 0.9025 0.2457

BTII 0.0000 0.0745 0.9255 0.2457

3 BCa 0.0860 0.0215 0.8925 0.4663

BTI 0.0520 0.0235 0.9245 0.3741

BTII 0.0430 0.0110 0.9460 0.3741

4 BCa 0.0485 0.0455 0.9060 0.4883

BTI 0.0320 0.0300 0.9380 0.3875

BTII 0.0270 0.0185 0.9545 0.3875

5 BCa 0.0085 0.0565 0.9350 0.6005

BTI 0.0495 0.0250 0.9255 0.5223

BTII 0.0405 0.0155 0.9440 0.5223

Note:

Coverage errors refer to the proportions of runs in which the lower (or upper) limit of

the confidence interval excluded the true R(p) (each is expected to be 0.025); Coverage

probability is the proportions of runs in which the confidence interval contained the true

R(p); the average length is the mean of lengths of confidence intervals for R(p).
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Table 3. Coverage errors and probabilities and average lengths of the various intervals with

the nominal level of 95% when data are generated from beta distributions with m = n = 50.

Run Method Coverage errors Coverage Average

Lower Upper probability length

1 BCa 0.0875 0.0510 0.8615 0.2059

BTI 0.0280 0.0230 0.9490 0.1678

BTII 0.0275 0.0135 0.9590 0.1678

2 BCa 0.0355 0.0495 0.9150 0.2131

BTI 0.0155 0.0265 0.9580 0.1783

BTII 0.0220 0.0250 0.9530 0.1783

3 BCa 0.0085 0.0355 0.9560 0.3234

BTI 0.0280 0.0155 0.9565 0.2829

BTII 0.0295 0.0140 0.9565 0.2829

4 BCa 0.0105 0.0420 0.9475 0.3112

BTI 0.0255 0.0215 0.9530 0.2812

BTII 0.0305 0.0210 0.9485 0.2812

5 BCa 0.0250 0.0375 0.9375 0.4030

BTI 0.0430 0.0215 0.9355 0.3858

BTII 0.0320 0.0140 0.9540 0.3858
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Table 4. Parameter settings for normal distributions in the second simulation study. The

response of a non-diseased patient has the standard normal distribution N(0, 1), and the

response of a diseased patient has a normal distribution with mean µ and variance 1

N(µ, 1). The specificity of the test is fixed at either 80% or 90%, and the corresponding

sensitivity is calculated based on N(µ, 1).

Run µ Specificity Sensitivity

(p) (R(p))

1 2.9264 0.90 0.95

2 2.5631 0.90 0.90

3 2.1231 0.90 0.80

4 2.4865 0.80 0.95

5 1.6832 0.80 0.80
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Table 5. Coverage errors and probabilities and average lengths of the various intervals with

the nominal level of 95% when data are generated from normal distributions with

m = n = 20.

Run Method Coverage errors Coverage Average

Lower Upper probability length

1 BCa 0.3695 0.0145 0.6160 0.2511

BTI 0.0000 0.2605 0.7395 0.2196

BTII 0.0000 0.2165 0.7835 0.2196

2 BCa 0.1900 0.0620 0.7480 0.3690

BTI 0.0470 0.0290 0.9240 0.3061

BTII 0.0465 0.0130 0.9405 0.3061

3 BCa 0.0555 0.0475 0.8970 0.5191

BTI 0.0455 0.0170 0.9375 0.4278

BTII 0.0475 0.0080 0.9445 0.4277

4 BCa 0.3535 0.0230 0.6235 0.2519

BTI 0.0000 0.2335 0.7665 0.1990

BTII 0.0000 0.2020 0.7980 0.1990

5 BCa 0.0250 0.0655 0.9095 0.5216

BTI 0.0220 0.0245 0.9535 0.4159

BTII 0.0190 0.0170 0.9640 0.4159
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Table 6. Coverage errors and probabilities and average lengths of the various intervals with

the nominal level of 95% when data are generated from normal distributions with

m = n = 50

Run Method Coverage errors Coverage Average

Lower Upper probability length

1 BCa 0.0925 0.0430 0.8645 0.1955

BTI 0.0230 0.0315 0.9455 0.1572

BTII 0.0225 0.0175 0.9600 0.1572

2 BCa 0.0145 0.0450 0.9405 0.2745

BTI 0.0270 0.0165 0.9565 0.2293

BTII 0.0220 0.0105 0.9675 0.2293

3 BCa 0.0150 0.0430 0.9420 0.3577

BTI 0.0430 0.0210 0.9360 0.3201

BTII 0.0365 0.0150 0.9485 0.3201

4 BCa 0.0735 0.0435 0.8830 0.1775

BTI 0.0205 0.0380 0.9415 0.1443

BTII 0.0200 0.0225 0.9575 0.1443

5 BCa 0.0105 0.0535 0.9360 0.3291

BTI 0.0320 0.0255 0.9425 0.2977

BTII 0.0255 0.0160 0.9585 0.2977
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Table 7. 95% confidence intervals for R(p) in the illustrative example.

Fixed level of method Estimated Confidence intervals Lengths

specificity(p) sensitivity (R̂(p))

0.95 BCa 0.689 (0.524, 0.778) 0.254

BTI 0.689 (0.561, 0.801) 0.240

BTII 0.689 (0.560, 0.800) 0.240

0.90 BCa 0.756 (0.678, 0.892) 0.214

BTI 0.756 (0.643, 0.847) 0.204

BTII 0.756 (0.627, 0.831) 0.204

0.80 BCa 0.778 (0.678, 0.856) 0.178

BTI 0.778 (0.682, 0.851) 0.169

BTII 0.778 (0.680, 0.849) 0.169

0.70 BCa 0.811 (0.656, 0.889) 0.233

BTI 0.811 (0.706, 0.891) 0.185

BTII 0.811 (0.711, 0.896) 0.185

0.50 BCa 0.889 (0.778, 0.944) 0.166

BTI 0.889 (0.801, 0.945) 0.144

BTII 0.889 (0.798, 0.942) 0.144

0.30 BCa 0.933 (0.867, 0.989) 0.122

BTI 0.933 (0.853, 0.978) 0.125

BTII 0.933 (0.841, 0.966) 0.125

0.10 BCa 0.956 (0.848, 0.978) 0.130

BTI 0.956 (0.897, 0.977) 0.080

BTII 0.956 (0.904, 0.984) 0.080
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